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Abstract

A subset X of a group G is a set of pairwise noncommuting elements if ab , ba for any two distinct
elements a and b in X. If |X| ≥ |Y | for any other set of pairwise noncommuting elements Y in G, then X
is called a maximal subset of pairwise noncommuting elements and the cardinality of such a subset (if it
exists) is denoted by ω(G). In this paper, among other things, we prove that, for each positive integer n,
there are only finitely many groups G, up to isoclinism, with ω(G) = n, and we obtain similar results for
groups with exactly n centralisers.
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1. Introduction and results

Let G be a nonabelian group. We call a subset X of G a set of pairwise noncommuting
elements if ab , ba for any two distinct elements a and b in X. If |X| ≥ |Y | for any
other set of pairwise noncommuting elements Y in G, then X is called a maximal
subset of pairwise noncommuting elements, and the cardinality of such a subset
(if it exists) is called the clique number of G, denoted by ω(G). By a famous result
of Neumann [11] answering a question of Erdős, we know that the finiteness of ω(G)
is equivalent to the finiteness of the factor group G/Z(G), where Z(G) is the centre of
G. Pyber [12] showed that the size of ω(G) is related to the index of the centre of G:
there is a constant c such that [G : Z(G)] ≤ cω(G). The clique numbers of groups have
been investigated by many authors (see, for example, [2, 6, 8]).

It is easy to see that if H is an arbitrary abelian group and G is a group withω(G) = n
then ω(G × H) = n. Therefore, there can be infinitely many groups K with ω(K) = n.
In this paper, we first show that the clique numbers of any two isoclinic groups [10]
are the same (Lemma 2.1). By using this result, we show that for each positive integer
n there are only finitely many groups G, up to isoclinism, with ω(G) = n. We state our
main results.
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Theorem 1.1. Let n be a positive integer and G be an arbitrary group with ω(G) = n.

(1) There are only finitely many groups H, up to isoclinism, with ω(H) = n.
(2) There exists a finite group K such that K is isoclinic to G and ω(K) = n.

From this result, we deduce a sufficient condition for the solubility of a group in
terms of its clique number.

Theorem 1.2. A group G with ω(G) ≤ 20 is soluble and this estimate is sharp.

For any group G, let C(G) denote the set of centralisers of G. We say that a group
G has n centralisers (G is a Cn-group) if |C(G)| = n. Finally, we obtain similar results
for groups with a finite number n of centralisers (Lemma 3.2 and Theorems 3.3–3.5).

2. Pairwise noncommuting elements

The groups G and H are said to be isoclinic if there are two isomorphisms
ϕ : G/Z(G)→ H/Z(H) and φ : G′ → H′ such that if

ϕ(g1Z(G)) = h1Z(H) and ϕ(g2Z(G)) = h2Z(H),

with g1, g2 ∈ G, h1, h2 ∈ H, then

φ([g1, g2]) = [h1, h2].

Isoclinism is an equivalence relation weaker than isomorphism and was introduced by
Hall [10] to help classify groups. A stem group is defined as a group whose centre
is contained inside its derived subgroup. It is known that every group is isoclinic to
a stem group and if we restrict to finite groups, a stem group has the minimum order
among all groups isoclinic to it (see [10] for more details).

To prove our main results, we need the following lemma.

Lemma 2.1. For every two isoclinic groups G and H, we have ω(G) = ω(H).

Proof. Suppose that G and H are two isoclinic groups. From Hall [10], there exist
commutator maps

α : G/Z(G) ×G/Z(G) −→ G′, (xZ(G), yZ(G)) 7→ ([x, y])

and
α′ : H/Z(H) × H/Z(H) −→ H′, (xZ(H), yZ(H)) 7→ ([x, y])

and isomorphisms β : G/Z(G) −→ H/Z(H) and γ : G′ −→ H′ such that

α′( β × β) = γ(α)

where
β × β : G/Z(G) ×G/Z(G) −→ H/Z(H) × H/Z(H).

Now assume that the set X = {x1, x2, . . . , xn} is a maximal subset of pairwise
noncommuting elements of G. It follows that xiZ(G) , x jZ(G) for all 1 ≤ i < j ≤ n.
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Therefore, there exist n elements yi ∈ H\Z(H) such that β(xiZ(G)) = yiZ(H). To
complete the proof it is enough to show that the set Y = {y1, y2, . . . , yn} is a subset
of pairwise noncommuting elements of H. Suppose, on the contrary, that there exist
yi, y j ∈ H for some 1 ≤ i , j ≤ n, such that [yi, y j] = 1. As mentioned above,

α′(β × β)((xiZ(G), x jZ(G))) = γ(α)(xiZ(G), x jZ(G))

and so α′(yiZ(H), y jZ(H)) = γ([xi, x j]) and 1 = [yi, y j] = γ([xi, x j]). It follows that
[xi, x j] = 1, a contradiction. Thus ω(G) = |X| = |Y | ≤ ω(H) and so ω(G) ≤ ω(H).
Similarly, ω(H) ≤ ω(G), and this completes the proof. �

Proof of Theorem 1.1. (1) Assume that G is a group withω(G) = n. From Pyber [12],
there is a constant c such that [G : Z(G)] ≤ cω(G) ≤ f (n). Therefore, by Schur’s
theorem, the derived subgroup G′ is finite (in fact, |G′| ≤ f (n)2 f (n)3

) and the number
of isomorphism types of G/Z(G) and G′ is bounded above by a function of n. For
every choice of G/Z(G) and G′ there are only finitely many commutator maps from
G/Z(G) ×G/Z(G) to G′. It follows, in view of Lemma 2.1, that G is determined by
finitely many isoclinism types.

