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The dissolution of a multicomponent nanodrop in a sparingly miscible liquid is
studied by molecular dynamics (MD) simulations. We studied both binary and
ternary systems, in which nanodroplets are formed from one and two components,
respectively. Whereas for a single-component droplet the dissolution can easily be
calculated, the situation is more complicated for a multicomponent drop, as the
interface concentrations of the drop constituents depend on the drop composition,
which changes with time. In this study, the variation of the interface concentration
with the drop composition is determined from independent ‘numerical experiments’,
which are then used in the theoretical model for the dissolution dynamics of a
multicomponent drop. The MD simulations reveal that when the interaction strengths
between the drop constituents and the surrounding bulk liquid are significantly
different, the concentration of the more soluble component near the drop interface
may become larger than in the drop bulk. This effect is the larger the smaller the
drop radius. While the present study is limited to binary and ternary systems, the
same method can be easily extended to a larger number of components.

Key words: drops, drops and bubbles

1. Introduction
Understanding the dissolution of a multicomponent drop in a sparingly miscible

liquid is of primary importance to many traditional chemical, pharmaceutical and
separation processes. The dissolution rate of multicomponent droplets is relevant in
designing the equipment and operating conditions of many chemical processes which
involve drops at micro- and nano-scales (Handlos & Baron 1957; Chasanis, Brass
& Kenig 2010; Gunko et al. 2013). Examples include separation of biomolecules
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such as proteins and enzymes using liquid–liquid extraction (Kula, Kroner & Hustedt
1982; Dekker et al. 1986; Ahuja 2000). Other applications of mass transfer across a
liquid–liquid interface in a multicomponent environment are found in the domain
of food processing, separation of heavy metals, industrial waste treatment and
many other industrial processes (Rydberg 2004; Fukumoto, Yoshizawa & Ohno
2005). Recent theoretical work on this subject by Chu & Prosperetti (2016) showed
the importance of the proper formulation of dissolution and growth dynamics for
a multicomponent drop. Lohse (2016) also highlighted the importance of their
result for various applications in chemical technology, and in particular towards
controlled liquid–liquid micro-extraction. Although the present study addresses the
multicomponent droplet dissolution in a bulk liquid, our system shares similarity with
the evaporation of a sessile droplet in air or the dissolution of a sessile droplet in
another liquid, which further enhances the relevance of this study (Kneer et al. 1993;
Tamim & Hallett 1995; Brenn et al. 2007; Dietrich et al. 2016; Tonini & Cossali
2016).

In this paper we report on molecular dynamics (MD) simulations of binary and
ternary systems in which the droplet consists of one or two components, respectively.
The components which primarily form the drop and the bulk liquid are chosen in
such a way that they are sparingly miscible with each other and form two distinct
liquid phases. For the multicomponent drop, we performed simulations for various
interaction strengths between the two components that constitute the drop to observe
the effect of interaction strength on the dissolution dynamics. All the simulations
were performed quasi-two-dimensionally, i.e. with drops in the form of sections of a
cylinder. Cylindrical drops of course do not occur in nature. However, the focus of the
present work is the examination of the effect of the interaction strength of the drop
constituents with the surrounding bulk liquid. Our results on this key aspect may be
expected to be relevant for the three-dimensional case as well. To gain insight into the
MD simulations, we also solved the macroscopic time-dependent diffusion equation
to calculate the concentration field of all the components in the bulk liquid. The flux
at the liquid–liquid interface is dependent on the concentration of each component
at the interface. For a binary system (single-component drop), this concentration
is equal to the solubility of the drop constituent in the bulk liquid. However, for
a multicomponent drop, it depends on the proportions of each constituent, which
changes with time.

