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In a dynamic panel data model, the number of moment conditions increases rapidly
with the time dimension, resulting in a large dimensional covariance matrix of
the instruments. As a consequence, the generalized method of moments (GMM)
estimator exhibits a large bias in small samples, especially when the autoregressive
parameter is close to unity. To address this issue, we propose a regularized version
of the one-step GMM estimator using three regularization schemes based on three
different ways of inverting the covariance matrix of the instruments. Under double
asymptotics, we show that our regularized estimators are consistent and asymp-
totically normal. These regularization schemes involve a tuning or regularization
parameter which needs to be chosen. We derive a data-driven selection of this
regularization parameter based on an approximation of the higher-order mean square
error and show its optimality. As an empirical application, we estimate a model of
income dynamics.

1. INTRODUCTION

In this paper, we propose a regularization approach to the estimation of a dynamic
panel data model (DPM) with individual fixed effect. The presence of this last
element creates a correlation between the error term of the model and one of
the explanatory variable which is the lagged value of the dependent variable.
Hence, the generalized method of moments (GMM) is widely used to estimate
such models using lags of the dependent variable as instruments. A feature of the
DPM is that, if a variable at a certain time period can be used as an instrument, then
all the past realizations of that variable can also be used as instruments. Therefore,
the number of moment conditions can be very large even if the time dimension is
moderately large.

Increasing the number of moments has two opposite effects on the GMM
estimator. On the one hand, it improves its efficiency; on the other hand, it increases

The authors thank the Editor (P.C.B. Phillips), the Co-Editor (Guido Kuersteiner), three anonymous referees, Ryo
Okui, and the participants of the NBER-NSF conference (2016), NY Camp Econometrics (2017), Canadian Economic
Association (2018), International Association for Applied Econometrics (2018), and the Econometric Study Group
(2019) for their helpful comments. Carrasco thanks SSHRC for partial financial support. Address correspondence to
Marine Carrasco, CIREQ, University of Montreal, Montreal, QC, Canada; e-mail: marine.carrasco@umontreal.ca

© The Author(s), 2022. Published by Cambridge University Press. 360

https://doi.org/10.1017/S0266466622000469 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466622000469
mailto:marine.carrasco@umontreal.ca
https://doi.org/10.1017/S0266466622000469


REGULARIZED ESTIMATION OF DYNAMIC PANEL MODELS 361

its bias. Therefore, estimation in the presence of many moment conditions involves
a variance-bias trade-off also referred to as the many instruments problem. As a
solution to this problem, we propose to use regularized inverses of the covariance
matrix as in Carrasco (2012) and Carrasco and Tchuente (2015). The impact of
regularization is twofold. First, it yields to more reliable estimation of the inverse
covariance matrix when it is ill-conditioned. Second, it performs a dimension
reduction on the space of instruments by putting more weight on the principal
components (PCs) associated with the largest eigenvalues of the covariance matrix.
The three regularizations considered are spectral cutoff (SC), Tikhonov (TK), and
Landweber–Fridman (LF). The SC regularization scheme is based on the first PCs,
whereas the TK’s one can be considered as the dynamic panel version of the ridge
regression (also called Bayesian shrinkage), and the last one is an iterative method.
All these methods involve a regularization parameter similar to the smoothing
parameter in nonparametric regression. This parameter needs to converge to zero
at an appropriate rate to obtain an asymptotically efficient estimator.

In this paper, we focus on regularized versions of the one-step GMM estimator
where the individual effect has been removed by forward filtering as in Alvarez
and Arellano (2003; hereafter AA). The one-step GMM estimator corresponds
to the efficient GMM estimator when the error is conditionally homoskedastic.
We derive the first-order asymptotic properties of the regularized estimators under
double asymptotics where N and T go to infinity and assuming homoskedastic
error. Then, we derive the leading term of the mean square error (MSE) using
a second-order expansion. We show that the leading terms consist of a squared
bias and a variance term which are both functions of the regularization parameter.
The main contribution of the paper is to develop a data-driven selection of the
regularization parameter as minimum of the approximate MSE and to prove its
optimality in the sense of Li (1986, 1987).

The literature related to the many instruments problem is very large. Working
on cross-sectional data, Donald and Newey (2001) propose to select the number
of instruments that minimizes the MSE of their estimators. Kuersteiner and Okui
(2010) propose a model averaging two-stage least-squares (2SLS) estimator where
the first-stage estimator is the average of estimators obtained by projecting on
subsets of instruments. The weights are chosen to minimize the asymptotic MSE
of the model averaging estimator. Okui (2011) introduces a shrinkage parameter
to allocate less weight on a subset of instruments. Kuersteiner (2012) proposes a
kernel-weighted GMM estimator in a time series framework. Belloni et al. (2012)
apply Lasso on the first-stage equation to select a subset of instruments. Doran and
Schmidt (2006) use PCs in a DPM to reduce the bias. Our work complements their
paper by proposing a data-driven method to choose the optimal number of PCs to
use in order to improve the finite sample properties of the estimator.

Carrasco (2012) proposes regularization approaches to two-stage least-squares
estimation, whereas Carrasco and Tchuente (2015) focus on a regularized version
of the limited information maximum likelihood (LIML) estimator. While the
same regularizations are considered here, the proof technique is very different
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because of the dynamic nature of the model. Indeed, because the instruments
are not exogenous but only predetermined, the analysis of the MSE is much
more challenging than in the cross-sectional framework of Carrasco (2012).
In particular, one cannot rely on an expansion of the MSE conditional on the
instruments, but on the unconditional MSE instead.

Several bias-corrected estimators have been proposed for DPM. Kiviet (1995)
proposes a bias-corrected version of within-group estimator. Hahn and Kuersteiner
(2002) propose a bias correction of OLS estimator when both N and T are large.
Hahn, Hausman, and Kuersteiner (2004) develop a bias correction for 2SLS
based on the Jackknife. Bun and Kiviet (2006) study the bias of the method of
moment estimator of DPM with weakly exogenous regressors. Hayakawa (2009)
proposes to use instrumental variables (IV) with an approximate optimal instru-
ment, whereas Hayakawa, Qi, and Breitung (2019) construct instruments by
backward filtering and show the equivalence with a bias-corrected estimator. Our
methodology complements those methods as regularization provides a partial bias
correction. In an identical framework as ours, Okui (2009) derives a higher-order
expansion of the MSE and proposes to choose the optimal number of moment
conditions to minimize an estimated version of this expansion. However, the finite
sample bias problem is not completely addressed since his simulations present a
large bias for the GMM estimator when the autoregressive parameter is close to
unity.

The remainder of this paper is organized as follows. Section 2 presents the
DPM and the one-step GMM estimator. Section 3 presents regularized estimators,
whereas Sections 4 and 5, respectively, present asymptotic properties and higher-
order properties of regularized GMM estimators. A data-driven selection of the
regularization parameter is developed in Section 6. Section 7 presents the extension
of the model to exogenous covariates, and Section 8 discusses the results of Monte
Carlo simulations. An empirical application on income dynamics is discussed in
Section 9. It appears that the regularization corrects the bias of the usual GMM
estimator, which seems to underestimate the estimated autoregressive coefficient.
Throughout the paper, we use the notations I and Iq̄, respectively, for the N × N
and q̄× q̄ identity matrix. The proofs are collected in Appendix B.

2. THE MODEL

We consider a simple AR(1) model with individual effects described in the
following equation. For i = 1,. . .,N and t = 1,. . .,T,

yit = δyi,t−1 +ηi + vit, (1)

where δ is the parameter of interest satisfying |δ| < 1, ηi is the unobserved
individual effect, and vit is the idiosyncratic error with conditional mean zero and
variance σ 2 conditionally on ηi,yit−1, . . . ,yi0. For simplicity, we assume that yi0 is
observed. Moreover, we denote yi,t−1 by xi,t.
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As it is usual in estimating such models, we first transform the model to
eliminate the individual effects. Two widely used transformations are the first
difference (FD) and the forward orthogonal deviation (FOD) operator. In this
paper, we use the latter for theoretical and computational purposes. Indeed, this
transformation preserves homoskedasticity and no serial correlation properties of
the error term. Let the (T − 1)× T matrix A denote the FOD operator as used by
Arellano and Bover (1995) and define v∗

i = Avi, x∗
i = Axi, and y∗

i = Ayi, where
vi = (vi1, . . . ,viT)′, xi = (xi1, . . . ,xiT)′, and yi = (yi1, . . . ,yiT)′. Similarly, we denote
x∗

i = (x∗
i1, . . . ,x

∗
iT)′ and y∗

i = (y∗
i1, . . . ,y

∗
iT)′. In particular, the tth element of y∗

i is
given by

y∗
it = ct[yit − 1

T − t
(yit+1 +·· ·+ yiT)]

with c2
t = (T − t)/(T − t +1).

By multiplying the model by A, equation (1) becomes

y∗
it = δx∗

it + v∗
it.

We have E(x∗
i,tv

∗
it) �= 0 so that the ordinary least square (OLS) estimator of the

transformed model is not consistent for fixed T as N tends to infinity. However,
E(xi,t−sv∗

it) = 0, for s = 0, . . . ,t − 1 and t = 1, . . . ,T − 1. Then, we consider the
one-step GMM estimator of δ based on these moment conditions. The properties
of this estimator have been studied by AA. The number of moment conditions
is q̄ = T(T − 1)/2, which can be very large even if T is moderately large. Let
zit = (xi1, . . . ,xit)

′, and let Zi be the (T − 1) × q̄ block diagonal matrix whose
tth block is z′

it. The moment conditions are then given by E(Z′
iv

∗
i ) = 0 with

v∗
i = (v∗

i1, . . . ,v
∗
i,T−1)

′. Under the assumption of conditional homoskedasticity of
vit, the covariance matrix of the moment conditions is σ 2E(Z′

iZi). The one-step
GMM estimator of the parameter δ is given by

δ̂ =
( T−1∑

t=1

x∗′
t Mtx

∗
t

)−1( T−1∑
t=1

x∗′
t Mty

∗
t

)
,

with Mt the N×N matrix Zt(Z′
tZt)

−1Z′
t where Zt = (z1t, . . . ,zNt)

′, x∗
t = (x∗

1t, . . . ,x
∗
Nt)

′,
and y∗

t defined in the same way. Letting x∗ = (x∗′
1 , . . . ,x∗′

N )′ and y∗ = (y∗′
1 , . . . ,y∗′

N )′,
the one-step GMM estimator can also be written as

δ̂ = x∗′
My∗

x∗′Mx∗ ,

where M = Z(Z′Z)−1Z′ is an N(T −1)×N(T −1) matrix and Z = (Z′
1, . . . ,Z

′
N)′ is

an N(T −1)× q̄ matrix. Note that Z′Z is a block-diagonal matrix with blocks Z′
tZt,

t = 1,2, . . . ,T −1, on the diagonal.
Even though it is widely used by empirical researchers, this GMM estimator

suffers from small-sample bias when the number of moments is large. Moreover,
using a simple AR(1) model, Blundell and Bond (1998) showed that the lagged
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levels of the dependent variable become weak instruments when the autoregressive
parameter gets close to unity or when the variance of the unobserved individual
effect increases toward the variance of the idiosyncratic error vit. Doran and
Schmidt (2006) argue that in the presence of many instruments, the marginal
contribution of some of them may be small. As a result, many simulations
including those in Okui (2009) showed that the one-step GMM estimator of
dynamic panel data performs poorly in these settings. A solution could be to
remove the instruments corresponding to farther lagged variables as in Okui
(2009) or to reduce the weight given to these instruments as in Kuersteiner and
Okui (2010) and Kuersteiner (2012). The solution we propose is to apply a
regularization technique which will reduce the weight given to the eigenvectors
corresponding to the smallest eigenvalues of Z′Z. Eigenvectors associated with the
largest eigenvalues explain most of the variation of the instruments, so removing
the smallest eigenvalues is a dimension reduction device which permits to reduce
the bias of the GMM estimator without inducing an important efficiency loss.
Another advantage is that regularizations use all the instruments to compute the
eigenvectors, and no selection is needed. This is useful when the model includes
exogenous covariates for which there is no natural ranking of the instruments.

3. THE REGULARIZED ESTIMATOR

Note that M = Z(Z′Z)−1Z′ = Z(Z′Z/(NT3/2))−1Z′/(NT3/2) = ZK−1
N Z′/

(
NT3/2

)
.

In the next section, we will see that the rescaled matrix KN = Z′Z/
(
NT3/2

)
has square summable eigenvalues where the smallest eigenvalue goes to zero
as N and T go to infinity. We are going to apply some regularization to KN =
Z′Z/

(
NT3/2

)
. Regularization techniques were initially introduced in the inverse

problem literature to obtain reliable inverses of matrices which are ill-conditioned
(for which the ratio of the largest eigenvalue over the smallest is large; see Kress,
1999). The way regularization works is by dampening the effect of the smallest
eigenvalues. As a result, one puts more weight on the eigenvectors associated with
the largest eigenvalues.

Let λ̂1 ≥ λ̂2 ≥ ·· · ≥ λ̂q ≥ 0 be the eigenvalues of KN in decreasing order. By
spectral decomposition, we have KN = PNDNP′

N with PNP′
N = Iq̄ where PN is the

matrix of eigenvectors and DN is the diagonal matrix with eigenvalues λ̂j on the
diagonal. The naive inverse K−1

N = PND−1
N P′

N involves 1/λ̂j, which may explode
for values of λ̂j tending to zero. Let Kα

N denote the regularized inverse of KN , which
is defined as

Kα
N = PNDα

NP′
N,

where Dα
N is the diagonal matrix with elements q(α,λ̂2

j )/λ̂j with the convention
0/0 = 0 and α is some nonnegative regularization (tuning) parameter. In each
regularization scheme, the real-valued function q(α,λ2) satisfies 0 ≤ q(α,λ2) ≤ 1
and lim

α→0
q(α,λ2) = 1 so that q(α,λ̂2

j )/λ̂j ≤ 1/λ̂j, reducing the impact of individual
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eigenvalues. The usual GMM estimator corresponds to a regularized estimator with
α = 0.

As in Carrasco (2012), three regularization schemes will be considered: TK,
SC, and LF regularization schemes. More details on these schemes can be found
in Carrasco, Florens, and Renault (2007b). If we let λ be an arbitrary eigenvalue
of the matrix KN , we can define:

1. Tikhonov Regularization:
This regularization scheme is close to the well-known ridge regression used in
the presence of multicollinearity to improve the properties of the OLS estimator.
In the TK regularization scheme, the real function q(α,λ2) is given by

q(α,λ2) = λ2

λ2 +α
.

2. The Spectral Cutoff
It consists in selecting the eigenvectors associated with the eigenvalues greater
than some threshold:

q(α,λ2) = I{λ2 ≥ α} =
{

1, if λ2 ≥ α,

0, otherwise.

Another version of this regularization scheme is PC, which consists in using a
certain number of eigenvectors to compute the inverse of the operator. PC and
SC are perfectly equivalent, but only the definition of the regularization term
α differs. In PC, α is the number of principal components. In practice, both
methods will give the same estimator so that we will study the properties of SC
in detail in this paper.

3. Landweber–Fridman Regularization
Let c be a constant satisfying 0 < c < 1/λ̂2

1 where λ̂2
1 is the largest eigenvalue

of the matrix KN . The LF regularization is based on

q(α,λ2) = 1− (1− cλ2)
1
α ,

where 1
α

is an integer. Alternatively, one can compute the LF regularized inverse
by iterations where the number of iterations 1

α
is the regularization parameter

(see Carrasco et al., 2007b).

Let Mα = ZKα
NZ′/NT3/2. The regularized one-step GMM estimator for a given

regularization scheme is

δ̂α = x∗′
Mαy∗

x∗′Mαx∗ . (2)

The matrix KN is a block diagonal matrix with the t× t matrix Z′
tZt/NT3/2 at the tth

block. Exactly as K−1
N , the regularized inverse Kα

N is also a block diagonal matrix.1

1So the regularizations preserve the structure of the matrix as a block-diagonal matrix; hence, in some sense, it
preserves the sparsity of the initial matrix. This holds because the regularizations transform only the eigenvalues, not
the eigenvectors.
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If we define Mα
t = Zt(KNt)

αZ′
t/(NT3/2) with (KNt)

α being the tth diagonal block of
the matrix Kα

N , the regularized estimator can be rewritten as

δ̂α =
( T−1∑

t=1

x∗′
t Mα

t x∗
t

)−1( T−1∑
t=1

x∗′
t Mα

t y∗
t

)
.

The different regularization schemes depend on the regularization parameter α,
which is a kind of smoothing parameter and needs to be selected in practice. The
choice of α is based on the minimization of the approximate MSE of δ̂α . Estimation
of the MSE requires some preliminary estimates of δ and σ 2, independent of
α. Let δ̂ be a preliminary estimate of δ, obtained, for instance, by GMM using

yt−1 as instrument, and let σ̂ 2 =∑i,t

(
y∗

it − δ̂x∗
it

)2
/(NT). Then, the regularization

parameter is obtained by

α̂ = arg min
α∈ET

Ŝ (α),

where

Ŝ(α) = (1+ δ̂)2Â2(α)+ (1− δ̂2)2

σ̂ 2
R̂(α), (3)

where the first term on the right-hand side comes from the squared bias of δ̂α ,
whereas the second term comes from its variance with

Â(α) = 1√
NT

T−1∑
t=1

tr(Mα
t )

(
φ̂T−t

T − t
− φ̂T−t+1

T − t +1

)
,

R̂(α) = 1

NT

T−1∑
t=1

x∗′
t (I −Mα

t )2x∗
t ,

and φ̂j = 1−δ̂j

1−δ̂
. The index set ET corresponds to R

+ for TK, ET is such that 1
α

∈
{1,2, . . . ,q̄} for PCs, and ET is such that 1

α
is a positive integer and the cardinal of

ET is no larger than some finite multiple of T2 for LF.

4. FIRST-ORDER ASYMPTOTIC PROPERTIES

In this section, we derive the asymptotic properties of the regularized estimator.
As in Okui (2009), we make the following assumptions.

Assumption 1. {vit} (t = 1, . . . ,T; i = 1, . . . ,N) are i.i.d. across time and
individuals and independent of ηi and yi0 with E(vit) = 0, var(vit) = σ 2, and
E(v4

it) < ∞.

