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Holomorphic and de Rham torsion

Jean-Michel Bismut

Abstract

We prove the vanishing of the equivariant holomorphic torsion forms associated to the
holomorphic de Rham complex. We also consider corresponding torsion forms associated
to complexes in hypercohomology, for which we give a local formula. Rigidity of certain
genera explains part of these formulas. The Lefschetz operators in Hodge theory play a
prominent role in the proofs.
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Introduction
The purpose of this paper is to establish various results on the equivariant holomorphic torsion
forms associated to the de Rham complex. In particular, we show that, in general, these
torsion forms vanish identically. Also we give a local formula for the equivariant holomorphic torsion
forms in hypercohomology.

In fact, let π : M → S be a holomorphic submersion of complex manifolds with compact fibre X,
and let E be a holomorphic vector bundle on M . Assume that π is Kähler, i.e. there is a closed (1, 1)
form ωM on M which induces a Hermitian metric hTX on TX = TM /S. Let hE be a Hermitian
metric on E. Let G be a compact Lie group acting holomorphically on M . Assume that G acts
fibrewise, that the action of G lifts to E, and that G preserves ωM and hE . Finally, we assume that
the Riπ∗E are locally free. In [BGS88b, BK92, M00], if g ∈ G, Bismut, Gillet and Soulé, Bismut
and Köhler, and Ma have constructed analytic torsion forms Tg(ωM , hE). Let Mg be the fixed point
manifold of g in M , which fibres on S with fibre Xg. The forms Tg(ωM , hE) are sums of (p, p) forms
on S, such that

∂̄∂

2iπ
Tg(ωM , hE) = chg(R

•
π∗E,hR•π∗E) −

∫
Xg

Tdg(TX , hTX )chg(E,hE). (0.1)

On the right-hand side of (0.1), the characteristic classes are the ones which appear in the Lefschetz
fixed point formula of Atiyah and Bott [ABo67, ABo68], evaluated in Chern–Weil theory using the
corresponding holomorphic Hermitian connections. In particular the metric hR•π∗E is a normalized
version of the obvious L2 metric on R•π∗E, which is obtained by identifying the cohomology of the
fibres to the corresponding harmonic forms.
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Let Tg(ωM ) be the analytic torsion forms associated to the Z-graded vector bundle E = Λ•(T ∗X),
equipped with the metric induced by hTX . Then (0.1) gives

∂̄∂

2iπ
Tg(ωM ) = 0. (0.2)

The anomaly formulas of [BK92] show that, modulo smooth forms of the type ∂̄α + ∂β,
Tg(ωM ) does not depend on ωM . If S is compact and Kähler, Tg(ωM ) defines a cohomology class
on S.

One purpose of this paper is to prove that the form Tg(ωM ) is closed, and that its cohomol-
ogy class vanishes identically. This is clear for the component of degree 0, since it coincides with
the Ray–Singer analytic torsion [RS71] of the de Rham complex of the fibre, which is known to
vanish. The vanishing of the higher analytic torsion forms is subtler. We obtain this vanishing in
Theorem 4.15, by comparing the holomorphic torsion forms to other forms in relative de Rham
theory, which were considered by Bismut and Lott [BLo95].

To put the above argument in perspective, let us briefly recall that the Levi-Civita super-
connection was introduced in [B86] to establish a local version of the families index theorem of
Atiyah and Singer [AS71]. Different versions of the Levi-Civita superconnection appear in two un-
related contexts: in complex geometry, in the proof given in [BGS88b] of a refined version of the
Riemann–Roch–Grothendieck theorem, and also in the proof by Bismut and Lott [BLo95] of a
Riemann–Roch–Grothendieck theorem for flat vector bundles. In § 3 of the present paper, we show
that these two versions of the Levi-Civita superconnection are related to each other by an explicit
conjugation involving the Lefschetz operators L,Λ, N of Hodge theory. To illustrate this point, let
us just recall that if X is Kähler,

(∂̄X + ∂̄X∗ − i(∂X + ∂X∗))2 = 0. (0.3)

From the point of view of the present paper, an explanation for (0.3) is that

∂̄X + ∂̄X∗ − i(∂X + ∂X∗)

is conjugate to the de Rham operator dX by a conjugation involving the Lefschetz operators.
When applied to families, this conjugation argument allows us to prove that the cohomology class
of Tg(ωM ) vanishes.

Let now K be a holomorphic section of TX . One can then consider the fibrewise double complex
which computes the hypercohomology of the fibre. A second purpose of this paper is to evaluate the
analytic torsion forms TK,g(ωM ) of this complex using the results of Bismut and Lebeau [BL91],
Bismut [B95, B97] and Ma [M00]. If the fibres X are connected, if the vanishing locus N of K
is smooth and fibres on S with non-empty fibre Y , a result of Carrell and Liebermann [CaL73]
asserts that the fibrewise spectral sequence in hypercohomology degenerates at E1. When KR is
Killing, we give in Theorem 6.6 a formula for TK,g(ωM ) as the sum of a local expression and of
a Bott–Chern class associated to the hypercohomology of the fibre. In the local term, the genus
R(θ, x) of [B94], which is an equivariant version of the R genus of Gillet and Soulé [GS91], appears.
Combining the degeneracy of the spectral sequence with this local formula leads to non-trivial
results on the genus R(θ, x).

A third purpose of this paper is to give a partial direct explanation for this behaviour of the
genus R(θ, x). In § 7, we give a direct proof of the properties of the genus R(θ, x), by using
the rigidity of the genera which are associated to the locally trivial action of G on the H(p,q)(X, C).

This paper is organized as follows. In § 1, we establish simple identities which relate the natural
representations of the Clifford algebra of a complex Hermitian vector space. The operators L,Λ, N
appear in these identities.
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In § 2, we recall various differential geometric properties of Kähler fibrations in the sense of
[BGS88b] and of the corresponding Gauss–Manin connection on the direct image of the constant
sheaf, and on the corresponding Hodge filtration.

In § 3, we compare the associated holomorphic and real Levi-Civita superconnections. More
precisely, we give an explicit conjugation formula relating the two superconnections.

In § 4, we prove the vanishing of the holomorphic analytic torsion forms Tg(ωM ).
In § 5, if K is a holomorphic section of TX , we derive various properties of the correspond-

ing hypercohomology, and we establish a conjugation formula relating corresponding Levi-Civita
superconnections.

In § 6, we give a formula for the equivariant holomorphic analytic torsion forms in hypercoho-
mology. Also, we prove they are locally constant on G.

In § 7, we prove that these torsion forms vanish in degree 0 using rigidity arguments.
Finally, in § 8, we derive various consequences of the conjugacy formulas of § 5. In particular,

we show that the Morse instantons considered by Witten [W82] and also corresponding instantons
for the hypercohomology are in fact conjugate to each other. Also we relate the genus R(θ, x)
to a corresponding genus J(θ, x) constructed by Bismut and Goette [BGo01] in de Rham theory.
These two genera, which are formally closely related, appear as deriving from essentially similar
constructions, where the roles of the Hodge operators are simply interchanged.

In the whole paper, if A is a Z2-graded algebra, and if A,B ∈ A, [A,B] denotes the supercommu-
tator of A and B. If A,B are Z2-graded algebras, A⊗̂B is the Z2-graded algebra which is the tensor
product of A and B. If V is a Z2-graded finite-dimensional vector space, if A ∈ End(V ), Trs[A] ∈ C

is the supertrace of A. If A is supercommutative, we extend Trs to a linear map from A⊗̂End(V )
into A. It is an elementary fact [Q85] that the supertrace of a supercommutator vanishes.

1. Clifford algebras and exterior algebras

In this section, we collect a few elementary facts on Clifford algebras. In particular, we give an
explicit formula relating the action of a Clifford algebra on real and complex versions of the exterior
algebra, in which the operators L,Λ, N appear explicitly.

This section is organized as follows. In § 1.1, we introduce the operators L,Λ, N . In § 1.2, we
recall the definition of a Clifford algebra. Finally, in § 1.3, we relate real and complex representations
of a Clifford algebra.

1.1 A symplectic vector space
Let V be a real vector space of even dimension n = 2�. Let ω be a real symplectic form on V , i.e. a
non-degenerate element of Λ2(V ∗). Let L ∈ End(Λ•(V ∗)) be given by

Lα = ω ∧ α. (1.1)

Let Λ ∈ End(Λ•(V )) be the transpose of L.
Let e1, . . . , en be a basis of V , and let e1, . . . , en be the corresponding dual basis of V ∗. Then

L = 1
2ω(ei, ej)ei ∧ ej , Λ = −1

2ω(ei, ej)ieiiej . (1.2)

Let φ : V → V ∗ be the isomorphism canonically associated to ω, so that if X,Y ∈ V ,

ω(X,Y ) = 〈X,φY 〉. (1.3)

In the sequel, we will identify V and V ∗ by the map φ. Let ω∗ be the corresponding symplectic
form on V ∗.
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Also we identify Λ•(V ) and Λ•(V ∗) by φ. The operator Λ now acts on Λ•(V ∗), and this action is
given by the formula

Λ = −1
2ω∗(ei, ej)ieiiej . (1.4)

Let N be the number operator of Λ•(V ∗), which acts on Λk(V ∗) by multiplication by k. Put

H =
1
2

(
N − n

2

)
. (1.5)

Then we have the classical sl2 commutation relations,

[H,L] = L, [H,Λ] = −Λ, [L,Λ] = 2H. (1.6)

1.2 Clifford algebras and exterior algebras
Let 〈 , 〉 be a Euclidean product on V . Let c(V ) be the Clifford algebra of (V, 〈 〉), i.e. the algebra
spanned over R by 1, X ∈ V , and the commutation relations

XY + YX = −2〈X,Y 〉. (1.7)

Then c(V ) is canonically filtered by the length (which defines an increasing filtration), and the
corresponding Gr is just the exterior algebra Λ•(V ). Also there is a canonical isomorphism of c(V )
and Λ•(V ) as vector spaces.

If X ∈ V , let X∗ ∈ V ∗ correspond to X by the scalar product. Set

c(X) = X∗ − iX , ĉ(X) = X∗ ∧ +iX . (1.8)

Then c(X), ĉ(X) are odd operators acting on Λ•(V ∗). If X,Y ∈ V ,

[c(X), c(Y )] = −2〈X,Y 〉, [ĉ(X), ĉ(Y )] = 2〈X,Y 〉, [c(X), ĉ(Y )] = 0. (1.9)

Under the isomorphism of vector spaces c(V ) ∼ Λ•(V ∗), one verifies easily that if c(X) corresponds
to left multiplication by X on c(V ), (−1)N ĉ(X) corresponds to right multiplication by X on c(V ).

If A ∈ End(V ), then A acts naturally on Λ•(V ∗) by the formula

A = −〈Aei, e
j〉eiiej . (1.10)

Assume now that A is antisymmetric. If e1, . . . en is an orthonormal basis of V , then

A = 1
4〈Aei, ej〉(c(ei)c(ej) − ĉ(ei)ĉ(ej)). (1.11)

1.3 Complex structures and exterior algebras
Let J ∈ End(V ) be a complex structure on V , so that J2 = −1. Let W,W be the ±i eigenspaces of
J in V ⊗R C. Then

V ⊗R C = W ⊕ W. (1.12)
We can identify W and V as real vector spaces equipped with a complex structure, the identification
being given by X ∈ W → X + X̄ ∈ V .

We will assume that ω is J-invariant and also that J polarizes ω. Namely there is a J-invariant
Euclidean product 〈 , 〉 on V such that if X,Y ∈ V ,

ω(X,Y ) = 〈X,JY 〉. (1.13)

Then J is antisymmetric with respect to 〈 , 〉. If V and V ∗ are identified by the scalar product 〈 , 〉,
the map φ : V → V ∗ defined in (1.3) is just given by J . Also ω and ω∗ coincide.

Assume that e1, . . . , en is an orthonormal basis of V . By (1.4), the operator Λ is now given by
the formula

Λ = −1
2ω(ei, ej)ieiiej . (1.14)
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Finally observe that Λ is the adjoint of L with respect to the obvious scalar product on Λ•(V ∗)
induced by 〈 , 〉.

