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Parametric instabilities of a stratified shear layer
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A Boussinesq fluid inside a stably thermally stratified square container whose walls are
inclined 45◦ with respect to gravity, with two opposite walls kept at constant temperatures
and the other two insulated is nearly isothermal in the regions above and below the
horizontal diagonal. The flow is concentrated in the wall boundary layers and a shear
layer centred about the horizontal diagonal. The equilibrium is maintained by the balance
between dissipation in the shear and boundary layers, the heat fluxes at the constant
temperature walls, and the induced flow resulting from the no-flux condition at the inclined
insulated walls. The dynamical response of the fluid to vertical oscillations of the container
is studied over a range of forcing frequencies. For a small forcing amplitude and below
a viscosity-dependent cutoff forcing frequency, this response exhibits a modal cellular
structure localized about the shear layer. With increasing forcing amplitude, the response
experiences instabilities, studied here numerically at a forcing frequency above the cutoff
frequency, that are similar to those encountered in the Faraday wave problem, such as
parametric subharmonic instability, triadic resonance and resonant collapse.
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1. Introduction

Due to their ubiquitous presence in a wide range of geophysical flow phenomena, there
is considerable interest in the instabilities of sheared density interfaces (Thorpe 1987;
Fernando 1991; Ivey, Winters & Koseff 2008; Caulfield 2020, 2021). Much insight has
been gained from studying three idealized settings (Sutherland 2010): when the density
interface and the velocity shear layer coincide, Kelvin–Helmholtz instability leads to
the interface rolling up into billows; when they do not coincide, Holmboe instability
ensues with waves travelling in opposite directions either side of the density interface;
and when there are two density interfaces subjected to shear, Taylor instability results in
billows of a more complicated nature. These idealized flows are unidirectional (parallel)
flows. The stability analysis as well as experimental investigations of these types of flows
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are problematic in that the initial density and shear profiles are not equilibrium states.
This leads to compromises: the characteristic time scales for the evolution of the initial
profiles and of their instabilities need to be carefully tuned in experiments, while linear
stability analysis usually is based on the assumption that the so-called basic state is
quasisteady, evolving on a slower diffusive time scale (Thorpe 1971; Parker, Caulfield
& Kerswell 2020).

Container walls affect the flow in non-trivial ways. The consequences of walls at oblique
angles to gravity were studied by Grayer et al. (2020) using a differentially heated square
container with two opposite walls maintained at constant temperatures, one hot and the
other cold, and the other two walls insulated. When the relative balance between buoyancy
and viscous effects (quantified by the buoyancy number RN) is sufficiently large, RN �
103, the flow splits into three distinct regions, a central region with nearly linear vertical
temperature variation delimited by lines emanating from the horizontal corners impinging
on the opposite walls. With increasing RN , the flow tends to be isothermal above and below
these lines, hot in the top region and cold in the bottom region, and the velocity tends to
zero everywhere except in wall boundary layers and in thin shear layers about the lines
emanating from the horizontal corners and separating the three regions. The situation at tilt
angle 45◦ is special as the shear layers emanating from the two horizontal corners coincide.
The flow is stable, steady and consists of two triangular essentially isothermal stagnant
regions surrounded by wall boundary layers and separated by a stratified shear layer.

