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ON PERMUTATION BINOMIALS OVER FINITE FIELDS
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Abstract

Let Fq be the finite field of characteristic p containing q = pr elements and f (x) = axn + xm, a binomial
with coefficients in this field. If some conditions on the greatest common divisor of n − m and q − 1
are satisfied then this polynomial does not permute the elements of the field. We prove in particular
that if f (x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F∗p, then p − 1 ≤ (d − 1)d, where d =

gcd(n − m, p − 1), and that this bound of p, in terms of d only, is sharp. We show as well how to obtain
in certain cases a permutation binomial over a subfield of Fq from a permutation binomial over Fq.
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1. Introduction

Let Fq be the finite field of characteristic p containing q = pr elements. A polynomial
f (x) ∈ Fq is called a permutation polynomial of Fq if the induced map f : Fq→ Fq is
one-to-one. The study of permutation polynomials goes back to Hermite [3] for Fp and
Dickson [1] for Fq. Interest in permutation polynomials increased in part because of
their application in cryptography and coding theory. Despite the widespread interest
in the subject, characterising permutation polynomials and finding new families of
permutation polynomials remain open questions. Carlitz conjectured that, given an
even positive integer n, there exists a constant C(n) such that, for q >C(n), there are
no permutation polynomials of degree n over Fq. Fried et al. [2] proved Carlitz’s
conjecture. Permutation monomials are completely understood, but permutation
binomials are not well understood. Niederreiter and Robinson [6] proved the following
theorem.

T 1.1. Given a positive integer n, there is a constant C(n) such that, for q >
C(n), no polynomial of the form axn + bxm + c ∈ Fq[x], with n > m > 1, gcd(n, m) = 1,
and ab , 0, permutes Fq.

The constant C(n) in Theorem 1.1 is not explicit. Turnwald [9] improved
Theorem 1.1 as follows.
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T 1.2. If f (x) = axn + xm permutes Fq, where n > m > 0 and a ∈ F∗q, then either
q ≤ (n − 2)4 + 4n − 4 or n = mpi.

Turnwald’s proof uses Weil’s lower bound [11] for the number of points on the
curve ( f (x) − f (y))/(x − y) over Fq. For q a prime number, Turnwald [9] proved the
following theorem.

T 1.3. If f (x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F∗p, then p <
n max{m, n − m}.

For m = 1, Wan [10] proved the following theorem.

T 1.4. If f (x) = axn + x permutes Fp, where n > 1 and a ∈ F∗p, then p − 1 ≤
(n − 1) · gcd(n − 1, p − 1).

The bounds in Theorems 1.3 and 1.4 are of different nature. The bound in
Theorem 1.3 is given in terms of max{m, n − m}, whereas the bound in Theorem 1.4
is given in term of gcd(n − 1, p − 1). Theorems 1.3 and 1.4 have been improved by
Masuda and Zieve [5] as follows.

T 1.5. If f (x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F∗p, and d =

gcd(n − m, p − 1), then p − 1 ≤ (n − 1) ·max{m, d}.

The bounds in the theorems above are not given in terms of d only, and one can
ask whether the prime p can be bounded in terms of d only. The answer was given by
Masuda and Zieve [5] who proved the following theorem.

T 1.6. If f (x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F∗p, then
p − 1 ≤ (d + 1)d.

Clearly, Theorem 1.6 improves Theorem 1.5 whenever d − 1 ≤ n − 1, which is
always the case except when m = 1 and n − 1 | p − 1. In Section 2, we prove the
following theorem.

T 1.7. If f (x) = axn + xm permutes Fp, where n > m > 0 and a ∈ F∗p, then
p − 1 ≤ (d − 1)d.

Clearly, Theorem 1.7 implies Theorems 1.6 and 1.5 in all cases. When m = 1
and n − 1 | p − 1, we will see in Corollary 3.5 that p − 1 ≤ (n − 1)(n − 3), which
improves Theorem 1.5. It would be interesting to have a bound for p in terms of
d = gcd(n − m, p − 1) when f (x) = axn + xm permutes Fq and q is a power of the
prime p. In Theorem 3.3, we will show how in certain cases, one can obtain from
a permutation binomial f (x) ∈ Fq[x] a new permutation binomial g(x) ∈ Fp[x], and
deduce in Corollary 3.6, a bound of p in terms of d = gcd(n − m, p − 1). Some
consequences of this theorem are stated in Sections 2 and 3.