We still denote by 〈 , 〉 the associated Hermitian product on W . Clearly,

Λ•(V ∗) ⊗R C ∼ Λ•(W ∗)⊗̂Λ•(W ∗). (1.15)

If X ∈ V , we still denote by X∗ the corresponding element in V ∗. If X ∈ W , then X∗ ∈ W
∗,

and if X ∈ W , then X∗ ∈ W ∗.
We will use the notation of § 1.2 with respect to the given Euclidean product 〈 , 〉. The exterior

algebras Λ•(W ∗) and Λ•(W ∗) are c(V )-modules. Indeed, if X ∈ W , Y ∈ W , set

cW (X) =
√

2X∗∧, cW (Y ) = −
√

2iY ,

cW (X) = −
√

2iX , cW (Y ) =
√

2Y ∗ ∧ . (1.16)

Of course the action of the operators in (1.16) can be extended to Λ•(V ∗)⊗RC 
 Λ•(W ∗)⊗̂Λ•(W ∗).
Then if X,Y ∈ V ⊗R C,

[cW (X), cW (Y )] = −2〈X,Y 〉, [cW (X), cW (Y )] = −2〈X,Y 〉, [cW (X), cW (Y )] = 0. (1.17)

Moreover one verifies easily that if X ∈ V ,

c(X) =
1√
2
(cW (X) + cW (X)), ĉ(X) =

i√
2
(cW (JX) − cW (JX)). (1.18)

Note that the commutation relations in (1.9) follow from (1.17) and (1.18).
Let w1, . . . , w� be an orthonormal basis of W , and let w1, . . . , w� be the corresponding dual basis

of W ∗. Then
L = −√−1wi ∧ w̄i, Λ =

√−1iw̄iiwi . (1.19)

Definition 1.1. Set
M = L − Λ, R = L + Λ. (1.20)

Then M is antisymmetric in End(Λ•(V ∗)), and R is symmetric.

Proposition 1.2. If X ∈ V ,

[M, iX ] = (JX)∗∧, [M,X∗∧] = iJX . (1.21)

If X ∈ V, ϑ ∈ R,

eϑM iXe−θM = cos(ϑ)iX + sin(ϑ)(JX)∗∧,

eϑMX∗ ∧ e−ϑM = cos(ϑ)X∗ ∧ + sin(ϑ)iJX . (1.22)

Proof. The identities in (1.21) are obvious consequences of (1.2), (1.13) and (1.14). From (1.21), we
get (1.22).

Remark 1.3. Observe that if X ∈ V , Y ∈ V ∗, using (1.21), we can rewrite (1.22) in the form

eϑM iXe−ϑM = cos(ϑ)iX − sin(ϑ)iXω,

eϑMY ∧ e−ϑM = cos(θ)Y ∧ + sin(θ)[Y ∧,Λ]. (1.23)

We emphasize the fact that (1.23) does not depend on the choice of J , while (1.21) seems to depend
on this choice.

Let N (0,1), N (1,0) be the number operators on Λ•(W ∗),Λ•(W ∗) so that

N = N (0,1) + N (1,0). (1.24)
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Set
N = N (0,1) − N (1,0). (1.25)

Proposition 1.4. If X ∈ V , ϑ ∈ R, then

eϑM cW (X)e−ϑM = cos(ϑ)cW (X) − sin(ϑ)cW (JX),

eϑM cW (X)e−ϑM = cos(ϑ)cW (X) − sin(ϑ)cW (JX),

eϑM c(X)e−ϑM = cos(ϑ)c(X) − sin(ϑ)c(JX),

eϑM ĉ(X)e−ϑM = cos(ϑ)ĉ(X) + sin(ϑ)ĉ(JX),

eϑMN (0,1)e−ϑM = N (0,1) − sin(2ϑ)
2

R + (cos(2ϑ) − 1)H,

eϑMN (1,0)e−ϑM = N (1,0) − sin(2ϑ)
2

R + (cos(2ϑ) − 1)H,

eϑMLe−ϑM = L + sin(2ϑ)H + (cos(2ϑ) − 1)
R

2
. (1.26)

Moreover,

i−N(1,0)
eϑM cW (X)e−ϑM iN

(1,0)
= cos(ϑ)cW (X) + sin(ϑ)cW (X),

iN
(0,1)

eϑMcW (X)e−ϑM i−N(0,1)
= cos(ϑ)cW (X) + sin(ϑ)cW (X). (1.27)

Proof. The first four identities in (1.26) follow from Proposition 1.2. Moreover using (1.6), we get

[M,N (0,1)] = −R, [M,R] = 4H, [M,H] = −R. (1.28)

From (1.28), we get the last three identities in (1.26). The identities in (1.27) follow from (1.26).

Theorem 1.5. If X ∈ V , then

i−N(1,0)
eπM/4cW (X)e−πM/4iN

(1,0)
= c(X),

iN
(0,1)

eπM/4cW (X)e−πM/4i−N(0,1)
= c(X),

i−N(1,0)
eπM/4cW (X)e−πM/4iN

(1,0)
= −iĉ(X),

i−N(1,0)
eπ/4MN (0,1)e−π/4M iN

(1,0)
=

1
2
N +

n

4
+

i

2
M,

i−N(1,0)
eπM/4N (1,0)e−πM/4iN

(1,0)
= −1

2
N +

n

4
+

i

2
M,

i−N(1,0)
eπM/4

(
N − n

2
− M

)
e−πM/4iN

(1,0)
= 2iL. (1.29)

Proof. Our theorem is a special case of Proposition 1.4.

Remark 1.6. By Theorem 1.5, we have found that the Clifford actions cW and cW on Λ•(V ∗) ⊗R C

are conjugate to the standard Clifford action c by an explicit conjugation. Moreover, since

[cW (X), N (1,0)] = 0, (1.30)

we deduce from (1.29) the identity [
c(X),−1

2
N +

i

2
M

]
= 0. (1.31)

Needless to say, this simple identity can be proved directly.
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2. Kähler fibrations and Gauss–Manin connections

In this section, we give various differential geometric properties of Kähler fibrations in the sense of
[BGS88b], and we introduce the corresponding Gauss–Manin connection on the cohomology of the
fibres.

This section is organized as follows. In § 2.1, we introduce the de Rham and Dolbeault complexes
of a compact complex Kähler manifold X. In § 2.2, we recall the definition of a Kähler fibration
given in Bismut, Gillet and Soulé [BGS88b]. In § 2.3, we give a formula for the de Rham operator
of the total space M of the fibration. In §§ 2.4 and 2.5, we recover a result of [BGS88b] which
expresses the compatibility of Riemannian to holomorphic data on a Kähler fibration. In § 2.6, we
give a formula for the Dolbeault operator of M . In § 2.7 we evaluate the Gauss–Manin connection on
H •(X, R). Finally, in § 2.8, we construct the corresponding connections on the Hodge decomposition
of H •(X, C).

2.1 Dolbeault and de Rham complexes

Let X be a compact complex manifold of real dimension n = 2�. Let TRX be the corresponding
real tangent bundle, and let JTRX ∈ End(TRX) be the complex structure of X. Let TX , TX be
the holomorphic and antiholomorphic tangent bundles, i.e. the i and −i eigenbundles of JTRX in
TRX ⊗R C. Let ωX be a real closed 2-form of type (1, 1) on X. We assume that ωX is a Kähler
form, i.e. there is a scalar product on TRX such that if A,B ∈ TRX,

ωX(A,B) = 〈A, JTRXB〉. (2.1)

We denote by hTX the associated Hermitian product on TX .
Now we use the same notation as in § 1. Namely L denotes the operator of multiplication by

ωX acting on the bundle of algebras Λ•(T ∗
R
X), and Λ is its adjoint.

Let (Ω•(X, R), dX ) be the de Rham complex of smooth sections of Λ•(T ∗
R
X) on X. Its cohomology

is the real cohomology H •(X, R). Note the duality between Ωm(X, R) and Ωn−m(X, R),

s, s′ → 1
(2π)�

∫
X

s ∧ s′, (2.2)

which induces the Poincaré duality of Hm(X, R) and Hn−m(X, R).
Let Ω•(X, C) denote the complexification of Ω•(X, R), i.e. the vector space of smooth sections of

Λ•(T ∗
R
X) ⊗R C. Then Ω•(X, C) splits as

Ω•(X, C) =
⊕

0�p,q��

Ω(p,q)(X, C), (2.3)

where Ω(p,q)(X, C) is the vector space of smooth sections of Λp(T ∗X)⊗̂Λq(T ∗X). The operator dX

splits as

dX = ∂̄X + ∂X . (2.4)

Let ∗ be the star operator acting on Λ•(T ∗
R
X) which is associated to the given metric on TRX.

We equip Ω•(X, R) with the scalar product hΩ•(X,R) given by

s, s′ ∈ Ω•(X, R) → 〈s, s′〉 =
1

(2π)�

∫
X

s ∧ ∗s′. (2.5)

We extend (2.5) to a Hermitian product on Ω•(X, C). Then the Ω(p,q)(X, C) are mutually orthogonal
in Ω•(X, C). Let dX,∗ be the formal adjoint of dX with respect to (2.5). Then dX,∗ splits as

dX,∗ = ∂̄X,∗ + ∂X,∗. (2.6)
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Moreover since X is Kähler, by [GrHa78, p. 111],

∂̄X,∗ = −i[∂X ,Λ], ∂X,∗ = i[∂̄X ,Λ]. (2.7)

Note that our signs differ from the signs in [GrHa78], because we chose a different sign convention
for the Kähler form ωX .

Using the fact that [∂̄X , ∂X ] = 0, we deduce from (2.7) that

[∂̄X , ∂X,∗] = 0, [∂X , ∂̄X,∗] = 0,

[∂̄X , ∂̄X,∗] = [∂X , ∂X,∗] = i[∂X , [∂̄X ,Λ]]. (2.8)

From (2.8), we obtain the well-known equality in [GrHa78, p. 115],

[dX , dX,∗] = 2[∂̄X , ∂̄X,∗] = 2[∂X , ∂X,∗]. (2.9)

Let F • be the Hodge decreasing filtration on Ω•(X, C), i.e. for p ∈ N, set

F pΩ•(X, C) =
⊕

p�p′,0�q��

Ω(p′,q)(X, C). (2.10)

The corresponding Gr•Ω•(X, C) is given by

GrpΩ•(X, C) = F pΩ•(X, C)/F p+1Ω•(X, C). (2.11)

Then GrpΩ•(X, C) is a Z-graded vector space given by

GrpΩ•(X, C) =
⊕

0�q��

Ω(p,q)(X, C). (2.12)

From (2.9), we find that the Hodge spectral sequence degenerates, and moreover, we have the
Hodge decomposition

Hm(X, C) =
⊕

p+q=m

H(p,q)(X). (2.13)

The filtration F • induces a corresponding filtration on H •(X).

2.2 A Kähler fibration
Let π : M → S be a holomorphic submersion of complex manifolds, with compact fibre X. Let
TRX = TRM/S be the fibrewise real tangent bundle to the fibres X, and let TX = TM /S be the
corresponding fibrewise holomorphic tangent bundle. Let JTRX be the complex structure on TRX.

Let THM be a smooth subbundle of TM so that

TM = THM ⊕ TX . (2.14)

Let hTX be a Hermitian metric on TX .
Now we follow [BGS88b, Definition 1.4] and [B97, ch. 2].

Definition 2.1. The triple (π, hTX , THM) is said to define a Kähler fibration if there exists a
smooth real 2-form ωM of complex type (1, 1) on M which has the following properties:

a) ωM is closed.
b) TH

R
M and TRX are orthogonal with respect to ωM .

c) If A,B ∈ TRX then
ωM (A,B) = 〈A, JTRXB〉. (2.15)

From (2.15) we deduce that the metric hTX is fibrewise Kähler, and that the restriction of ωM

to TRX is the associated Kähler metric of the fibres.
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By [BGS88b, Theorems 1.5 and 1.7], if ωM is a real closed 2-form on M of type (1, 1), which
induces a Kähler metric hTX along the fibres X, and if THM denotes the orthogonal bundle to TX
in TM with respect to ωM , then (π, hTX , THM) is a Kähler fibration, and ωM is an associated (1, 1)
form. Moreover if ωM ′ is another closed real (1, 1) form on M which is associated to (π, hTX , THM),
there exists a closed real (1, 1) form η on S such that

ωM ′ − ωM = π∗η. (2.16)

Now we will assume that (π, hTX , THM) is a Kähler fibration and that ωM is an associated
(1, 1) form. Let PTX : TRM → TRX be the obvious projection with respect to the splitting (2.14).
By (2.14), we find that

Λ•(T ∗
RM) 
 π∗Λ•(T ∗

RS)⊗̂Λ•(T ∗
RX), (2.17)

and that (2.17) induces an identification of the corresponding (p, q) decompositions.
Let ωX , ωH be the restrictions of ωM to TRX, TH

R
M . Using (2.17), we see that ωX , ωH can be

considered as (1, 1) forms on M , and that

ωM = ωX + ωH . (2.18)

Moreover ωX is the Kähler form of the fibres X.