In earlier work, Su & Needham (2013) extended the classical calculation of Epstein
& Plesset (1950) to calculate the dissolution rates by assuming that the concentration
of each component at the interface is directly proportional to its mole fraction inside
the drop. This assumption has no theoretical basis but was shown to work for some
special cases, e.g. when the solubilities of the two components are not too different
and the interaction between the two components is similar to the self-interaction of the
components. Chu & Prosperetti (2016) recently improved this model by predicting the
interface concentration from the condition of local thermodynamic equilibrium, which
dictates the equality of the chemical potentials of each component on either side of
the interface. The problem with this approach is that exact analytical expressions
for the chemical potential in a multicomponent system are not available and it is
necessary to rely on approximate models to calculate the chemical potential as a
function of the interface concentration. Chu & Prosperetti (2016) used the UNIQUAC
model (Abrams & Prausnitz 1975; Anderson & Prausnitz 1978a,b) to calculate the
interface concentration. They demonstrated the sensitivity of the dissolution dynamics
to the thermodynamically consistent calculation of the interface concentration.
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FIGURE 1. (Colour online) Examples of instantaneous snapshots of simulation results
for dissolving droplets. (a) Binary system (or single-component drop) and (b) ternary
system (or multicomponent drop). Throughout the paper, the blue particles (which form
the bulk liquid) are labelled ‘1’, while green and yellow particles (which form the drop)
are labelled 2 and 3, respectively. The nanodrops shown in the figure are sections of a
cylinder with the z-axis normal to the page and inwards.

In this study, we take a different approach obtaining the concentration of the
two components at the interface (in case of ternary systems) from independent MD
simulations for the same thermodynamic conditions and at various bulk compositions.
We use a fit of the interface concentration data as input for a macroscopic model
to predict the radius of a multicomponent droplet, which can be compared with the
result from MD simulations. An unexpected result of our study is the enrichment of
one constituent of the drop near the interface when that constituent interacts with the
bulk liquid more strongly than the other drop constituent. This effect is dependent
on the curvature of the interface. As a consequence, nanodrops can have different
dissolution behaviour from micron-size or larger drops.

2. Molecular dynamics simulations
The open source code GROMACS (Hess et al. 2008) was used to perform MD

calculations to simulate a nanodrop in the bulk liquid. We used two types of particles
(or molecules) in the case of a binary system: the particles of type 1 and type 2 are
sparingly miscible, and predominantly form the bulk liquid and the drop, respectively
(see figure 1a). In the case of a ternary system, we used three types of particles:
the particles of type 1 again form the bulk liquid and the particles of type 2 and
3 constitute the drop (see figure 1b). Due to statistical fluctuations, the instantaneous
shapes shown in figure 1 deviate somewhat from a circle. However, averaging over
many such instantaneous shapes shows that the cross-section of the drop on average
is indeed circular.

The interaction between the particles is described by a Lennard-Jones potential,

φij(r)= 4εij

[(σij

r

)12
−

(σij

r

)6
]
, (2.1)
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i− j σij, nm εij, kJ mol−1

1–2 0.34 2.5
1–3 0.34 2.8
2–3 0.34 3.6–4.1
1–1 0.34 3.0
2–2 0.34 3.9
3–3 0.34 3.9

TABLE 1. Value of various Lennard-Jones parameters used in the MD simulations. The
interaction parameter ε23 between type-2 and type-3 particles was varied between 3.6 to
4.1 kJ mol−1 for the multicomponent drop simulations.

where εij is the interaction strength between particles of types i and j, σij is the
characteristic size of the particles and r is the distance between the two molecules.
The potential is truncated at a relatively large cutoff radius (rc) of 5σ11. The time step
for updating the particle velocities and positions was set at δt = σ11

√
(m1/ε11)/400,

where m1 is the mass of the bulk liquid particles and ε11 is their mutual Lennard-Jones
interaction parameter. The time step was chosen so that its value is sufficiently smaller
than the shortest time scale available in the system (Frenkel & Smit 2002). Periodic
boundary conditions were employed in all three directions, with the box length in the
z direction (∼15σ , typically 5.6 nm) so much shorter than in the other two directions
(∼120σ , typically 40 nm) that the drop approximates a short section of a cylinder.