In the present study, we explore the response of the 45◦ tilt state to parametric forcing
consisting of vertical oscillations of the tilted container. This type of parametric forcing
was previously studied for the 0◦ tilt case, where the unforced state is a static equilibrium
with stable linear stratification (Yalim, Lopez & Welfert 2018; Yalim, Welfert & Lopez
2019a,b; Yalim, Lopez & Welfert 2020). Those studies were motivated by the experiments
of Benielli & Sommeria (1998), who considered vertical oscillations of stratified fluids
in a rectangular cavity; they considered both a two-layer system and a linearly stratified
system. In both, they found the response flows to be dominated by parametric resonances,
but the details differed substantially between the two. The two-layer system had many
analogies with the well-studied Faraday wave problem (Benjamin & Ursell 1954; Miles &
Henderson 1990; Kumar & Tuckerman 1994). Most studies of the Faraday wave problem
involve two immiscible fluids, but there is also much interest in the parametric forcing of
two-layer systems of miscible fluids (Zoueshtiagh, Amiroudine & Narayanan 2009; Briard,
Gréa & Gostiaux 2019; Briard, Gostiaux & Gréa 2020). A major distinction between the
Faraday problem with miscible and immiscible fluids is that in the immiscible case the
jump discontinuity at the density interface is sufficient for instability, whereas for the
miscible case the density varies smoothly throughout and a sufficiently large localized
density gradient is needed for instability. In both cases, when the container is rectilinear
with walls parallel or orthogonal to gravity, the unforced state is static and the stratifying
agent in the miscible case diffuses vertically (parallel to gravity). In contrast, the 45◦ tilt
case has flow even in the absence of forcing, primarily in the wall boundary layers and
the horizontal shear layer separating the top and bottom regions, which are essentially
isothermal with a thin smooth variation of temperature (and hence density) across the
shear layer. The responses to vertical oscillatory accelerations have much in common with
the miscible Faraday flows, although there exist notable differences due to the presence of
a shear flow at the interface separating the isothermal regions.

2. Governing equations, symmetries and numerics

Consider a fluid of kinematic viscosity ν, thermal diffusivity κ and coefficient of volume
expansion β contained in a square cavity of side lengths L. The opposite walls of the
918 R4-2
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Figure 1. Schematic of the forced system, with isotherms and streamlines of the unforced state at RN = 105.5,
and the temperature colourmap for T ∈ [−0.5, 0.5]. The streamlines are plotted using 14 linearly spaced
isolevels in the range 0 � ψ � 1.6 × 10−4, where ψ is the streamfunction, such that u = −∂ψ/∂z and
w = ∂ψ/∂x.

cavity are insulated and the other two opposite walls are held at fixed temperatures, T+
and T−, with �T = T+ − T− > 0. The cavity is oriented such that its walls make a 45◦
angle with the downward directed gravity g. The non-dimensional temperature is T =
−0.5 + (T∗ − T−)/�T , where T∗ is the dimensional temperature. Length is scaled by
L and time by 1/N, where N = √

gβ�T/L. A Cartesian coordinate system x = (x, z) ∈
[−0.5, 0.5] × [−0.5, 0.5] is attached to the cavity with its origin at the centre and the
directions x and z aligned with the sides, with associated velocity u = (u,w). A schematic
is shown in figure 1.

The cavity is subjected to harmonic vertical oscillations of amplitude α and frequency
ω. In the cavity reference frame, all walls are no-slip with boundary condition u = 0,
on the insulated walls ∂T/∂x|x=±0.5 = 0 and on the conducting walls T|z=±0.5 = ±0.5.
Under the Boussinesq approximation, the governing equations are

∂u/∂t + u · ∇u = −∇p + (1 + α cosωt)T ê + R−1
N ∇2u, ∇ · u = 0,

∂T/∂t + u · ∇T = (PrRN)
−1 ∇2T,

}
(2.1)

where ê = (1/
√

2, 1/
√

2), p is the pressure and RN = NL2/ν is the buoyancy number. The
Prandtl number Pr = ν/κ = 0.71 is fixed and variations in RN , ω and α are explored.

In the absence of any other external force, this system admits a stable steady
flow solution (us, ps, Ts), whose characteristic features are described in Grayer et al.
(2020). When subjected to vertical oscillations of sufficiently small amplitude α,
the forced response flow is synchronous with the forcing frequency. The system is
also centrosymmetric, invariant to a reflection through the origin C : (u, T)(x, z, t) �→
(−u,−T)(−x,−z, t).

The governing equations are solved numerically with a spectral-collocation code used
in related studies (Yalim et al. 2019b, 2020; Grayer et al. 2020). Chebyshev polynomials
of degree 201 × 201 were used for all cases except for the largest forcing amplitude case
α = 0.3, which used 601 × 601 resolution. The number of time steps per forcing period
varied with ω, with 1000 time steps per period for ω = 0.7, and the time step remained
approximately independent of ω.

3. Small amplitude forcing

For sufficiently small forcing amplitude α, the response flow is a synchronous
centrosymmetric limit cycle L1. This response flow is quantified by the square of the
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Figure 2. (a) Response diagram, E vs ω, and (b) spatial wavenumber k of Θ , scaled by ω2.33
c , vs ω, scaled

by ωc, for α = 0.01 and RN as indicated. The cutoff frequency is ωc = 0.4R0.145
N and the model used in (b) is

kω−2.33
c = 0.15(ω/ωc)

2/[1 − 0.83(ω/ωc)].