2.3 The de Rham operator of M

If A ∈ TRS, let AH ∈ TH
R

M be the horizontal lift of A. If A,B ∈ TRS, set

TH(A,B) = −PTX [AH , BH ]. (2.19)

Then TH is a horizontal tensor with values in TRX.
Now we use the same notation as in (2.3). Then Ω•(X, R), Ω•(X, C) and the Ω(p,q)(X, C) are

infinite-dimensional vector bundles on S. By (2.17),

Ω•(M, R) = Ω•(S,Ω•(X, R)). (2.20)

By (2.20), the action of the fibrewise de Rham operator dX extends to Ω•(M, R).
If A is a smooth section of TRS, the Lie derivative operator LAH acts naturally on Ω•(X, R),

and the action is tensorial in A.

Definition 2.2. If A ∈ TRS, and if s is a smooth section of Ω•(X, R), set

∇Ω•(X,R)
U s = LAHs. (2.21)

Then one verifies easily that ∇Ω•(X,R) is a connection on the Z-graded vector bundle Ω•(X, R),
which is compatible with the Poincaré duality in (2.2). Note that in general, ∇Ω•(X,R) does not
preserve the splitting (2.3) of Ω•(X, R). Combining with exterior differentiation on Ω•(S, R), the
action of ∇Ω•(X,R) extends to an action on Ω•(S,Ω•(X, R)) ∼ Ω•(M, R).

Finally the interior multiplication operator iT H acts on Ω•(M, R). Now we have a classical result,
stated in [BLo95, Proposition 3.4].

Proposition 2.3. The following identity of operators acting on Ω•(M, R) holds:

dM = dX + ∇Ω•(X,R) + iT H . (2.22)

Remark 2.4. Note that LT H is a 2-form on S with values in operators acting along the fibres. Since
dM,2 = 0, from (2.16), we get

dX,2 = 0, [∇Ω•(X,R), dX ] = 0, ∇Ω•(X,R),2 + LT H = 0,

[∇Ω•(X,R), iT H ] = 0, i2T H = 0. (2.23)
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2.4 The holomorphic Hermitian connection on T ∗X

Note that the form ωX is symplectic along the fibres X. Recall that if H : M → R is a smooth
function, the fibrewise Hamiltonian vector field XH is such that

dXH + iXHωX = 0. (2.24)

Let JT ∗
R

X be the complex structure of T ∗
R
X. Then T ∗X, T ∗X are the i, −i bundles of JT ∗

R
X in

T ∗
R
X⊗RC. Let hT ∗X be the Hermitian metric on T ∗X associated to hTX , and let ωX∗ be the section

of Λ2(TRX) such that, if U, V ∈ T ∗
R
X,

ωX∗(U, V ) = −〈U, JT ∗
R

XV 〉. (2.25)

Then ωX∗ is a symplectic form on the fibres of T ∗
R
X.

Theorem 2.5. The following identities hold:

dXωX = 0, ∇Ω•(X,R)ωX = 0,

dXωH + iT H ωX = 0, ∇Ω•(X,R)ωH = 0. (2.26)

The connection ∇Ω•(X,R) preserves the fibrewise symplectic form ωX . In particular, if A,B ∈
TRS, TH(A,B) is the fibrewise Hamiltonian vector field associated to the fibrewise Hamiltonian
ωH(AH , BH). The tensor TH is of type (1, 1). If s is a smooth section of T ∗X, and if A ∈ TS, then
LĀHs is the section of T ∗X given by

LĀHs = ∇T ∗X′′
ĀH s. (2.27)

If A ∈ TRS, then LAH JT ∗
R

X and JT ∗
R

XLAHJT ∗
R

X are symmetric tensors anticommuting with
JT ∗

R
X . Moreover if B ∈ TS, LB̄H JT ∗

R
X vanishes on T ∗X and maps T ∗X into T ∗X. Finally, if A ∈ TRS,

(hT ∗
R

X)−1LAH hT ∗
R

X = −JT ∗
R

XLAHJT ∗
R

X . (2.28)

Proof. Using (2.18) and Proposition 2.3 and splitting the equation for dMω into its various compo-
nents, we get (2.26). The second equation in (2.26) just says that ∇Ω•(X,R) preserves ωX . Since ωH

is of complex type (1, 1), from the third equation in (2.26), we find that TH is of type (1, 1). If s is
a smooth section of T ∗X and if A is a smooth section of TS, then

LĀHs = (dM iĀH + iĀH dM )s. (2.29)

Equivalently we can rewrite (2.29) as

LĀHs = iĀH ∂̄Ms, (2.30)

which is just (2.27).
Observe that the map U ∈ TRX → −iUωX ∈ T ∗

R
X is an identification of smooth vector bundles.

Moreover the form ωX,∗ on T ∗
R
X is obtained from ωX via this identification. Using (2.26), we find

that if A ∈ TRS, then LAH ωX,∗ = 0. Since ωX∗ is JT ∗
R

X -invariant, LAHJT ∗
R

X lies in the symplectic Lie
subalgebra of End(T ∗

R
X). Equivalently JT ∗

R
XLAH JT ∗

R
X is symmetric. Since JT ∗X,2 = −1, LAHJT ∗

R
X

anticommutes with JT ∗
R

X , so that LAHJT ∗
R

X is also symmetric.
From (2.27), we find that if B ∈ TS, LB̄H JT ∗

R
X vanishes on T ∗X, and so it maps T ∗X into T ∗X.

Using (2.25), we get (2.28). The proof of our theorem is completed.

Definition 2.6. Let ∇T ∗
R

X be the horizontal connection on T ∗
R
X, such that if A ∈ TRS,

∇T ∗
R

X

AH = LAH + 1
2(hT ∗

R
X)−1LAHhT ∗

R
X . (2.31)
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Theorem 2.7. The horizontal connection ∇T ∗
R

X preserves the complex structure JT ∗
R

X and the
metric hT ∗

R
X . It induces on T ∗X the horizontal part of its holomorphic Hermitian connection.

Proof. Clearly ∇T ∗
R

X preserves hT ∗
R

X . By Theorem 2.5, (hT ∗
R

X)−1LAH hT ∗
R

X takes its values in the
Lie algebra of the symplectic endomorphisms of T ∗

R
X. Therefore ∇T ∗

R
X also preserves ωX∗, and so

it preserves the complex structure JT ∗
R

X . By Theorem 2.5, we find that when restricted to T ∗X,
∇T ∗

R
X′′

coincides with the horizontal part of ∇T ∗X′′
. Since ∇T ∗

R
X preserves the metric, we obtain

the last part of our theorem.

2.5 The holomorphic Hermitian connection on TX

Definition 2.8. If A ∈ TRS, and if B is a smooth section of TRX, set
0∇TRX

AH B = [AH , B]. (2.32)

Then 0∇TRX
AH B ∈ TRX, and 0∇TRX gives a horizontal connection on TRX. By Theorem 2.5, this

horizontal connection preserves the symplectic form ωX .

Proposition 2.9. If A ∈ TRS, then 0∇TRX
AH JTRX and JTRX0∇TRX

AH JTRX are symmetric tensors

anticommuting with JTRX . Moreover

(hTRX)−1 0∇TRX
AH hTRX = −JTRX 0∇TRX

AH JTRX . (2.33)

Proof. Our proposition is an obvious consequence of Theorem 2.5.

Definition 2.10. Let ∇TRX be the horizontal connection on TRX, then

∇TRX = 0∇TRX + 1
2 (hTRX)−1 0∇TRXhTRX . (2.34)

Theorem 2.11. The horizontal connection ∇TRX preserves the complex structure JTRX and the
metric hTRX . It induces on TX the horizontal part of its holomorphic Hermitian connection ∇TX .
In particular 0∇TRX

′′
JTRX maps TX into TX and vanishes on TX .

Proof. Our theorem follows from Theorems 2.5 and 2.7.

Remark 2.12. The fact that the horizontal connection ∇TRX coincides with the horizontal part of
∇TX was first established in [BGS88b, Theorem 1.5] and [B97, Theorems 1.1 and 2.3], using a
different argument.

Definition 2.13. If A ∈ TRS,B ∈ TRX, set

T (A,B) = 1
2(hTRX)−1(0∇TRX

AH )hTRXB. (2.35)

Then by Theorem 2.11, the tensor T is of type (1, 1). Also, if A ∈ TS,B ∈ TX , then T (A, B̄) ∈ TX
and T (Ā,B) ∈ TX .

As in [BGS88b] and in [B97], we extend T to an antisymmetric tensor of type (1, 1) on M with
values in TRX, which vanishes on pairs of elements of TRX, and which coincides with TH on pairs
of horizontal vectors. In particular T is a tensor of type (1, 1). Let T (1,0), T (0,1) be the components
of T in TX ,TX respectively.

In the sequel, ∇TX will denote the full holomorphic Hermitian connection on TX . It induces a
corresponding connection on TRX, which we still denote ∇TRX .

Let ∇TRS be a torsion free connection on TRS. Let ∇TRM = ∇TRS ⊕∇TRX be the obvious direct
sum connection. Then by [BGS88b, § 1] and [B97, Theorem 1.1], T is exactly the torsion of the
connection ∇TRM .
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2.6 The Dolbeault operators on M

The connection ∇TRX induces a connection ∇Λ•(T ∗
R

X) on Λ•(T ∗
R
X), which is Hermitian and preserves

the splitting

Λ•(T ∗
RX) ⊗R C =

⊕
0�p,q��

Λp(T ∗X)⊗̂Λq(T ∗X). (2.36)

Definition 2.14. If A ∈ TRS, and if s is a smooth section of Ω•(X, R), set

∇Ω•(X,R),u
A s = ∇Λ•(T ∗

R
X)

AH s. (2.37)

By [BGS88b, Theorem 1.14], ∇Ω•(X,R),u is a Euclidean connection on Ω•(X, R), and its curvature
is of type (1, 1). Moreover ωX is parallel with respect to ∇Ω•(X,R),u. Note that ∇Ω•(X,R),u extends
to a Hermitian connection ∇Ω•(X,C),u on Ω•(X, C), which preserves the splitting (2.3) of Ω•(X, C).
Note that these results follow from Theorems 2.5 and 2.11.

Let w1, . . . , w� be an orthonormal basis of TX , and let f1, . . . , fm be a basis of TS. We denote
the corresponding conjugate or dual basis in the obvious way.

Theorem 2.15. The following identity holds:

dM = dX + ∇Ω•(X,R),u + iT . (2.38)

Moreover,

∂̄M = ∂̄X + ∇Ω•(X,R),u′′
+ fαw̄iiT (fα,w̄i) + fαf̄βiT (1,0)(fα,f̄β),

∂M = ∂X + ∇Ω•(X,R),u′
+ f̄αwiiT (f̄α,wi)

+ fαf̄βiT (0,1)(fα,f̄β). (2.39)

For any p ∈ N, ∇Ω•(X,R)′′ maps F pΩ•(X, R) into itself, and ∇Ω•(X,R)′ maps F pΩ•(X, R) into F p−1

Ω•(X, R). More precisely,

∇Ω•(X,R) = ∇Ω•(X,R),u + fαw̄iiT (fα,w̄i) + f̄αwiiT (f̄α,wi)
. (2.40)

Proof. We use the notation at the end of § 2.5. Let ∇Λ•(T ∗
R

M) be the connection induced by ∇TRM

on Λ•(T ∗
R
M). Since T is the torsion of ∇TRM ,

dM = ∇Λ•(T ∗
R

M) + iT , (2.41)

which is equivalent to (2.38).
Then we split the identity (2.38) by complex type, we use the facts that ∇Ω•(X,R),u preserves the

splitting (2.3), that T is a tensor of type (1, 1), that T (fα, w̄i) ∈ TX and that T (f̄α, wi) ∈ TX , and
we get (2.39). By comparing (2.22), (2.38) and (2.39), we obtain (2.40). The proof of our theorem
is completed.

Remark 2.16. Needless to say, the results of Theorem 2.15 on ∇Ω•(X,R) imply classical results on
variation of Hodge structures [GrT84]. Since ∂̄M,2 = 0, [∂̄M , ∂M ] = 0, by (2.39), we get

[∇Ω•(X,R),u′′
, ∂̄X ] = 0, [∂̄X , fαw̄iiT (fα,w̄i)] = 0, ∇Ω•(X,R),u′′,2 = 0,

[∇Ω•(X,R),u′′
, fαw̄iiT (fα,w̄i)] + [∂̄X , fαf̄βiT (1,0)(fα,f̄β)] = 0,

[∇Ω•(X,R),u′′
, fαf̄βiT (1,0)(fα,f̄β)] = 0, [∇Ω•(X,R),u′

, ∂̄X ] + [∂X , fαw̄iiT (fα,w̄i)] = 0,

[∇Ω•(X,R),u′
, fαw̄iiT (fα,w̄i)] = 0, [∇Ω•(X,R),u′′

, f̄αwiiT (f̄α,wi)
] = 0,

[∇Ω•(X,R),u′
,∇Ω•(X,R),u′′

] + [∂̄X , fαf̄βiT (0,1)(fα,f̄β)] + [∂X , fαf̄βiT (1,0)(fα,f̄β)] = 0. (2.42)

Note that, in (2.42), we have omitted most of the obvious conjugate equations.
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Now we recall a result established in [BGS88b, Theorem 1.7].