The simulations were performed in an NPT ensemble where the temperature was
fixed at 300K, which is below the critical point for the Lennard-Jones parameters (σij,
εij) that we have chosen. Semi-isotropic pressure coupling was used for maintaining
constant pressure: the simulation box expands or contracts only in the x- and
y-directions to keep the pressure constant. This was done to prevent the change
in the system configuration from quasi-two-dimensional to three-dimensional. The
complete set of Lennard-Jones parameters that we used in our simulations is given
in table 1. The total number of particles in a typical simulation box is approximately
110 000, out of which approximately 12 000 form the drop phase at initial time. The
velocities of particles are initialised from the Maxwell–Boltzmann distribution for a
temperature of 300 K.

The time-dependent average density field of the type-2 and type-3 particles was
calculated, correcting for the centre of mass motion in the lateral direction, and then
averaged to give an average local density ρ(r). The radius of curvature of the drop
was then obtained by fitting a circle to the 0.5 iso-density contour of the normalised
density (ρ(r)− ρB)/(ρD − ρB), with ρD and ρB the mean densities of the drop and bulk
liquid. The use of iso-density contours around 0.5 would have a negligible effect on
the results.

3. Macroscopic modelling
In this section, we model the dissolution of a single-component and a multi-

component drop in a host liquid using the macroscopic time-dependent diffusion
equation to gain insights useful for interpretation of MD simulations. Since the
solubility of the bulk liquid in the drop constituents is very small, we assume that
it is perfectly immiscible with the drop constituents. We first address the case of a
single-component drop for which the interface concentration is constant and equal to
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the solubility of that component in the bulk liquid, and later discuss the case of a
multicomponent drop for which the concentration at the interface changes with time.

3.1. Single-component drop
In the single-component case the drop and the surrounding bulk liquid consist of
particles of type 2 and 1, respectively. At time t= 0, the bulk liquid has some initial
concentration c0 of type-2 particles:

c(r, 0)= c0. (3.1)

At subsequent times, the concentration c of type-2 particles in the bulk liquid evolves
according to the diffusion equation

∂c
∂t
=

D21

r
∂

∂r

(
r
∂c
∂r

)
, (3.2)

where D21 is the diffusivity of type-2 particles in the bulk liquid, and r is the radial
coordinate measured from the axis of the drop. At the surface of the drop, r=R, the
concentration remains constant and equal to the solubility of the type-2 particles in
the bulk liquid:

c(R, t)= cs. (3.3)

In the MD simulations, the drop is in a rectangular box and periodic boundary
conditions are used, i.e. any particle ‘leaving’ the system at a boundary will enter
it at the opposite boundary so that the total number of particles in the system
is conserved. To mimic this set-up in the macroscopic diffusion setting, we solve
the diffusion equation (3.2) in a finite cylindrical domain of radius Rb enforcing
the conservation of the total amount of solute by imposing that the flux of type-2
particles at r= Rb vanishes:

∂c(r, t)
∂r

∣∣∣∣
r=Rb

= 0. (3.4)

Rb is chosen so that πR2
b equals the area of the cross-section of the MD computational

domain.
The mathematical problem described can be solved analytically by means of the

Laplace transform; the detailed solution is described in Carslaw & Jaeger (1959) and
Prosperetti (2011). The concentration profile c(r, t) as a function of radial distance
and time is given by

c(r, t)− c0

cs − c0
= 1−π

∞∑
n=1

e−D21α
2
n tG(R, αn)(J0(rαn)Y0(Rαn)−Y0(rαn)J0(Rαn)), (3.5)

where

G(R, αn)=
J2

1(Rbαn)

J2
1(Rbαn)− J2

0(Rαn)
(3.6)
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and J0,1 and Y0 are Bessel functions of the first kind and second kind, respectively
and {α1, α2 . . .} are the solutions of

J0(Rα)Y1(Rbα)−Y0(Rα)J1(Rbα)= 0. (3.7)

The dissolution rate, or the rate of change of the drop mass M=πR2ρD, is determined
by calculating the flux at the interface boundary:

dM
dt
=−2πR

(
−D21

∂c(r, t)
∂r

∣∣∣∣
r=R

)
. (3.8)

By substituting (3.5) in (3.8), equation (3.8) gives that the rate of change of the drop
radius is given by

dR
dt
=

2D21(cs − c0)

ρDR

∞∑
n=1

e−D21α
2
n tG(R, αn). (3.9)

Note that (3.8) comes from the solution of the diffusion equation with fixed drop
radius while the drop radius itself is changing with time during dissolution. However,
due to the slow diffusive dissolution process and resulting separation of time scales,
it is a reasonable approximation to use the solution of the fixed boundary problem for
the drop (Epstein & Plesset 1950).