Assumption 2. The initial observation satisfies

yi0 = ηi

1− δ
+wi0 (i = 1, . . . ,N),
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where wi0 is independent of ηi and i.i.d. with the steady-state distribution of the
homogeneous process so that wi0 =∑∞

j=0 αjvi(−j).

Assumption 3. ηi are i.i.d. across individuals with E(ηi) = 0, var(ηi) = σ 2
η with

0 < σ 2
η < ∞, and finite fourth-order moment.

Moreover, asymptotic properties are derived under the assumption that both N
and T go to infinity with T < N. Under this restriction, the matrix KN is nonsingular
and so has nonzero eigenvalues.

The regularization methods used in this paper are drawn from the literature
on inverse problems (Kress, 1999). They are designed to stabilize the inverse of
Hilbert–Schmidt operators. A symmetric matrix is Hilbert–Schmidt if it is bounded
in Frobenius norm, or equivalently if its eigenvalues are square-summable. The
matrix E

(
Z′Z
)

is not Hilbert–Schmidt; however, we will show in Lemma 1
that K = E[Z′Z/

(
NT3/2

)
] is Hilbert–Schmidt.2 Let K denote the q̄ × q̄ matrix

E[Z′Z/
(
NT3/2

)
]. In the inverse problem literature, this matrix is referred to as the

operator. In Carrasco and Tchuente (2015), the operator is assumed to be a trace-
class operator which is satisfied if and only if its trace is finite. Here, however, K
is not trace class, but it is Hilbert–Schmidt, which is a slightly weaker condition.
In the following lemma, we prove that K is a Hilbert–Schmidt matrix.

Lemma 1. If Assumptions 1–3 are satisfied, then:

(i) tr (K) diverges at rate T1/2 when T goes to infinity,
(ii) tr

(
K2
)= O(1), for all T .

Lemma 1 shows that even though the eigenvalues of K are not summable as
T goes to infinity, they are square-summable. The Hilbert–Schmidt property is
sufficient to derive proofs in our framework. This property is especially useful to
establish the order of magnitude of the bias of the regularized estimator. Lemma 1
also implies some interesting properties on the eigenvalues of K. It follows from
(ii) that the largest eigenvalue of K2 (and hence of K) is bounded and the smallest
one goes to zero but not too fast. It implies in particular that K is ill-conditioned
(the ratio of its largest eigenvalue over its smallest eigenvalue diverges as T goes to
infinity). Given that this property is invariant to the scaling, it means that E

(
Z′Z
)

is also ill-conditioned. Inverses of ill-conditioned matrices are not reliable, and
regularization is helpful to stabilize the inverse. Finally, the proof of Lemma 1
reveals that K depends on T but not on N.

The condition number of a matrix is defined as the ratio of the largest eigenvalue
to the smallest one and is independent of the scaling. Table A1 in Appendix A
presents the distribution of the condition number of the matrix Z′Z for simulated
data for various values of δ and T. The higher the condition number is, the more
ill-conditioned the matrix is, and so inverting its eigenvalues is more problematic;

2The Hilbert–Schmidt property is used in the proofs to derive the asymptotic properties of the regularized estimators.
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therefore, the need of regularization is higher. We present the min, the first quartile,
the mean, the median, the third quartile, and the max. The last column gives
the dimension of the matrix Z′Z, which is the total number of instruments q̄ =
0.5×T × (T −1) for each value of T. From Table A1, we observe that the need of
regularization increases with T for a given δ and also increases with δ for a given
T. As δ gets closer to 1, the instruments become weak, yielding an ill-conditioned
matrix.

The following proposition provides the first-order asymptotic properties of the
regularized estimator.

Proposition 1. If Assumptions 1–3 are satisfied, α the parameter of regular-
ization goes to 0, α

√
NT goes to infinity, and both N and T tend to infinity with

T < N, then:

(i) Consistency: δ̂α → δ in probability;

(ii) Asymptotic normality:
√

NT
(̂
δα − δ

) d→ N
(
0,1− δ2

)
.

For these properties, we need that α goes to zero slower than
√

NT goes to
infinity. Under similar assumptions, AA proved that the bias expression of the
one-step GMM estimator of DPM is given by the limit of

bNT =
[

x∗′
Mx∗

NT

]−1[
− σ 2

(1− δ)

1√
NT

T−1∑
t=1

t

(
φT−t

T − t
− φT−t+1

T − t +1

)]

= −
√

T

N
(1+ δ)+op (1),

where φt =
(
1− δt

)
/(1− δ). Hence, if T/N tends to a positive scalar, the one-step

GMM estimator is asymptotically biased. In our regularization setting, the bias is
given by the limit of

bα
NT =

[
x∗′

Mαx∗

NT

]−1[
− σ 2

(1− δ)

1√
NT

T−1∑
t=1

E[tr
(
Mα

t

)
]

(
φT−t

T − t
− φT−t+1

T − t +1

)]
.

This bias is of order 1
(α

√
NT)

so that the asymptotic bias of the regularized estimator

vanishes under the assumption that α
√

NT goes to ∞ even in the case where
T/N → c. Note that we do not have an explicit expression for E[tr

(
Mα

t

)
], but we

know that E[tr
(
Mα

t

)
] < tr[Mt] = t, for all α > 0. From the rates of convergence

of the two biases, we see that bα
NT is negligible with respect to bNT as soon as

αT → ∞. Regularization has the advantage of introducing a tuning parameter α

which can be chosen in order to control the bias by dampening the weight attributed
to the eigenvectors of the matrix Z′Z without discarding any instrument a priori. Of
course, α also has an impact on the variance as will become apparent in Section 5.
The expression of the bias could be used to devise a bias-corrected estimator, but
this is left for future research. Since the asymptotic properties of the regularized
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estimator presented in this section do not depend on the regularization scheme, we
need to investigate higher-order properties to establish the impact of regularization.

5. HIGHER-ORDER ASYMPTOTIC PROPERTIES

In this section, we derive the Nagar’s (1959) decomposition of the MSE of
our estimators E[(δ̂α − δ)2]. This type of expansion is used in many papers on
instrumental variables, such as Donald and Newey (2001), Carrasco (2012), and
particularly Okui (2009), who works on a DPM. Moreover, this expansion will
guide us in our goal to provide a data-driven method for selecting the regularization

parameter. Let H = σ 2

1−δ2

(
1
T

T∑
t=1

ψ2
t

)
, where ψt = ct(1 − δφT−t/(T − t)),φj =

(1− δj)/(1− δ), ψt = ct(1− δφT−t/(T − t)), and ct = √
(T − t)/(T − t +1).

The Nagar approximation of the MSE is σ 2H−1 + S(α) in the following
decomposition:

NT(δ̂α − δ)2 = Q+ r, E(Q) = σ 2H−1 +S(α)+R, (4)

where (r +R)/S(α) → 0 as N → ∞, T → ∞, and α → 0.

Proposition 2. Suppose Assumptions 1–3 are satisfied and E
(
v3

it

)= 0. IfN →
∞, T → ∞, α → 0, α

√
NT → ∞, andα (lnT)

√
T → 0, then for the regularized

GMM estimator, the decomposition given in (4) holds with

S(α) = (1+ δ)2

NT

{ T−1∑
t=1

E

(
tr
(
Mα

t

))( φT−t

T − t
− φT−t+1

T − t +1

)}2

+ (1− δ2)2

σ 2

1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )2wt−1],

where wit = yit −ηi/(1− δ).

In this decomposition, the first term of S(α) comes from the squared bias that
increases when α goes to zero, whereas the second term is from the second-order
expansion of the variance that decreases when α goes to zero. We observe the
usual bias-variance trade-off that arises when selecting a tuning parameter. A
large α will reduce the bias but increase the variance. The rate for the squared
bias is O(1/(α2NT)), but the rate of the variance term is unknown. Unlike in
Carrasco (2012) and Carrasco and Tchuente (2015), our expression of the MSE is
unconditional as in Okui (2009) and Kuersteiner (2012). In Okui (2009), the GMM
estimator is computed using min{t,K} lags for each period t with K the optimal
number of instruments selected to minimize S(K), a criterion similar to our S(α).
The expression of S(K) in Okui (2009) is simpler than ours because it exploits the
fact that tr[MK

t ] = min{t,K} and w′
t−1(I − MK

t )2wt−1 = w′
t−1(I − MK

t )wt−1 since
MK

t is a projection matrix. In the present paper, tr
(
Mα

t

)
is random and equal
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to
∑

j q
(
α,̂λ2

j

)
, where q is the dampening function defined in Section 3. There

is no simple expression for the term E[w′
t−1(I − Mα

t )2wt−1]. However, we know
that w′

t−1(I − Mα
t )2wt−1 ≥ w′

t−1(I − Mt)
2wt−1 = w′

t−1(I − Mt)wt−1, for all α ≥ 0,
with equality when α = 0. Therefore, the higher-order variance of the regularized
estimator is larger than that of the usual GMM estimator. Hence, regularization
reduces the bias of the one-step GMM estimator at the cost of a larger small-sample
variance.

In our panel data setting, the bias expression of S(α) is the sum of the bias of
each period H−1

0 E
[
tr
(
Mα

t

)]
E[ṽ

′
tTv∗

t ], where H0 is the asymptotic variance. As the
formula (3.14) in the special case of Kuersteiner (2012), this period bias expression
is the product of the inverse of H0, E

[
tr
(
Mα

t

)]
the contribution of the instrument

matrix, and E[ṽ
′
tTv∗

t ] the correlation between the error term v∗
t and the residual from

the reduced-form equation relating x∗
it to its optimal instrument ψtwit. A difference

with Kuersteiner’s (2012) is that the contribution of E
[
tr
(
Mα

t

)]
depends on α and

is not the number of instruments.

6. DATA-DRIVEN SELECTION OF THE REGULARIZATION
PARAMETER

In Proposition 2, we derived the leading terms of a second-order expansion of
the MSE of the regularized estimator. The aim of this section is to select α that
minimizes an estimated S(α). First, we introduce some notations:

A(α) = 1√
NT

T−1∑
t=1

E[tr
(
Mα

t

)
]

(
φT−t

T − t
− φT−t+1

T − t +1

)
and

R(α) = 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )2wt−1]

so that

S(α) = (1+ δ)2A(α)2 + (1− δ2)2

σ 2
R(α).

Regarding the estimation of R(α), it follows from Okui (2009, p. 3) that

Et−1
(
x∗

it

)= ψt

(
yit − ηi

1− δ

)
= ψtwit−1,

where Et−1 denotes the conditional expectation conditional on (ηi,xit,xit−1, . . .)

so that x∗
t is an unbiased estimator of ψtwit−1. We propose to estimate R(α)

by R̂(α) = 1
NT

∑T−1
t=1 x∗′

t (I − Mα
t )2x∗

t and we show that
(̂
R(α)−R(α)

)
/R(α)

converges uniformly to 0 in the proof of Proposition 3. Regarding the esti-
mation of A(α), the term E[tr

(
Mα

t

)
] is not known in closed form; however,
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1√
NT

∑T−1
t=1 tr

(
Mα

t

)(φT−t
T−t − φT−t+1

T−t+1

)
is an unbiased estimate of A(α). This suggests

that replacing E[tr
(
Mα

t

)
] by tr

(
Mα

t

)
in the expression of Â(α) might be a good

idea, and this is confirmed in the proof of Proposition 3 where we show the uniform
convergence of

(
Â(α)−A(α)

)
/A(α) to zero.

The optimal regularization parameter is selected by minimizing the estimate
Ŝ(α) of S(α)

α̂ = arg min
α∈ET

Ŝ(α),

where Ŝ(α) was defined in (3). Next, we analyze the impact of using an estimated
version of S(α) to select α instead of the true and unknown criterion.

We wish to establish the optimality of the regularization parameter selection
criterion in the following sense:

S(α̂)

infα∈ET S(α)

p→ 1, (5)

as N → ∞ and T → ∞. It should be noticed that the result (5) is not a convergence
result of α̂. It simply establishes that using an estimated version of S(α) to choose
the regularization parameter is asymptotically equivalent to using the true and
unknown value of S(α).

Proposition 3. Suppose that Assumptions 1–3 are satisfied, δ̂ → δ, and σ̂ 2 →
σ 2. If N → ∞, T → ∞, α

√
NT → ∞, α (lnT)

√
T → 0, and T3/N (lnT)2 → 0,

then the regularization parameter selection criterion is asymptotically optimal in
the sense of (5) for SC and LF regularization schemes provided that #ET=O(T2)

where #ET refers to the number of elements in the set ET .

Remarks.
1. Proposition 3 proves the optimality for PC and LF regularization schemes

which have discrete index set ET . The condition #ET = O(T2) is a sufficient
condition in the LF regularization scheme and necessarily holds for the PC case.3

Rather than imposing a maximum number of iterations, this condition restricts the
order of magnitude of the number of elements of the index set ET . A rigorous proof
for the TK’s continuous index set requires a more complicated material, which is
beyond the scope of this work. However, optimality could be established in this
case using a discretization of the compact set ET and the fact that the regularization
function q(α,λ2) of TK regularization scheme is a real continuous function as in
Hansen (2007).

2. Proposition 3 is related to Donald and Newey (2001) optimality result for
the selection of the number of instruments in a linear IV model and Carrasco
and Tchuente (2015) for the selection of the regularization parameter for the

3Recall that #ET = q̄ for PC case.
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regularized LIML estimator. However, their proofs rely on applying results by Li
(1986, 1987) on cross-validation for the first-stage equation. From x∗

it = ψtwit −
ctṽit, the term −ctṽit can be regarded as the error term of the first-stage equation
since ψtwit is considered as the optimal instrument in Okui (2009). However, Li’s
(1986, 1987) results do not apply in our framework because of the autocorrelation
of this error term. Instead, our proof combines the strategies of Okui (2009) and
Kuersteiner (2012).

3. Compared with Okui (2009), our proof is complicated by the fact that the
tr(Mt (α)) is random in our case, while it is deterministic in Okui (2009) and the
term A(α), which is known in closed form in Okui (2009), needs to be estimated
here. As a result, we need to analyze extra terms and we obtain more stringent
conditions on the rate at which T may diverge relatively to N. Our condition is
T3/N (lnT)2 → 0, whereas it is T ln(T)/N → 0 in Okui (2009).

7. INTRODUCTION OF EXOGENOUS REGRESSORS

In this section, we aim to generalize the model by taking into account exogenous
covariates. We are now interested in the following model:

yit = δyi,t−1 +γ ′mit +ηi + vit,

where mit is an Lm-dimensional vector of strictly exogenous variables in the sense
that E(mitvis) = 0 for each t and s.

Let us define θ = (δ,γ ′)′ and xit = (yi,t−1,m′
it)

′, and denote yi = (yi1, . . . ,yiT)′,
xi = (xi1, . . . ,xiT)′, and vi = (vi1, . . . ,viT)′. Let A be the matrix of FOD operator and
denote y∗

i = Ayi, x∗
i = Axi, and v∗

i = Avi. The model becomes

y∗
it = θx∗

it + v∗
it.

Following Okui (2009), we assume that time-invariant variables fi that satisfy
E(fivit) = 0 for all t are available and we denote by Lf the dimension of this
vector. Even though they are often omitted in proofs, time-invariant variables
are widely used in empirical work. The vector of potential instruments for the
endogenous regressor x∗

it is the qt = (Lf + (T + 1)Lm + t)-dimensional vector
zit = (f ′

i ,m
′
i0, . . . ,m

′
iT,yi0, . . . ,yi,t−1)

′. In this setting, the total number of instruments
is q̄ = ∑t qt. Let us define the following matrixes: Zt =(z′

1t, . . . ,z
′
Nt)

′, x∗
t =

(x∗
1t, . . . ,x

∗
Nt)

′, and y∗
t =(y∗

1t, . . . ,y
∗
Nt)

′. If we denote by KN = Z′Z/NT3/2 and Kα
N the

regularized inverse of KN given a regularization parameter α, then the regularized
one-step GMM estimator of θ is

θ̂ α =
(

x∗′
Mαx∗

)−1(
x∗′

Mαy∗
)

with Mα = ZKα
NZ′/NT3/2, Z = (Z′

1, . . . ,Z
′
N)′, and Zi has the same definition as in

the model without covariates.
We now make assumptions to derive the second-order expansion of the MSE of

θ̂ in this general model. Let EZ(a) = E(a|ηi,zit,zi,t−1, . . .) for the random variable a.
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Assumption 1’. (i) {vit} (t = 1, . . . ,T; i = 1, . . . ,N) are i.i.d. across time and
individuals and independent of ηi and yi0 with EZ(vit) = 0, EZ(v2

it) = σ 2 < ∞,
EZ(v3

it) = 0, and EZ(v4
it) < ∞. (ii) ηi are i.i.d. across individuals with E(ηi) = 0,

var(ηi) = σ 2
η , and finite fourth-order moment.

Assumption 2’. (i) (yit,mit) is a strictly stationary finite-order vector autoregres-
sive process conditional on ηi such that the distribution of {(yit,m′

it

)′
, . . . ,(yi,t+s,

m′
i,t+s)

′} conditional on ηi does not depend on the subscript t for all s. (ii)
{{mit}T

t=1}N
i=1 is an i.i.d. sequence across individuals with finite fourth-order

moments.

These previous two assumptions are from Okui (2009). Let K = E[Z′Z/NT3/2].
The matrix K is assumed to be a Hilbert–Schmidt matrix. Moreover, in the
extended model, we make an assumption on the growth rate of the eigenvalues
of K. If we define W̃ = (w̃′

1, . . . ,w̃
′
T−1)

′ with w̃t = (w̃1t, . . . ,w̃N,t)
′, then we impose

the following condition.

Assumption 3. The matrix K is Hilbert–Schmidt, and there is a β > 0 such that

1

NT
E

∞∑
j=1

[
< W̃a,ϕ̂j >2

λ̂
2β

j

]
< ∞,

for all N and T, where W̃a is the ath column of W̃, ϕ̂j and λ̂j denote the eigenvectors
and eigenvalues of ZZ′/NT3/2, and < ,> denotes the inner product in R

N(T−1).

Assumption 3 is a high-level condition similar to Assumption 2(ii) in Carrasco
(2012). It requires that the Fourier coefficients < W̃a,ϕ̂j > decline faster than the
eigenvalues λ̂j to a certain power. It allows us to derive the rate of convergence of
the MSE. More precisely, under this assumption, we have that E[||W̃ −MαW̃||2] =
O(αβ) for SC and LF and E[||W̃ −MαW̃||2] = O(αmin(β,2)) for TK.