Proposition 2.17. The following identities hold:

dXωX = 0, ∇Ω•(X,R),uωX = 0,

dXωH + iT ωX = 0, ∇Ω•(X,R),uωH = 0. (2.43)

Proof. We use (2.38) and the fact that ωM is closed. Then we get easily the first and the last
identities in (2.43), already obtained in (2.26). Since ∇TRX preserves JTRX and the metric hTX ,
it also preserves ωX , so that the second identity in (2.43) holds. The third identity now follows.
Note that it breaks down into two identities, one of which is the third identity in (2.26).

2.7 The Gauss–Manin connection
Recall that the Z-graded vector bundle H •(X, R) is equipped with a flat connection ∇H•(X,R) which
preserves the Z-grading. Indeed let s be a smooth section of Ωp(X, R) which is fibrewise closed.
Extend s to be a smooth section of Λp(T ∗

R
M). Since the form dMs restricts to a closed form along

the fibres X, from the exact sequence

0 −→ T ∗
RS −→ T ∗

RM −→ T ∗
RX −→ 0, (2.44)

we find that dMs defines a smooth section of T ∗
R
S⊗̂Λp(T ∗

R
X). One verifies easily that this section is

fibrewise closed and that its fibrewise dX-cohomology class depends only on the fibrewise cohomology
class of s. If [s] denotes the associated section of H •(X, R), we obtain the corresponding covariant
derivative ∇H•(X,R)[s]. One verifies easily that ∇H•(X,R) is a flat connection on H •(X, R), which is
compatible with Poincaré duality.

Let [ωX ] ∈ H2(X, R) be the cohomology class of ωX . Since ωM is closed, we find that

∇H•(X,R)[ωX ] = 0. (2.45)

Using (2.22), we get a more explicit formula for ∇H•(X,R). Indeed, if s is taken as before, by
(2.23), if A ∈ TRS, ∇Ω•(X,R)

A s is dX closed. The corresponding representative in H •(X, R) is just
∇H•(X,R)[s]. The third equation in (2.23) guarantees that ∇H•(X,R) is flat. Let ∇H•(X,C) be the
connection induced by ∇H•(X,R) on H •(X, C). Using Theorem 2.15, we recover the well-known fact
[GrT84] that ∇H•(X,C)′′ maps F pH •(X, C) into itself, and that ∇H•(X,R)′ maps F pH •(X, C) into
F p−1H •(X, C).

Set
DX = dX + dX,∗, H = ker DX . (2.46)

By Hodge theory, we have the canonical identification

H
•(X, R) 
 H. (2.47)

In the sequel, we identify H •(X, R) and H. Let hH•(X,R) be the metric on H •(X, R) which is induced
by the scalar product (2.5) on Ω•(X, R). Let PH : Ω•(X, R) → H be the orthogonal projection
operator with respect to (2.5).

As observed by Ray and Singer [RS73], the metric hH•(X,R) depends only on the Kähler class
[ωX ] ∈ H2(X, R). This can be seen because using the Lefschetz decomposition of H •(X, C), we
can express the metric hH•(X,R) purely in cohomological terms, using the Hodge bilinear relations
[GrHa78, p. 123].

Definition 2.18. Let ∇H•(X,R),u be the connection on H •(X, R),

∇H•(X,R),u = PH∇Ω•(X,R),u. (2.48)
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Now we have the result in [BLo95, Proposition 3.14].

Proposition 2.19. The connection ∇H•(X,R),u preserves hH•(X,R). Moreover

∇H•(X,R),u = ∇H•(X,R) + 1
2 (hH•(X,R))−1∇H•(X,R)hH•(X,R). (2.49)

Remark 2.20. Equation (2.49) says that the metric connection ∇H•(X,R),u is the canonical metric
connection which is associated to the flat connection ∇H•(X,R) and the metric hH•(X,R).

2.8 The exterior algebra Λ•(T ∗X) as a twisting vector bundle
By Theorem 2.15, ∇Ω•(X,C)′′ maps F pΩ•(X, C) into itself. So for any p ∈ N, ∇Ω•(X,C)′′ induces an
antiholomorphic connection ∇Gr•Ω•(X,C)′′ which preserves its bigrading. By (2.40),

∇Gr•Ω•(X,C)′′ = ∇Ω•(X,C),u′′
. (2.50)

More generally, in view of (2.12), the projection of ∇Ω•(X,C) on Gr•Ω•(X, C) is well defined. By (2.40),
we find that this projection is just ∇Ω•(X,C),u, i.e. it is unitary.

In the sequel, we will consider Λ•(T ∗X) as a Z-graded holomorphic vector bundle on M . In partic-
ular (Ω•(M,Λ•(T ∗X)), ∂̄M,Λ•(T ∗X)) denotes the Dolbeault complex of smooth sections of Λ•( ¯T ∗M )⊗̂
Λ•(T ∗X) over M , equipped with the Dolbeault operator ∂̄M,Λ•(T ∗X). Fibrewise, we may and we will
still denote by ∂̄X the corresponding operator acting on Ω•(X, C).

Theorem 2.21. The following identity of operators holds:

∂̄M,Λ•(T ∗X) = ∂̄X + ∇Ω•(X,C),u′′
. (2.51)

Proof. First we consider the case of the twisting bundle Λ0(T ∗X) 
 C. Then our theorem follows
from the first identity in (2.39). Moreover by Theorem 2.7, ∇TRX

′′
induces on Λ•(T ∗X) its antiholo-

morphic connection. By using (2.37), we get (2.51) in full generality.

Remark 2.22. Theorem 2.21 was established in [BGS88b, Theorem 2.8] in full generality in the case
of a general twisting holomorphic vector bundle.

Note that Gr H •(X, C) =
⊕

0�p,q�� H(p,q)(X, C) is the direct image of Λ•(T ∗X). As explained

in [BGS88c, § 3c], the H(p,q)(X, C) can be equipped with a holomorphic structure ∇H(p,q)(X,C)′′ .
Its construction is formally the same as the construction of the Gauss–Manin connection ∇H•(X,R)

in § 2.7. By (2.51), we find that ∇H(p,q)(X,C)′′ can be evaluated using ∇Ω•(X,C),u′′
. We denote by

∇Gr
•
H•(X,C)′′ the corresponding holomorphic structure on Gr•H •(X, C).

As we saw in the same section, ∇H•(X,C)′′ maps F pH •(X, C) into itself. So it induces a holo-
morphic structure on Gr H •(X, C) which preserves the H(p,q)(X, C). The argument we gave at the
beginning of the present subsection says that this holomorphic structure is exactly the one we just
constructed.

Recall that DX and H were defined in (2.46). By (2.9),

DX,2 = 2[∂̄X , ∂̄X,∗] = 2[∂X , ∂X,∗]. (2.52)

By (2.52), we obtain the well-known splitting of H,

H⊗R C =
⊕

0�p,q��

H(p,q)(X, C), (2.53)

and the splitting in (2.53) reflects the corresponding splitting (2.13) of H •(X, C).

Proposition 2.23. The connection ∇H•(X,R),u preserves the H(p,q)(X, C). It coincides with the
corresponding holomorphic Hermitian connection on Gr H •(X, C).
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Proof. Since ∇Ω•(X,R),u preserves the splitting (2.3) of Ω•(X, R), the connection ∇H•(X,R),u also pre-
serves the splitting (2.13) of H •(X, C). Moreover, as we saw before, its antiholomorphic part is just
the canonical holomorphic structure on Gr H •(X, C). Therefore ∇H•(X,R),u induces the holomorphic
Hermitian connection of Gr H •(X, C). The proof of our proposition is completed.

Remark 2.24. It is remarkable that the connection ∇H•(X,R),u, which is the natural metric preserving
connection on H •(X, R) associated to the flat connection ∇H•(X,R) and the metric hH•(X,R), induces
the holomorphic metric connection on Gr H •(X, C).

This fact is made clearer if one realizes that the connection ∇H•(X,C),u is in fact metric indepen-
dent. Indeed by Proposition 2.23, this is the case for its antiholomorphic part. Since the connection
is real, this is the case also for its holomorphic part.

3. The Levi-Civita superconnections

In this section, we compare the complex and real versions of the Levi-Civita superconnection in
[B86] as they appear in [BGS88b, BK92, BLo95]. More precisely, we give an explicit conjugation
formula, in which the Lefschetz operators of the fibres L,Λ appear explicitly.

This section is organized as follows. In § 3.1, we consider the holomorphic Levi-Civita supercon-
nection of [BGS88b, BK92, B97]. In § 3.2, we construct the Levi-Civita superconnection in de Rham
theory as in [BLo95]. In § 3.3, we give the conjugation formula relating the two superconnections.

3.1 The holomorphic Levi-Civita superconnection
We make the same assumptions as in §§ 1 and 2, and we use the corresponding notation. In partic-
ular, we will use the notation of § 1.3 with respect to the real tangent bundle TRX, equipped with
the Hermitian product hTX and with the Kähler form ωX . If U ∈ TRX, the operators c(U), ĉ(U)
act on Λ•(T ∗

R
X), and the operators cTX (U), cTX (U) act on Λ•(T ∗

R
X) ⊗R C.

Definition 3.1. Set

cTX (TH) = fαf̄βcTX (TH(fα, f̄β)). (3.1)

Similarly, we also define cTX (TH(1,0)) and cTX (TH(0,1)).

By (1.16),

cTX (TH(1,0))√
2

= TH(1,0)∗∧,
cTX (TH(0,1))√

2
= −iT H(0,1) . (3.2)

Also by [BGS88b, Theorem 2.6], or by Theorem 2.5, we get

cTX (TH(1,0))√
2

= −i[∂̄X , ωH ],
cTX (TH(0,1))√

2
= i[∂̄X,∗, ωH ]. (3.3)

Now we follow [BGS88b, § 2].

Definition 3.2. For t > 0, set

B′′
t =

√
t ∂̄X + ∇Ω•(X,C),u′′ − cTX (TH(1,0))

2
√

2t
,

B′
t =

√
t ∂̄X,∗ + ∇Ω•(X,C),u′ − cTX (TH(1,0))

2
√

2t
,

Bt =
√

t(∂̄X + ∂̄X,∗) + ∇Ω•(X,C),u − cTX (TH)
2
√

2t
. (3.4)
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Then Bt = B′′
t +B′

t is a superconnection on Ω•(X, C) in the sense of Quillen [Q85]. By [BGS88b,
§ 2], Bu is exactly the Levi-Civita superconnection of the fibration in the sense of [B86], which is
associated to the metric hTX /t, to the horizontal bundle TH

R
M and to the twisting vector bundle

Λ•(T ∗X) equipped with the connection induced by ∇TX .
By (2.43) and (3.3), we recover the formula in [B97, (2.35)],

B′′
t = e−iωH/2ttN

(0,1)/2(∂̄X + ∇Ω•(X,C),u′′
)t−N(0,1)/2eiωH/2t,

B′
t = eiωH/2tt−N(0,1)/2

(∂̄X,∗ + ∇Ω•(X,C),u′
)tN

(0,1)/2e−iωH/2t. (3.5)

Observe that by comparing (2.51) and the first identity in (3.5), we get

B′′
t = e−iωH/2ttN

(0,1)/2∂̄M,Λ•(T ∗X)t−N(0,1)/2eiωH/2t. (3.6)

Set

N
(0,1)
t = N (0,1) +

iωH

t
. (3.7)

By [BGS88b, Theorem 2.6], part of which follows from (3.6), we get

B′2
t = 0, B′′2

t = 0, B2
t = [B′′

t , B′
t],

[B′′
t , B2

t ] = 0, [B′
t, B

2
t ] = 0,

[B′′
t , N

(0,1)
t ] = −2t

∂

∂t
B′′

t , [B′
t, N

(0,1)
t ] = 2t

∂

∂t
B′

t. (3.8)

3.2 The de Rham Levi-Civita superconnection

Clearly, N = N (1,0) + N (0,1) is the number operator of Λ•(T ∗
R
X), which induces the corresponding

number operator on Ω•(X, R). Similarly, we define N as in (1.25).
Recall that the de Rham operator dM was evaluated in (2.22). Following [BLo95, § 3], we will

consider dM as a superconnection on Ω•(X, R).
Recall that hΩ•(X,R) is the scalar product on Ω•(X, R) which was defined in (2.5). Let ∇Ω•(X,R)∗

be the adjoint superconnection to ∇Ω•(X,R). By definition,

∇Ω•(X,R)∗ = ∇Ω•(X,R) + (hΩ•(X,R))−1∇Ω•(X,R)hΩ•(X,R). (3.9)

Let g1, . . . , g2m be a basis of TRS, and let e1, . . . , en be an orthonormal basis of TRX. We denote
the corresponding dual basis in the usual way. Using (2.21) and the fact that, by Theorem 2.5, the
Kähler form ωX is parallel with respect to ∇Ω•(X,R), we find easily that

∇Ω•(X,R)∗ = ∇Ω•(X,R) − gαeii(hTRX)−1L
gH
α

hTRXei
. (3.10)

Proposition 3.3. The following identity holds:

∇Ω•(X,R),u = 1
2 (∇Ω•(X,R) + ∇Ω•(X,R)∗). (3.11)

Proof. This follows from (2.34), (2.37) and (3.10).