We fix some notation which will be used through this paper. The letter p always
denotes a prime number, and Fq the finite field containing q = pr elements. For
any polynomial g(x) ∈ Fq[x], we denote by g(x) the unique polynomial of degree at
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most q − 1, with coefficients in Fq such that g(x) ≡ g(x) (mod xq − x). When we
refer to a binomial f (x) over Fq, we always mean a polynomial f (x) ∈ Fq[x] of the
form f (x) = axn + xm with the nonrestrictive condition gcd(m, n) = 1 (see [7, Ex. 2.1]),
n > m and a , 0. The integer d = gcd(n − m, q − 1) will play an important role. It is
well known that if −a ∈ (F?q )d, then the equation f (x) = 0 has d + 1 distinct solutions
in Fq, so f (x) is not a permutation of Fq [8]. In particular, this claim is true if d = 1.

2. Nonexistence of permutation binomials of certain shapes

An old result in the theory of permutation polynomials is the following theorem
proved by Hermite for prime fields and Dickson in the general case.

T 2.1. Let p be a prime number, q = pr and g(x) ∈ Fq[x]. Then g(x) is a
permutation polynomial if and only if

(i) g(x) = 0 has a unique solution in Fq;

(ii) for every l ∈ {1, . . . , q − 2}, deg gl(x) ≤ q − 2.

For binomials, we deduce from Theorem 2.1 the following corollary.

C 2.2. Let f (x) = axn + xm ∈ Fq[x], such that a , 0 and gcd(m, n) = 1. Let
d = gcd(n − m, q − 1). Suppose that d ≥ 2. Then f (x) is a permutation polynomial of
Fq if and only if

(i) f (x) = 0 has a unique solution in Fq;

(ii) for every l ∈ {1, . . . , q − 2} such that d | l, we have deg f l(x) ≤ q − 2.

P. From Theorem 2.1, we have only to prove that if l ∈ {1, . . . , q − 2} and d - l,
then deg f l(x) ≤ q − 2. Let k be an integer and let k be the integer in {1, . . . , q − 1}
such that k ≡ k (mod q − 1). Then, modulo xq − x,

xk ≡

{
1 if k = 0
xk if k , 0.

It follows that if k > 0, then xk ≡ xq−1 (mod xq − x) if and only if k ≡ 0
(mod q − 1). Suppose that there exists l ∈ {1, . . . , q − 2} with d - l such that
deg f l(x) = q − 1. We deduce from

(axn + xm)l =

l∑
j=0

(
l
j

)
a jxn j+m(l− j) =

l∑
j=0

(
l
j

)
a jx(n−m) j+lm (2.1)

that there exists an integer j ∈ {0, . . . , l} such that

x(n−m) j+lm ≡ xq−1 (mod xq − x).

Hence, (n−m) j+ lm > 0 and (n−m) j+ lm ≡ 0 (mod q−1). Since d = gcd(n−m, q−1),
it follows that d | n − m and d | q − 1. But gcd(n, m) = 1 implies that gcd(d, m) = 1.
Then d | l, which is a contradiction. �
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Corollary 2.2 reduces enormously the calculations when applying Theorem 2.1
to check whether a given binomial permutes Fq or not. One needs to check the
degrees of only b(q − 2)/dc polynomials instead of q − 2 polynomials as given by
Theorem 2.1(ii).

For the proof of Theorem 1.7, we need the following lemma.

L 2.3. Let f (x) be a binomial such that d > 1. Let l ∈ {1, . . . , q − 2} such that
d | l. Then the following three assertions are equivalent:

deg f l(x) ≤ q − 2, (2.2)
l∑

j=0
(n−m) j+lm≡0 (mod q−1)

(
l
j

)
a j = 0, (2.3)

γl∑
λ=0

(
l

j0 + λ(q − 1)/d

)
(a(q−1)/d)λ = 0, (2.4)

where j0 is the smallest nonnegative integer satisfying

j0 ≡
−lm

(n − m)

(
mod

q − 1
d

)
≡
−lm/d

(n − m)/d

(
mod

q − 1
d

)
and γl is the largest integer λ such that

j0 +
λ(q − 1)

d
≤ l.