Let us define x∗
t = (u∗

t ,m
∗
t ) with ut = yt−1. Okui (2009) states that wi,t−1 =

EZ(u∗
it) is such that

wi,t−1 = ψt(yi,t−1 −μi)− ct

T − t
γ ′(φT−tmi,t +·· ·+φ1mi,T−1),

where ct =
√

T−t
T−t+1 , μi = ηi

1−δ
, and φj = 1−δj

1−δ
. Hence, the optimal instrument is

given by EZ(x∗
it) = w̃i,t−1 = (wi,t−1,m∗′

it )
′.

We now prove that under these assumptions, we can isolate the leading terms of

a second-order expansion of the MSE of θ̂ : NTE
[(

θ̂ − θ0
)(

θ̂ − θ0
)′]

.

Proposition 4. Assume that Assumptions 1’, 2’, and 3 are satisfied. If the
parameter of regularization α goes to 0, N and T go to infinity, α ln(T)

√
T → 0,

α
√

NT → ∞, and either αβ
√

NT → ∞ or α2
√

NT → 0, then the leading terms
in the higher-order expansion of the MSE of θ̂ have the following form:
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S(α) = H−1

{
σ 4

(1− δ)2

[
A(α)2 0

0 0

]
+ σ 2

NT

T−1∑
t=1

E[w̃′
t−1(I −Mα

t )2w̃t−1]

}
H−1,

where

A(α) = 1√
NT

T−1∑
t=1

E
[
tr
(
Mα

t

)][ φT−t

T − t
− φT−t+1

T − t +1

]
and

H =
⎡⎣ 1

T

∑T
t=1 E

(
w2

it

)
1
T

∑T
t=1 E

(
witm∗′

it

)
1
T

∑T
t=1 E

(
m∗

itwit
)

1
T

∑T
t=1 E

(
m∗

itm
∗′
it

) ⎤⎦ .

As in the model without covariates, the first part of S(α) is the squared bias and
increases as the regularization parameter goes to zero. The second term of S(α)

is the second-order variance of the regularized estimator and it decreases when α

goes to zero.
We observe that the bias term depends only on the bias of the autoregressive

coefficient δ̂ and not on γ̂ , whereas the variance term depends on both so that
globally the MSE depends also on γ̂ . This is different from Okui (2009). In his
Theorem 4, Okui imposes the extra assumption that the subset of instruments zK

it
includes either yit−1 and m∗

it or linear combinations of these. He shows that, in this
case, only the element (1,1) of the matrix S(α) is nonzero so that he can focus on
this scalar to select the regularization parameter. Interestingly, it means that only
the MSE of δ̂ matters for selecting α. In contrast, we do not impose this extra
assumption and we show that the MSE of γ̂ also plays a role.

Given S (α) is a matrix, α can be selected by minimizing ′̂S(α) for an arbitrary
Lm + 1 vector  and some estimator Ŝ(α) of S (α). For the estimation of S(α),
similarly to the model without covariates, A(α) can be estimated by

Â(α) = 1√
NT

T−1∑
t=1

tr
(
Mα

t

)[ φ̂T−t

T − t
− φ̂T−t+1

T − t +1

]
,

where the unknown parameters, σ 2 and φj, are estimated using a preliminary
estimate of θ . Regarding the estimation of the variance term, 1

NT

∑
t E[w̃′

t−1(I −
Mα

t )2w̃t−1] can be estimated by 1
NT

∑
t x∗′

t (I − Mα
t )2x∗

t because x∗
t is an unbiased

estimate of w̃t−1.
S (α) depends also on the matrix H. In the simulations, we choose  so

that ′H−1 is a vector of ones. This avoids estimating H. On the other hand,

estimating H is possible. Remark that 1
T

∑T
t=1 E

(
m∗

itm
∗′
it

)
can be estimated

by 1
NT

∑T
t=1

∑N
i=1 m∗

itm
∗′
it and the term 1

T

∑T
t=1 E

(
witm∗′

it

)
can be estimated by

1
NT

∑T
t=1

∑N
i=1 u∗

itm
∗′
it because E

(
u∗

itm
∗′
it

)
= E
[
EZ

(
u∗

itm
∗′
it

)]
= E
[
EZ
(
u∗

it

)
m∗′

it

]
=
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E
(

witm∗′
it

)
. The estimation of the term involving E

(
w2

it

)
is not so straight-

forward and requires some calculations. Observe that wit = ψt+1(yi,t − μi) −
ct+1

T−t−1γ ′(φT−t−1mi,t+1 +·· ·+φ1mi,T−1) = ψt+1̃yi,t − ct+1
T−t−1γ ′(φT−t−1mi,t+1 +·· ·+

φ1mi,T−1), where ỹi,t = yi,t −μi is a stationary process which follows the dynamics.

ỹit = δ̃yi,t−1 +γ ′mit + vit.

To simplify assume that mit is not autocorrelated conditionally on ηi. Then, we
have

E
(
w2

it

)= ψ2
t+1E
(̃
y2

i,t

)+( ct+1

T − t −1

)2

E
[(

γ ′(φT−t−1mi,t+1 +·· ·+φ1mi,T−1)
)2]

−2ψt+1
ct+1

T − t −1
E
(̃
yi,t
)

E
(
γ ′(φT−t−1mi,t+1 +·· ·+φ1mi,T−1)

)
.

Using the stationarity of ỹi,t and mit, we have V
(̃
yi,t
) = γ ′V (mit)γ /

(
1− δ2

)+
σ 2

v /
(
1− δ2

)
and E

(̃
yi,t
) = γ ′E (mit)/(1− δ),E

(
γ ′(φT−t−1mi,t+1 + ·· · +

φ1mi,T−1)
) = (φT−t−1 +·· ·+φ1)γ

′E (mit) . The terms E (mit), V (mit), and

E
[(

γ ′(φT−t−1mi,t+1 + ·· · + φ1mi,T−1)
)2]

can be easily computed by replacing
the expectation by an average over i. So an estimate of E

(
w2

it

)
follows using some

preliminary estimates of θ and σ 2
v . The case where the mit are autocorrelated can

be handled in a similar manner by replacing the autocorrelations of mit by their
sample counterparts.

8. SIMULATION STUDY

In this section, we present Monte Carlo simulations to illustrate the finite sam-
ple properties of the regularized estimators and compare them to competing
estimators.

8.1. Model with a Strictly Exogenous Regressor and
Homoskedastic Error

We consider a model including one strictly exogenous covariate. The equation is
given by

yit = δyit−1 +γ mit +ηi + vit,|δ| < 1, (6)

mit = ρηi + eit,

with vit ∼ i.i.d. N(0,σ 2), ηi ∼ i.i.d. N(0,σ 2
η ), and eit ∼i.i.d. N(0,σ 2

e ). Moreover,
the initial value of yi0 is drawn from

yi0 ∼ i.i.d.N

(
ηi

1+ργ

1− δ
,
γ 2σ 2

e +σ 2

1− δ2

)
.

In this setting, for each period t, mi0,. . .,miT are potential instruments in addition
to the lags of yit. Hence, compared to a model without covariates, the total number
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of instruments increases from q̄ = 0.5 × T × (T − 1) to q̄ = 0.5 × T × (T − 1)+
(T −1)×(T +1). We present the results with fixed γ = 1,ρ = 0.5, σ 2 = 1, σ 2

η = 1,
σ 2

e = 1, and N = 50.
The optimal regularization parameter is selected following the procedure

described in Section 7. The number of replications is 3,000 for all cases. Different
estimators of the parameter of interest δ are presented. We denote by IV1 and
IV2 the one-step GMM estimators using, respectively, one and two lags of
(yit,mit+1) as instruments and GMM the usual one-step GMM estimator using
all available lags of yit and (mi0, . . . ,miT) as instruments. The estimator denoted by
OKUI corresponds to the estimator proposed in Okui (2009) using as instruments
(yit−1,mit,yt−2,mit−1, . . . ,yit−k,mit−k+1), where k is selected to minimize the
approximate MSE.

The regularization parameter is selected by minimizing the approximate MSE
Ŝ(α) as described in Section 6. The IV1 estimator is used as plug-in in the
minimization criterion. Hence, the estimate for the variance σ 2 is given by

σ̂ 2 = 1

N(T −1)

N∑
i=1

T−1∑
t=1

(y∗
it − δ̂x∗

it)
2,

where δ̂ denotes the IV1 estimator of the parameter of interest δ. For each estimator,
we compute the median bias, the median absolute deviation (mad) defined as

Med
∣∣∣δ̂ − δ

∣∣∣, the empirical standard error, the length of the interquartile range, and

the empirical coverage probabilities of the 95 % confidence intervals. The standard
error is computed with the formula

V̄ =
√√√√σ̂ 2

(
x∗′Mα2x∗)(
x∗′Mαx∗)2 .

Tables A2–A5 in Appendix A contain simulations for two values of T (T = 10
and T = 25) and two values of δ (δ = 0.5 and δ = 0.95). For each simulation
setting, we provide a table of the properties of the optimal regularization parameter.
Table A2 contains summary statistics for the value of the regularization parameter,
which minimizes the approximate MSE for the different values of δ and T. The
regularization parameter is the number of lags k included (the corresponding
number of instruments is 2k) for OKUI, the optimal α for TK, the optimal number
of iterations for LF, and the optimal number of PCs for PC. We report the mean,
the standard deviation (std), the mode, and the three quartiles of the distribution
of the regularization parameter. The regularization parameter is the optimal α for
TK, the optimal number of iterations for LF, and the optimal number of PCs for
PC. Noting that the standard GMM estimator corresponds to the TK estimator with
α = 0, to the LF estimator with an infinite number of iterations, and to the PC using
all the PCs, a higher level of regularization will correspond to a larger value of α,
a smaller number of PCs, and a smaller number of iterations for the LF estimator.

https://doi.org/10.1017/S0266466622000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000469


REGULARIZED ESTIMATION OF DYNAMIC PANEL MODELS 377

When comparing the regularization parameters selected for δ = 0.5 and
δ=0.95, we observe that the regularization is stronger for δ = 0.95 (fewer
instruments for OKUI, larger α for TK, fewer PCs for PC, and fewer iterations for
LF), this is due to the fact that the instruments become weak and the covariance
matrix is more ill-conditioned for larger δ. For δ = 0.95, the automatic selection of
k for OKUI selects always k = 1, i.e., OKUI estimator coincides with IV1 which
uses two instruments (yit−1,mit). We also observe that bias and standard errors
increase for all the methods when δ goes from 0.5 to 0.95 and that the coverage
deteriorates. This is again consistent with the fact that the instruments become
weak when δ approaches 1.

The comparison between the one-step GMM using all instruments and the
regularized methods depends on the estimated parameter. For δ̂, we found that the
regularized estimators exhibit a smaller median bias and empirical standard error
than GMM. For γ̂ , the median bias is still smaller for the regularized methods,
but GMM exhibits smaller s.e. than regularized methods. So, the reduction of the
MSE comes from reducing bias rather than variance. This is consistent with our
theoretical results (see Section 5).

In terms of the mad, we see that regularized estimators have smaller mad than
all other estimators for δ̂. For γ̂ , the smallest mad is obtained for GMM followed
by the regularized methods. Among the three regularized estimators, PC and TK
have, in general, the smallest mad for δ̂ and γ̂ , respectively. In terms of bias,
OKUI has the smallest median bias for δ̂ and γ̂ when δ = 0.5. However, for
δ = 0.95, the median bias is smallest for PC and the bias of OKUI has substantially
increased compared to the case where δ = 0.5. Regarding coverage, IV1, IV2, and
OKUI give the best coverage for δ̂ and γ̂ when δ = 0.5 and for δ̂ for δ = 0.95,
whereas the regularized methods give the best coverage for γ̂ when δ = 0.95. For
δ = 0.95 and T = 10, LF and PC tend to have large standard errors and interquartile
range compared to TK, which has smaller dispersion in small samples. PC has
almost always the smallest median bias and the best coverage among regularized
estimators for δ = 0.5 and δ = 0.95.

8.2. Model with Heteroskedasticity

All the theory has been developed assuming homoskedastic errors. However, in
practice, one rarely knows for sure whether the observations are homoskedastic or
not. Therefore, we conduct simulations to investigate the impact of heteroskedas-
ticity. The data are generated as in (6) except for the way vit is generated. The
vit are conditionally independent and follow a mean-zero normal distribution with
variance equal to 0.8m2

it. We implement the exact same estimators as before with
the same weighting matrix as in the homoskedastic case and the same calculation
of the standard error to construct the confidence intervals. It is expected that the
resulting estimators will lack efficiency and that the coverage rates may be off.

From Tables A6–A9, we see that all methods exhibit a larger median bias, mad,
and dispersion in the heteroskedastic case compared to the homoskedastic case.
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As expected, the empirical coverage rates are further from the nominal coverage
rates because the standard errors do not account for the heteroskedasticity. The
regularized methods seem to be less sensitive to heteroskedasticity than other
methods, and this robustness is more evident when δ = 0.95. Indeed, the coverage
of nonregularized methods and OKUI is far from the nominal coverage when
δ = 0.95, whereas that of the regularized estimators remains close to the nominal
coverage. PC and TK estimators exhibit a much smaller mad than IV1, IV2, and
OKUI, especially when δ is close to unity. PC has the smallest median absolute
bias for δ̂ and γ̂ and the smallest mad for δ̂. For γ̂ , GMM has the smallest mad.
Overall, PC is the preferred method as it gives the best results in terms of median
absolute bias, mad, and coverage most of the time.

9. EMPIRICAL APPLICATION

In this section, we apply the regularization approach to estimate a model of income
dynamics. We consider the following equation:

yit = δyi,t−1 +ηi + vit for i = 1, . . . ,N and t = 1, . . . ,T, (7)

where yit is the earning residuals of person i at time period t, controlled for his
observable personal characteristics. This empirical application is similar to the one
in Hirano (2002). The data come from the Panel Study of Income Dynamics4 and
include male household heads of 24 and 45 years old between 1967 and 2016.
Similarly to Hirano (2002), the time dimension in equation (7) is age and can then
be any calendar year. The estimation sample includes individuals with positive
earnings at least 1 year prior to the age of 24, with complete data on education,
race, and with earnings for all the successive ages. The final sample is a balanced
panel of N = 92 and T +1 = 22.

For each age t, we regress the logarithm of the real earnings (based on the
consumer price index) on a constant, a dummy for non-white person, education
dummies including high school, some college, college, and beyond college, and
calendar year. The residual of this regression for each individual i at each age t is
denoted by yit and used to estimate equation (7).

Table 1 presents the estimation results. We compute the following seven esti-
mators: IV1 and IV2 which uses, respectively, one and two lags of yit to compute
the one-step GMM estimator, GMM the usual one-step GMM estimator using all
available lags of yit, OKUI the estimator proposed in Okui (2009), TGMM the
regularized estimator using TK, PGMM the regularized estimator using PC, and
LGMM the regularized estimator using LF regularization scheme. We also report
the standard errors for all these estimators (in parentheses) and the regularization
parameter for regularized estimators. This parameter is the optimal α for TK, the
number of PCs for PC, and the number of iterations for LF. For the estimator OKUI,

4We thank Keisuke Hirano for providing his dataset. We added extra years to the original data to obtain a larger
sample.
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Table 1. Application to income dynamics

IV1 IV2 GMM OKUI TGMM PGMM LGMM

δ 0.678 0.654 0.652 0.667 0.676 0.665 0.678

(0.020) (0.019) (0.016) (0.016) (0.020) (0.016) (0.020)

α∗ 8 6.6e-05 116 15,126

we report the number of lags that minimizes the approximated MSE proposed in
Okui (2009).

The covariance matrix of the instruments is of dimension q̄ = 210, and its
condition number is of order 106, which is very high and motivates the use of
regularization.

All the coefficients are larger than the GMM coefficient. This is consistent with
the negative bias we found in Section 8. The methods giving the largest coefficient
are IV1 and LGMM. Regularization provides a bias correction as the regularized
coefficients are larger than GMM. The LF regularization scheme provides the
largest bias correction, whereas PC provides the smallest. The bias reduction of
regularization for the GMM estimator is obtained at the expense of a small increase
of the standard errors. Note that the standard errors in Table 1 are not robust to
heteroskedasticity. All the estimators are close to each other, suggesting that the
autoregressive coefficient is around 0.67.

10. CONCLUSION AND FURTHER EXTENSIONS

In DPMs, the number of moment conditions increases with the sample size so
that the one-step GMM estimator has poor finite sample properties. Instead of
selecting a subset of moment conditions, we propose a regularization approach
based on three ways of inverting the covariance matrix of instruments. All
the regularization methods involve a tuning parameter which is selected by a
data-driven method based on a higher-order expansion of the MSE under dou-
ble asymptotic. Simulations show that these estimators outperform the classi-
cal one-step GMM estimator especially when the autoregressive coefficient is
close to 1.

The regularization methods introduced in this paper can be extended to several
other estimators. Under the i.i.d. assumption on the error term vit, the weighting
matrix of the GMM estimator is estimated by the inverse of σ 2Z′Z. In the presence
of heteroskedasticity or autocorrelation (or both), the covariance matrix of the
instruments will be of the form Z′ANZ where AN is the estimated covariance matrix
of the error terms. For example, when FDs are used to eliminate the unobserved
fixed effect instead of the FOD used in this paper, the FD error term exhibits
autocorrelation even under i.i.d. assumptions on the error term vit. As a result, the
weighting matrix depends on the FD error term. The Arellano and Bond (1991)
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two-step FD GMM estimator is given by

δ̂ = (ȳ
′
−1ZANZ

′
ȳ−1)

−1(ȳ
′
−1ZANZ

′
ȳ−1),

where ȳ = (ȳ
′
1, . . . ,ȳ

′
N), ȳ−1 = (ȳ

′
1,−1, . . . ,ȳ

′
N,−1), ȳ

′
i = (�yi3, . . . ,�yiT), and ȳ

′
i,−1 =

(�yi2, . . . ,�yi,T−1), and, for a given t, we have �yit = yit − yi,t−1. The matrix AN

is given by

AN =
(

1

N

N∑
i=1

Z
′
i
ˆ̄ui ˆ̄u′

iZi

)−1

,

where ̂̄ui = (�̂vi3, . . . ,�̂viT) is computed from an initial consistent estimator. A
regularized version of the inverse in AN is likely to improve the properties of this
estimator when the number of instruments is large.