Definition 3.4. For t > 0, set

C†
t =

√
tdX + ∇Ω•(X,R) + iT H /

√
t, C†∗

t =
√

tdX,∗ + ∇Ω•(X,R)∗ − TH∗ ∧ /
√

t,

Ct = 1
2 (C†∗

t + C†
t ), Dt = 1

2(C†∗
t − C†

t ). (3.12)
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Then C†
t , C

†∗
t , Ct are superconnections on Ω•(X, R), and Dt is an odd section of Λ•(T ∗

R
S)⊗̂

End(Ω•(X, R)). Moreover

C†
t = tN/2C†

1t
−N/2, C†∗

t = t−N/2C†∗
1 tN/2. (3.13)

Comparing with (2.22), we can rewrite the first identity in (3.13) in the form

C†
t = tN/2dM t−N/2. (3.14)

By [BLo95, Proposition 3.7], C†∗
t is the adjoint of the superconnection C ′

t. By [BLo95, Proposition
1.2], we get

C†2
t = 0, C†∗2

t = 0, C2
t = 1

4 [C†∗
t , C†

t ],

[C†
t , C

2
t ] = 0, [C†∗

t , C2
t ] = 0, [Ct,Dt] = 0, D2

t = −C2
t ,

[C†
t , N ] = −2t

∂

∂t
C†

t , [C†∗
t , N ] = 2t

∂

∂t
C†∗

t . (3.15)

Also, by (3.11) and (3.12), we have the formula

Ct =
√

t

2
(dX + dX,∗) + ∇Ω•(X,R),u − c(TH)

2
√

t
. (3.16)

Formula (3.16) for Ct should be compared with formula (3.4) for Bt.

3.3 A formula relating the Levi-Civita superconnections

Recall that the fibres X are equipped with the Kähler form ωX . Now we will use the notation of § 1
with V = TRX. In particular the operators L,Λ ∈ End(Ω•(X, R)) are defined as in (1.1) and (1.2).
Similarly, the even operators M,R are as in (1.20).

Theorem 3.5. For t > 0, the following identities hold:

e−πM/4iN
(1,0)

C†
2ti

−N(1,0)
eπM/4 =

√
t(∂̄X + ∂̄X,∗ + i(∂X + ∂X,∗)) + ∇Ω•(X,C),u

+ iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)

− 1
2
√

2t
(cTX (TH) − icTX (TH)),

e−πM/4iN
(1,0)

C†∗
2t i

−N(1,0)
eπM/4 =

√
t(∂̄X + ∂̄X,∗ − i(∂X + ∂X,∗)) + ∇Ω•(X,C),u

− iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)

− 1
2
√

2t
(cTX (TH) + icTX (TH)). (3.17)

In particular, for t > 0,

e−πM/4iN
(1,0)

C2ti
−N(1,0)

eπM/4 = Bt,

e−πM/4iN
(1,0)

D2ti
−N(1,0)

eπM/4 = i(−√
t(∂X + ∂X,∗) + fαw̄iiT (fα,w̄i) − f̄αwiiT (f̄α,wi)

− 1
2
√

2t
cTX (TH)). (3.18)

For any t > 0, [
Ct,−1

2
N +

i

2
M

]
= 0. (3.19)
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Proof. Since ∇TX is fibrewise torsion free, if e1, . . . , en is an orthonormal basis of TRX, we get

dX = 1
2(c(ei) + ĉ(ei))∇Λ•(T ∗

R
X)

ei , dX,∗ = 1
2(c(ei) − ĉ(ei))∇Λ•(T ∗

R
X)

ei ,

∂̄X + ∂̄X,∗ =
1√
2
cTX (ei)∇Λ•(T ∗

R
X)

ei , ∂X + ∂X,∗ =
1√
2
cTX (ei)∇Λ•(T ∗

R
X)

ei . (3.20)

Using Theorem 1.5 and the fact that the operator M is parallel with respect to the connection
∇Λ•(T ∗

R
X) along the fibre X, we get

e−πM/4iN
(1,0)

dX i−N(1,0)
eπM/4 =

1√
2
(∂̄X + ∂̄X,∗ + i(∂X + ∂X,∗)),

e−πM/4iN
(1,0)

dX,∗i−N(1,0)
eπM/4 =

1√
2
(∂̄X + ∂̄X,∗ − i(∂X + ∂X,∗)). (3.21)

From (3.21), we get (3.17) in horizontal degree 0. Moreover using (3.11), we get

∇Ω•(X,C) = ∇Ω•(X,C),u + (∇Ω•(X,C) −∇Ω•(X,C),u),

∇Ω•(X,C)∗ = ∇Ω•(X,C),u − (∇Ω•(X,C) −∇Ω•(X,C),u). (3.22)

Also the connection ∇Ω•(X,C),u preserves the bigrading of Ω•(X, C), and L and Λ are parallel with
respect to ∇Ω•(X,C),u. By Theorem 2.5, the operator L is parallel with respect to ∇Ω•(X,C). Since Λ
is the adjoint of L with respect to the symplectic form ωX , the operator Λ is also parallel with
respect to ∇Ω•(X,C). Using (3.22), we get

e−πM/4iN
(1,0)∇Ω•(X,C)i−N(1,0)

eπM/4 = ∇Ω•(X,C),u + iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)
,

e−πM/4iN
(1,0)∇Ω•(X,C)∗i−N(1,0)

eπM/4 = ∇Ω•(X,C),u − iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)
. (3.23)

By (3.23), we get (3.17) in horizontal degree 1. Also, by Theorem 1.5,

e−πM/4iN
(1,0)

iT H i−N(1,0)
eπM/4 = 1

2(icTX (TH) − cTX (TH)),

e−πM/4iN
(1,0)

TH∗ ∧ i−N(1,0)
eπM/4 = 1

2 (icTX (TH) + cTX (TH)). (3.24)

By (3.24), we get (3.17) in horizontal degree 2.
By taking the half sum of the two equalities in (3.17), we get the first equality in (3.18). By taking

the half difference, we obtain

e−πM/4iN
(1,0)

D2ti
−N(1,0)

eπM/4

= −i
√

t(∂X + ∂X,∗) − iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0) − i

2
√

2t
cTX (TH). (3.25)

Also by (2.40) and (3.22), we get

∇Ω•(X,C),u −∇Ω•(X,C) = 1
2(∇Ω•(X,C)∗ −∇Ω•(X,C))

= −fαw̄iiT (fα,w̄i) − f̄αwiiT (f̄α,wi)
. (3.26)

From (3.25) and (3.26), we obtain the second equality in (3.18).
We have the trivial

[Bt, N
(1,0)] = 0. (3.27)

Using the fifth identity in (1.29) and the first identity in (3.18), we get (3.19). Needless to say, this
last identity can be proved directly, by using (1.31). The proof of our theorem is completed.

Remark 3.6. Theorem 3.5 is remarkable. It indicates that the Dolbeault and de Rham super-
connection formalisms are canonically conjugate. This fact will be very important in the sequel.
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Observe that by (3.15), C†2
2t = 0, C†∗2

2t = 0. So the squares of the right-hand sides of (3.17) also van-
ish. In horizontal degree 0, this reflects the fact that

(∂̄X + ∂̄X,∗)2 = (∂X + ∂X,∗)2, [∂̄X + ∂̄X,∗, ∂X + ∂X,∗] = 0, (3.28)

which also follows from (2.8) and (2.9). Similarly, by (3.15), D2
2t = −C2

2t, which implies a cor-
responding equality for the squares of the right-hand sides of (3.18). This equality is trivial in
degree 0.

4. The vanishing of the equivariant holomorphic analytic torsion forms

In this section, we prove that the equivariant holomorphic analytic torsion forms of a Kähler
fibration vanish identically. This is done by using the formula relating the holomorphic Levi-Civita
superconnection to the de Rham Levi-Civita superconnection, which was established in § 3.

This section is organized as follows. In § 4.1, we introduce the action of a compact Lie group G on
the total space M of a Kähler fibration. In § 4.2, we recall the construction of the superconnection
forms of [BGS88b, BK92, M00]. In § 4.3, we construct the corresponding analytic torsion forms.
In § 4.4, we recall the construction in [BLo95] of the de Rham superconnection forms. In § 4.5, we
compare the holomorphic and de Rham superconnection forms. In § 4.6, we give an evaluation of
the key form appearing in the definition of the analytic torsion. Finally, in § 4.7, we show that the
holomorphic torsion forms vanish identically.

4.1 A group action
We make the same assumptions as in § 3, and we use the corresponding notation. Let G be a
compact Lie group acting holomorphically on M , preserving the fibres X and the closed form ωM .
In particular G preserves the vector bundle THM and the metric TX . Also G acts on the complex
(Ω•(X, R), dX ) so that if g ∈ G, s ∈ Ω•(X, R),

gs(x) = g∗s(g−1x). (4.1)

Also G preserves the bigrading of Ω•(X, R). Since G preserves the basic geometric data of the
fibration, G commutes with all the objects we considered in § 3. If g ∈ G, set

Mg = {x ∈ M,gx = x}. (4.2)

Then Mg is a smooth complex submanifold of M , which fibres on S, with compact fibre Xg, the
fixed point set of the fibres X. Moreover THM |Mg ⊂ TM g is a horizontal subbundle on Mg.
Let ig : Mg → M be the obvious embedding, and let πg : Mg → S be the projection. Let hTX g be
the metric on TX g induced by hTX . Then (π, THM |Mg , h

TX g) is a Kähler fibration, and i∗ωM is
an associated (1, 1) form.

If g ∈ G, let L(g) be the Lefschetz number of g, i.e.

L(g) = TrsH
•(X,R)[g]. (4.3)

In the sequel we fix a square root
√

i of i. Let Φ : Λ•(T ∗
R
S) ⊗R C → Λ•(T ∗

R
S) ⊗R C be given by

Φα = (2iπ)−degα/2α. (4.4)

Let PS be the vector space of smooth complex forms on S which are sums of forms of type (p, p).

4.2 The holomorphic superconnection forms
Recall that

Td(x) =
x

1 − e−x
. (4.5)

1321

https://doi.org/10.1112/S0010437X04000478 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000478


J.-M. Bismut

We identify Td with the corresponding multiplicative genus, the Todd genus. For b ∈ R, set

Tdb(x) = Td(x + b), Lb(x) = 1 − e−b−x, L(x) = L0(x). (4.6)

We identify again Tdb, Lb, L with the corresponding multiplicative genera. Put

Td′(x1, . . . , xq) =
∂

∂b
Tdb(x1, . . . , xq)|b=0,

L′(x1, . . . , xq) =
∂

∂b
Lb(x1, . . . , xq)|b=0. (4.7)

Then (4.7) also defines corresponding genera.
Note that∑

0�p��

(−1)pch(Λp(T ∗X)) = L(TX ),
∑

0�p��

(−1)pp ch(Λp(T ∗X)) = −L′(TX ). (4.8)

If θ ∈ R \ 2πZ, set

Tdθ(x) =
1

1 − e−x−iθ
, Tdb

θ(x) =
1

1 − e−x−b−iθ
. (4.9)

We identify Tdθ(x),Tdb
θ(x) to the corresponding multiplicative genera.

In the sequel, we fix g ∈ G. Then g acts as an automorphism of the normal bundle NXg/X with
locally constant eigenvalues eiθ. Let

NXg/X =
⊕

1�j�q

N
θj

Xg/X (4.10)

be the corresponding splitting of NXg/X associated to the locally constant eigenvalues eiθj , with
0 < θj < 2π. Set

Tdg(TX ) = Td(TX g)
∏

1�j�q

Tdθj
(N θj

Xg/X). (4.11)

Then Tdg(TX ) is exactly the characteristic class which appears in the Lefschetz formula of [ABo67,
ABo68]. Similarly Tdg(TX , hTX ) denotes the closed form on Mg which represents the cohomology
class Tdg(TX ) in Chern–Weil theory using the holomorphic Hermitian connection ∇TX . Similarly,
we define the class Lg(TX ) and the corresponding form Lg(TX , hTX ).