P. From (2.1), deg f l(x) ≤ q − 2 if and only if

l∑
j=0

(n−m) j+lm≡0 (mod q−1)

(
l
j

)
a j = 0. (2.5)

The condition (n − m) j + lm ≡ 0 (mod q − 1) is equivalent to ((n − m)/d) j + (l/d)m ≡
0 (mod (q − 1)/d), which is equivalent to

j ≡
−lm

n − m

(
mod

q − 1
d

)
. (2.6)

Let j0 be the smallest integer satisfying (2.6). Then j ≡ j0 (mod (q − 1)/d). Hence
(2.5) is equivalent to

αl∑
λ=0

(
l

j0 + λ( a−1
d )

)
(aq−1/d)λ = 0,

where γl is the largest integer λ such that j0 + λ(q − 1)/d ≤ l. �
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P  T 1.7. In the following proof, we repeatedly use (2.4). The integer
j0 appearing in this equation depends on l, so it will be denoted by j0(l). Suppose
that there exists a permutation binomial f (x) over Fp such that p − 1 > d(d − 1); then
(p − 1)/d > d − 1, that is, (p − 1)/d ≥ d. Since (p − 1)/d , d, then (p − 1)/d > d. Set
(p − 1)/d = αd − z where α > 1 and z are integers such that z ∈ {0, . . . , d − 1}. We may
suppose that z ∈ {1, . . . , d − 1}. Let j0(d) be the unique integer determined by (2.4) for
l = d. Set j0(d) = βd + δ with δ ∈ {0, . . . , d − 1}; then

j0(d) <
p − 1

d
< αd. (2.7)

Case 1: j0(d) ≤ d.
In this case, because j0(d) + λ(p − 1)/d > d for λ ≥ 1, (2.4) reduces to

(
d

j0(d)

)
= 0.

Since j0(d) ≤ d < p, it follows that
(

d
j0(d)

)
, 0, which is a contradiction, and we can

exclude this case.

Case 2: j0(d) > d.
Clearly, β ≥ 1, and from (2.7), we deduce that β < α. Consider (2.4) for l = αd. We

have

α j0(d) =

( p − 1
d2

+
z
d

)
j0(d)

=
p − 1

d
β + zβ + αδ

≡ zβ + αδ
(
mod

p − 1
d

)
.

Case 2.1: zβ + αδ < (p − 1)/d.
In this case,

d < j0(αd) = zβ + αδ <
p − 1

d
< αd = l. (2.8)

Let λ be a positive integer. Then

j0(αd) +
λ(p − 1)

d
≥ j0(αd) +

p − 1
d

= zβ + αδ +
p − 1

d

> d +
p − 1

d
> z +

p − 1
d

= αd = l.

Hence there is only one term in the left-hand side of (2.4) corresponding to l = αd,
namely

(
αd

j0(αd)

)
=

(
αd

zβ+αδ

)
. Since (p − 1)/d ≥ d,

αd <
p − 1

d
+ d < p.
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Hence, from (2.8), we obtain that j0(αd) = zβ + αδ < αd < p. Then(
αd

j0(αd)

)
=

(
αd

zβ + αδ

)
, 0,

and we reject this case.

Case 2.2: zβ + αδ ≥ (p − 1)/d.
Suppose that δ = 0. Then zβ + αδ = zβ and since β ≤ α − 1, we deduce that

zβ + αδ ≤ (α − 1)z ≤ (α − 1)(d − 1). Hence

zβ + αδ ≤ αd − α − d + 1

< αd − z =
p − 1

d
,

which is a contradiction. We may suppose that δ is positive. Consider (2.4) for
l = (α − 1)d. Then

(α − 1) j0(d) =

( p − 1
d2

+
z − d

d

)
j0(d)

=

( p − 1
d2

+
z − d

d

)
(βd + δ)

≡ (z − d)β + (α − 1)δ
(
mod

p − 1
d

)
.