L2-norm of the temperature deviation from the unforced steady state, Θ = T − Ts, scaled
by the forcing amplitude and averaged over one forcing period,

E = ω

2π

∫ 2π/ω

0

∫ 0.5

−0.5

∫ 0.5

−0.5

Θ2

α2 dx dz dt. (3.1)

Figure 2(a) shows how E varies with ω for α = 0.01 and various RN . The response curves
E(ω) for each RN were determined from individual simulations at discrete values of ω =
0.01j for j = 10 to 360 in steps of 1, using the unforced steady state at that RN as the initial
condition for each simulation. Additional ω cases near the main peaks were computed
for refinement of the response curves at the two largest RN values. The time-averaging to
obtain E was done over one forcing period after transients had died off sufficiently, i.e.
when the periodically strobed E converged to machine precision (typically after several
thousand forcing periods, depending on ω, and with more periods needed for larger RN).

For any given RN , E exhibits broad peaks up to a cutoff frequency ωc, beyond which
E drops off sharply. As RN is increased, existing peaks sharpen and new ones appear,
while the response levels between peaks are proportional to R−1

N . On the other hand, the
response levels at peaks corresponding to ω � 1 appear to plateau and then increase with
RN , hinting at possible resonances in this regime, although all responses remain small
relative to the forcing amplitude even at the highest RN = 105.5 considered here. The peaks
shift towards lower values of ω for ω � 1, whereas for ω � 1 they shift to larger ω up to
ωc, which increases with RN as ωc ≈ 0.4R0.145

N .
To gain insight into the response E , snapshots ofΘ of the response flows at the peaks in

figure 2 are shown in figure 3 for RN = 105.5 and α = 0.01. These snapshots illustrate how
the perturbations are localized in the central stratified shear layer. All snapshots are at a
phase where they are maximal in the interior of the cavity, except for the last two (ω = 2.55
and 3.50), for which the response is focused at the horizontal corners. The peak responses
are synchronous, approximately standing waves with a small horizontal drift, and consist
of cells along the shear layer and their size decreases with increasing ω. Moreover, away
from the container walls, these centrosymmetric responses have approximate up-down
and left-right reflection symmetries; supplementary movie 1 shows animations over one
forcing period.

Responses Θ associated with peaks at forcing frequencies ω � ωc are characterized by
a single row of similiar cells (excluding corner contributions) with an even wavenumber k.
Their wavenumber increases with increasing ω, as illustrated by the sequence of snapshots
corresponding to 1.39 � ω � 2.45(≈ ωc for RN = 105.5) in rows two and three of figure 3.
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0.46 0.76 0.80 0.98 1.16 1.31

1.39 1.72 1.93 2.08 2.19

2.28 2.35 2.41 2.45 2.55 3.50

Figure 3. Snapshots of Θ at RN = 105.5, α = 0.01 and indicated ω corresponding to the peaks in figure 2.
See supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.373 for animations over one forcing
period.

Figure 2(b) shows that the relationship between k and ω for different RN collapses onto a
single curve under appropriate scalings by a power of ωc. In the model used in figure 2(b),
kω−2.33

c = 0.15(ω/ωc)
2/[1 − 0.83(ω/ωc)], k increases quadratically with ω for small

ω/ωc, as is to be expected from a basic dispersion analysis, but the increase is somewhat
faster than quadratic as ω → ωc. Note that while such a model suggests that the scaling
by ωc aligns the peaks of the response curves obtained for different RN in figure 2(a) for
ω close to ωc, it does not provide a good alignment for peaks in the lower ω range.