The class Td′
g(TX ) is defined as in (4.11), by taking the differential at b = 0 of the class Tdb

g(TX )
defined as in (4.11). In particular (Td′

g/Tdg)(TX ) is a cohomology class which is obtained via the
additive genera associated to Td′/Td(x) and to the Td′

θ/Tdθ(x). There are corresponding forms in
Chern–Weil theory.

Finally note that the H(p,q)(X, C) are holomorphic G-bundles on S, which are equipped with
the Hermitian metrics hH(p,q)(X,C) which one obtains as in (2.53), by identifying the correspond-
ing cohomology classes to the associated harmonic forms. Let chg(H(p,q)(X, C)) be the associated
equivariant Chern character, which is an even cohomology class on S. The associated Chern forms
chg(H(p,q)(X, C), hH(p,q)(X,C)) are evaluated using the obvious holomorphic Hermitian connection.

As explained in the Introduction, Trs is our notation for the supertrace.

Definition 4.1. For t > 0, set

αt = Φ Trs[g exp(−B2
t )], βt =

1√
2iπ

Φ Trs

[
g

(
∂

∂t
Bt

)
exp(−B2

t )
]

,

γt = Φ Trs[gN
(0,1)
t exp(−B2

t )], δt = ΦTrs[gN (1,0) exp(−B2
t )]. (4.12)
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Theorem 4.2. For t > 0, the forms αt are closed, and their cohomology class coincides with the
constant L(g). The forms αt, γt lie in PS . Moreover there exist closed forms C−1, C0 ∈ PS such
that, as t → 0,

αt = L(g) + O(t), γt =
C−1

t
+ C0 + O(t). (4.13)

There exists a form D0 ∈ PS such that

C−1 =
∫

Xg

ωM

2π
cmax(TX g, h

TX g),

C0 =
n

2
L(g) −

∫
Xg

Td′
g(TX , hTX )Lg(TX , hTX ) +

∂̄∂

2iπ
D0. (4.14)

As t → +∞,

αt = L(g) + O(1/
√

t),

γt =
∑

0�p,q��

(−1)p+qq chg(H(p,q)(X, C), hH(p,q)(X,C)) + O(1/
√

t). (4.15)

Moreover
∂

∂t
αt = −dβt, βt =

1
4iπ

(∂ − ∂̄)
γt

t
. (4.16)

In particular

∂

∂t
αt = − ∂̄∂

2iπ
γt

t
. (4.17)

The form δt lies in PS, it is closed and its cohomology class [δt] is given by

[δt] =
∑

0�p,q��

(−1)p+qp chg(H(p,q)(X, C)). (4.18)

As t → 0,

δt = −
∫

Xg

Tdg(TX , hTX )L′
g(TX , hTX ) + O(t), (4.19)

and as t → +∞,

δt =
∑

0�p,q��

(−1)p+qp chg(H(p,q)(X, C), hH(p,q)(X,C)) + O(1/
√

t). (4.20)

The forms Φ−1αt are real, and the forms Φ−1(γt − (n/4)αt) are purely imaginary. Finally, if
g = 1, the forms αt, βt, γt, δt are real.

Proof. The fact that the forms αt, δt are closed and that their cohomology class does not depend
on t was established in [B86, Theorem 3.4] and by [M00, Theorem 2.10] in the equivariant case. By
[BGS88b, Theorems 2.2 and 2.9], the forms αt, γt and δt lie in PS . By [B86, Theorems 4.12 and 4.16]
and by [M00, Theorem 2.10] in the equivariant case, and by the first identity in (4.8), as t → 0,

αt =
∫

Xg

cmax(TX g,∇TX g) + O(t). (4.21)

Using the standard Lefschetz formula, we find that (4.21) is just the first identity in (4.13).
The same references, combined with the second identity in (4.8), show that (4.19) holds.
By [BGS88b, Theorem 2.16] and [M00, Theorem 2.6], we get the second identity in (4.13) and
also the identities in (4.14).
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By [BeGeV92, Theorem 9.19], we know that, as t → +∞,

αt = chg(H
•(X, R),∇H•(X,R),u) + O(1/

√
t),

γt = Φ TrsH
•(X,R)[gN (0,1) exp(−∇H•(X,R)u,2)] + O(1/

√
t). (4.22)

By Propositions 2.19 and 2.23, the holomorphic Hermitian connection ∇H•(X,R),u is the Euclidean
connection on H •(X, R) which is canonically associated to the flat connection ∇H•(X,R) and the
metric hH•(X,R). By [BLo95, Proposition 1.3], we get

chg(H
•(X, R),∇H•(X,R),u) = L(g). (4.23)

By (4.22) and (4.23), we get (4.15). The same argument shows that (4.20) also holds.
Equations (4.16) and (4.17) were established in [BGS88b, Theorem 2.9]. Note that (4.17) follows

from (4.16).
Let µ : Ω•(X, C) → Ω•(X, C) be such that, if s ∈ Ωi(X, C), then

µs = (−1)i(i+1)/2∗s. (4.24)

Then µ is an even operator, such that

µ2 = (−1)n(n+1)/2. (4.25)

Using (3.4), one verifies easily that
µ−1Btµ = Bt. (4.26)

Moreover,

µ−1N
(0,1)
t µ =

n

2
− N

(0,1)
t . (4.27)

Finally the operator µ commutes with g. By (4.26), we see that the forms Φ−1αt are real. Similarly,
since µ is even, using the fact that supertraces vanish on supercommutators and also (4.26) and
(4.27), we get

Re Φ−1γt =
n

4
Φ−1αt. (4.28)

Finally the fact that when g = 1, the forms in (4.12) are real follows from [BF86, Theorem 1.5].
The proof of our theorem is completed.

4.3 The equivariant holomorphic analytic torsion forms
Now we recall the definition by [BGS88b, Definition 2.19] and [BK92, Definition 3.8] of the analytic
torsion forms, and by [M00, Definition 2.11] for the equivariant case.

Definition 4.3. For s ∈ C,Re(s) > 1, set

ζ1(s) = − 1
Γ(s)

∫ 1

0
ts−1(γt − γ+∞) dt. (4.29)

For s ∈ C,Re(s) < 1/2, set

ζ2(s) = − 1
Γ(s)

∫ +∞

1
ts−1(γt − γ+∞) dt. (4.30)

By Theorem 4.2, ζ1(s), ζ2(s) extend to functions of s which are holomorphic near s = 0.

Definition 4.4. Set

Tg(ωM ) =
∂

∂s
(ζ1 + ζ2)(0). (4.31)

Then Tg(ωM ) is a smooth form on S, which lies in PS . The form Tg(ωM ) is called an equivariant
holomorphic analytic torsion form.
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Now we recall a result of [BGS88b, Theorem 2.20], [BK92, Theorem 3.9] and [M00, Theorem
2.12].

Proposition 4.5. The form Tg(ωM ) is such that

∂̄∂

2iπ
Tg(ωM ) = 0. (4.32)

Proof. Our result follows from Theorem 4.2, including the fact that α0 = α+∞.

Clearly, we can as well construct forms τ±
g (ωM ) ∈ PS , by replacing γt by γt ± δt in (4.29) and

(4.30). Since δt is closed, and its cohomology class is constant, it is clear that the τ±
g (ωM ) are also

∂̄∂-closed forms, which lie in the same PS/PS,0 class as Tg(ωM ).

4.4 The de Rham superconnection forms
Put

h(x) = x exp(x2). (4.33)

Definition 4.6. For t > 0, set

at = Φ Trs[g exp(−C2
t )], bt =

1√
2iπ

Φ Trs

[
g

(
∂

∂t
Ct

)
exp(−C2

t )
]

,

ct =
√

2iπΦ Trs[gh(Dt)], dt = Φ Trs[gN exp(−C2
t )]. (4.34)

Now we have the results in [BLo95, Theorems 2.27 and 3.15].

Proposition 4.7. The following identities hold:

at = L(g), bt = 0, ct = 0, dt =
n

2
L(g). (4.35)

Proof. The first identity was established in [BLo95, Theorem 3.15] for g = 1, the proof for the
general case being exactly the same. The second identity can be derived from the first one. We give
here a direct proof. By the last two identities in (3.15),

2t
(

∂

∂t
Ct

)
= [Dt, N ]. (4.36)

Also by (3.15), D2
t = −C2

t , so that

bt =
1√

2iπ2t
Φ Trs[[Dt, gN exp(−C2

t )]] = 0. (4.37)

Since the fibres X are orientable and G preserves the orientation, the same argument as in [BLo95,
Theorems 2.27 and 3.26] establishes the last two identities in (4.35).

4.5 Comparing the holomorphic and de Rham superconnection forms
Now we will use our results in § 3 and in the above subsections to compare the superconnection
forms in the holomorphic and de Rham cases.

Theorem 4.8. For any t > 0, the following identities hold:

αt = L(g), βt = 0, dγt = 0. (4.38)
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Moreover

γt = Φ Trs

[
g

(
1
2
N +

i

2
M +

iωH

t

)
exp(−C2

2t)
]

+
n

4
L(g),

δt = Φ Trs

[
g

(
−1

2
N +

i

2
M

)
exp(−C2

2t)
]

+
n

4
L(g). (4.39)

In particular

γt + δt = Φ Trs

[
gi

(
M +

ωH

t

)
exp(−C2

2t)
]

+
n

2
L(g)

= Φ Trs

[
gi

(
2L +

ωH

t

)
exp(−C2

2t)
]

+
n

2
L(g),

γt − δt = Φ
[
g

(
N +

iωH

t

)
exp(−C2

2t)
]

. (4.40)

Moreover the forms Φ−1γt − (n/4)L(g) and Φ−1δt − (n/4)L(g) are purely imaginary.

The forms Tg(ωM ) and τ±
g (ωM ) lie in PS , they are closed, and their images by Φ−1 are purely

imaginary.

Proof. We use the identity (3.18) in Theorem 3.5. Since supertraces vanish on supercommutators,
we get

αt = a2t, βt = 2b2t. (4.41)

Comparing with Proposition 4.7, we obtain the first two identities in (4.38). Also using the second
identity in (4.16) and the fact that γt ∈ PS, we get the last identity in (4.38).

Using Theorem 1.5 and (3.18), we get

γt = Φ Trs

[
g

(
1
2
N +

n

4
+

i

2
M +

iωH

t

)
exp(−C2

2t)
]

. (4.42)

By (4.35) and (4.42), we get the first identity in (4.39). The proof of the second identity is similar.
Let ν : Ω•(X, R) → Ω•(X, R) be such that, if s ∈ Ωi(X),

νs = (−1)i(i+1)/2 ∗ s. (4.43)

Then

ν2 = (−1)n(n+1)/2. (4.44)

By [BLo95, Equation (2.106) and Lemma 2.36],

Ct = ν−1Ctν. (4.45)

Moreover, we have the trivial

ν−1Λν = −L. (4.46)

Since ν is an even operator, using (4.45) and (4.46), we get

Trs[gΛexp(−C2
t )] = −Trs[gL exp(−C2

t )]. (4.47)

The remaining identities in (4.40) follow from (4.47) and from the previous arguments.
Since the operators N (1,0) and N (0,1) are conjugate and the operators g and C2

2t are real, we find
that

Trs[gN exp(−C2
2t)]

is purely imaginary. By (4.39), we get the stated results on the forms γt and δt.
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By (4.29), (4.30) and the third identity in (4.38), we find that the form Tg(ωM ) is closed.
The fact that the image of the torsion forms by Φ−1 is purely imaginary follows from the above
results. The proof of our theorem is completed.

Remark 4.9. We have reobtained some of the results of Theorem 4.2 in a stronger form.