To prove that (z − d)β + (α − 1)δ = j0 ((α − 1)d), we have to show that 0 ≤ (z − d)β +

(α − 1)δ < (p − 1)/d. Since z < d, we have (z − d)β < 0. Hence

(z − d)β + (α − 1)δ < (α − 1)δ ≤ (α − 1)(d − 1)

= αd − d − α + 1

< αd − z =
p − 1

d
.

We now look at the sign of (z − d)β + (α − 1)δ. On the one hand, we have
α > β ≥ 1, so α ≥ 2. Furthermore, since z − d < 0 and β ≤ α − 1, we have (z − d)β ≥
(z − d)(α − 1). Hence

(z − d)β + (α − 1)δ ≥ (z − d)(α − 1) + (α − 1)δ

= (α − 1)(z − d + δ)

≥ z − d + δ.

On the other hand, since zβ + αδ ≥ (p − 1)/d = αd − z,

(z − d)β + (α − 1)δ = zβ + αδ − dβ − δ

≥ αd − z − dβ − δ

= (α − β)d − z − δ

≥ d − z − δ.
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We have shown that (z − d)β + (α − 1)δ ≥ |A|, where A = z − d − δ. Hence (z − d)β +

(α − 1)δ ≥ 0 and then j0 ((α − 1)d) = (z − d)β + (α − 1)δ. As in the preceding cases
we prove that on the left-hand side of (2.4), for l = (α − 1)d, there is only one
term. For any integer λ ≥ 1, we have (z − d)β + (α − 1)δ + λ(p − 1)/d ≥ (p − 1)/d > l.
Equation (2.4) reads

(
(α−1)d

(z−d)β+(α−1)δ)

)
= 0. But, since (z − d)β < 0, we have (z − d)β +

(α − 1)δ < (α − 1)d. Hence
(

(α−1)d
(z−d)β+(α−1)δ)

)
, 0, and the proof of Theorem 1.7 is

complete. �

C 2.4. Let f (x) be a permutation binomial over Fp. Then p − 1 ≤ d
(d − 2) except possibly in the case d ≡ 0 (mod 3), p = d2 − d + 1 and one of the two
possibilities n ≡ 0 (mod (p − 1)/d) or m ≡ 0 (mod (p − 1)/d).

P. Since there are no permutation binomials over F2 and F3, we may suppose
that p ≥ 5. From Theorem 1.7, we have (p − 1)/d ≤ d − 1. It remains to consider the
case (p − 1)/d = d − 1, that is, p = d2 − d + 1. Suppose that there exists a permutation
binomial over Fp, f (x) = axn + xm such that p = d2 − d + 1. Consider (2.4) for l = d
and let j0 be the integer appearing in this equation. Since j0 ∈ {0, . . . , (p − 1)/d}, then
j0 < d. For any positive integer λ, we have j0 + λ(p − 1)/d ≥ j0 + (p − 1)/d > d except
if j0 = 0 or j0 = 1. Beyond these exceptions, (2.4) reads

(
d
j0

)
= 0. Since j0 < d < p this

equation is impossible and we get a contradiction.
If j0 = 0, (2.4) reads (

d
0

)
+

(
d

p−1
d

)
(a)(p−1)/d = 0,

so 1 + dad−1 ≡ 0 (mod p). We deduce that dd ≡ (−1)d (mod p), so (−d)d ≡ 1
(mod p). We have (−d)2 ≡ d − 1 (mod p) and (−d)3 ≡ 1 (mod p), so the order of
−d in Fp which is a divisor of d is equal to 1 or 3. Since d(d − 1) = p − 1, the first
possibility is excluded, so d ≡ 0 (mod 3). On the other hand, the condition (n − m) j0 +

dm ≡ 0 (mod p − 1) implies dm ≡ 0 (mod p − 1), that is, m ≡ 0 (mod (p − 1)/d).
If j0 = 1, (2.4) reads (

d
1

)
+

(
d

1 +
p−1

d

)
(a)p−1/d = 0,

so d + ad ≡ 0 (mod p). As in the preceding case we find dd ≡ (−1)d (mod p), so d ≡ 0
(mod 3). On the other hand, the condition (n − m) j0 + dm ≡ 0 (mod p − 1) implies
(n − m) + dm ≡ 0 (mod p − 1), that is, n ≡ 0 (mod (p − 1)/d). �

The condition d ≡ 0 (mod 3), p = d2 − d + 1 in Corollary 2.6 occurs, for instance,
for p = 7 and d = 3 or p = 31 and d = 6 (see [5, Corollary 2. 5]). This shows that the
bound of p in terms of d in Theorem 1.7 is sharp.