(2) Since ω(G) = n, by Pyber [12], G is a centre-by-finite group. On the other hand,
according to the main theorem of Hall [10, page 135], there exists a group K such that
G is isoclinic to K and Z(K) ⊆ [K,K] = K′. Since G is isoclinic to K, it follows that K
is centre-by-finite and so, according to Schur’s theorem, K′ is finite. Therefore Z(K)
and K/Z(K) are finite, so K is finite, and so Lemma 2.1 completes the proof. �

Proof of Theorem 1.2. Assume that G is a group with ω(G) ≤ 20. According to
Theorem 1.1, there exists a finite group K such that G is isoclinic to K and ω(G) =

ω(K). Thus, replacing G by the factor group G/Z(G), it can be assumed without loss
of generality that G is a finite group with ω(G) ≤ 20. But in this case the result follows
from the main result of [9]. Note that the alternating group of degree five, A5, is a
group with ω(A5) = 21 and so the estimate is sharp. �

3. Groups with a finite number of centralisers
As mentioned in the introduction, there are interesting relations between

centralisers and pairwise noncommuting elements. So we now consider groups with
a finite number n of centralisers (Cn-groups). From the result of Neumann [11], the
finiteness of ω(G) in G is equivalent to the finiteness of the factor group G/Z(G).
Centralisers are subgroups containing the centre of the group, so from the finiteness
of the factor group G/Z(G) it follows that G has a finite number of centralisers. Also,
if G has a finite number of centralisers, then it is easy to see that ω(G) is finite. These
remarks give the following theorem.

Theorem 3.1. For any group G, the following statements are equivalent.

(1) G has finitely many centralisers.
(2) G is a centre-by-finite group.
(3) G has finitely many pairwise noncommuting elements.
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It is clear that a group is a C1-group if and only if it is abelian. The class of Cn-
groups was introduced by Belcastro and Sherman in [7] and investigated by many
authors (see, for example, [1, 3, 4, 13, 14, 16]).

Since every group G with a finite number of centralisers is centre-by-finite, by an
argument similar to the one in the proof of Lemma 2.1, we have the following result.

Lemma 3.2. For every two isoclinic groups G and H, |C(G)| = |C(H)|.

Proof. Let β be the isomorphism β : G/Z(G) −→ H/Z(H) and let x be an element of G.
There exists a subgroup K of H such that β(CG(x)/Z(G)) = K/H. By an argument
similar to the one in the proof of Lemma 2.1, there exists an element y ∈ K such that
K = CH(y) and yZ(H) = β(xZ(G)). The isomorphism β induces a bijection between
the subgroups of G containing Z(G) and the subgroups of H containing Z(H), and the
result follows. �

By an argument similar to the one in the proof of Theorem 1.1, we obtain the
following result.

Theorem 3.3. Let n be a positive integer and let G be an arbitrary Cn-group.

(1) There are only finitely many groups H, up to isoclinism, with |C(H)| = n.
(2) There exists a finite group K such that K is isoclinic to G and |C(G)| = |C(K)|.

For any group G, it is easy to see that if x, y ∈ G and xy , yx, then CG(x) , CG(y).
From this, it follows easily that 1 + ω(G) ≤ |C(G)| (note that CG(e) = G, where e is the
identity of G). Thus, by using Theorem 1.2, we generalise [15, Theorem A].

Theorem 3.4. A group G with |C(G)| ≤ 20 is soluble and this estimate is sharp.

Finally, by using case (2) of Theorem 3.3, we generalise the main results of [1, 4,
5, 7] for infinite groups.

Theorem 3.5. Let G be an arbitrary Cn-group.

(1) G/Z(G) � C2 ×C2 if and only if n = 4.
(2) G/Z(G) � C3 ×C3 or S 3 if and only if n = 5.
(3) G/Z(G) � D8, A4,C2 ×C2 ×C2 or C2 ×C2 ×C2 ×C2 whenever n = 6.
(4) G/Z(G) � C5 ×C5,D10 or 〈x, y|x5 = y4 = 1, xy = x3〉 if and only if n = 7.
(5) G/Z(G) � C2 ×C2 ×C2, A4 or D12 whenever n = 8.

Proof. It is enough to note that there exists a finite Cn-group K such that K is isoclinic
to G and hence G/Z(G) � K/Z(K). So the statements in the theorem follow from the
main results in [1, 4, 5, 7]. �
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