4.6 An evaluation of [γt]
Set

A† = C†
1, A†∗

t = t−NC†∗
1 tN , At = 1

2 (A†∗
t + A†). (4.48)

Then when replacing hTX by hTX /t, At is just the corresponding C1. By (3.13) and (4.48),

At = t−N/2Ctt
N/2. (4.49)

Definition 4.10. Put

εt = Φ Trs[giωM exp(−A2
t )]. (4.50)

Theorem 4.11. The forms εt are closed, and their cohomology class does not depend on t > 0.
Moreover

γt + δt =
ε2t

t
+

n

2
L(g). (4.51)

Proof. By (3.14) and (4.48), A† = dM , so that, since ωM is closed,

[A†, ωM ] = 0. (4.52)

Moreover, by (3.15) and (4.48),

[A†, A2
t ] = 0. (4.53)

Using (4.52) and (4.53) and the fact that supertraces vanish on supercommutators, we get

dΦ−1εt = Trs[[A†, giωM exp(−A2
t )]] = 0. (4.54)

Moreover, by (3.15) and (4.48),

A2
t = 1

4 [A†, A†∗
t ], (4.55)

so that
∂

∂t
Φ−1εt =

∂

∂b
Trs

[
giωM exp

(
− A2

t −
b

4

[
A†,

∂

∂t
A†∗

t

])] ∣∣∣∣
b=0

. (4.56)

By (4.52) and (4.53), we can rewrite (4.56) in the form

∂

∂t
Φ−1εt = d

∂

∂b
Trs

[
giωM exp

(
−A2

t −
b

4
∂

∂t
A†∗

t

)] ∣∣∣∣
b=0

. (4.57)

So we have proved that εt is closed and that its cohomology class does not depend on t > 0.
Clearly

tN/2ωM t−N/2 = (tL + ωH). (4.58)

By (4.49) and (4.58), we get

εt = Φ Trs[gi(tL + ωH) exp(−C2
t )]. (4.59)

By (4.40) and (4.59), we get (4.51). The proof of our theorem is completed.
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Remark 4.12. The critical fact in our proof that εt is closed is given by (4.52), which is equivalent
to

[C†
2t, 2tL + ωH ] = 0. (4.60)

Using the last identity in (1.29) and the first identity in (3.17), we see that (4.60) is equivalent to[√
t(∂̄X + ∂̄X,∗ + i(∂X + ∂X,∗)) + ∇Ω•(X,C),u + iN

(1,0)
(∇Ω•(X,R) −∇Ω•(X,C),u)i−N(1,0)

− 1
2
√

2t
(cTX (TH) − icTX (TH)), N − n

2
− M +

iωH

t

]
= 0. (4.61)

One must admit that (4.61) is not entirely trivial.

The above demonstrates that, although the holomorphic and de Rham formalisms are ultimately
equivalent, identities which are easy to see in one formalism are not necessarily trivial in the other.

Let [εt] ∈ H •(S, C) be the cohomology class of εt.

Theorem 4.13. For any t > 0,

[εt] =
∫

Xg

ωM

2π
cmax(TX g). (4.62)

Moreover, for any t > 0,

[γt] =
∫

Xg

ωM

2π
cmax(TX g)

1
t

+
n

2
L(g) −

∫
Xg

Td′
g(TX )Lg(TX ). (4.63)

Proof. By Theorem 4.11, for any t > 0,

[γt] + [δt] =
[ε2t]
t

+
n

2
L(g). (4.64)

By Theorems 4.2 and 4.11, [δt] and [εt] do not depend on t > 0. By using (4.13) and (4.14) in
Theorem 4.2 together with (4.64), we obtain (4.62). By (4.64), [tγt] is an affine function of t > 0.
Comparing with (4.13) and (4.14) again, we get (4.63). The proof of our theorem is completed.

Remark 4.14. It is interesting to reobtain (4.63) in another way. In fact, by (4.19), (4.62) and (4.64),
we get

[γt] =
∫

Xg

ωM

2π
cmax(TX g)

1
t

+
n

2
L(g) +

∫
Xg

Tdg(TX )L′
g(TX ). (4.65)

We will show that (4.65) coincides with (4.63). Indeed

Tdb(x)Lb(x) = x + b. (4.66)

By degree theoretic considerations, we get∫
Xg

Tdb
g(TX )Lb

g(TX ) =
∫

Xg

cmax(TX g). (4.67)

By differentiating (4.67) in b at b = 0, we find that (4.63) and (4.65) are equivalent.

4.7 The vanishing of the analytic torsion forms
Recall that by Theorem 4.8, the form Tg(ωM ) lies in PS and is closed.

Theorem 4.15. The following identity holds:

Tg(ωM ) = 0 in Heven(S, C). (4.68)
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Proof. We can define the integral
∫ +∞
0 ts−1 dt for s ∈ C

∗ by splitting it as∫ +∞

0
ts−1 dt =

∫ a

0
ts−1 dt +

∫ +∞

a
ts−1 dt, (4.69)

by defining each of the terms of the sum on its natural domain of definition, and extending the
corresponding expression meromorphically. With this convention, we get∫ +∞

0
ts−1 dt = 0. (4.70)

Now we used precisely this convention to define the form Tg(ωM ) in Definition 4.4. Moreover by
(4.63), t[γt] is an affine function of t > 0. From (4.70), we get (4.68). The proof of our theorem is
completed.

Remark 4.16. We have in fact established that with the notation in (4.29) and (4.30), the cohomology
class of ζ1(s) + ζ2(s) vanishes identically on its domain of definition.

5. Double complexes and equivariant cohomology

In this section, we consider the case of a compact complex Kähler manifold X equipped with a
holomorphic section K of TX , which vanishes on a submanifold Y . We study the hypercohomology
of the corresponding double complex. When KR is Killing, we relate the double complex to the
de Rham complex in equivariant cohomology.

This section is organized as follows. In § 5.1, we introduce the geometric setting. In § 5.2, we
construct the complex of hypercohomology, and we recall results of [CaL73] on the degeneracy of the
corresponding spectral sequence. In § 5.3, we construct the associated Hodge theory, and we compare
various Laplacians, which coincide when KR is Killing. In § 5.4, we use the Bott localization formulas
to evaluate the L2 metric on the hypercohomology. In § 5.5, we derive a corresponding formula for
the L2 metric on the determinant of the hypercohomology. In § 5.6, we give a corresponding formula
for the equivariant determinant in the sense of [B95]. In § 5.7, we specialize our results to the case
where there is f ∈ g, the Lie algebra of G, such that K is induced by f . In § 5.8, when KR is a
Hamiltonian vector field, we construct an associated de Rham complex. In § 5.9, we show that this
complex is just a twisted de Rham complex as in [W82]. In § 5.10, we consider the case of families
of such manifolds. Finally in § 5.11, we prove a conjugation formula relating the holomorphic Levi-
Civita superconnection for the hypercohomology to the de Rham Levi-Civita superconnection for
the twisted Witten complex.

5.1 A holomorphic vector field

We use the same notation as in § 2.1, and we suppose that the corresponding assumptions are in
force, except that for the moment, we do not assume X to be Kähler.

Let K be a holomorphic section of TX . We assume that K vanishes on a complex submanifold
Y ⊂ X. We will assume that ∇K|Y : NY/X → TX |Y is injective. Therefore ∇K|Y identifies NY/X

to the holomorphic subvector bundle Im∇K|Y of TX . We have the exact sequence

0 −→ TY −→ TX |Y −→ NY/X −→ 0. (5.1)

In the sequel, we will assume that Im∇K|Y is transverse to TY , so that

TX |Y = TY ⊕ Im∇K|Y . (5.2)
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By (5.1) and (5.2), the exact sequence (5.1) splits canonically, so that

TX |Y = TY ⊕ NY/X . (5.3)

Moreover ∇K|Y can be considered as an automorphism of Im∇K|Y or of NY/X .
The above assumptions are verified when K is holomorphic and Killing. In this case, NY/X can

be identified to the orthogonal vector bundle to TY in TX |Y , and ∇K|Y is a skew-adjoint parallel
section of End(NY/X).

Let KR = K + K be the section of TRX corresponding to K. Put

dX
K = dX + iKR , ∂̄X

K = ∂̄X + iK , ∂X
K = ∂X + iK . (5.4)

Clearly
dX

K = ∂̄X
K + ∂X

K . (5.5)

The operators in (5.4) act on Ω•(X, C). Since K is holomorphic,

∂̄X,2
K = 0, ∂X,2

K = 0, dX,2
K = [∂̄X

K , ∂X
K ] = LKR. (5.6)

We will use corresponding notation on the submanifold Y . In particular, the upper script X will
be replaced by Y .

5.2 The complex (Ω•(X, C), ∂̄XK )
In this section, the Z-grading on Ω•(X, C) is defined by the operator N . We will also consider the
corresponding Z-grading on Ω•(Y, C). Let H•

K(X, C) be the cohomology of (Ω•(X, C), ∂̄X
K ).

Recall that the decreasing filtration F • on Ω•(X, C) was defined in (2.10). Let G• be the increasing
filtration

GpΩ•(X, C) =
⊕

0�p′�p,
0�q��

Ω(p′,q)(X, C). (5.7)

Then (Ω•(X, C), ∂̄X
K ) is a Z-graded complex, and G• is a filtration on this complex.

Consider the spectral sequence associated to the filtration G• on Ω•(X, C). The associated E1 is
given by

E1 = H
•(X,Λ•(T ∗X)). (5.8)

Similarly, the cohomology of (Ω•(Y, C), ∂̄Y ) is just H •(Y,Λ•(T ∗Y )).
Let j : Y → X be the obvious embedding.

Theorem 5.1. The map j∗ : Ω•(X, C) → Ω•(Y, C) induces a quasi-isomorphism of filtered complexes
(Ω•(X, C), ∂̄X

K ) → (Ω•(Y, C), ∂̄Y ).

Proof. Since K vanishes on Y , j∗ defines a chain map of filtered complexes. We will show it is a
quasi-isomorphism.

First we replace the Dolbeault complexes by their corresponding Čech counterparts. Namely let
δX , δY be the Čech operators acting on X,Y . Set δX

K = δX + iK . We denote by (O(X), δX
K ) and by

(O(Y ), δY ) the corresponding filtered complexes. Note here that O(X) is given by local holomorphic
sections of Λ•(T ∗X), and O(Y ) by local holomorphic sections of Λ•(T ∗Y ). Again j∗ is a chain map
of filtered Čech complexes. We claim that this map is a quasi-isomorphism.

Let F •
δ be the obvious Čech filtration on the above double complexes. By (5.2), the (E1, d1) of

the first complex with respect to the filtration F •
δ is just (O(Y ), δY ). The (E1, d1) of the second

complex is just itself, i.e. (O(Y ), δY ). Therefore j∗ induces the obvious identification of the (E1, d1).
A standard result in homological algebra [CE56, ch. XIII, Theorem 3.2] shows that j∗ is a
quasi-isomorphism.
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Let us now establish our theorem. We replace the complex (O(X), δX
K ) by its Dolbeault reso-

lution. This new complex has now three partial differentials: ∂̄X , δX and iK , which anticommute.
Needless to say, we equip this complex with the full differential ∂̄X + δX + iK . When K = 0, a
standard spectral sequence argument shows that the cohomology of (Ω•(X, C), ∂̄X ) and (O(X), δX )
are canonically identified.

We then find that the chain map j∗ : (Ω•(X, C), ∂̄X
K ) → (Ω•(Y, C), ∂̄Y ) is homotopic to the chain

map i∗ : (O(X), δX
K ) → (O(Y ), δY ). Since this latter map is a quasi-isomorphism, the first map is

also a quasi-isomorphism. The proof of our theorem is completed.

Remark 5.2. By (5.8), H •(X,Λ•(T ∗X)) is the E1-term of a spectral sequence which abuts to
H•

K(X, C). By Theorem 5.1,
H•

K(X, C) 
 H •(Y,Λ•(T ∗Y )). (5.9)
Observe that if Y is Kähler, then H •(Y,Λ•(T ∗Y )) 
 H •(Y, C). Therefore, when Y is Kähler,

H•
K(X, C) 
 H

•(Y, C). (5.10)

Note that H •(Y, C) is equipped with an obvious conjugation operator. By (5.9), H•
K(X, C) is then

equipped with a corresponding conjugation operator.
Note that by an argument due to Carrell and Liebermann [CaL73], which uses the Deligne

degeneracy criterion [D68], if X is connected and Kähler and if Y is non-empty, the above spectral
sequence degenerates at E1 
 H •(X, C). In this case,

E1 
 GrH•
K(X, C). (5.11)

However in general the identification (5.10) does not preserve the G filtration, i.e. the map j∗ :
H •(X, C) → H •(Y, C) is not an isomorphism.

5.3 The adjoint operators
We make the same assumptions as in § 2.1. In particular, we still denote by ωX the Kähler form
of X. We equip Ω•(X, C) with the metric (2.5). We denote with a ∗ the formal adjoint of the above
operators with respect to (2.5).

Recall that K∗
R

= K
∗+K∗ ∈ T ∗

R
X corresponds to KR = K+K ∈ TRX. Note here that K

∗ ∈ T ∗X
corresponds to K ∈ TX , and K∗ ∈ T ∗X corresponds to K ∈ TX .

Then
dX∗

K = dX,∗ + K∗
R∧, ∂̄X∗

K = ∂̄X,∗ + K
∗∧, ∂X∗

K = ∂X,∗ + K∗ ∧ . (5.12)
By (5.6),

dX∗,2
K = [∂̄X∗

K , ∂X∗
K ] = L∗

KR . (5.13)
Recall that we define R as in (1.20) with respect to the fibrewise symplectic form ωX .