More generally, regularization can be applied to heteroskedasticity and auto-
correlation consistent-type weighting matrices as in Carrasco et al. (2007a).
Establishing consistency and asymptotic normality of this estimator should not
be difficult. However, deriving the MSE expansion to select the regularization
parameter will be more complicated. As a solution to the poor finite sample
properties of the GMM estimator of the DPM, Blundell and Bond (1998) proposed
the system GMM estimator that combines moment conditions for the model in FDs
with moment conditions for the model in levels. However, even though the system
GMM estimator is widely used in the literature (Blundell and Bond, 2000; Levine,
Loayza, and Beck, 2000 among others), it exhibits a bias when the instruments are
weak or nearly weak. In fact, Bun and Windmeijer (2010) show that the system
GMM estimator suffers from the weak instrument problem if the variance ratio of
individual effects to the disturbance is large. Extending the regularization approach
to the GMM system would be of great interest.

In this paper, we consider a single equation version of the DPM. The regular-
ization approach can be extended to the multiple equations setting referred to as
the panel dynamic simultaneous equations model. Several estimators including
the GMM and the System GMM estimator of the panel dynamic simultaneous
equation models are presented in Mitze (2012), whereas Hsiao and Zhou (2018)
investigate the asymptotic properties of the GMM estimator in this model. In
comparison to the single equation model, the covariance matrix of the instruments
has a larger dimension in the multiple equations setting because of the use of
instruments from multiple equations. Since our simulations show that the relative
performance of regularization increases with the number of instruments (large
T or model with covariates), one should expect regularization to significantly
improve the finite sample properties of the GMM estimator of the panel dynamic
simultaneous equations model.
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APPENDIX A: Simulation Tables

Table A1. Properties of the condition number with N = 50, σ 2 = 1, and σ 2
η = 1

for 1,000 replications

Min q1 Mean Median q3 max q̄

δ = 0.20

T = 5 6.2 10.7 13.4 12.8 15.5 32.1 10

T = 10 21.5 34.7 42.7 41.5 49.7 93.3 45

T = 25 143.2 282.4 359.9 343.6 421.3 959.1 300

T = 50 17,418.9 68,429.4 734,508.6 137,592.7 310,565.6 92,594,681.5 1,225

δ = 0.50

T = 5 15.3 35.0 44.5 42.9 52.0 131.1 10

T = 10 56.3 119.5 148.4 141.9 173.9 335.3 45

T = 25 343.2 892.4 1,176.6 1,119.4 1,361.3 3,137.3 300

T = 50 33,789.1 217,795.9 2,097,168.8 428,699.4 970,051.8 356,480,210.5 1,225

δ = 0.90

T = 5 626.2 1,183.7 1,509.0 1,440.7 1,751.9 3,901.3 10

T = 10 2,168.4 4,245.2 5,316.8 5,067.7 6,214.7 13,130.8 45

T = 25 16,422.2 32,971.4 42,706.8 40,619.7 49,839.7 108,698.3 300

T = 50 1,124,835.1 7,618,036.7 242,677,244.8 14,558,610.1 36,715,676.3 178,194,140,502.4 1,225

Table A2. Properties of the distribution of the regularization parameters with
N = 50, σ 2 = 1, σ 2

η = 1, σ 2
v = 1, δ = 0.50, γ = 1, and ρ = 0.50 for 3,000

replications (homoskedastic case)

Mean std Mode q1 Median q3

T = 10

OKUI 1.5 0.5 1.0 1.0 1.0 2.0

TK 7.00e-04 3.79e-04 5.63e-04 4.69e-04 6.25e-04 8.13e-04

PC 86.0 13.7 95.0 77.0 87.0 96.0

LF Inf NaN 85,332.0 55,350.0 81,919.0 120,470.0

T = 25

OKUI 3.4 0.5 3.0 3.0 3.0 4.0

TK 1.48e-04 4.05e-05 1.56e-04 1.17e-04 1.41e-04 1.72e-04

PC 333.2 51.9 332.0 298.0 332.0 370.0

LF 161,802.0 80,383.1 127,999.0 102,399.0 146,285.0 204,799.0
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Table A3. Simulations results for δ̂ and γ̂ with N = 50, σ 2 = 1, σ 2
η = 1, σ 2

v = 1,
δ = 0.50, γ = 1, and ρ = 0.50 for 3,000 replications (homoskedastic case)

GMM IV1 IV2 OKUI TK PC LF

δ̂

T = 10

Median bias −0.0376 −0.0187 −0.0217 −0.0109 −0.0243 −0.0233 −0.0238

Median absolute 0.0391 0.0532 0.0416 0.0450 0.0313 0.0309 0.0311

deviation

Empirical standard 0.0525 0.0832 0.0620 0.0683 0.0460 0.0456 0.0458

error

Interquartile range 0.0485 0.1053 0.0785 0.0896 0.0509 0.0518 0.0519

Coverage rate 0.8163 0.9450 0.9400 0.9577 0.8897 0.8943 0.8940

T = 25

Median bias −0.0306 −0.0075 −0.0073 −0.0064 −0.0149 −0.0135 −0.0143

Median absolute 0.0306 0.0268 0.0213 0.0184 0.0179 0.0174 0.0176

deviation

Empirical standard 0.0362 0.0409 0.0316 0.0274 0.0258 0.0255 0.0256

error

Interquartile range 0.0264 0.0532 0.0414 0.0367 0.0289 0.0292 0.0291

Coverage rate 0.6267 0.9550 0.9427 0.9390 0.8840 0.9010 0.8910

γ̂

T = 10

Median bias −0.0081 −0.0147 −0.0137 −0.0030 −0.0059 −0.0030 −0.0053

Median absolute 0.0330 0.0515 0.0436 0.0455 0.0333 0.0353 0.0339

deviation

Empirical standard 0.0478 0.0791 0.0650 0.0706 0.0496 0.0532 0.0507

error

Interquartile range 0.0646 0.1005 0.0871 0.0921 0.0663 0.0702 0.0682

Coverage rate 0.9473 0.9473 0.9517 0.9573 0.9520 0.9520 0.9517

T = 25

Median bias −0.0019 −0.0029 −0.0020 0.0002 −0.0006 0.0007 −0.0008

Median absolute 0.0194 0.0253 0.0232 0.0229 0.0219 0.0242 0.0228

deviation

Empirical standard 0.0289 0.0382 0.0342 0.0338 0.0326 0.0362 0.0339

error

Interquartile range 0.0383 0.0518 0.0465 0.0460 0.0438 0.0485 0.0459

Coverage rate 0.9477 0.9467 0.9460 0.9470 0.9507 0.9513 0.9487
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Table A4. Properties of the distribution of the regularization parameters with
N = 50, σ 2 = 1, σ 2

η = 1, σ 2
v = 1, δ = 0.95, γ = 1, and ρ = 0.50 for 3,000

replications (homoskedastic case)

Mean std Mode q1 Median q3

T = 10

OKUI 1.0 1.0 1.0 1.0 1.0

TK 3.03e-03 1.64e-03 2.25e-03 2.06e-03 2.63e-03 3.50e-03

PC 44.4 18.3 9.0 34.0 46.0 57.0

LF 1,241,287.7 13,090,177.6 2,285.0 45.0 999.0 1,999.0

T = 25

OKUI 1.0 1.0 1.0 1.0 1.0

TK 9.69e+00 4.62e+02 1.31e-03 1.31e-03 1.94e-03 3.44e-03

PC 60.7 43.1 24.0 34.0 49.0 67.0

LF 65,066,505.1 96,025,335.9 15,999.0 7,999.0 21,845,332.0 99,864,380.0

Table A5. Simulations results for δ̂ and γ̂ with N = 50, σ 2 = 1, σ 2
η = 1, σ 2

v = 1,
δ=0.95, γ = 1, and ρ = 0.50 for 3,000 replications (homoskedastic case)

GMM IV1 IV2 OKUI TK PC LF

δ̂

T = 10

Median bias −0.0706 −0.1267 −0.1261 −0.1267 −0.0617 −0.0543 −0.1700

Median absolute 0.0706 0.1331 0.1270 0.1331 0.0617 0.0581 0.1918

deviation

Empirical standard 0.0785 0.1983 0.1623 0.1983 0.0767 1.0500 0.3621

error

Interquartile range 0.0444 0.1821 0.1271 0.1821 0.0544 0.0726 0.3314

Coverage rate 0.4147 0.8470 0.7077 0.8470 0.6277 0.7867 0.9667

T = 25

Median bias −0.0492 −0.0469 −0.0463 −0.0469 −0.0390 −0.0368 −0.0437

Median absolute 0.0492 0.0503 0.0465 0.0503 0.0391 0.0410 0.0472

deviation

Empirical standard 0.0515 0.0779 0.0613 0.0779 0.0482 0.1185 0.1068

error

Interquartile range 0.0179 0.0736 0.0523 0.0736 0.0335 0.0618 0.0592

Coverage rate 0.0133 0.8687 0.7727 0.8687 0.5757 0.8613 0.7663

(Continues)
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Table A5. Continued

GMM IV1 IV2 OKUI TK PC LF

γ̂

T = 10

Median bias −0.0329 −0.1184 −0.1140 −0.1184 −0.0293 −0.0195 −0.0629

Median absolute 0.0406 0.1291 0.1168 0.1291 0.0460 0.0623 0.2624

deviation

Empirical standard 0.0580 0.1912 0.1566 0.1912 0.0653 0.7765 0.4366

error

Interquartile range 0.0669 0.1784 0.1377 0.1784 0.0813 0.1224 0.5072

Coverage rate 0.8973 0.8670 0.7760 0.8670 0.9180 0.9473 0.9943

T = 25

Median bias −0.0165 −0.0402 −0.0370 −0.0402 −0.0153 −0.0075 −0.0163

Median absolute 0.0231 0.0460 0.0399 0.0460 0.0392 0.0924 0.0657

deviation

Empirical standard 0.0342 0.0719 0.0579 0.0719 0.0625 0.1917 0.1550

error

Interquartile range 0.0402 0.0741 0.0598 0.0741 0.0737 0.1815 0.1285

Coverage rate 0.9023 0.8870 0.8607 0.8870 0.9423 0.9583 0.9597

Table A6. Properties of the distribution of the regularization parameters with
N = 50, σ 2 = 1, σ 2

η = 1, σ 2
v = 1, δ = 0.50, γ = 1, and ρ = 0.50 for 3,000

replications (heteroskedastic case)

Mean std Mode q1 Median q3

T = 10

OKUI 1.5 0.5 1.0 1.0 1.0 2.0

TK 6.41e-04 5.02e-04 5.63e-04 3.75e-04 5.31e-04 7.50e-04

PC 88.1 14.6 92.0 79.0 90.0 99.0

LF 109,021.9 71,178.5 127,999.0 62,060.0 93,090.0 136,532.0

T = 25

OKUI 3.4 0.6 3.0 3.0 3.0 4.0

TK 1.38e-04 4.86e-05 1.25e-04 1.02e-04 1.29e-04 1.64e-04

PC 340.1 54.7 325.0 301.0 340.0 378.0

LF 177,463.4 88,421.5 170,666.0 113,777.0 157,537.0 215,578.0
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Table A7. Simulations results for δ̂ and γ̂ with N = 50, σ 2 = 1, σ 2
η = 1, σ 2

v = 1,
δ = 0.50, γ = 1, and ρ = 0.50 for 3,000 replications (heteroskedastic case)

GMM IV1 IV2 OKUI TK PC LF

δ̂

T = 10

Median bias −0.0397 −0.0450 −0.0357 −0.0300 −0.0269 −0.0263 −0.0261

Median absolute 0.0403 0.0686 0.0494 0.0548 0.0332 0.0335 0.0330

deviation

Empirical standard 0.0550 0.1150 0.0750 0.0853 0.0486 0.0484 0.0483

error

Interquartile range 0.0489 0.1338 0.0890 0.1026 0.0536 0.0547 0.0544

Coverage rate 0.7847 0.8393 0.8757 0.8923 0.8733 0.8763 0.8763

T = 25

Median bias −0.0310 −0.0193 −0.0135 −0.0111 −0.0151 −0.0140 −0.0145

Median absolute 0.0310 0.0349 0.0240 0.0197 0.0179 0.0178 0.0178

deviation

Empirical standard 0.0359 0.0554 0.0359 0.0297 0.0260 0.0257 0.0258

error

Interquartile range 0.0253 0.0666 0.0442 0.0372 0.0283 0.0288 0.0290

Coverage rate 0.6263 0.8567 0.8980 0.9170 0.8773 0.8883 0.8823

γ̂

T = 10

Median bias −0.0105 −0.0334 −0.0231 −0.0116 −0.0063 −0.0044 −0.0061

Median absolute 0.0499 0.0770 0.0645 0.0664 0.0503 0.0514 0.0507

deviation

Empirical standard 0.0732 0.1185 0.0938 0.1022 0.0756 0.0782 0.0766

error

Interquartile range 0.0987 0.1460 0.1236 0.1312 0.1005 0.1023 0.1022

Coverage rate 0.7903 0.7900 0.8157 0.8293 0.7960 0.8093 0.8000

T = 25

Median bias −0.0033 −0.0095 −0.0054 −0.0001 −0.0026 −0.0013 −0.0030

Median absolute 0.0313 0.0393 0.0347 0.0342 0.0341 0.0354 0.0346

deviation

Empirical standard 0.0458 0.0595 0.0516 0.0509 0.0494 0.0522 0.0505

error

Interquartile range 0.0614 0.0788 0.0681 0.0686 0.0681 0.0708 0.0691

Coverage rate 0.7797 0.7883 0.7940 0.8120 0.8013 0.8337 0.8107
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Table A8. Properties of the distribution of the regularization parameters with
N = 50, σ 2 = 1, σ 2

η = 1, σ 2
v = 1, δ = 0.95, γ = 1, and ρ = 0.50 for 3,000

replications (heteroskedastic case)

Mean std Mode q1 Median q3

T = 10

OKUI 1.0 1.0 1.0 1.0 1.0

TK 2.77e-03 1.49e-03 2.31e-03 1.88e-03 2.44e-03 3.25e-03

PC 46.5 17.9 9.0 37.0 49.0 59.0

LF 2,714,292.0 22,736,444.0 2,285.0 95.0 1,142.0 1,999.0

T = 25

OKUI 1.0 0.0 1.0 1.0 1.0 1.0

TK 9.55e+00 4.47e+02 1.31e-03 1.22e-03 1.81e-03 3.13e-03

PC 63.6 45.4 24.0 35.0 50.0 70.5

LF 76,597,852.3 103,442,858.4 15,999.0 15,999.0 37,449,142.0 116,508,443.0

Table A9. Simulations results for δ̂ and γ̂ with N = 50, σ 2 = 1, σ 2
η = 1, σ 2

v = 1,
δ = 0.95, γ = 1, and ρ = 0.50 for 3,000 replications (heteroskedastic case)

GMM IV1 IV2 OKUI TK PC LF

δ̂

T = 10

Median bias −0.0732 −0.2404 −0.1862 −0.2404 −0.0669 −0.0589 −0.1879

Median absolute 0.0732 0.2409 0.1862 0.2409 0.0670 0.0615 0.2090

deviation

Empirical standard 0.0833 0.3076 0.2218 0.3076 0.0825 0.2357 0.3794

error

Interquartile range 0.0466 0.2323 0.1475 0.2323 0.0571 0.0774 0.3582

Coverage rate 0.3687 0.4863 0.4260 0.4863 0.5617 0.7320 0.9240

T = 25

Median bias −0.0493 −0.1087 −0.0764 −0.1087 −0.0417 −0.0413 −0.0465

Median absolute 0.0493 0.1087 0.0764 0.1087 0.0418 0.0447 0.0487

deviation

Empirical standard 0.0518 0.1430 0.0924 0.1430 0.0528 0.0978 0.1082

error

Interquartile range 0.0184 0.1130 0.0626 0.1130 0.0346 0.0619 0.0567

Coverage rate 0.0133 0.4493 0.4420 0.4493 0.5150 0.8090 0.6957

(Continues)
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Table A9. Continued

GMM IV1 IV2 OKUI TK PC LF

γ̂

T = 10

Median bias −0.0337 −0.2257 −0.1694 −0.2257 −0.0322 −0.0222 −0.0714

Median absolute 0.0565 0.2271 0.1706 0.2271 0.0605 0.0791 0.3003

deviation

Empirical standard 0.0824 0.2945 0.2155 0.2945 0.0902 0.3305 0.4973

error

Interquartile range 0.1007 0.2315 0.1730 0.2315 0.1119 0.1529 0.5905

Coverage rate 0.7403 0.5493 0.5427 0.5493 0.7727 0.8463 0.9797

T = 25

Median bias −0.0175 −0.0935 −0.0633 −0.0935 −0.0173 −0.0051 −0.0139

Median absolute 0.0335 0.0944 0.0662 0.0944 0.0472 0.0992 0.0743

deviation

Empirical standard 0.0500 0.1280 0.0889 0.1280 0.0771 0.1888 0.1759

error

Interquartile range 0.0620 0.1136 0.0825 0.1134 0.0922 0.1980 0.1443

Coverage rate 0.7407 0.5483 0.6120 0.5483 0.8537 0.9160 0.8940

APPENDIX B: Proofs

B.1. Proof of Lemma 1

(i) We have

tr[K] = 1

NT3/2
tr[E[Z′Z]] = 1

NT3/2

N∑
i=1

tr[E[Z′
iZi]] = 1

T3/2
tr[E[Z′

iZi]].

By construction, the matrix E[Z′
iZi] is a block-diagonal matrix which is defined in the

following way:

E[Z′
iZi] = Diag[E[zi1z′i1], . . . ,E[zitz

′
it], . . . ,E[ziT−1z′iT−1]].

For any t, the matrix E[zitz
′
it] is of order t × t with diagonal elements in the form of E[x2

is],
for s = 1,2, . . . ,t, where xit = yit−1. So,

tr[K] = 1

T3/2

T−1∑
t=1

tE[x2
it].