TheΘ response atω = 0.80 in the first row of figure 3 appears to be anomalous. It seems
to share more features with peak responses at larger ω than with other peak responses in
the same row. This can be reconciled by considering the development of the peaks as RN
is increased. Figure 4 illustrates how several of the dominant peak responses evolve as
RN varies from 104 to 105.5. Rows one and three show how the responses at ω = 0.46
and ω = 1.39, obtained at RN = 105.5, inherit their spatial characteristics from responses
at lower RN for slightly detuned forcing frequencies, with a compression in the vertical
direction due to increased buoyancy. The second row of figure 4 addresses the disparity
of the ω = 0.80 response at RN = 105.5, showing how the two peak responses at ω =
0.76 and ω = 0.80 originate from a broader peak response at lower RN and detuned ω. In
particular, the Θ response at RN = 105 and ω = 0.78 (shown at maximal phase) includes
signatures of both the ω = 0.76 and ω = 0.80 peak responses at RN = 105.5, with a strong
horizontal response emanating from the horizontal corners, together with bicorne-shaped
cells in the centre of the cavity (see supplementary movie 2 for animations over one forcing
period). Such splitting of peaks in response diagrams is expected as viscous effects are
reduced and the separation between different modal responses increases.

4. Large amplitude forcing

The stability of L1 is now considered as the forcing amplitude α is increased for ω = 3.6 >
ωc at RN = 105. The responses are quantified by the Nusselt numbers at the hot (+) and
cold (−) walls:

Nu±(t) =
∫ 0.5

−0.5
∂T/∂z|z=±0.5 dx. (4.1)

A measure of the flow asymmetry, A = (Nu+ − Nu−)/(Nu+ + Nu−), is zero for
centrosymmetric responses; response flows for α � 0.09 are centrosymmetric.
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Figure 4. Snapshots of Θ for two sequences associated with response peaks in figure 2 at increasing RN
(indicated at the bottom of each frame) and peak ω (top corner of frames). See supplementary movie 2 for
animations over one forcing period.
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Figure 5. Variations with α of the mean and the standard deviation of the Nusselt number, MEAN[Nu+] and
STD[Nu+], for RN = 105 and ω = 3.6.

For the unforced case α = 0, Nu+ ≈ 9.84. Figure 5 shows the mean and standard
deviation of Nu+ as α is increased. For α � 0.067, L1 is a stable centrosymmetric
limit cycle; it has small amplitude (characterized by STD[Nu+]) and the time average
MEAN[Nu+] only slightly increases with α. At α ≈ 0.0675, L1 loses stability to another
centrosymmetric limit cycle, denoted L2, whose frequency is ω/2 = 1.80. This instability
is a parametric subharmonic instability: the spatial structure of L2 corresponds to that of
L1 at ω = 1.80. The time series of Nu+ over several forcing periods for L1 at α = 0.066
and L2 at α = 0.068 are shown in figure 6(a), and supplementary movie 3 animates the
temperature deviation Θ of these two limit cycles, along with that of L1 at ω = 1.80 and
α = 0.1, highlighting the correspondence between L2 at ω = 3.60 and L1 at ω = 1.80.

At α ≈ 0.0702, L2 loses stability via a Neimark–Sacker bifurcation (Kuznetsov 2004),
spawning a centrosymmetric quasiperiodic response flow denoted QP. The Nu+ time series
of QP at α = 0.073 is also shown in figure 6(a). Fourier transforms over 104 forcing
periods of this time series, as well as of QP at α = 0.0705 and 0.0751, have peaks at
frequencies ω1 = 1.80, ω2 = 1.31 and ω3 = 0.49, with the power spectral densities at ω2
and ω3 being two orders of magnitude smaller than that at ω1. The relation ω1 = ω2 + ω3
is suggestive of a triadic resonance. Figure 7 shows a snapshot of QP at α = 0.073,
together with three Fourier modes M1, M2 and M3, which are obtained by filtering QP
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Figure 6. (a–d) Time series of Nu+ for response flows at RN = 105, ω = 3.6 and α as indicated. The time
series in (b–d) also include two two-period strobes, taken one forcing period apart at forcing phase π. (e) The
asymmetry measure A for the resonant collapse case in (d).

at frequencies ω1, ω2 and ω3:

Mk(x, z) = ωk

2π

∫ 2π/ωk

0
T(x, z, t) sin(ωkt + φ) dt, (4.2)

where φ ∈ [0,π] maximizes ‖Mk‖∞, for k = 1, 2, or 3. These modes have cellular
structures with 1, 2 and 3 cells in the vertical and 6, 9 and 3 cells in the horizontal localized
along the shear layer (see supplementary movie 4). The relations 2 + 1 = 3 and 9 − 6 = 3
between the cell numbers of M1, M2 and M3 confirm the spatial resonance and the triadic
nature of QP. Here, M1 is similar to L2 at lower α, and M2 is similar to L1 at forcing
frequency ω2. However, M3 is not similar to the L1 response at ω3. This is typical of
triadic resonances, where one of the two free modes is from a different set to those directly
resonated by the forcing (Lopez & Marques 2018; Wu, Welfert & Lopez 2020).
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QP M1 M2 M3

Figure 7. Snapshot of Θ for QP at α = 0.073, ω = 3.6 and RN = 105, together with its leading Fourier
modes, M1, M2 and M3. See supplementary movie 4 for an animation over 20 forcing periods.

At α ≈ 0.0752, QP becomes unstable via another Neimark–Sacker bifurcation
introducing a very low frequency of order 0.01. The flow response is similar to that of
QP, with amplitude slowly increasing until the oscillations in the isotherms about the
horizontal shear layer interact with the walls near the two horizontal corners. When this
happens, there are fast reflections along the shear layer that destroy the coherence of
the QP-like oscillations, resulting in a relatively fast collapse toward a state resembling
L2 at lower α. Following this collapse, the slow build-up of the QP-like oscillations are
reinstated, followed by another collapse. All the while, the flow remains centrosymmetric.
This slow-fast state is denoted SF. Figure 6(b) shows a time series of SF at α = 0.081 in
black, together with a pair of two-period strobes, in yellow and cyan, one forcing period
apart at forcing phase π. The SF is stable up to α ≈ 0.0813, although there are small α
windows where it is less regular with the intervals between collapses not being uniform.
A characteristic of SF is that one of the two-period strobes of Nu+ consistently tracks to
the high-end of Nu+ while the other two-period strobe consistently tracks to the low-end
of Nu+.

For α > 0.081, the response is also slow-fast, but the two-period strobes of Nu+
interchange tracking to the low-end and high-end of Nu+ following each collapse. This
is a type of gluing bifurcation, very similar to that reported and discussed in Yalim et al.
(2019b) for the parametrically forced system at 0◦ tilt. This glued slow-fast response is
denoted SFG. Figure 6(c) shows the time series of Nu+ together with the pair of two-period
strobes for SFG at α = 0.083.

As α is further increased beyond 0.083, the long periods between the fast collapses have
irregular durations, and the two-period strobes tracking to the low-end and high-end of
Nu+ switch in an apparently random fashion. With increasing α, the peak value of Nu+
before collapses increases. Also, following a collapse the flow is more energetic, with
larger Nu+ for larger α. Figure 6(d) shows the time series of Nu+ at α = 0.3. The initial
condition at t = 0 is the unforced RN = 105 state which is impulsively forced at α = 0.3
and ω = 3.6. The initial transient is like the slow ramp-ups in SF and SFG, but following
the first collapse after approximately 50 forcing periods the flow does not relax towards
L2, and instead exhibits more energetic chaotic dynamics, akin to the resonant collapse
in a precessionally forced rotating cylinder (McEwan 1970). Snapshots of the isotherms
at various times (denoted by the number of forcing periods, nτ , following the impulsive
start) are shown in figure 8.

Accompanying figure 8 are a number of movies showing temporal evolutions of the
isotherms over select intervals. The first of these, supplementary movie 5a, shows the slow
ramp-up followed by the initial collapse over nτ ∈ [30, 60]. Even during the wave-breaking
events after nτ ≈ 50, the flow appears to retain centrosymmetry; see the sequence of
snapshots from the movie shown in the top two rows of figure 8. However, the asymmetry
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Figure 8. Snapshot of isotherms at the indicated number of forcing periods, nτ , following an impulsive start
to forcing with α = 0.3 and ω = 3.6 at RN = 105. Animations covering a variety of time intervals are shown
in supplementary movies 5a to 5e.