3.2. Multicomponent drop
The diffusion time tdiff of the drop constituents over the drop radius is of the order
of tdiff ∼ R2/D23, while the time scale tdiss for the drop dissolution can be estimated
as tdiss ∼ (πR2ρD)/(2πRD21(cs − c0)) = (R2/2D21)[ρD/(cs − c0)]. The ratio of these
two time scales is therefore tdiff /tdiss ∼ (2D21/D23)[(cs − c0)/ρD], which is very small.
This remark justifies the assumption that the drop composition remains spatially
uniform which we adopt. Note that we did not use the diffusion equation within the
drop because of the large difference in the two time scales as explained. Also the
Fickian diffusion framework provided above is valid only for dilute concentrations
of the components in the bulk liquid, while in the drop phase the concentration of
both components is quite high. The applicability of the diffusion equation for such a
non-ideal system is studied in detail by Philippi et al. (2012), but it is not relevant
for the scientific question addressed here. For a two-component drop, we should
solve (3.2) for each component subject to the same boundary conditions at r = Rb
and similar initial conditions. A difference with respect to the single-component
case arises because the concentration of each component at the interface depends on
the drop composition, which changes with time. To deal with this feature we use
Duhamel’s principle (Carslaw & Jaeger 1959; Prosperetti 2011) to convert the solution
of the diffusion equation obtained with a time-independent boundary condition to the
case when the boundary condition is a function of time. We write the time-dependent
boundary condition for the concentration as

ci(R, t)= cs,iφi(t), (3.10)

where i = 2, 3 refers to the two components of the drop and φi(t) is a normalised
function describing the variation of the interface concentration with time. Then,
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according to Duhamel’s principle, the concentration profile of each component in the
bulk liquid is given by

ci(r, t)=
∫ t

0
φi(λ)

∂

∂t
cconst.,i(r, t− λ) dλ, (3.11)

where cconst,i(r, t) is the solution of the diffusion equation for a fixed boundary
condition cconst,i(R, t)= cs,i, which is given by (3.5) with cs replaced by cs,i. The rate
of change of mass of each component follows then from the flux at the liquid–liquid
interface similarly to (3.8),

dMi

dt
=−2πR

(
−Di1

∂ci(r, t)
∂r

∣∣∣∣
r=R

)
. (3.12)

The concentration of each component in the bulk liquid is calculated by substituting
(3.5) in (3.11), which is further substituted in (3.12) to obtain the rate of change of
the mass of each constituent of the drop,

dMi

dt
= 4πDi1

∞∑
n=1

e−Di1α
2
n tG(R, αn)

(
cs,iφi(0)− c0,i +

∫ t

0
cs,iφ

′

i(λ)e
Di1α

2
nλ dλ

)
. (3.13)

The rate of change of the radius of the multicomponent drop can then be calculated
from the rate of change of mass of each component via

2πR
dR
dt
=

1
ρ0,2

dM2

dt
+

1
ρ0,3

dM3

dt
, (3.14)

where ρ0,2 and ρ0,3 are the densities of the pure components 2 and 3, respectively.
Here we neglect the volume change due to the mixing of two components.