If f (x) = axn + x permutes Fp, where n > 1, a ∈ F∗p and n − 1 | p − 1, then
Theorem 1.6 does not generalise Theorem 1.5 which implies that p − 1 ≤ (n − 1)2.
Theorem 1.7 proved above generalises Theorem 1.5 even in this case, as shown by the
following corollary.
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C 2.5. If f (x) = axn + x permutes Fp, where n > 1 and a ∈ F∗p, then p − 1 ≤
(n − 1)(n − 3).

P. From Corollary 2.6, we have p − 1 ≤ d(d − 2), which implies that p − 1 ≤
(n − 1)(n − 3), except if d ≡ 0 (mod 3), (p − 1)/d = d − 1, and n ≡ 0 (mod (p − 1)/d)
(because m = 1). So we have only to consider the exceptional case. In this case,
we have n ≡ 0 (mod d − 1) and n − 1 ≡ 0 (mod d). Clearly n , d − 1. It follows that
n ≥ 2(d − 1). We conclude that 3 ≤ d ≤ n/2 + 1. It is now easy to deduce the inequality
p − 1 ≤ (n − 1)(n − 3). �

The following result is similar to [5, Corollary 2.4] except that the four polynomials
arising for d = 3 and p = 7 were omitted.

C 2.6. If f (x) = xn + axm permutes Fp, where 1 ≤ m < n < p and a ∈ F∗p, then
gcd(n − m, p − 1) > 4 except if d = 3, p = 7 and f (x) is one of the following:

(i) f (x) = x4 + 3x;
(ii) f (x) = x4 − 3x;
(iii) f (x) = x5 + 2x2;
(iv) f (x) = x5 − 2x2.

P. We conclude from Corollary 2.4 that if d = 4, then p − 1 ≤ 8, that is, p ≤ 7. We
see from Table 7.1 of [4] that there are no permutation binomials in this case. When
d = 2, we conclude from Corollary 2.4 that there are no permutation binomials in this
case. When d = 3, Corollary 2.4 implies that p = 7. We see from Table 7.1 of [4] that
the only possible cases are the ones listed above. �

3. Permutation binomials over a subfield of Fq arising from permutation
binomials over Fq

Before stating a result about the possibility of deducing, in some cases, a
permutation binomial of a subfield of Fq from a given permutation binomial of Fq,
we make the following definition.

D 3.1. Fix the integers m and n such that 1 ≤ m < n ≤ q − 1 and let d =

gcd(n − m, q − 1). We say that the polynomials f (x) = axn + xm and g(x) = bxn + xm,

with coefficients in Fq, are d-equivalent and we write f d
∼ g if and only if there exists

ε ∈ (Fq)d such that b = εa.

Obviously the above relation in the set of binomials over Fq, of degree at most
q − 1, where the pair (m, n) is fixed, is an equivalence relation and each equivalence
class contains (q − 1)/d elements.

L 3.2. Suppose that the polynomials f (x) = axn + xm and g(x) = bxn + xm ∈

Fq[x], are d-equivalent and that f (x) permutes Fq. Then so does g(x).

P. Since gcd(n − m, q − 1) = d, there exist two integers u and v such that

u(n − m) + v(q − 1) = d. (3.1)

[8] On permutation binomials over finite fields 119
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The binomials f (x) and g(x) being d-equivalent, there exists η ∈ Fq such that b = ηda.
Using (3.1), we obtain b = ηu(n−m)a. We deduce that

g(x) = ηu(n−m)axn + xm = η−um(ηunaxn + ηumxm)

= η−um(a(ηux)n + (ηux)m) = η−um f (ηux)),

and this proves our lemma. �

T 3.3. Let f (x) = axn + xm be a permutation binomial of Fq with q = pr and s
be a positive divisor of r. Let d = gcd(n − m, q − 1).