measure A grows exponentially until saturating at nτ ≈ 170 (see figure 6e), at which point
the asymmetry is visually apparent in the isotherms. The next movie, supplementary movie
5b, covering nτ ∈ [95, 125] shows two waves near the horizontal corners being excited
while the centre remains relatively static. These break and then a Kelvin–Helmholtz-like
roll-up forms at the origin at nτ ≈ 115 (see figure 8). Supplementary movie 5c covers
nτ ∈ [220, 240]. Larger amplitude Faraday wave-like L2 oscillations occur at one corner
and undergo wave breaking, followed by the formation of sharp undulations that travel
horizontally, reminiscent of Holmboe waves. There is also a global sloshing motion, or
seiche, with a period of approximately 20 forcing periods, that is most evident in the
isotherms away from the central shear region. This period is clearly identifiable in the
time series in figure 6(d,e) after 600 forcing periods. In supplementary movie 5d, covering
nτ ∈ [425, 455], the flow exhibits small-scale cusp-like convective mushrooms travelling
towards both horizontal corners. The structures on the hot side of the shear layer travel to
the hot corner while those on the cold side travel to the cold corner. Near the end of the
animation a roll-up similar to a Kelvin–Helmholtz mushroom appears at the cold corner
followed by an L2-like excitation of the shear layer. Finally, supplementary movie 5e,
covering nτ ∈ [625, 665], shows the build-up of Faraday wave-like oscillations that then
develop into either left or right travelling waves. As the waves crash into a horizontal
corner, there is mixing with the fluid in the interior. The sequence of events in the
various movies bears a striking resemblance with the experimental movies of Faraday
wave instabilities with miscible fluids in Briard et al. (2020).

5. Summary and conclusions

The responses to vertical parametric modulation of gravity of a fluid in a square container
tilted at 45◦, with two differentially heated opposite walls and two adiabatic opposite
walls, are surprisingly very similar to those from a Faraday wave experiment, in spite
of major differences existing in the set-ups. Whereas in the Faraday problem the unforced
equilibrium is static, here it is non-trivial, consisting of wall boundary layers and a shear
layer centred about the horizontal diagonal separating two near isothermal regions. It is
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maintained by heat fluxes that are focused near the corners on either side of the shear layer.
For sufficiently small forcing amplitudes, there is a forced centrosymmetric synchronous
response.

Below a certain viscosity-dependent cutoff forcing frequency, the forced responses have
modal cellular structure in the shear layer. Differences in their organization, in particular
with respect to parities and symmetries, seem to be connected to the orientation of the
forcing. Although gravity is only modulated vertically, the obliqueness of the container
walls induces a horizontal component of the forcing whose effects combine with those
due to the vertical forcing. The results in Grayer et al. (2021) indicate that one may expect
the non-trivial forced responses at low forcing amplitude to be attributed to this horizontal
forcing. Analysis of these different contributions and their interactions will be addressed
elsewhere.

Above this cutoff frequency, the forced response is localized at the horizontal corners.
Increasing the forcing amplitude at such a frequency leads to parametric subharmonic
resonance, much like in the Faraday wave problem. At larger forcing amplitudes, the
subharmonic response flow excites a pair of lower frequency modes in a triadic resonance.
The identification of such a triadic resonance in a non-uniformly stratified shear flow
is novel. Further increases in forcing amplitude lead to low-frequency modulations
of the triadic response, resulting in a slow–fast resonant collapse scenario. The slow
phase consists of the triadic response growing in amplitude until the response flow
in the shear layer interacts with the container walls and, in particular, the horizontal
corners. Then, there is a relatively fast collapse and the process repeats. With increasing
forcing amplitude, the slow-fast dynamics become more complicated but the flow remains
centrosymmetric, with the time-dependent heat fluxes at the hot and cold walls being
identical. At much larger forcing amplitude, the response is no longer centrosymmetric,
with different heat fluxes at the hot and cold walls. This difference leads to periods of time
lasting many forcing periods during which the interior has an excess/deficit of thermal
energy, culminating when the Faraday waves with cold/hot fluid encroach on the hot/cold
wall as they come crashing near the left/right horizontal corner of the container.

The present configuration provides a relatively simple set-up for generating Faraday
waves and studying their instabilities, including triadic resonances and other nonlinear
interactions. In particular, it defines a framework for studying the transfer of energy
between scales and the effects of shear in non-uniformly stratified flows, which may prove
useful in furthering the understanding of these processes in the ocean and the atmosphere.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.373.
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