3.3. Macroscopic model parameters
3.3.1. Interface concentration

As shown in § 3.2, the concentration of both components at the liquid–liquid
interface is required as a boundary condition to solve the diffusion equation. The
solubility cs of component 2 in a bulk liquid of component 1 is calculated from
independent MD simulations, from which we obtain the values 13.612 kg m−3

and 62.416 kg m−3 for interaction strengths ε12 = 2.5 and ε12 = 2.8, respectively.
However, for a multicomponent drop, cs,i is a function of the composition of the
drop, which changes substantially during the dissolution. In principle, this function
can be calculated from the local thermodynamic equilibrium condition, which requires
equating the chemical potential of each component on the two sides of the interface.
Expressions for the chemical potentials of ternary system of Lennard-Jones particles
which we are using are not available. Thus, we chose to perform independent
‘numerical experiments’ in order to get the interface concentration of each component
as a function of the drop composition. The procedure is to set up a multicomponent
drop in a bulk liquid and to allow the system to reach equilibrium. In this situation,
equilibrium is achieved when the concentrations of both components in the bulk
liquid reach steady state and the drop does not dissolve further. Steady state ensures
that the concentrations of both components in the bulk liquid attain their solubility
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FIGURE 2. (Colour online) Normalised solubilities of the drop constituents in the bulk
liquid as functions of the drop composition; (a) is for strongly interacting constituents,
ε23 = 4.1 kJ mol−1, while (b) is for weakly interacting particles, ε23 = 3.6 kJ mol−1. The
red points are the MD data averaged over many simulations; the error bars give the
standard deviations of several realisations. The black curves show a least-squares cubic
polynomial fit to the MD simulation results. These fits have been used to set the boundary
condition at the drop surface in the macroscopic diffusion model.

value. At this point the solubilities of the drop components and the drop composition
can be determined. In order to reduce statistical errors, and to cover the entire range
of mole fractions 0 6 x2,3 6 1, it is necessary to carry out many such simulations (on
the order of 100). Since our interest is in studying the effect of different interaction
parameters ε23, these simulation must be repeated for each value of this parameter.
The computational burden of this procedure is therefore quite substantial and, in order
to reduce it, it was necessary to use systems much smaller than those of actual interest
(∼10 % of the total number of particles used in the drop dissolution simulations).
While this choice renders the calculation feasible, it has a significant downside, as will
be explained later. Typical examples of the results are given in figure 2, which shows
the component solubility curves for ε23= 3.6 kJ mol−1 and ε23= 4.1 kJ mol−1. It can
be seen that the statistical fluctuations introduce significant uncertainties. The black
lines show the result of a least-squares fit of a cubic polynomial to the numerical
result: this fit will be used in the macroscopic model.

3.3.2. Diffusion constants
As can be observed from the (3.9) and (3.13), the values of the diffusion constants

Di1 of the drop constituents in the bulk liquid are also required to predict the
dissolution dynamics. To this end, independent MD simulations were performed
for both binary and ternary systems at different concentrations of drop constituents.
The diffusion constant of each component was calculated from the mean square
displacement of the particles of that component in the bulk liquid (Frenkel & Smit
2002). In the case of a single-component drop, the diffusivity D21 is obtained as
9.982× 10−9 m2 s−1 and 9.719× 10−9 m2 s−1 for ε12= 2.5 and ε12= 2.8, respectively.
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FIGURE 3. (Colour online) Radius versus time for a dissolving drop in a binary system
for two different interaction strengths between the components. Red and green points are
data obtained from the MD simulations while the black curves represent the dissolution
curve within the macroscopic diffusion model.

For a multicomponent drop, the diffusivity of components 2 and 3 in the bulk liquid is
obtained as D21= 9.31× 10−9 m2 s−1 and D31= 10.42× 10−9 m2 s−1, respectively, for
ε23 = 3.6, and D21 = 9.34× 10−9 m2 s−1 and D31 = 9.84× 10−9 m2 s−1, respectively,
for ε23= 4.1. For the sake of comparison, we also give the diffusivity of methanol in
water, namely D∼ 1.54× 10−9 m2 s−1 (Hao & Leaist 1996), which is slightly lower
than the diffusivity of the Lennard-Jones particles that we are using. The advantage
of a slightly higher diffusivity in our MD simulation is faster convergence, without
changing the physics of the process. We did not use the Maxwell–Stefan theory for
multicomponent diffusion for liquid mixtures, as the concentrations of type-2 and
type-3 particles in the bulk liquid are so low that the flux of one component has a
negligible effect on the other (van de Ven-Lucassen et al. 1998). Note also that we
assumed the values of the diffusivities are independent of the concentration. It is a
reasonable assumption, as the concentration of both components in the bulk liquid is
quite low and has negligible effect on the values of the diffusivities (Hao & Leaist
1996).