(1) There exists a binomial g(x) = bxn + xm ∈ Fps [x] d-equivalent to f (x) if and only
if the order of a in (Fq)? divides lcm(ps − 1, (q − 1)/d).

(2) If these equivalent conditions hold, then the number of g(x) = bxn + xm ∈ Fps [x],
d-equivalent to f (x), is equal to gcd(ps − 1, (q − 1)/d) and they are all distinct
as permutations of Fps . Moreover, g(x) ≡ bxn1 + xm1 (mod xps

− x) if ps − 1 -
d and g(x) ≡ (b + 1)xk (mod xps

− x) if ps − 1 | d where k, m1, n1 are positive
integers less than ps − 1, m1 , n1, gcd(ps − 1, k) = 1.

(3) Let t be a positive integer (not necessarily dividing r). There exists a binomial
g(x) = bxn + xm ∈

(
Fpt ∩ Fq

)
[x], d-equivalent to f (x), if and only if the order of a

in (Fq)? divides lcm(pt − 1, (q − 1)/d).

P. (1) Suppose first that the order of a in (Fq)? divides lcm(ps − 1, (q − 1)/d). We
will use the following claim for which the proof is omitted.

Claim 1. Let δ, u, v be positive integers. Then δ | lcm(u, v) if and only if there exist
positive integers δ1, δ2 such that δ1 | u, δ2 | v and δ = lcm(δ1, δ2).

Let δ be the order of a in (Fq)?. Then δ = lcm(δ1, δ2), where δ1 and δ2 are
positive integers such that δ1 | ps − 1 and δ2 | (q − 1)/d. Let ξ be a generator of
(Fq)?. Then a = (ξ(q−1)/δ1 )i(ξ(q−1)/δ2 ) j for some nonnegative integers i and j. Let
ε = ξ− j(q−1)/δ2 , b = εa and g(x) = bxn + xm. Then ε(q−1)/d = (ξ− j(q−1)/dδ2 )q−1 = 1 and
bps−1 = (ξi(ps−1)/δ1 )q−1 = 1, so ε ∈ Fq)d, b ∈ Fps and g(x) d

∼ f (x).
Conversely, suppose that there exists g(x) = bxn + xm ∈ Fps , d-equivalent to f (x).

Then we may find a (q − 1)/dth root of unity ε such that a = εb. Hence
alcm(ps−1,(q−1)/d) = (εb)(ps−1)(q−1)/d/δs = 1, where δs = gcd(ps − 1, (q − 1)/d). It follows
that the order of a in (Fq)? divides lcm(ps − 1, (q − 1)/d).
(2) Let δs = gcd(ps − 1, (q − 1)/d). By (1), there exists at least one permutation
binomial of Fq, g(x) = csxn + xm with cs ∈ Fps , d-equivalent to f (x). Let h(x) =

bsxn + xm be any permutation binomial of Fq with bs ∈ Fps , d-equivalent to f (x). Then

g(x) d
∼ h(x), so there exists ε ∈ Fd

q such that bs = εcs. We deduce that ε = bs/cs ∈ Fps .
It follows that ε ps−1 = 1 = ε(q−1)/d and then εδs = 1. We conclude that h(x) has the
form h(x) = εcsxn + xm with ε satisfying the condition εδs = 1. On the other hand, any
polynomial h(x) of this form is d-equivalent to g(x) and then to f (x). Clearly all these
h(x), as permutations of Fq, are distinct. Because they all take different values at the
argument x = 1, they are distinct as permutations of Fps . We conclude that the number
of these h is equal to δs.
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To prove the last part of the theorem we reduce g(x) modulo xps
− x. Denote

by g(x) the unique polynomial over Fps of degree at most ps − 1 such that g(x) ≡
g(x) (mod xps

− x). Set n = (ps − 1)λ + n1 and m = (ps − 1)µ + m1 with 0 ≤ m1, n1 ≤

ps − 2. If m1 = 0 or n1 = 0, then the degree of g(x) is equal to ps − 1, which is excluded
by the fact that g(x) is a permutation polynomial of Fps . If m1 = n1, then clearly
ps − 1 | d and g(x) = (b + 1)xk, where k = n1 = m1 and gcd(k, ps − 1) = 1. Suppose
now that m1 , 0, n1 , 0 and m1 , n1. Then ps − 1 - d and g(x) = bxn1 + xm1 . Let
k = gcd(m1, n1); then the polynomial g1(x) = bxn1/k + xm1/k is a permutation binomial
of Fps .