Now, using the autoregressive equation defining the DPM model, we introduce the notation
wit = yit −ηi/(1− δ) = yit −μi. Note that wit is a stationary AR(1) process with mean 0

https://doi.org/10.1017/S0266466622000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000469


388 MARINE CARRASCO AND ADA NAYIHOUBA

and variance σ 2/
(

1− δ2
)

. It follows that

E[y2
it−1] = Var[yit−1] = Var[wit−1 +μi] = Var[wit−1]+2Cov[wit−1,μi]+Var[μi].

By Assumption 3, we have Cov[wit−1,μi] = 0 because wi0 is independent of μi so that

E[y2
it−1] = Var[wit−1]+Var[μi] = σ 2

1− δ2
+ σ 2

η

(1− δ)2
.

Now,

E[x2
it] = E[y2

it−1] = σ 2

1− δ2
+ σ 2

η

(1− δ)2
.

It follows that

tr[K] = 1

T3/2

T−1∑
t=1

tE[x2
it] = 1

T3/2
E[x2

it]
T−1∑
t=1

t = 1

T3/2
E[x2

it]
T (T −1)

2
∼ T1/2.

(ii) For any symmetric matrix A = (aij), we have tr[A2] =∑i,j a2
i,j. So the trace of tr[K2]

is given by the sum of the squares of all the elements of the matrix K. By construction, we
have

K = Diag[K1, . . . ,Kt, . . . KT−1],

where, for a given t, Kt =
∑

i

E[zitz
′
it/NT3/2] = E[zitz

′
it]/T3/2. Let us denote by Kab,t the

(a,b) element of the t × t matrix Kt. We have

Kab,t = 1

T3/2
E[xiaxib] = 1

T3/2

(
σ 2

(1− δ2)
δ|a−b| + σ 2

η

(1− δ)2

)
,

with 1 ≤ a,b ≤ t.
We now calculate tr[K2

t ] by summing the squares of the elements of Kt.

tr[K2
t ] =

t∑
a,b=1

K2
ab,t =

t∑
a=1

K2
aa,t +

t∑
a �=b=1

K2
ab,t.

We have

t∑
a=1

K2
aa,t =

t∑
a=1

1

T3

(
σ 2

(1− δ2)
+ σ 2

η

(1− δ)2

)2
= t

T3

(
σ 2

(1− δ2)
+ σ 2

η

(1− δ)2

)2
= O

(
t

T3

)
.

t∑
a �=b=1

K2
ab,t = 1

T3

t∑
a �=b=1

(
σ 2

(1− δ2)
δ|a−b| + σ 2

η

(1− δ)2

)2

= 1

T3

σ 4

(1− δ2)2

t∑
a �=b=1

δ2(a−b) + 2

T3

σ 2

(1− δ2)

σ 2
η

(1− δ)2

t∑
a �=b=1

δ|a−b|

+ 1

T3

t∑
a �=b=1

σ 4
η

(1− δ)4
.
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However,
∑t

a �=b=1 δ2(a−b) = 2
∑t

a=2
∑a−1

b=1 δ2b = 2
∑t

a=2

[
1−δ2a

(1−δ2)
−1

]
= 2

(1−δ2)

∑t
a=2[

δ2 − δ2a
]

= 2
(1−δ2)

[∑t
a=2 δ2 − ∑t

a=2 δ2a
]

= 2
(1−δ2)

[
δ2(t − 1) − ∑t

a=2 δ2a
]

=
2

(1−δ2)

[
δ2(t−1)−( 1−δ2t+2

(1−δ2)
−1−δ2)]= O

(
t
)
. Similarly, we have

∑t
a �=b=1 δ(a−b) = O

(
t
)
.

Moreover,
∑t

a �=b=1
σ 4

η

(1−δ)4 = O
(
t2
)
. From the last three results, we have

∑t
a �=b=1 K2

ab,t =
O
( t

T3

)
and then tr[K2

t ] =∑t
a,b=1 K2

ab,t = O
( t

T3

)+O
( t2

T3

)= O
(

t2

T3

)
. And finally,

tr[K2] =
T−1∑
t=1

tr[K2
t ] =

T−1∑
t=1

O
( t2

T3

)
= O(1).

B.2. Preliminary Results for the Proof of Proposition 1

We begin by three lemmas which establish some preliminary useful results. We essentially
show how to adapt some results of AA in our case. We denote by Et(.) the expectation
conditional on ηi and

{
vi(t−j)

}∞
j=1.

Lemma 2. For a matrix A, let us define the norm ||A||2 = tr(AA′). If Assumptions 1–3
are satisfied, then:

(i) ||KN −K|| = Op(1/
√

N);
(ii) Etr[Mα] = O(1/α).

Proof of Lemma 2. (i) Let us define KN,t and Kt as the tth blocks of the matrixes KN
and K.

E||KN −K||2 = Etr[(KN −K)2] = E
T−1∑
t=1

tr[(KNt −Kt)
2].

But, for a given t, tr[(KNt − Kt)
2] is the sum of the squares of the elements of (KNt − Kt).

By definition of the matrixes KNt and Kt, the (a,b) element of KNt −Kt is∑
i xiaxib

NT3/2
−
∑

i E[xiaxib]

NT3/2
.

Hence,

E||KN −K||2 =
T−1∑
t=1

t∑
a,b

E

[∑
i xiaxib

NT3/2
−
∑

i E[xiaxib]

NT3/2

]2

= 1

N2T3

T−1∑
t=1

t∑
a,b

Var

[∑
i

xiaxib

]

= 1

NT3

T−1∑
t=1

t∑
a,b

Var

[
xiaxib

]
.
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By Cauchy–Schwarz, we have

Var

[
xiaxib

]
≤ E[x2

iax2
ib] ≤ E[x4

ia]1/2E[x4
ib]1/2.

We now prove that E[x4
ia] < ∞. From xia = yi,a−1 = wi,a−1 +μi with μi = ηi/(1−δ), we

have

E[x4
ia] = E[(wi,a−1 +μi)

4]

= E[w4
i,a−1 +4w3

i,a−1μi +6w2
i,a−1μ2

i +4wi,a−1μ3
i +μ4

i ]

= E[w4
i,a−1]+4E[w3

i,a−1μi]+6E[w2
i,a−1μ2

i ]+4E[wi,a−1μ3
i ]+E[μ4

i ].

• E[w4
i,a−1] is bounded because wi,a−1 is an AR(1) and we have from Assumption 1 that

E[v4
it] < ∞.

• E[μ4
i ] is bounded from Assumption 3 (ηi has fourth moments).

• E[w2
i,a−1μ

2
i ] is bounded by the Cauchy–Schwarz inequality and the fact that E[w4

i,a−1]

and E[μ4] are bounded.
• As an AR(1), wi,a−1 can be written as the sum of the vit. From Assumption 1, ηi is

independent of the vit so that E[w3
i,a−1μi] = E[wi,a−1μ

3
i ] = 0.

We have just proved that E[x4
ia] < ∞. Hence,

E||KN −K||2 = 1

NT3

T−1∑
t=1

t∑
a,b

Var

[
xiaxib

]
≤ 1

NT3

T−1∑
t=1

t∑
a,b

E[x4
ia]1/2E[x4

ib]1/2

≤ E[x4
ia]

NT3

T−1∑
t=1

t∑
a,b

1 ≤ E[x4
ia]

NT3

T−1∑
t=1

t2 = O

(
1

N

)
.

(ii)

Etr[Mα] = Etr[Z[Z′Z/NT3/2]αZ′]/NT3/2 = Etr[′[Z′Z/NT3/2]α][Z′Z/NT3/2]

= Etr[Kα
NKN ] = E

[ q̄∑
j=1

qj(α,λ̂j
2
)

]
,

where λ̂j are the eigenvalues of the matrix KN . From Kress (1999) and Carrasco et al.

(2007b, Sect. 3.3), we have that for the three regularizations, q(α,λ2) ≤ Cλ2/α for some
positive constant C. Then we have

E

[ q̄∑
j=1

qj(λ̂
2
j ,α)

]
≤ C

α
E

[ q̄∑
j=1

λ̂2
j

]
≤ C

α
Etr[K2

N ] ≤ C

α
E||KN ||2.

We now show that E||KN ||2 is bounded:

E||KN ||2 = E||KN −K +K||2 ≤ 2E||KN −K||2 +2E||K||2 = O
(
1/N
)+O

(
1
)= O

(
1
)
,

where E||KN − K||2 = O(1/N) comes from (i) and E||K||2 = O(1) comes from
Lemma 1(ii). This completes the proof of Lemma 2. �
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Lemma 3. Let us denote by dt(α) the N × 1 vectors containing the diagonal ele-
ments of Mα

t , and let κ3 and κ4 be the third- and fourth-order cumulants of vit. Under
Assumptions 1–3:

(i) tr(Mα
t ) ≤ t,

(ii) Var(v′
tM

α
t vt) ≤ (2σ 4 +κ4)E

[
tr
(
Mα2

t

)]≤ (2σ 4 +κ4)t,
(iii) Var(v′

tM
α
t vt+j) = σ 4Etr(Mα

t ) ≤ σ 4t, for j > 0,

(iv) Cov(v′
tM

α
t vt+j,v′

t+jM
α
t+jvt+j) ≤ κ3E

(
dt+j (α)′ Mα

t vt
)≤ κ3σ

√
t + j
(
E
(
tr
(
Mα2

t

)))1/2
,

for j > 0.

Proof of Lemma 3. (i) The t × t symmetric matrix Z′
tZt/NT3/2 can be decomposed

as PtDtP′
t with PtP′

t = It the t-dimensional identity matrix and Dt = diag(λt
1,λ

t
2, . . . ,λ

t
t).

The regularized inverse of Dt is Dt(α)=diag(
q(α,λt2

1 )

λt
1

, . . . ,
q(α,λt2

t )

λt
t

). If we denote by

(Z′
tZt/NT3/2)α the regularized inverse of (Z′

tZt/NT3/2), then

tr(Mα
t ) = tr[Zt(Z

′
tZt/NT3/2)αZ′

t]/NT3/2 = tr[PtDtP
′
tPtDt(α)P′

t]

= tr[DtDt(α)] =
t∑

l=1

q(α,λt2
l ).

The result follows from 0 ≤ q(α,λt2
l ) ≤ 1.

(ii)

Et(v
′
tM

α
t vtv

′
tM

α
t vt) =

∑
i

∑
j

∑
k

∑
l

m(α)t
ijm(α)t

klEt(vitvjtvktvlt)

= (3σ 4 +κ4)d′
t(α)dt(α)+σ 4

∑
i

∑
k �=i

m(α)t
iim(α)t

kk

+2σ 4
∑

i

∑
j �=i

m(α)t
ijm(α)t

ij

= κ4d′
t(α)dt(α)+σ 4tr(Mα

t )tr(Mα
t )+2σ 4tr(Mα

t Mα
t ),

where m(α)t
ij is the (i,j) element of the matrix Mα

t . Moreover,

Et(v
′
tM

α
t vt) = tr[Mα

t Et(vtv
′
t)] = σ 2tr(Mα

t )

so that

vart(v
′
tM

α
t vt) = Et(v

′
tM

α
t vtv

′
tM

α
t vt)− (Et(v

′
tM

α
t vt)
)2 = κ4d′

t(α)dt(α)+2σ 4tr(Mα
t Mα

t ).

By definition, d′
t(α)dt(α)=∑i m(α)t2

ii = tr(Mα2
t ) ≤ t so that vart(v′

tM
α
t vt) ≤ (κ4 + 2σ 4)t

and the result follows from the law of total variance.
(iii) By the law of iterated expectations, the expectation of v′

tM
α
t vt+j is null for j¿ 0, so

that Var(v′
tM

α
t vt+j) = E(v′

tM
α
t vt+jv

′
t+jM

α
t vt). Conditioning on t, it follows that

Et(v
′
tM

α
t vt+jv

′
t+jM

α
t vt) = Et[tr(M

α
t vt+jv

′
t+jM

α
t vtv

′
t)]

= tr[Mα
t Et(vt+jv

′
t+j)M

α
t Et(vtv

′
t)] = σ 4tr

(
Mα2

t

)
≤ σ 4t.

The result of (iii) follows by taking the expectation of both sides of the inequality.
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(iv) Cov(v′
tM

α
t vt+k,v

′
t+kMα

t+kvt+k) =E(v′
t+kMα

t+kvt+kv′
t+kMα

t vt)

Et+k(v
′
t+kMα

t+kvt+kv′
t+kMα

t vt) = Et+k(v
′
t+kMα

t+kvt+kv′
t+k)M

α
t vt

=
∑

l

∑
i

∑
j

m(α)t+k
ij Et+k(vit+kvjt+kvlt+k)M

α
t vt

= κ3d′
t+k(α)Mα

t vt,

where the last equality comes from Et+k(vit+kvjt+kvlt+k) =κ3 if l = i = j and 0 otherwise.
We have just proved that E(v′

t+kMα
t+kvt+kv′

t+kMα
t vt) = E(κ3d′

t+k(α)Mα
t vt).

Moreover, by the Cauchy–Schwarz inequality,

(d′
t+k(α)Mα

t vt)
2 ≤ (d′

t+k(α)dt+k(α))(v′
tM

α2
t vt).

Since d′
t+k(α)dt+k(α) ≤ tr[Mα2

t+k] ≤ t + k and E(v′
tM

α2
t vt) ≤ σ 2E

[
tr
(

Mα2
t

)]
≤ σ 2t,

by taking expectation of the previous inequality, we have E[(d′
t+k(α)Mα

t vt)
2] ≤

(t + k)σ 2E
[
tr
(

Mα2
t

)]
. The result (iv) follows by noting that [E(d′

t+k(α)Mα
t vt)]2 ≤

E
[
(d′

t+k(α)Mα
t vt)

2
]
. This completes the proof of Lemma 3. �

Lemma 4. Let ṽtT = 1
T−t

(
φT−tvt +·· ·+φ1vT−1

)
and φj = 1−δj

1−δ
. If N → ∞, T → ∞,

and α → 0, then:
(i)

1

NT

T−1∑
t=1

E(w′
t−1[Mt −Mα

t ]wt−1) = o(1).

(ii)

1

NT

T−1∑
t=1

E(w′
t−1[Mt −

(
Mα

t
)2]wt−1) = o(1).

(iii) Let us define v̄tT = (vt + ·· · + vT )/(T − t + 1). If ln(T)/(αNT) → 0, then
Var
(
ϒα

21NT

)→ 0 and Var
(
ϒα

22NT

)→ 0 where

ϒα
21NT = 1√

NT

T−1∑
t=1

ṽ′
tT Mα

t vt, (8)

ϒα
22NT = − 1√

NT

T−1∑
t=1

ṽ′
tT Mα

t v̄tT . (9)

Moreover,

V

⎡⎣ 1√
NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

⎤⎦= O

(
ln(T)

αNT

)
.
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(iv)

μα
NT ≡ 1√

NT
E

⎡⎣T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

⎤⎦
= σ 2

1− δ

1√
NT

T−1∑
t=1

trEMα
t

(
φT−t

T − t
− φT−t+1

T − t +1

)
= O

(
1

α
√

NT

)
.

Proof of Lemma 4. (i) Let us define W = (w′
0, . . . ,w

′
T−2)′, then

1

NT

T−1∑
t=1

w′
t−1[Mt −Mα

t ]wt−1 = 1

NT
W ′Z[K−1

N −Kα
N ]Z′W/NT3/2.

By the eigendecomposition, we can write K−1
N = P′

ND−1
N PN and Kα

N = P′
NDα

NPN with

Dα
N = diag[ q̂1

λ̂1
. . . . . .

q̂q̄

λ̂q̄
] where q̂l

λ̂l
is a notation for q(α,λ̂l

2
)/λ̂l. Let UN = PNZ′W/

√
NT3/4

be a q̄×1 vector, then

1

NT
W ′Z[K−1

N −Kα
N ]Z′W/NT3/2 = 1

NT
W ′ZP′

N [D−1
N −Dα

N ]PNZ′W/NT3/2

= 1

NT
U′

N [D−1
N −Dα

N ]Un

= 1

NT

q̄∑
l=1

(1− q̂l)
U2

N,l

λ̂l

≤ sup
λ̂l

(1− q̂l)
1

NT

q̄∑
l=1

U2
N,l

λ̂l

≤ sup̂λl
(1− q̂l)

1

NT
W ′ZK−1

N Z′W/NT3/2.

As q̂l lies between 0 and 1, sup̂λl
(1− q̂l) is bounded by 1. Moreover,

1

NT
E
(

W ′ZK−1
N Z′W/NT3/2

)
= 1

NT
E

⎛⎝T−1∑
t=1

w′
t−1Mtwt−1

⎞⎠< ∞,

where the last inequality follows from AA. We have just proved that

1

NT
E

⎡⎣T−1∑
t=1

w′
t−1[Mt −Mα

t ]wt−1

⎤⎦< ∞.

Following Groetsch (1993), we may, in passing to the limit as α → 0, interchange the limit
and summation, giving

lim
α→0

1

NT
E

⎡⎣T−1∑
t=1

w′
t−1[Mt −Mα

t ]wt−1

⎤⎦= 0.
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(ii) The proof of this result uses the same argument as before, noting that

E

⎛⎝ 1

NT

T−1∑
t=1

w′
t−1[Mt −Mα2

t ]wt−1

⎞⎠≤ E

⎛⎝sup
λ̂l

(1− q̂2
l )

1

NT

T−1∑
t=1

w′
t−1Mtwt−1

⎞⎠< ∞.

(iii)

Var(ϒα
21NT ) = 1

NT
Var

[T−1∑
t=1

1

T − t
v′

tM
α
t (φT−tvt +·· ·+φ1vT−1)

]
= aα

0NT +aα
1NT,

where aα
0NT and aα

1NT have the same form as a0NT and a1NT of AA (eqn. (A63)) but with
Mα

t instead of Mt. First, consider aα
0NT :

aα
0NT = 1

NT

T−1∑
t=1

1

(T − t)2
[φ2

T−tVar(v′
tM

α
t vt)+·· ·+φ2

1Var(v′
tM

α
t vT−1)].

Using Lemma 3(ii) and (iii), we have that

Var(v′
tM

α
t vt) ≤ (κ4 +2σ 4)E

[
tr
(

Mα2
t

)]
,

and, for j > 0,

Var(v′
tM

α
t vt+j) = σ 4E

[
tr
(

Mα2
t

)]
.