4. Results and discussion

In this section we compare the radius of the drop obtained from MD simulations
with the theoretical predictions derived in §§ 3.1 and 3.2. The role of the interaction
strength between the two components of a multicomponent drop and the effect of the
drop curvature on the dissolution dynamics are discussed.

4.1. Single-component drop
We first simulated a binary system in which component 1 forms the bulk liquid and
component 2 forms the drop. Initially, the concentration of component 2 in the bulk
liquid is set below its solubility while, at the liquid–liquid interface, the concentration
of the component 2 is equal to its solubility. We performed the simulation for two
different solubilities, as shown in figure 3. The solubility of the component is changed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.732


Multicomponent droplet dissolution 63

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 10 20 30 40 50 60 70
3.6

3.7

3.8

3.9

4.0

4.1

R
 (

nm
)

t (ns)

FIGURE 4. (Colour online) Radius of a dissolving multicomponent drop as a function of
time for various interaction strengths ε23 between the drop constituents resulting from the
MD simulations.

by changing the interaction parameter ε12 in the Lennard-Jones potential; component
2 can be made more soluble by increasing the value of this parameter. The drop
consisting of the more soluble component dissolves faster as expected, and evident
from figure 3. The solid lines in figure 3 show the radius of the drop as predicted
from the macroscopic diffusion equation (3.9), via the solution procedure outlined in
§ 3.1. We find excellent agreement between the MD simulation data and the theoretical
result.

4.2. Multicomponent drop
For the multicomponent case, initially the drop consists of equal parts of components
2 and 3 and their concentration in the bulk liquid is below the equilibrium
concentration corresponding to the initial mole fraction. The two drop components
have very different solubilities in the bulk liquid as a consequence of a different
interaction parameter, ε21 and ε31, provided in table 1, while the interaction between
the two components of the drop (ε23) adds another dimension to the dissolution
dynamics. We performed MD simulations for different values of ε23 while keeping
all other interaction parameters the same (see table 1). Several examples of the
radius-versus-time of the drop for different values of ε23 are shown in figure 4. It
can be observed that increasing ε23 leads to a slower dissolution rate. This behaviour
is expected, as a higher interaction strength between the two drop constituents
tends to hinder the particles leaving the drop phase. Recently, Dietrich et al. (2017)
also showed similar experimental results in which the interaction between the two
components of the sessile drop leads to a decrease of the dissolution rate compared
to the dissolution of a pure component. Since the amount of bulk liquid is limited,
the drops do not dissolve completely, and the radius stabilises when equilibrium is
achieved.

We can now attempt to reproduce the dissolution dynamics of a multicomponent
drop with the macroscopic model as we did before in the single-component case. Note
that (3.14) requires the interface concentration of each component as a function of
time, which is implicitly known as a function of the mole fraction for which we use
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FIGURE 5. (Colour online) Radius versus time for a dissolving drop in a ternary
system for two different interaction strengths between the drop constituents. The red
and green points are obtained from the MD simulations with ε23 = 4.1 kJ mol−1 and
ε23= 3.6 kJ mol−1, respectively. The black curves represent the results of the macroscopic
diffusion model.

the polynomial fit as explained before. The results for the time dependence of the
drop radius, shown by the black lines in figure 5, are compared with the results of
the MD simulations for two interaction strengths ε23. The results of the macroscopic
theory closely mimic the MD results for the stronger interaction between the drop
constituents, ε23 = 4.1 kJ mol−1, but visible differences are observed for the weaker
interaction strength, ε23 = 3.6 kJ mol−1.