(3) We will use the following well-known claim.

Claim 2. Let a, b, c be nonzero integers. Then gcd(lcm(a, b), lcm(a, c)) =

lcm
(
a, gcd(b, c)

)
.

Suppose that there exists a binomial g(x) = bxn + xm ∈
(
Fpt ∩ Fq

)
[x], d-equivalent

to f (x). Let s = gcd(r, t). Then Fq ∩ Fpt = Fps and, by (1), the order of a in Fq

divides lcm(ps − 1, (q − 1)/d). Therefore this order divides lcm(pt − 1, (q − 1)/d).
Suppose now that the order of a in (Fq)? divides lcm(pt − 1, (q − 1)/d). Then applying
Claim 2 with a = (q − 1)/d, b = pt − 1 and c = pr − 1, we conclude that this order
divides lcm(ps − 1, (q − 1)/d) and then by (1) there exists a binomial g(x) = bxn + xm ∈

(Fpt ∩ Fq)[x], d-equivalent to f (x). �

R 3.4. Suppose that p is odd. Then under hypothesis (1) of the above theorem,
gcd(d, ps − 1) , 1. Indeed if this greatest common divisor is equal to 1, then
lcm(ps − 1, (q − 1)/d) = (q − 1)/d. But it is known that if (−1/a)(q−1)/d = 1, then the
corresponding binomial is not a permutation binomial of Fq (see [8]).

C 3.5. Let f (x) = axn + xm be a permutation binomial of Fq. Suppose that
the order of a in (Fq)? divides lcm(p − 1, (q − 1)/d). Then p − 1 ≤ d(d − 1).

P. If p − 1 | d, the corollary is clear. If not, the proof is a direct consequence of
Theorems 1.7 and 3.3. �

C 3.6. Suppose that there exists a permutation binomial f (x) = axn + xm of
Fq with q = pr such that for any prime number l, where l | d, gcd(l(l − 1), r) = 1.
Then d = p − 1 or there exists a permutation binomial of Fp, g1(x) = cxn1 + xm1 ,
such that n ≡ kn1 (mod p − 1), m ≡ km1 (mod p − 1), 0 < km1 < kn1 < p − 1, where
k is a positive integer coprime with p − 1, and p − 1 ≤ d(d − 1). Moreover, the two
possibilities exclude each other.

P. Let l be any prime factor of d. We have pr ≡ 1 (mod l) by assumption, and
pl−1 ≡ 1 (mod l) by Fermat’s little theorem. Since r and l − 1 are coprime, p ≡ 1
(mod l). It is easy to see that p ≡ 1 (mod d) and lcm(p − 1, (q − 1)/d) = q − 1 so
that Theorem 3.3 may be applied to any permutation binomial of Fq. Let g(x) be
the permutation binomial of Fq with coefficients in Fp deduced from f (x), using
Theorem 3.3. Let g1(x) be the reduced polynomial of g(x) modulo xp − x. Then g1(x)
is a monomial or g1(x) is a sum of two monomials of degree n′ and m′ respectively
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satisfying 0 < m′ < n′ < p − 1. Moreover, the first case holds if and only if p − 1 | d.
Since p ≡ 1 (mod d), the first case holds if and only if d = p − 1. To complete the
proof let k = gcd(m′, n′), m1 = m′/k and n1 = n′/k; by applying Corollary 3.6, we have
p − 1 ≤ d(d − 1). �

The following result is a generalisation of [5, Corollaries 2.4 and 2.5].