Hence, using φ2
t ≤ 1/(1− δ)2 , we have

aα
0NT ≤ 1

NT

T−1∑
t=1

1

(1− δ)2

E
[
tr
(

Mα2
t

)]
(T − t)2

[κ4 +2σ 4 + (T − t −1)σ 4]

≤ C

NT

T−1∑
t=1

E
[
tr
(

Mα2
t

)]
(T − t)

≤ C

NT

T−1∑
t=1

E
[
tr
(
Mα

t
)]

(T − t)

≤ C

NT

T−1∑
t=1

E
[
tr
(
Mα

t
)]= C

NT
Etr[Mα]

for some constant C > 0 and we can conclude that aα
0NT = O

(
1

αNT

)
. Now, looking at aα

1NT ,

we have

aα
1NT = 2

NT

T−2∑
t=1

[T−t−1∑
j=1

φ2
T−t−jcov(v′

tM
α
t vt+j,v

′
t+jM

α
t+jvt+j)

(T − t − j)(T − t)

]
.
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Using Lemma 3(iv), we have

∣∣aα
1NT

∣∣=
∣∣∣∣∣∣ 2

NT

T−2∑
t=1

[T−t−1∑
j=1

φ2
T−t−jcov(v′

tM
α
t vt+j,v

′
t+jM

α
t+jvt+j)

(T − t − j)(T − t)

]∣∣∣∣∣∣
≤ 1

(1− δ)2

2

NT

∣∣∣∣∣∣
T−2∑
t=1

1

(T − t)

[T−t−1∑
j=1

κ3E(dt+j (α)Mα
t vt)

T − t − j

]∣∣∣∣∣∣
≤ σ

(1− δ)2

2 |κ3|
NT

T−2∑
t=1

√
EtrMα2

t

(T − t)

[T−t−1∑
j=1

√
t + j

T − t − j

]

≤ 1

NT

T−2∑
t=1

E
[
tr
(
Mα

t
)]

O(lnT)

so that, by Lemma 2(ii), we have aα
1NT = O

(
lnT/(αNT)

)
. This allows us to conclude that

Var(ϒα
21NT ) = O

(
lnT/(αNT)

)
.

We now look at the term ϒα
22NT :

Var(ϒα
22NT ) = bα

0NT +bα
1NT,

where using arguments similar to those of AA (eqns. (A72) and (A73)) and Okui (2011),

bα
0NT = 1

NT

T−1∑
t=1

Var(ṽ′
tT Mα

t v̄tT ) = O

(
1

NT

T−1∑
t=1

Etr(Mα2
t )

(T − t)2

)
= O

(
1

αNT

)
and∣∣bα

1NT

∣∣≤ 2

NT

∑
s

∑
t>s

∣∣cov(ṽ′
tT Mα

t v̄tT,ṽ′
sT Mα

s v̄sT )
∣∣

= 1

NT
O

⎛⎝∑
s

∑
t>s

(E
[
tr
(

Mα2
t

)]
)1/2

T − t

(Etr[Mα2
s ])1/2

T − s

⎞⎠ .

But, for s < t,

E
[
tr
(

Mα2
t

)]
≤ Etr[Mα2

s ]

so that

∣∣bα
1NT

∣∣≤ C

NT

T−1∑
t=1

E
[
tr
(

Mα2
t

)]
T − t

T−1∑
s=1

1

T − s
= O

(
ln(T)

αNT

)
and finally

Var(ϒα
22NT ) = O

(
ln(T)

αNT

)
.
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To end the proof of (iii), we note that

1√
NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t = 1√

NT

T−1∑
t=1

ṽ′
tT Mα

t vt − 1√
NT

T−1∑
t=1

ṽ′
tT Mα

t v̄tT,

because v∗
t = (vt − vtT )/ct. Hence,

Var

⎛⎝ 1√
NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

⎞⎠= Var(ϒα
21NT )+Var(ϒα

22NT )+2Cov(ϒα
21NT,ϒα

22NT ).

Using the Cauchy–Schwarz inequality, we have

Var

[
1√
NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

]
≤ Var(ϒα

21NT )+Var(ϒα
22NT )

+2

(
Var(ϒα

21NT )

)1/2(
Var(ϒα

22NT )

)1/2

= O

(
ln(T)

αNT

)
,

and provided that ln(T)/αNT → 0, (iii) holds.
(iv) By the law of iterated expectations and equation (A47) of AA, we have

E(ctṽ
′
tT Mα

t v∗
t ) = E(tr[Mα

t v∗
t ctṽ

′
tT ]) = tr(E[Mα

t ctv
∗
t ṽ′

tT ])

= tr(E[Mα
t ctEt(v

∗
t ṽ′

tT )]) = σ 2tr[E(Mα
t )]

1− δ

(
φT−t

T − t
− φT−t+1

T − t +1

)
.

Hence,

E

(
1√
NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

)
= σ 2

1− δ

1√
NT

T−1∑
t=1

tr(E[Mα
t ])

(
φT−t

T − t
− φT−t+1

T − t +1

)
.

Moreover, note that
∣∣∣φT−t

T−t − φT−t+1
T−t+1

∣∣∣≤ ∣∣φT−t
∣∣+ ∣∣φT−t+1

∣∣≤ 2/(1− δ) so that

∣∣∣∣ σ 2

1− δ

1√
NT

T−1∑
t=1

E[tr
(
Mα

t
)
]

(
φT−t

T − t
− φT−t+1

T − t +1

)∣∣∣∣≤ 2σ 2

1− δ

1√
NT

∣∣∣∣T−1∑
t=1

E
[
tr
(
Mα

t
)] ∣∣∣∣

≤ 2σ 2

1− δ

1√
NT

∣∣∣∣Etr[Mα]

∣∣∣∣.
Therefore, Result (iv) follows from Lemma 2(ii). This completes the proof of Lemma 4. �

B.3. Proof of Proposition 1

B.3.1. Proof of Consistency.

δ̂α − δ =
(T−1∑

t=1

x∗′
t Mα

t v∗
t

)(T−1∑
t=1

x∗′
t Mα

t x∗
t

)−1

.
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According to equation (A42) of AA, we can decompose the numerator as

1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t = 1√

NT

T−1∑
t=1

ψtw
′
t−1Mα

t v∗
t − 1√

NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t (10)

using wt−1 = yt−1 − μ with μ = η/(1 − δ), ct = √
(T − t)/(T − t +1), φj = 1−δj

1−δ
,x∗

t =
ψtwt−1 − ctṽtT,ψt = ct(1− δφT−t

T−t ), and ṽtT = (φT−tvt+···+φ1vT−1)
T−t . The expectation of the

first term of the right side of ( 10) is null, and by Lemma 4(iv), we have

E

(
1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t

)
= −E

(
1√
NT

T−1∑
t=1

ctṽ′
tT Mα

t v∗
t

)
= O

(
1

α
√

NT

)
, (11)

which is o(1) if α
√

NT → ∞.
We now look at the variance of (x∗′

Mαv∗)/
√

NT . Following the decomposition (A49)
of AA, we can write

1√
NT

x∗′
Mαv∗ =

(
1√
NT

T−1∑
t=1

w′
t−1Mα

t vt −ϒα
11NT −ϒα

12NT

)
−
(

ϒα
21NT −ϒα

22NT

)
,

(12)

where ϒα
21NT and ϒα

22NT are defined in equations (8) and (9), respectively, and ϒα
11NT =

1√
NT

∑T−1
t=1 w′

t−1Mα
t v̄tT , and ϒα

12NT = 1√
NT

∑T−1
t=1

ctδφT−t
T−t w′

t−1Mα
t v∗

t .

We have

Var

(
1√
NT

T−1∑
t=1

w′
t−1Mα

t vt

)
= 1

NT

T−1∑
t=1

var(w′
t−1Mα

t vt) = σ 2

NT

T−1∑
t=1

E(w′
t−1Mα2

t wt−1)

= σ 2

NT

T−1∑
t=1

E(w′
t−1(Mα2

t −Mt)wt−1)+ σ 2

NT

T−1∑
t=1

E(w′
t−1Mtwt−1).

From AA, σ 2

NT
∑T−1

t=1 E(w′
t−1Mtwt−1)

m.s.−→ σ 4

(1−δ2)
.

By Lemma 4(ii), σ 2

NT
∑T−1

t=1 E(w′
t−1[Mα

t Mα
t − Mt]wt−1) = o(1) and this allows us to

conclude that Var( 1√
NT

∑t=T−1
t=1 w′

t−1Mα
t v∗

t ) converges to σ 4

(1−δ2)
.

Now, we give the order of magnitude of ϒα
11NT , ϒα

12NT , ϒα
21NT , and ϒα

22NT .

Var(ϒα
11NT ) = 1

NT

T−1∑
t=1

T−1∑
s=1

E(w′
t−1Mα

t v̄tT v̄sT Mα
s ws−1).

For t ≥ s,

E(w′
t−1Mα

t Et(v̄tT v̄sT )Mα
s w′

s−1) = σ 2

T − s+1
E(w′

t−1Mα
t Mα

s ws−1).

E(w′
t−1Mα

t Mα
s ws−1) ≤ [E(w′

t−1Mα2
t wt−1)]

1
2 [E(w′

s−1Mα2
s ws−1)]

1
2

≤ [E(w′
t−1Mtwt−1)]

1
2 [E(w′

s−1Msws−1)]
1
2
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≤ [E(w′
0M1w0)]

1
2 [E(w′

0M1w0)]
1
2

≤ E(w′
0M1w0).

By similar calculations as in AA, we have that Var( ϒα
11NT ) −→ 0.

Next, following (A60) of AA, we have

Var(ϒα
12NT ) = 1

NT
var(

T−1∑
t=1

ctδφT−t

T − t
w′

t−1Mα
t v∗

t )

= 1

NT

T−1∑
t=1

c2
t δ2φ2

(T−t)

(T − t)(T − t +1)
var(w′

t−1Mα
t v∗

t )

= σ 2

NT

T−1∑
t=1

c2
t δ2φ2

(T−t)

(T − t)(T − t +1)
E(w′

t−1Mα2
t wt−1)

≤ σ 2

NT

T−1∑
t=1

c2
t δ2φ2

(T−t)

(T − t)(T − t +1)
E(w′

t−1Mtwt−1) −→ 0.

The last inequality comes from the fact that Mt − Mα
t Mα

t is nonnegative definite so
that E(w′

t−1Mα
t Mα

t wt−1) ≤ E(w′
t−1Mtwt−1). Moreover, from Lemma 4(iii), the vari-

ance of ϒα
21NT − ϒα

22NT goes to 0 if ln(T)/(αNT) → 0. Summing up, we have that

Var( 1√
NT

∑T−1
t=1 w′

t−1Mα
t v∗

t ) goes to σ 4

(1−δ2)
, and each of ϒα

11NT , ϒα
12NT , ϒα

21NT , and

ϒα
22NT has variance going to zero so that the variance of 1√

NT

∑T−1
t=1 x∗′

t Mα
t v∗

t converges to

σ 4

(1−δ2)
as N and T go to infinity, α goes to zero, and ln(T)/(αNT) → 0. The expectation of

(x∗′
Mαv∗)/

√
NT goes to zero, and its variance has a finite limit so that (x∗′

Mαv∗)/
√

NT
converges in mean square to zero and then in probability.

Turning to the denominator, we have

1

NT
x∗′

Mαx∗ = 1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t

= 1

NT

T−1∑
t=1

ψ2
t w′

t−1Mα
t wt−1 − 2

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT + 1

NT

T−1∑
t=1

c2
t ṽ′

tT Mα
t ṽtT .

We can write the first term in the following way:

1

NT

T−1∑
t=1

ψ2
t w′

t−1Mα
t wt−1 = 1

NT

T−1∑
t=1

ψ2
t w′

t−1Mtwt−1 − 1

NT

T−1∑
t=1

ψ2
t w′

t−1(Mt −Mα
t )wt−1.

From Lemma C2 of AA and ψ2
t = O(1−1/(T − t)), when T goes to infinity and regardless

of whether N goes to infinity or not, we have

1

NT

T−1∑
t=1

ψ2
t w′

t−1Mtwt−1
m.s.−−→ σ 2

(1− δ2)
.

https://doi.org/10.1017/S0266466622000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000469


REGULARIZED ESTIMATION OF DYNAMIC PANEL MODELS 399

By Lemma 4(i), 1
NT
∑T−1

t=1 w′
t−1[Mt −Mα

t ]wt−1 = op(1). As a result, similarly to AA, we

have that the limit of 1
NT
∑T−1

t=1 ψ2
t w′

t−1Mα
t wt−1 is σ 2

(1−δ2)
. The term 2

NT
∑T−1

t=1 ctψtw′
t−1

Mα
t ṽtT is identical to ϒα

11NT and is op(1).

Looking at (
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT )/NT and using the fact that E[c2

t ṽitT ] is bounded, we
have that

E

(
1

NT

T−1∑
t=1

c2
t ṽ′

tT Mα
t ṽtT

)
= 1

NT

T−1∑
t=1

c2
t E{tr (Mα

t
)

Et(ṽ′
tT ṽtT )}

= 1

NT

T−1∑
t=1

c2
t E
[
tr
(
Mα

t
)

Et(ṽ
2
itT )
]

≤ C

NT
E

(T−1∑
t=1

[tr(Mα
t )]

)
= O

(
1

αNT

)
,

where the last equality comes from Lemma 2(ii). By Markov’s inequality,

1

NT

T−1∑
t=1

c2
t ṽ′

tT Mα
t ṽtT = O

(
1

αNT

)
,

which is o(1) if α
√

NT → ∞.

This ends the proof that (x∗′
Mαx∗)/NT tends to σ 2

(1−δ2)
in probability; hence, this term

is bounded. Summing up, we have that (x∗′
Mαv∗)/NT converges to 0 in probability and

(x∗′
Mαx∗)/NT is bounded so that the regularized estimator is consistent.

B.3.2. Proof of the Asymptotic Normality. From (11) and Lemma 4(iv), we have

μα
NT = E((x∗′

Mαv∗)/
√

NT) = σ 2

1− δ2

1√
NT

T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)
.

From (12) and since the variances of ϒα
11NT , ϒα

12NT , ϒα
22NT , and ϒα

21NT go to zero, we
obtain

1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t −μα

NT = 1√
NT

T−1∑
t=1

w′
t−1Mα

t vt +op(1).

The first term of the right-hand side can be rewritten as

1√
NT

T−1∑
t=1

w′
t−1Mα

t vt = 1√
NT

T−1∑
t=1

w′
t−1Mtvt − 1√

NT

T−1∑
t=1

w′
t−1[Mt −Mα

t ]vt.

Let us denote h = 1√
NT

∑T−1
t=1 w′

t−1[Mt − Mα
t ]vt. By the law of iterated expectations,

E(h) = 0 and Var(h) = σ 2

NT
∑T−1

t=1 E(w′
t−1[Mt − Mα

t ]2wt−1). By Lemma 4(i), we have
Var(h) = o(1) so that h = op(1).
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From AA, 1√
NT

∑T−1
t=1 w′

t−1Mtvt
d−→ N(0, σ 2

1−δ2 ) and we proved that (x∗′
Mαx∗)/NT

tends to σ 2

(1−δ2)
in probability so that, by Slutsky’s theorem,

(
x∗′

Mαx∗
NT

)−1 [ 1√
NT

x∗′
Mαv∗ −μα

NT

]
d−→ N(0,1− δ2)

or equivalently

√
NT(δ̂α − δ)−

(
x∗′

Mαx∗
NT

)−1
μα

NT
d−→ N(0,1− δ2).

From Lemma 4(iv), μα
NT = o(1), and hence the bias vanishes and this ends the proof of the

asymptotic normality.

B.4. Preliminary Results for the Proof of Proposition 2

Let

�α = 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )2wt−1].

Lemma 5. If Assumptions 1–3 are satisfied, then:

(i) �α = O
(

ln(T)
T

)
= o(1).

(ii) 1√
NT

∑T−1
t=1 ψtw′

t−1(I −Mα
t )v∗

t = Op(�
1/2
α ).

(iii)

V

(
1

NT

T−1∑
t=1

ψ2
t [w′

t−1Mα
t wt−1]

)
= O

(
1

NT

)
.

(iv)

1

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT = Op

(
1√
NT

)
.

(v) H =∑T−1
t=1 ψ2

t E[w′
t−1wt−1]/NT = σ 2

1−δ2

∑T−1
t=1 ψ2

t
T = O(1) and h =∑T−1

t=1 ψtw′
t−1v∗

t /√
NT = Op(1).

Proof of Lemma 5.

(i) Noting that ψ2
t ≤ 1, this term can be omitted in the proof.

1

NT

T−1∑
t=1

E[w′
t−1(I −Mα

t )2wt−1] = 1

NT

T−1∑
t=1

E[w′
t−1(I −2Mα

t +Mα2
t )wt−1]

= 1

NT

T−1∑
t=1

E[w′
t−1(I −Mt)wt−1]
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+2
1

NT

T−1∑
t=1

E[w′
t−1(Mt −Mα

t )wt−1]

− 1

NT

T−1∑
t=1

E[w′
t−1(Mt −Mα2

t )wt−1].

From equation (A86) in AA, we have

1

NT

T−1∑
t=1

E[w′
t−1(I −Mt)wt−1] = O

(
log(T)

T

)
= o(1).

The last two terms are also o(1) using results from Lemma 4(i) and (ii).
(ii) The expectation of the term is 0, and its variance is

Var

(
1√
NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗
t

)
= σ 2�α,

and the result follows from Markov’s inequality.

(iii) From equations (A40) and (A41) of AA, we have Var
(∑T−1

t=1 w′
t−1Mtwt−1/NT

)
=

O(1/(NT)) . We can use the same proof as in AA to establish our result given that
ψt ≤ 1 and Mα

t has eigenvalues smaller than or equal to 1.
(iv)

E

(
1

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT

)
= 0.

Now, for the variance, note that

Var

(
1

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT

)
= 1

N2T2

T−1∑
t=1

T−1∑
s=1

c2
t ψ

2
t E[w′

t−1Mα
t ṽtT ṽ′

sT Mα
s ws−1].

For t ≥ s,

E(w′
t−1Mα

t ṽtT ṽ′
sT Mα

s ws−1) = E(w′
t−1Mα

t Et(ṽtT ṽ′
sT )Mα

s ws−1).