In an effort to understand the origin of the difference we were led to study the
spatial distribution of the drop constituents inside the drop. Typical results are shown
in figure 6 for different values of ε23 and ε21 = 2.5 kJ mol−1, ε31 = 2.8 kJ mol−1.
As ε23 varies, the dissolution dynamics also varies as shown in figure 4. Therefore,
in order to generate these graphs the concentration of the components 2 and 3
corresponding to different cases were shifted to superimpose the positions of the
drop surface. The graphs in this figure focus on the concentration distribution over a
length of 20σ straddling the interface. In particular, note that r/σ = 0 corresponds to
the position of the interface of the drop. The unexpected finding is that component 2,
which is only weakly interacting with the bulk liquid, is distributed fairly uniformly
inside the drop, whereas component 3, which interacts more strongly with the bulk
liquid, exhibits an increased concentration near the surface for the lower values of ε23.
In other words, as the mutual interaction between the drop constituents decreases, the
stronger affinity of component 3 with the bulk liquid causes it to become denser near
the interface. By averaging over several time snapshots we have convinced ourselves
that this increase in the local concentration is a robust feature rather than the mere
result of statistical fluctuations.

This behaviour is the result of two concomitant effects, namely (i) the imbalance
between the self-interaction of the drop constituents as determined by ε22 and ε33 vis-
á-vis their mutual interaction, i.e. ε23, and (ii) the stronger affinity between particles
of type 3 and 1 with respect to that between particles of type 2 and 1, which, as will
be shown, is enhanced by the curvature of the interface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.732


Multicomponent droplet dissolution 65

Component 2 Component 3

0

100

200

300

400

500

−10 −5 0 5 10
0

50

100

150

200

250

300

−10 −5 0 5 10
3.6

3.7

3.8

3.9

4.0

4.1

FIGURE 6. (Colour online) Concentration of the drop constituents as a function of the
distance from the interface marked by the vertical line. The left and right diagrams are
for components 2 and 3, respectively. The colour scale from blue to yellow indicates the
mutual interaction between the drop components. R is the radius of the drop.

It can be understood that a strong increase of the self-interaction parameters ε22
and ε33 with respect to the mutual interaction parameter ε23 leads to a segregation of
the two components. To verify this phenomenon, we performed simulations of a pure
mixture consisting only of the two drop components 2 and 3 in a domain with the
same size as that used for the dissolution calculation, choosing low values of ε23. To
quantify the degree of segregation, we introduce the coordination number Zij as the
average number of j-type particles surrounding i-type particles within a radius of 2σ .
Close values of Z23 and Z22 indicate that liquids are highly soluble in each other, while
a significant difference between Z23 and Z22 indicates segregation. Some results for Z22
and Z23 versus time are shown in figure 7. For ε23= 3.2 kJ mol−1 one observes a very
rapid and intense segregation. For ε23 = 3.4 kJ mol−1 the effect is still present, it is
equally fast, but its intensity is reduced. For ε23= 3.6 kJ mol−1, which is the smallest
value used in the dissolution simulations, we observe only a slight trace of segregation
which cannot be expected to have a strong effect on solubility curves of figure 2. In
all cases, the time scale for segregation to set in is much shorter than the time scale
of interest for drop dissolution.

The second cause of the increased concentration of the type-3 particles near
the interface namely, their stronger affinity with type-1 particles with respect to
type-2 particles, is enhanced by the curvature of the interface. To demonstrate this
fact we show figure 8, which compares the type-3 particle concentration near the
interface for a plane (green) and a circular (red) surface of radius R = 4.5 nm for
ε23 = 3.6 kJ mol−1 as a function of the distance from the interface marked by the
vertical line. As in the previous figure 6, the graph covers only a distance of 10σ into
the drop. The vertical axis shows c3/c3,drop centre where c3,drop centre is the concentration
of particles 3 in the drop away from the interface. The effect of the surface curvature
is evident from this graph. A further demonstration of the same phenomenon is
provided in figure 9, where the horizontal axis is the drop radius and the vertical axis
is the peak concentration near the interface in excess of the drop bulk concentration
normalised by the latter. The upper (red) symbols are refer to ε23= 3.6 kJ mol−1 and
the lower (green) symbols to ε23 = 4.1 kJ mol−1. This figure refers to equilibrium
conditions and the error bars indicate the magnitude of statistical fluctuations in time.
When the 2–3 mutual interaction is strong (ε23 = 4.1 kJ mol−1) the interface peak is
essentially absent, while it is quite prominent for the weaker mutual interaction case
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FIGURE 7. (Colour online) Coordination number Zij as a function of time for various
interaction strengths ε23 between the two drop constituents.
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FIGURE 8. (Colour online) Concentration of type-3 particles normalised by the
concentration in the drop away from the interface; R and zint are the drop radius and
position of the planar interface, respectively. The interaction strength between the two
components ε23 is 3.6 kJ mol−1. The black vertical line indicates the position of the
interface.