C 3.7. There does not exist a permutation binomial of Fq with q = pr if one
of the following conditions holds:

(i) r odd, d = 2, p , 3;
(ii) r odd, d = 4, p , 5;
(iii) gcd(r, 6) = 1, d = 3, p , 7;
(iv) gcd(r, 10) = 1, d = 5, p , 11;
(v) gcd(r, 6) = 1, d = 6, p , 7, 13, 19, 31;
(vi) gcd(r, 42) = 1, d = 7, p , 29;
(vii) r odd, d = 8, p , 17.

P. We prove case (v) using Corollaries 3.5 and 3.6 and [5, Corollary 2.5]. The
proof of the other statements will be omitted. Suppose that there exists a permutation
binomial of Fq with d = 6 and gcd(r, 6) = 1. Then the hypotheses of the above corollary
hold. We deduce that p = d + 1 = 7 or there exists some permutation binomial g1(x) =

cxn1 + xm1 of Fp. It is evident that gcd(n1 − m1, p − 1) divides d = 6 and is not trivial.
The possible values of this greatest common denominator are 2 or 3 or 6. According
to [5, Corollary 2. 5], the possible values of p are p = 7, 13, 19, 31. �

R 3.8. It is of interest to improve the conditions on r and p in the above
corollary. We use the results of [4, Table 7.1] to make some observations in this
direction. Since ax3 + x is a permutation polynomial of Fq for q ≡ 0 (mod 3) and
−a is not a square, the condition p , 3 is necessary for d = 2. The polynomial ax5 + x
is a permutation of Fq for q ≡ 0 (mod 5) and −a is not a fourth power, so the condition
p , 5 is necessary for d = 4. Let a ∈ F9 such that a2 = −1; then ax5 + x permutes F9,
so the condition r odd is necessary for d = 4.

P 3.9. Let q = pr and f (x) = axn + xm ∈ Fq[x] be a permutation binomial.
Let Fps1 , . . . , Fpsu be subfields of Fq such that for each i, Fpsi contains the coefficients
of some binomial gi(x), d-equivalent to f (x). Then

⋂u
i=1 Fpsi contains the coefficients

of some binomial g(x), d-equivalent to f (x).

P. We prove the result for u = 2. The proposition may be completed easily by
induction. By Theorem 3.3(1), the order of a divides both lcm(ps1 − 1, (q − 1)/d) and
lcm(ps2 − 1, (q − 1)/d), so by Claim 2, this order divides lcm

(
(q − 1)/d, gcd(ps1 − 1,

ps2 − 1)
)
. It is well known that gcd(ps1 − 1, ps2 − 1) = pgcd(s1,s2) − 1 and that Fps1 ∩

Fps2 = Fpgcd(s1 ,s2) . By Theorem 3.3 again this last field contains the coefficients of some
binomial g(x), d-equivalent to f (x). �
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If we consider all the subfields Fpsi of Fq satisfying the given property in the
preceding proposition we may conclude that the field F0 =

⋂
i Fpsi contains the

coefficients of some binomial g(x), d-equivalent to f (x). We call this field the smallest
field containing the coefficients of some d-equivalent to f (x).

The next proposition shows that binomials that are conjugate over Fq or in the same
d-class have the same smallest field.

P 3.10. Let f (x) = axn + xm ∈ Fq[x] be a permutation binomial of Fq and let
F0 be the smallest field containing the coefficients of some d-equivalent to f (x).

(1) Let g(x) ∈ Fq[x]. If f d
∼ g, then F0 is the smallest field containing the coefficients

of some d-equivalent to g(x).
(2) If f̃ (x) = ape

xn + xm, then F0 is the smallest field containing the coefficients of
some d-equivalent to f̃ (x).

P. (1) Let F1 be the smallest field corresponding to g(x). For the proof of (1)
and by symmetry it is sufficient to prove that F0 ⊂ F1. Let g1(x) be a d-equivalent of

g(x) with coefficients in F1; then g1
d
∼ g d
∼ f , so F1 contains the coefficients of some

d-equivalent to f (x). Therefore F0 ⊂ F1.
(2) The result follows from Theorem 3.3, (1) and the observation that a and ape

have
the same order. �
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