However,

Et(ṽtT ṽ′
sT ) = σ 2

(T − t)(T − s)
[φ2

T−s +·· ·+φ2
1] ≤ σ 2

(T − t)

so that

E(w′
t−1Mα

t ṽtT ṽ′
sT Mα

s ws−1) ≤ σ 2

(T − t)
E(w′

t−1Mα
t Mα

s ws−1).

Now, by the Cauchy–Schwarz inequality,

E(w′
t−1Mα

t Mα
s ws−1) ≤ [Ew′

t−1Mα2
t w′

t−1]1/2[Ew′
s−1Mα2

s w′
s−1]1/2.
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Then,

E(w′
t−1Mα

t ṽtT ṽ′
sT Mα

s ws−1) ≤ σ 2

(T − t)
[Ew′

t−1Mα
t Mα

t w′
t−1]1/2[Ew′

s−1Mα
s Mα

s w′
s−1]1/2

≤ σ 2

(T − t)
[Ew′

t−1Mα
t w′

t−1]1/2[Ew′
s−1Mα

s w′
s−1]1/2

≤ σ 2

(T − t)
[Ew′

t−1Mtw
′
t−1]1/2[Ew′

s−1Msw
′
s−1]1/2

≤ σ 2

(T − t)
E(w′

0M1w0) ≤ σ 2N

(T − t)
E(w2

i0).

Hence,

Var

(
1

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT

)
≤ σ 2

(NT2)
E(w2

i0)

{(
1

T −1

)
+·· ·+ 1

2

+2(T −2)

T −1
+·· ·+ 2

1

}
= O

(
T

NT2

)
= O

(
1

NT

)

so that (iv) holds by Markov’s inequality.
(v)

H = 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1wt−1] = 1

T

T−1∑
t=1

ψ2
t E[w2

i,t−1] = σ 2

1− δ2

1

T

T−1∑
t=1

ψ2
t ,

and the result follows from the fact
∑T−1

t=1 ψ2
t /T → 1. Regarding h, we have E(h) = 0

and Var(h) = σ 2H so that h = Op(1) since H = O(1).

For completeness, we reproduce here a lemma from Okui (2009), which is essential to
derive the higher-order expansion of the MSE. This lemma is similar to Lemma A1 of
Donald and Newey (2001), but the expectation is unconditional. �

Lemma 6 (Lemma 2 of Okui (2009)). Let ρα= trS(α). Suppose that an estimator

δ̂ has a decomposition
√

NT
(
δ̂ − δ

)
= Ĥ−1ĥ, ĥ = h + Th + Zh, Ĥ = H + TH +

ZH,
(

h+Th
)(

h+Th
)′ −hh′H−1TH′−THH−1hh′= Â+Z

A
, such that Th = op (1),

h = Op (1), H = Op (1), the determinant of H is bounded away from zero with

probability approaching 1, ρα = op (1),

∥∥∥TH
∥∥∥2 = op (ρα),

∥∥∥Th
∥∥∥∥∥∥TH

∥∥∥= op (ρα),
∥∥∥Zh
∥∥∥=

op (ρα),
∥∥∥ZH
∥∥∥ = op (ρα),

∥∥∥ZA
∥∥∥ = op (ρα), E

(
Â
)
= σ 2H +HS (α)H +op (ρα) . Then, the

decomposition (4) holds for δ̂.

https://doi.org/10.1017/S0266466622000469 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000469


REGULARIZED ESTIMATION OF DYNAMIC PANEL MODELS 403

B.5. Proof of Proposition 2

Here, S (α) is a scalar so that ρα = S(α). Notice that

ρα ≥ (1+ δ)2

NT

{T−1∑
t=1

E
[
tr
(
Mα

t
)](φT−t

T − t
− φT−t+1

T − t +1

)}2

(13)

and

ρα ≥ (1− δ2)2

σ 2

1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )2wt−1]. (14)

First, we establish the rate of the RHS of (13). Because

φj = 1− δj

1− δ
≤ 1

1− δ
,

we have 0 ≤ φT−t
T−t − φT−t+1

T−t+1 ≤ 2
1−δ

and

(1+ δ)2

NT

{T−1∑
t=1

E
[
tr
(
Mα

t
)](φT−t

T − t
− φT−t+1

T − t +1

)}2

≤ 4(1+ δ)2

NT(1− δ)2

⎛⎝T−1∑
t=1

E
[
tr
(
Mα

t
)]⎞⎠2

= 4(1+ δ)2

NT(1− δ)2

(
Etr[Mα]

)2 = O(1/(α2NT))

by Lemma 2(ii). Hence, a term that is o(1/(α2NT)) is necessarily o(ρα).
Moreover, since

ρα ≥ (1− δ2)2

σ 2

1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mt)wt−1]

and by equation (A86) of AA,
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/NT = O(ln(T)/T) so that
o(lnT/T) = o(ρα) by inequality (14). To prove Proposition 2, we use Lemma 6 and

√
NT(δ̂α − δ) =

(
1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t

)−1( 1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t

)
.

As in Okui (2009), the numerator can be written in the following way:

1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t = h+Th

1 +Th
2,
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where

h = 1√
NT

T−1∑
t=1

ψtw
′
t−1v∗

t ,

Th
1 = − 1√

NT

T−1∑
t=1

ψtw
′
t−1(I −Mα

t )v∗
t = Op(�

1/2
α ),

Th
2 = − 1√

NT

T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t = Op

(
1

α
√

NT

)
,

where the rate for Th
2 follows from Lemma 4(iii) and (iv). Moreover,

1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t = H +TH +

3∑
j=1

ZH
j

with

H = σ 2

1− δ2

1

T

T−1∑
t=1

ψ2
t ,

TH = − 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )wt−1] = Op(�α),

ZH
1 = 1

NT

T−1∑
t=1

ψ2
t [w′

t−1wt−1]−H = Op(1/
√

NT),

ZH
2 = −2

1

NT

T−1∑
t=1

ctψtw
′
t−1Mα

t ṽtT = Op(1/
√

NT),

ZH
3 = 1

NT

T−1∑
t=1

c2
t ṽ′

tT Mα
t ṽtT = Op(1/αNT).

By 1/
√

NT = o(logT/T) and 1/(αNT) = o(1/(α2NT), we have that ZH
j are op(ρα) for

j = 1,2,3 so that ‖∑3
j=1 ZH

j ‖ = op(ρα) by the triangular inequality.

Moreover, we have ||TH ||2 = �2
α = O

(
(ln(T)/T)2

)
= op,

∥∥∥TH
∥∥∥∥∥∥Th

1

∥∥∥ = O(�α/(
α
√

NT
)
) = op(ρα), and

∥∥∥TH
∥∥∥∥∥∥Th

2

∥∥∥ = O(�
3/2
α ) = op(ρα) so that we can conclude that∥∥∥TH

∥∥∥∥∥∥Th
1 +Th

2

∥∥∥= op(ρα).

We now apply Lemma 6 with ZA = 0 and

Â = (h+Th
1 +Th

2 )2 −2h2H−1TH

= h2 + (Th
1 )2 + (Th

2 )2 +2hTh
1 +2hTh

2 +2Th
1 Th

2 −2h2H−1TH .

Lemma 6 states that S (α) satisfies E
(̂
A
) = σ 2H + HS (α)H + op(ρα). To calculate the

expectation of Â, we need to compute the expectation of each term. By the third moment
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condition and the independence assumption both on the error term vit, we can show that
E(hTh

2 ) = E(Th
1 Th

2 ) = 0. It can easily be proved that

E(h2) = σ 2H, E{(Th
1 )2} = σ 2�α, E(h2H−1TH) = E(hTh

1 ) = σ 2TH .

By Lemma 4(iii) and (iv), we have

E{(Th
2 )2} = (E(Th

2 ))2 + var(Th
2 )

= 1

NT

σ 4

(1− δ)2

{T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)}2

+O

(
(ln(T))2

N

)

= 1

NT

σ 4

(1− δ)2

{T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)}2

+op(ρα),

where the third equality comes from the fact that (ln(T))2 /N = op

(
1/
(
α2NT

))
= op(ρα)

provided α ln(T)
√

T → 0. Finally,

E(Â) = 1

NT

σ 4

(1− δ)2

{T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)}2

+σ 2H +σ 2�α +op(ρα).

And therefore,

S (α) = ( lim
T→∞H)−2

⎧⎨⎩ 1

NT

σ 4

(1− δ)2

{T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)}2

+σ 2�α

⎫⎬⎭
= (1+ δ)2

NT

{T−1∑
t=1

E[tr(Mα
t )]

(
φT−t

T − t
− φT−t+1

T − t +1

)}2

+ (1− δ2)2

σ 2

1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )2wt−1]

using the fact that limT→∞ H = σ 2/(1− δ2). This ends the proof of Proposition 2.

B.6. Preliminary Results for the Proof of Proposition 3

The following lemma will be used in the proof of Proposition 3.

Lemma 7.

(i) tr[K2
N ]− tr[K2] = Op(1/

√
N).

(ii) E

[[∑T−1
t=1

(
tr(Mα

t )−E[tr(Mα
t )]
)( φT−t

T−t − φT−t+1
T−t+1

)]2
]

= O
(

1
α2N

)
.

Proof of Lemma 7.
(i)

tr[K2
N ]− tr[K2] = ||KN ||2 −||K||2 = (||KN ||+ ||K||)(||KN ||− ||K||).
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From Lemmas 1(ii) and 2(i), we have ||KN ||+ ||K|| = Op(1). Moreover,

||KN ||− ||K|| ≤ ||KN −K|| = Op

(
1/

√
N

)
by Lemma 2(i) so that we have tr[K2

N ]− tr[K2] = Op(1/
√

N).

(ii) As 0 ≤ φT−t
T−t − φT−t+1

T−t+1 ≤ C, it is sufficient to study the term E

[[∑T−1
t=1

(
tr(Mα

t )−

E[tr(Mα
t )]
)]2]

. We have

E

⎡⎢⎣
⎡⎣T−1∑

t=1

(
tr(Mα

t )−E[tr(Mα
t )]
)⎤⎦2
⎤⎥⎦

= E
[[

tr(Mα)−E[tr(Mα)]
]2]= E

[[
tr(
(
Z′Z
)α Z′Z)−E[tr(

(
Z′Z
)α Z′Z)]

]2]
= E
[[

tr(Kα
NKN)− trE(Kα

NKN)
]2]= E

[∥∥Kα
NKN −E(Kα

NKN)
∥∥2
]

.

Moreover,

E
[∥∥Kα

NKN −E(Kα
NKN)

∥∥2
]

= E
[∥∥Kα

N (KN −K)+ (Kα
N −E

(
Kα

N
))

K +E
(
Kα

N (K −KN)
)∥∥2
]

≤ 3E
∥∥Kα

N (KN −K)
∥∥2 +3E

∥∥(Kα
N −E

(
Kα

N
))

K
∥∥2 +3

∥∥E (Kα
N (K −KN)

)∥∥2 .

We have

E
∥∥Kα

N (KN −K)
∥∥2 = E

∥∥Kα
N

∥∥2 ‖KN −K‖2 ≤ C

α2
E‖KN −K‖2 = O

(
1

α2N

)
,

E
∥∥(Kα

N −E
(
Kα

N
))

K
∥∥2 ≤ CE

∥∥Kα
N −E

(
Kα

N
)∥∥2 = CE

∥∥Kα
N −Kα

∥∥2 = O

(
1

N

)
,

∥∥E (Kα
N (K −KN)

)∥∥2 = ∥∥E ((Kα
N −Kα

)
(K −KN)

)∥∥2 = o

(
1

N

)
.

The result follows. �

B.7. Proof of Proposition 3

We want to prove that

S(α̂)

infα∈ET
S(α)

P→ 1,

where ET is the parameter set for a given regularization scheme. By Lemma A9 of Donald
and Newey (2001), it is sufficient to prove that

sup
ET

∣∣∣∣ Ŝ(α)−S(α)

S(α)

∣∣∣∣= op(1).
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Using the fact that
(
1−δ2

)2
σ 2 R(α) ≤ S (α) and (1+δ)2

NT A(α)2 ≤ S (α), we have, for some
constant C,

1

C

∣∣∣∣ Ŝ(α)−S(α)

S(α)

∣∣∣∣≤ (1+ δ̂)2

(1+ δ)2

∣∣∣∣ Â(α)2 −A(α)2

A(α)2

∣∣∣∣+ ∣∣∣∣ (1+ δ̂)2 − (1+ δ)2

(1+ δ)2

∣∣∣∣
+ (1− δ̂2)2/σ̂ 2

(1− δ2)2/σ 2

∣∣∣∣ R̂(α)−R(α)

R(α)

∣∣∣∣+ ∣∣∣∣ (1− δ̂2)2/σ̂ 2 − (1− δ2)2/σ 2

(1− δ2)2/σ 2

∣∣∣∣.
By the consistency of δ̂ and σ̂ 2, we just need to prove that

sup
ET

∣∣∣∣ Â(α)2 −A(α)2

A(α)2

∣∣∣∣= op(1) and sup
ET

∣∣∣∣ R̂(α)−R(α)

R(α)

∣∣∣∣= op(1).

For the first equality, we have

sup
ET

∣∣∣∣ Â(α)2 −A(α)2

A(α)2

∣∣∣∣= sup
ET

∣∣∣∣ Â(α)−A(α)

A(α)

∣∣∣∣∣∣∣∣ Â(α)+A(α)

A(α)

∣∣∣∣.
Moreover,∣∣∣∣ Â(α)+A(α)

A(α)

∣∣∣∣≤ 2+
∣∣∣∣ Â(α)−A(α)

A(α)

∣∣∣∣.
So it is sufficient to prove that

sup
ET

∣∣∣∣ Â(α)−A(α)

A(α)

∣∣∣∣= op(1).

√
NT
(
Â(α)−A(α)

)= T−1∑
t=1

tr(Mα
t )

(
φ̂T−t

T − t
− φ̂T−t+1

T − t +1

)

−
T−1∑
t=1

E[tr
(
Mα

t
)
]

(
φT−t

T − t
− φT−t+1

T − t +1

)

=
T−1∑
t=1

tr(Mα
t ) (̂νt −νt)+

T−1∑
t=1

(
tr(Mα

t )−E[tr(Mα
t )]
)
νt,

where νt = φT−t
T−t − φT−t+1

T−t+1 and ν̂t = φ̂T−t
T−t − φ̂T−t+1

T−t+1 . We will use the following result

(see Okui, 2009, p. 13): for a random sequence {ak}k,
∑

k E(a2
k) = o(1) implies that

supk ak =op(1).

E

⎧⎪⎨⎪⎩
⎡⎣T−1∑

t=1

tr(Mα
t ) (̂νt −νt)

⎤⎦2
⎫⎪⎬⎪⎭= E

T−1∑
t=1

(
tr(Mα

t
)
)2 (̂νt −νt)

2 (15)

+
∑
t �=s

E
[
tr
(
Mα

t
)
(̂νt −νt) tr(Mα

s ) (̂νs −νs)
]

.
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Using trMα
t ≤ C/α and, by the consistency of δ̂,E (̂νt −νt)

2 = O(1/(NT)), we have

E
T−1∑
t=1

(
tr(Mα

t
)
)2 (̂νt −νt)

2 = O

(
1

α2N

)
.

By the Cauchy–Schwarz inequality, the second term of the RHS of (15) is also O(1/Nα2).
By Lemma 7(ii),

E

⎡⎢⎣
⎡⎣T−1∑

t=1

(
tr(Mα

t )−E[tr(Mα
t )]
)
νt

⎤⎦2
⎤⎥⎦= O

(
1

α2N

)
.

We previously established that

A(α) = 1√
NT

T−1∑
t=1

E
[
tr
(
Mα

t
)](φT−t

T − t
− φT−t+1

T − t +1

)
= O(

1

α
√

NT
).

Hence, for any α ∈ ET (which is discrete and finite for SC and LF), we have

E

∣∣∣∣ Â(α)−A(α)

A(α)

∣∣∣∣2 = O

(
1

N

)
.

Now, summing up over the elements of ET , we obtain∑
α∈ET

O

(
1

T

)
= O

(
T2

N

)
,

because the cardinal of ET is equal to T2. Hence, supα
Â(α)−A(α)

A(α)
= op (1) provided

T2/N → 0 (which is true under the condition T3/(N ln(T)2) → 0).
Now, we want to prove that

sup
ET

∣∣∣∣ R̂(α)−R(α)

R(α)

∣∣∣∣= op(1). (16)

We first consider the SC regularization scheme.
In this case, (I −Mα

t )2 = (I −Mα
t ) because Mα

t is a projection matric for this regulariza-
tion so that

R(α) = 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mα
t )wt−1]

and

R̂(α) = 1

NT

T−1∑
t=1

x∗′
t (I −Mα

t )x∗
t .

Let us define

R̃(α) = 1

NT

T−1∑
t=1

(ψ2
t w′

t−1wt−1 − x∗′
t Mα

t x∗
t ).
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As the difference between R̃(α) and R̂(α) does not depend on α, maximizing the criterion
with R̃(α) instead of R̂(α) gives the same result. By (A43) of AA, x∗

t = ψtwt−1 − ct̃vtT so
that

R̃(α)−R(α) = 1

NT

T−1∑
t=1

ψ2
t [w′

t−1(I −Mα
t )wt−1 −E[w′

t−1(I −Mα
t )wt−1]]

+ 2

NT

T−1∑
t=1

ψtctw
′
t−1Mα

t ṽtT − 1

NT

T−1∑
t=1

c2
t ṽ′

tT Mα
t ṽtT .

Hence, to prove (16), we have to prove that

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1(I −Mα
t )wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mα
t )wt−1]

R(α)

∣∣∣∣= op(1),

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψtctw′
t−1Mα

t ṽtT

R(α)

∣∣∣∣= op(1),

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT

R(α)

∣∣∣∣= op(1).

Noting that w′
t−1(I −Mα

t )wt−1 ≥ w′
t−1(I −Mt)wt−1, we obtain

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1(I −Mα
t )wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mα
t )wt−1]

1
NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mα
t )wt−1]

∣∣∣∣
≤ sup

ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1(I −Mα
t )wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mα
t )wt−1]

1
NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]

∣∣∣∣
≤ sup

ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1wt−1 − 1
NT
∑T−1

t=1 ψ2
t E[w′

t−1wt−1]
1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]

∣∣∣∣
+ sup

ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1Mα
t wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1Mα
t wt−1]

1
NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]

∣∣∣∣. (17)

Now, we want to prove that

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1wt−1 − 1
NT
∑T−1

t=1 ψ2
t E[w′

t−1wt−1]
1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]

∣∣∣∣= op(1).