(ε23 = 3.6 kJ mol−1). It should be noted that the composition of the drop to which
this figure refers is not constant because it depends on the number of type-2 and
type-3 particles introduced at the initial time. Classical thermodynamics shows that
the chemical potential of the component of the finite radius drop differs from the
chemical potential of the same component of a very large radius drop because of
the overpressure due to surface tension (see, for example, Landau & Lifshitz (1959),
Shchekina & Rusanov (2008)). The effect just described is different, as indicated by
the position dependence of the drop composition.

The effect of the drop curvature that we have found gives a very likely explanation
of the origin of the difference between the MD simulations and the macroscopic
theory prediction shown in figure 5 for ε23 = 3.6 kJ mol−1. Indeed, as explained
earlier, the concentration results shown in figure 2 were obtained for a fixed value
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FIGURE 9. (Colour online) Normalised difference between the peak concentration (cp) and
bulk concentration (cb) of component 3 within the drop (see inset for a typical example).
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FIGURE 10. (Colour online) Comparison of radius of drop for ε23 = 3.6 kJ mol−1

measured from MD simulations and calculated from macroscopic theory using constant
solubilities at initial and final drop radius and compositions.

of the radius. Since for the stronger interaction case the radius has no effect on the
surface concentration, we can directly use the results of figure 2(a) to predict the
surface concentration as a function of the drop composition, which explains the good
match between the macroscopic and MD results shown in figure 5 for the strong
interaction case. However, for weak 2–3 interaction, there is a strong radius effect
which causes the results of figure 2(b) to be inaccurate as the drop dissolves and
its radius changes. What really happens in this case is that the solubilities vary not
only because of drop composition but also because of the radius change. If in the
macroscopic theory we use constant solubilities evaluated in correspondence of the
initial and final drop radii and compositions, we generate two lines and expect the
MD results to interpolate between them. This expectation is indeed followed by the
numerical results, as seen in figure 10.
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5. Summary and conclusions
We performed MD simulations of the dissolution of a sparingly miscible drop in

a bulk liquid. We simulated binary and ternary systems of Lennard-Jones particles in
which the drop consists of one and two components, respectively. In order to get a
better understanding of the MD simulation results we also solved the macroscopic
time-dependent diffusion equation with appropriate boundary and initial conditions.
For this purpose, the solubilities of drop components in the bulk liquid are required.
For the single-component drop the solubility is very nearly a constant determined only
by the parameters describing the interaction between the drop and bulk fluid particles.
We calculated the solubility by carrying out independent MD simulations and found
that, with this information, the macroscopic theory is in excellent agreement with MD
simulations. For a two-component drop, however, solubilities also depend on the drop
composition. We have determined the solubilities in a similar way by independent
equilibrium MD simulations. Upon comparison with the macroscopic theory we have
found excellent agreement when the interaction between the two drop constituents is
relatively strong. The comparison was much less favourable as the interaction became
weaker. In an effort to explain this difference we examined this spatial distribution
of the concentrations of the two drop constituents, finding near the drop surface an
unexpected increase in the concentration of the component more strongly interacting
with (i.e. more soluble in) the bulk liquid. The effect is the stronger the smaller the
radius of the drop and is quite distinct from the well-known Gibbs correction to the
chemical potential of drop constituents, as it depends on the distance from the drop
interface rather than being constant over the drop volume.

The concentration non-uniformities we have found rapidly decrease as the drop
radius increases beyond the nanometre scale, and therefore may be negligible for
drops of micron size or larger. However the effect may be significant for smaller
drops.
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