Note that this term does not depend on α. Moreover, from Okui (2009) in the analysis of
his term ZH

1 , we have

1

NT

T−1∑
t=1

ψ2
t w′

t−1wt−1 − 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1wt−1] = Op

(
1√
NT

)
.
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Moreover, from AA,

1

NT

T−1∑
t=1

ψ2
t E[w′

t−1(I −Mt)wt−1] = Op

(
ln(T)

T

)

so that we can conclude that

sup
ET

∣∣∣∣
∑T−1

t=1 ψ2
t w′

t−1wt−1/(NT)−∑T−1
t=1 ψ2

t E[w′
t−1wt−1]/(NT)∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

∣∣∣∣
= Op

( √
T√

N ln(T)

)
= op(1).

We now turn our attention to (17). This term depends on α. From Lemma 5(iii), we have

E

⎡⎢⎣
⎛⎝ 1

NT

T−1∑
t=1

ψ2
t w′

t−1Mα
t wt−1 − 1

NT

T−1∑
t=1

ψ2
t E[w′

t−1Mα
t wt−1]

⎞⎠2
⎤⎥⎦= O

(
1

NT

)
.

Summing over the elements of ET, we get

∑
ET

E

[ 1
NT
∑T−1

t=1 ψ2
t w′

t−1Mα
t wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1Mα
t wt−1]

1
NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]

]2

= O
(

T2
) O

(
1

NT

)
O
(

(lnT)2

T2

)
= O

(
T3

N (ln(T))2

)
.

Then, we conclude that

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1(I −Mα
t )wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I −Mα
t )wt−1]

R(α)

∣∣∣∣= op(1).

We now consider the proof of

sup
ET

∣∣∣∣
∑T−1

t=1 ψtctw′
t−1Mα

t ṽtT/(NT)∑T−1
t=1 ψ2

t E[w′
t−1(I −Mt)wt−1]/(NT)

∣∣∣∣= op(1). (18)

We have

E

⎡⎢⎣
⎛⎝ 1

NT

T−1∑
t=1

ψtctw
′
t−1Mα

t ṽtT

⎞⎠2
⎤⎥⎦= O

(
1

NT

)
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by the proof of Lemma 5(iv). We obtain

∑
ET

E

⎡⎣( ∑T−1
t=1 ψtctw′

t−1Mα
t ṽtT/(NT)∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

)2⎤⎦= O

(
T3

N ln(T)2

)
= o(1) .

Then, we can conclude that (18) holds.
Now, we want to prove that

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

∣∣∣∣= op(1).

Following Okui (2009), we can major this term as follows:

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

∣∣∣∣≤ ∣∣∣∣ 1
NT
∑T−1

t=1 c2
t ṽ′

tT MtṽtT∑T−1
t=1 ψ2

t E[w′
t−1(I −Mt)wt−1]/(NT)

∣∣∣∣
= Op

(
T

N

)
,

which is op(1) under the assumption that T/N → 0. This ends the proof of (16) for the SC
regularization scheme.

We now consider the LF regularization scheme.
The particularity here is that the matrix I − Mα

t is no longer idempotent. However, we
have

(I −Mα
t )2 = I −2Mα

t +Mα
t Mα

t = I − M̃α
t ,

where M̃α
t = 2Mα

t −Mα
t Mα

t . As in the case of SC regularization scheme, let us define

R̃(α) = 1

NT

T−1∑
t=1

(ψ2
t w′

t−1wt−1 − x∗′
t M̃α

t x∗
t ).

Since the difference between R̃(α) and R̂(α) does not depend on α, we can prove optimality
using R̃(α) instead of R̂(α). Hence, we have to prove that

sup
ET

∣∣∣∣ R̃(α)−R(α)

R(α)

∣∣∣∣= op(1).

Noting that

R̃(α)−R(α) = 1

NT

T−1∑
t=1

ψ2
t [w′

t−1(I − M̃α
t )wt−1 −E[w′

t−1(I − M̃α
t )wt−1]]

+ 2

NT

T−1∑
t=1

ψtctw
′
t−1M̃α

t ṽtT − 1

NT

T−1∑
t=1

c2
t ṽ′

tT M̃α
t ṽtT,
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we have to prove that

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 ψ2
t w′

t−1(I − M̃α
t )wt−1 − 1

NT
∑T−1

t=1 ψ2
t E[w′

t−1(I − M̃α
t )wt−1]∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

∣∣∣∣= op(1),

sup
ET

∣∣∣∣ 2
NT
∑T−1

t=1 ψtctw′
t−1M̃α

t ṽtT∑T−1
t=1 ψ2

t E[w′
t−1(I −Mt)wt−1]/(NT)

∣∣∣∣= op(1),

sup
ET

∣∣∣∣ 1
NT
∑T−1

t=1 c2
t ṽ′

tT M̃α
t ṽtT∑T−1

t=1 ψ2
t E[w′

t−1(I −Mt)wt−1]/(NT)

∣∣∣∣= op(1).

Since M̃α
t ≤ 2Mα

t ≤ 2Mt, we can apply the same strategy as in the case of SC regularization
scheme provided that #ET = O(T2) with #ET being the number of elements in the parameter
set ET . Imposing that #ET = O(T2) is a sufficient condition to have optimality in the LF
regularization scheme with no need to impose a condition on the maximum number of
iterations.

Summing up, we proved that our procedure of selection of regularization parameter α is
optimal under the assumption #ET = O(T2) for the LF regularization scheme.

The following lemma will be used in the proof of Proposition 4.

Lemma 8. If Assumptions 1’, 2’, and 3 are satisfied, then
(i)

E

⎡⎣[T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

]2
⎤⎦

= σ 4

(1− δ)2
E

[T−1∑
t=1

tr
(
Mα

t
)(φT−t

T − t
− φT−t+1

T − t +1

)]2

+o

((T−1∑
t=1

tr
(
Mα

t
))2)

= O(ln(T)/(αNT)) .

(ii)

1√
NT

E

⎡⎣T−1∑
t=1

ctṽ
′
tT Mα

t v∗
t

⎤⎦= σ 2

(1− δ)

1√
NT

T−1∑
t=1

E
[
tr
(
Mα

t
)](φT−t

T − t
− φT−t+1

T − t +1

)

= O

(
1

α
√

NT

)
.

(iii) Let �α be defined as

�α = 1

NT
tr

⎡⎣T−1∑
t=1

E[w̃′
t−1(I −Mα

t )2w̃t−1]

⎤⎦ .

Then,

�α =
{

O(αβ), for SC, LF,

O(αmin(β,2)), for TK.
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Proof of Lemma 8. (i) and (ii) These results can be established using proofs similar to
those of Lemma 4(iii) and (iv).

(iii)

�α = 1

NT
tr

[T−1∑
t=1

E[w̃′
t−1(I −Mα

t )2w̃t−1]

]
= 1

NT
tr

[
E[W̃ ′(I −Mα)2W̃]

]
= 1

NT
E
∑

a
[W̃ ′

a(I −Mα)2W̃a] = 1

NT
E
∑

a

∑
j

(1− q̂j)
2 < W̃a,ϕ̂j >2

≤ 1

NT
E sup

λ̂j

[
λ̂

2β
j (1− q̂j)

2
]∑

a

∑
j

1

λ̂
2β
j

< W̃a,ϕ̂j >2 .

It follows from Carrasco et al. (2007b, Prop. 3.11) that the term sup
λ̂j

λ̂
2β
j (1− q̂j)

2 < Cαβ

for SC and LF and Cαmin(β,2) for TK for some constant C > 0. Moreover, the sum

1

NT
E
∑

a

∑
j

1

λ̂
2β
j

< W̃a,φ̂j >2

is finite by Assumption 3. Hence, the rate of �α follows. �

B.8. Proof of Proposition 4

Let ρα = trace(S(α)). It follows from Lemma 8 that a term is op(ρα) if it is either

op

(
1/
(
α2NT

))
or op(αβ). Recall that xt is an N × (Lm +1) matrix with xt = (yt−1,mt

)≡
(ut,mt). x∗

t = (u∗
t ,m

∗
t
)

with u∗
t = wt−1 − ct̃vtT , EZ

(
u∗

t
) = wt−1 ,EZ

(
x∗

t
) = (wt−1,m

∗
t
) ≡

w̃t−1, and x∗
t −EZ

(
x∗

t
)= (−ct̃vtT,0).

First, we note that

√
NT(θ̂α − θ) =

(
1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t

)−1( 1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t

)
.

Adapting Okui (2009) to our setting, we have the following decomposition:

1√
NT

T−1∑
t=1

x∗′
t Mα

t v∗
t = h+Th

1 +Th
2,

where

h =
⎡⎣ 1√

NT

∑T−1
t=1 w′

t−1v∗
t

1√
NT

∑T−1
t=1 m∗

t v∗
t

⎤⎦,

Th
1 = −

⎡⎣ 1√
NT

∑T−1
t=1 w′

t−1(I −Mα
t )v∗

t
1√
NT

∑T−1
t=1 m∗

t (I −Mα
t )v∗

t

⎤⎦,

Th
2 = −

[
1√
NT

∑T−1
t=1 ctṽ′

tT Mα
t v∗

t

0

]
.
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Now, consider the denominator:

1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t

= 1

NT

T−1∑
t=1

(
x∗

t −EZ
(
x∗

t
))′ Mα

t
(
x∗

t −EZ
(
x∗

t
))

(term ZH
4 )

+ 1

NT

T−1∑
t=1

EZ
(
x∗

t
)′ Mα

t EZ
(
x∗

t
)

+ 2

NT

T−1∑
t=1

EZ
(
x∗

t
)′ Mα

t
(
x∗

t −EZ
(
x∗

t
))

(term ZH
3 )

= ZH
3 +ZH

4 +H

+ 1

NT

T−1∑
t=1

EZ
(
x∗

t
)′ EZ

(
x∗

t
)−H (term ZH

1 )

−
⎡⎣ 1

NT

T−1∑
t=1

{
EZ
(
x∗

t
)′ (I −Mα

t
)

EZ
(
x∗

t
)−E

[
EZ
(
x∗

t
)′ (I −Mα

t
)

EZ
(
x∗

t
)]}⎤⎦ (term ZH

2 )

+ 1

NT

T−1∑
t=1

E
{

EZ
(
x∗

t
)′ (I −Mα

t
)

EZ
(
x∗

t
)}

(term TH)

so that

1

NT

T−1∑
t=1

x∗′
t Mα

t x∗
t = H +TH +

4∑
j=1

ZH
j ,

where

H =
[

1
T
∑T−1

t=1 E(w2
it)

1
T
∑T−1

t=1 E(witm
∗′
it )

1
T
∑T−1

t=1 E(m∗
itwit)

1
T
∑T−1

t=1 E(m∗
itm

∗′
it )

]
,

TH = −
[

1
NT
∑T−1

t=1 E[w′
t−1(I −Mα

t )wt−1] 1
NT
∑T−1

t=1 E[w′
t−1(I −Mα

t )m∗
t ]

1
NT
∑T−1

t=1 E[m∗′
t (I −Mα

t )wt−1] 1
NT
∑T−1

t=1 E[m∗′
t (I −Mα

t )m∗
t ]

]
,

ZH
1 =
[

1
NT
∑T−1

t=1 w′
t−1wt−1

1
NT
∑T−1

t=1 w′
t−1m∗

t
1

NT
∑T−1

t=1 m∗′
t wt

1
NT
∑T−1

t=1 m∗′
t m∗

t

]
−H,

ZH
2 = −

[
ZH

2,11 ZH
2,12

ZH
2,21 ZH

2,22

]
,

ZH
2,11 = 1

NT

T−1∑
t=1

[w′
t−1(I −Mα

t )wt−1 −E{w′
t−1(I −Mα

t )wt−1}],
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ZH
2,21 = 1

NT

T−1∑
t=1

[m∗′
t (I −Mα

t )wt−1 −E{m∗′
t (I −Mα

t )wt−1}],

ZH
2,12 = 1

NT

T−1∑
t=1

[w′
t−1(I −Mα

t )m∗
t −E{w′

t−1(I −Mα
t )m∗

t }],

ZH
2,22 = 1

NT

T−1∑
t=1

[m∗′
t (I −Mα

t )m∗
t −E{m∗′

t (I −Mα
t )m∗

t }],

ZH
3 = −2

[
1

NT
∑T−1

t=1 ctw′
t−1Mα

t ṽtT 0
1

NT
∑T−1

t=1 ctm∗′
t Mα

t ṽtT 0

]
,

ZH
4 =
[ 1

NT
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT 0

0 0

]
,

and

ṽtT = (φT−tvt +·· ·+φ1vT−1)

T − t
.

The terms h, H, and ZH
1 do not depend on the matrix Mα

t so that we can use their order

given in Okui (2009). We then have that H = O(1), h = op(1), and ZH
1 = Op(1/

√
NT) =

o(ρα) provided that either αβ
√

NT → ∞ or α2√
NT → 0.

Using w̃t−1 = (wt−1,m
∗
t ), the term Th

1 can be rewritten as

Th
1 = 1

NT

T−1∑
t=1

w̃′
t−1(I −Mα

t )v∗
t .

We have then E(Th
1 ) = 0 and V(Th

1 ) = σ 2�α so that Th
1 = Op(�

1/2
α ) by Markov’s inequality.

Since from Lemma 8, we have �α = Op(αβ), we can conclude that Th
1 = op(1).

Regarding the term Th
2 , we have from Lemma 8 that E

(
Th

2

)
= O
(

1/
(
α
√

NT
))

and

V
(

Th
2

)
= O
(
(lnT)2/N

)
so that Th

2 = op (1) provided that α
√

NT → ∞.

Next, we consider TH :

TH = − 1

NT

T−1∑
t=1

E{w′
t−1(I −Mα

t )wt−1} = Op(�α).

We now look at the term ZH
2 . In the same way as in the model without covariates, we can

prove that diagonal elements of ZH
2 are Op(1/

√
NT). For the other terms, we have

ZH
2,21 = 1

NT

T−1∑
t=1

[m∗′
t (I −Mα

t )w̃t−1 −E{m∗′
t (I −Mα

t )w̃t−1}].
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For a given column k of the exogenous covariates, we can write

ZH,k
2,21 = 1

NT

T−1∑
t=1

[m∗′,k
t (I −Mα

t )w̃t−1 −E{m∗′,k
t (I −Mα

t )w̃t−1}],

= 1

NT

T−1∑
t=1

[m∗′,k
t w̃t−1 −E{m∗′,k

t w̃t−1}] (19)

− 1

NT

T−1∑
t=1

[m∗′,k
t Mα

t w̃t−1 −E{m∗′,k
t Mα

t w̃t−1}]. (20)

First, consider the term (19), its expectation is equal to zero, and its variance is

V

⎛⎝ 1

NT

T−1∑
t=1

m∗′,k
t w̃t−1

⎞⎠= 1

N2
V

⎛⎝ 1

T

T−1∑
t=1

N∑
i=1

m∗′,k
it w̃it−1

⎞⎠
= 1

N
V

⎛⎝ 1

T

T−1∑
t=1

m∗′,k
it w̃it−1

⎞⎠= 1

N
O

(
1

T

)
.

Hence, by Markov’s theorem,

1

NT

T−1∑
t=1

[m∗′,k
t w̃t−1 −E{m∗′,k

t w̃t−1}] = Op

(
1√
NT

)
.

Concerning the term (20), its variance is bounded for all α, and thus it is enough to prove
the result for α = 0. Using proofs similar to before, we can show that it is Op(1/

√
NT). We

have just established that elements ZH,k
21 are Op(1/

√
NT). The same strategy can be applied

to the nondiagonal elements of the lm-dimensional matrix ZH
22, allowing us to conclude that

ZH
2 = Op(1/

√
NT) so that the ZH

2 = op(ρα) provided that αβ
√

NT → ∞.

For the term ZH
3 , we note that

E

(
1

NT

T−1∑
t=1

ctw̃
′
t−1Mα

t ṽtT

)
= 0,

and for α = 0, Okui (2009) proved that

Var

(
1

NT

T−1∑
t=1

ctw̃′
t−1Mα

t ṽtT

)
= O

(
1

NT

)
so that

1

NT

T−1∑
t=1

ctw̃′
t−1Mα

t ṽtT = Op(
1√
NT

) = op(ρα).

Now, note that the other terms of ZH
3 take the form 1

NT
∑T−1

t=1 ctml∗′
t Mα

t ṽtT , l = 1, . . . ,lm.
Hence, by conditioning on the instruments, we can prove in the same way that those terms
are op(ρα).
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For ZH
4 , following the same strategy as in the model without covariates, we have

1
NT
∑T−1

t=1 c2
t ṽ′

tT Mα
t ṽtT = Op( 1

αNT ). Hence, ZH
4 = op(ρα).

We now apply Lemma 6. Let us define ZA = 0 and

Â = (h+Th
1 +Th

2 )(h+Th
1 +Th

2 )′ −hh′H−1TH −THH−1hh′.

Since we want to calculate the expectation of A, we need to calculate the expectation of
each term. By the third moment condition and the independence assumption both on the
error term vit, we can show that E(hTh′

2 ) = E(Th
2 h′) = E(Th

1 Th′
2 ) = E(Th

2 Th′
1 ).

It can easily be proved that E(hh′) = σ 2H and E{hTh′
1 } = E{Th

1 h′} =E(hh′H−1TH) =
E(THH−1hh′) = σ 2TH . Given these equalities,

E(̂A) = σ 2H +E(Th
1 Th′

1 )+E(Th
2 Th′

2 ),E(Th
1 Th′

1 ) = σ 2

NT

T−1∑
t=1

E[w̃′
t−1(I −Mα

t )2w̃t−1]

and

E(Th
2 Th′

2 ) = E(Th
2 )E(Th

2 )′ + var(Th
2 ) = σ 4

(1− δ)2

[
A(α)2 0

0 0

]
+op(ρα)

provided α ln(T)
√

T → 0. Hence, by Lemma 6, we have

E(̂A) = σ 2H +HS(α)H +op(ρα)

with

HS(α)H = σ 4

(1− δ)2

[
A(α)2 0

0 0

]
+ σ 2

NT

T−1∑
t=1

E[w̃′
t−1(I −Mα

t )2w̃t−1].
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