Theorem 5.3. The following identities hold:

∂̄X∗
K = −i[∂X

K , R], ∂X∗
K = i[∂̄X

K , R]. (5.14)

Moreover,

[∂̄X
K , ∂X∗

K ] = 0, [∂X
K , ∂̄X∗

K ] = 0, [∂̄X
K , ∂̄X∗

K ] − [∂X
K , ∂X∗

K ] = −i[LKR , R],

(dX
K + dX∗

K )2 = LKR + L∗
KR

+ [dX
K , dX∗

K ], [dX
K , dX∗

K ] = [∂̄X
K , ∂̄X∗

K ] + [∂X
K , ∂X∗

K ]. (5.15)

Proof. Since ωX is closed, in (2.7), we can as well replace Λ by R. Equation (5.14) is now trivial.
The first two identities in (5.15) now follow from (5.14). Also using (5.6) and (5.14), we get

[∂̄X
K , ∂̄X∗

K ] = −i[∂̄X
K , [∂X

K , R]] = −i[LKR , R] + i[∂X
K , [∂̄X

K , R]],

[∂X
K , ∂X∗

K ] = i[∂X
K , [∂̄X

K , R]]. (5.16)
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From (5.16), we get the third identity in (5.15). From (5.6) and (5.13), we get the fourth identity
in (5.15). Using the first two identities in (5.15), we obtain the last identity in (5.15). The proof of
our theorem is completed.

5.4 The L2 metric on H•
K(X, C) and the Bott localization formulas

Set

HX = ker ∂̄X
K ∩ ker ∂̄X∗

K . (5.17)

Then HX is a vector subspace of Ω•(X, C). By Hodge theory,

H•
K(X, C) 
 HX . (5.18)

As a vector subspace of Ω•(X, C), HX inherits a metric from the metric (2.5) on Ω•(X, C).
Let hH•

K(X,C) denote the corresponding metric on H•
K(X, C).

Observe that H•
K(X, C) is an algebra, which is Z-graded by N . Also if α ∈ H•

K(X, C), and if
β ∈ Ω•(X, C) represents α, then

∫
X β depends only on α. From now on, we will write

∫
X α instead

of
∫
X β.
Recall that as we saw in § 5.1, ∇K|Y can be considered as a holomorphic section of End(NY/X).

Let hNY/X be a Hermitian metric on NY/X , let ∇NY/X be the corresponding holomorphic Hermitian
connection, and let RNY/X be its curvature. Set

R
NY/X

K = RNY/X − 2iπ∇TX K. (5.19)

Definition 5.4. Set

cK(NY/X ,∇NY/X ) = det(−R
NY/X

K /2iπ). (5.20)

Then cK(NY/X ,∇NY/X ) is an even form, which is ∂̄Y closed. Let cK(NY/X) ∈ H •(Y,Λ•(T ∗Y )) 

H •(Y, C) be the corresponding cohomology class.

Now we recall a formula of [Bo67] when Y consists of a collection of points, which was extended
by Zhang [Z90] under the transversality assumption given in (5.2). Note that, if KR is a Killing
vector field, then our formula is known as the localization formula of [DuH82, DuH83, BeV83] in
equivariant cohomology.

Theorem 5.5. If α ∈ H •
K(X, C), then∫

X
α =

∫
Y

α

c−K/2iπ(NY/X)
. (5.21)

Take α, β ∈ H•
K(X, C). Then αβ ∈ H•

K(X, C). By Theorem 5.5, we get∫
X

αβ =
∫

Y

αβ

c−K/2iπ(NY/X)
. (5.22)

Now recall that by (5.9), H•
K(X, C) 
 H •(Y,Λ•(T ∗Y )), and this identification is an identification of

Z-graded vector spaces. Moreover, by Serre duality,

a, b ∈ H •(Y,Λ•(T ∗Y )) →
∫

Y

ab

c−K/2iπ(NY/X)
(5.23)

is a non-degenerate bilinear form. By (5.22), we deduce that the bilinear form

α, β ∈ H•
K(X, C) →

∫
X

αβ (5.24)
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is also non-degenerate. Observe that this last result also follows from (5.17). Indeed if α ∈ HX , then
∗α ∈ HX , so that if α �= 0, then ∫

X
α ∧ ∗α > 0. (5.25)

5.5 The L2 metric on the determinant of the cohomology
We make the same assumptions as in § 5.4.

If E is a finite-dimensional complex vector space, set det E = Λmax(E). If λ is a complex line,
let λ−1 be the associated dual line. If E =

⊕
1�i�m Ei is a Z-graded complex vector space, set

det E =
⊗

1�i�m

(det Ei)(−1)i
. (5.26)

Definition 5.6. Put

λX
K = detH•

K(X, C), λX = det H •(X, C), λY = detH •(Y, C). (5.27)

Note that using Serre duality, we find that λX,2 and λY,2 are canonically trivial. By (5.9), we
have a canonical isomorphism

λX
K 
 λY . (5.28)

Also observe that, as we saw at the end of § 5.2, if X is connected and if Y is non-empty,

λX
K 
 λX . (5.29)

The lines λX
K , λX , λY inherit metrics | |λX

K
, | |λX , | |λY from the given metrics hH•

K(X,C), hH•(X,C)

and hH•(Y,C). Note that the metrics | |λX , | |λY are canonically trivial on λX , λY .
We claim that these metrics do not depend on ωX . In fact, since the antilinear map ∗̄ is an

isometry of HX , the metric on λX
K only depends on the non-degenerate bilinear form (5.24) on

H•
K(X, C) which is metric independent. The same considerations apply to the metrics on λX , λY ,

which we already know are canonically trivial.
Note that since ∇K|Y is a holomorphic section of End(NY/X), det(∇K|Y ) is a holomorphic

function on Y . Since Y is compact, this function is locally constant.

Theorem 5.7. The following identity holds:

log

( | |λX
K

| |λY

)2

= −
∫

Y
cmax(TY ) log |det(∇TX K|NY/X

)|. (5.30)

Proof. Clearly the antilinear operator ∗̄ maps HX into itself as an isometry. The same considerations
apply to H •(Y, C). Recall that X has complex dimension �. Let �′ be the complex dimension of Y .
To evaluate the left-hand side of (5.30), we only need to compare the bilinear forms

α, β ∈ H•
K(X, C) → 1

(2π)�

∫
X

αβ (5.31)

and

a, b ∈ H
•(Y, C) → 1

(2π)�′

∫
Y

ab. (5.32)

Let AK ∈ Endeven(H •(Y, C)) be given by

a → a

(2π)�−�′c−K/2iπ(NY/X)
. (5.33)
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Set

detAK =
detAK|Heven(Y,C)

detAK|
Hodd(Y,C)

. (5.34)

Then ( | |λX
K

| |λY

)2

= |detAK |. (5.35)

Now we observe that AK is an operator which increases the degree in H •(Y, C). Therefore it acts
like a triangular matrix, whose diagonal part is just multiplication by the locally constant function
1/det(i∇TX K|NY/X

). Using (5.34), we get

det AK = (1/det(i∇TX K|NY/X
))χ(Y ). (5.36)

By (5.35) and (5.36) and by the Chern–Gauss–Bonnet theorem, we get (5.30). The proof of our
theorem is completed.

5.6 The L2 metric on the equivariant determinant

Let G be a compact Lie group acting holomorphically on X and preserving the Kähler form ωX .
Also we assume that K is G-invariant. Then G also acts on Y .

Let Go ⊂ G be the connected component of the identity. Then Go acts trivially on H•
K(X, C)

and on H •(Y, C). We can identify H•
K(X, C) and H •(Y, C) as representation spaces of G/Go.

For the definition of equivariant determinants and of corresponding metrics, we refer to [B95].
Let us just say that the equivariant determinant is obtained by splitting the cohomology into its
irreducible pieces under the action of G, and by taking the direct sum of the determinants of these
irreducible pieces. In the sequel, λX

K , λY denote the equivariant determinants of H•(X, C),H •(Y, C),
and | |λX

K
, | |λY denote the corresponding L2 metrics.

Theorem 5.8. For any g ∈ G,

log

( | |λX
K

| |λY

)2

(g) = −
∫

Yg

cmax(TYg) log |det(∇TX K|NY/X
)|. (5.37)

Proof. We proceed as in the proof of Theorem 5.7. The operator AK defined in (5.33) commutes
with g. We get the easy formula,

log

( | |λX
K

| |λY

)2

(g) = TrsH
•(Y,C)[g log |AK |]. (5.38)

The operator g preserves the degree, while AK increases the degree in H •(Y, C). By (5.38), we get

log

( | |λX
K

| |λY

)2

(g) = −TrsH
•(Y,C)[g log |det(∇K|NY/X

)|]. (5.39)

Using (5.39) and the Lefschetz formula, we get (5.37).

5.7 The case where K = fX

We make the same assumptions as in § 5.6. Let g be the Lie algebra of G. If f ∈ g, let fX ∈ TX be
the vector field on X which is associated to f .
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In the sequel, we assume that there is f ∈ g, which is G-invariant, such that K = fX . Then K
is a holomorphic section of TX , and KR is a Killing vector field. Set

Ω•
K(X, R) = {s ∈ Ω•(X, R), LKs = 0} . (5.40)

Then the operator dX
K acts as an odd operator on Ω•

K(X, R), and moreover,

dX,2
K |Ω•

K(X,R) = 0. (5.41)

The cohomology of the complex (Ω•
K(X, R), dX

K) will be denoted by H •
K(X, R). It splits as

H •
K(X, R) = Heven

K (X, R) ⊕ Hodd
K (X, R). (5.42)

Now we recall a result stated in [W82].

Theorem 5.9. The chain map j∗ : (Ω•
K(X, R), dX

K ) → (Ω•(Y ), dY ) is a quasi-isomorphism of
Z2-graded complexes.

By Theorem 5.9, we deduce the canonical isomorphism of Z2-graded vector spaces

H •
K(X, R) 
 H •(Y, R). (5.43)

Proposition 5.10. The following identity holds:

(dX
K + dX∗

K )2 = [dX
K , dX∗

K ] = 2[∂̄X
K , ∂̄X∗

K ] = 2[∂X
K , ∂X∗

K ]. (5.44)

Proof. Since K is Killing,

L∗
KR

= −LKR, [LKR , R] = 0. (5.45)

Our proposition now follows from Theorem 5.3 and from (5.45).

Recall that formula (5.5) relates dX
K , ∂̄X

K and ∂X
K . It is then clear that dX

K is not compatible with
any of the above filtrations.

Set

KX = ker(dX
K + dX∗

K )2. (5.46)

Observe that by (5.44),

KX = ker dX
K ∩ ker dX∗

K . (5.47)

By (5.6) and (5.47), we find that kerKX consists of K-invariant forms. Using Hodge theory, we then
recover the result of Witten [W82] that

KX 
 H •
K(X, R). (5.48)

By (5.44), we get

KX ⊗R C = HX . (5.49)

By (5.48) and (5.49), we see that

H•
K(X, C) 
 H •

K(X, C). (5.50)

Note that (5.50) seems to depend on the choice of ωX . However observe that the identifications
in (5.50) are compatible with the identification of both sides of (5.50) to H •(Y, C). Therefore the
identification in (5.50) is indeed canonical.

We will denote by hH•
K(X,R) the metric on H •

K(X, R) which one obtains via the identification
(5.48). Note that by (5.18), (5.49) and (5.50), this is the same as the metric hH•

K(X,C).
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As was observed in Remark 5.2, since Y is Kähler, there is a natural conjugation operator acting
on H•

K(X, C). Because of (5.50), the existence of this conjugation operator is now obvious. Finally
observe that the operator N refines on the Z2-grading of H •

K(X, C).
Let dY ∗ be the formal adjoint of dY . Set

KY = ker(dY + dY ∗)2. (5.51)

Then by Hodge theory,

KY 
 H
•(Y, R). (5.52)

5.8 A real flat line bundle

We make the same assumptions as in § 5.7. Set

γK = −iKRω
X . (5.53)

Since KR preserves the Kähler form ωX , then

dXγK = 0. (5.54)

Set

dX
γK

= dX + γK . (5.55)

By (5.54), we get

dX,2
γK

= 0. (5.56)

The operator dX
γK

can be considered as the de Rham operator acting on the de Rham complex with
values in a flat real line bundle with connection form dX

γK
. Let dX,∗

γK be the formal adjoint of dX
γK

.
Then

dX,∗
γK

= dX,∗ + iJTRXKR
. (5.57)

Let H •
γK

(X, R) be the cohomology of the complex (Ω•(X, R), dX
γK

). We will now consider the
corresponding Hodge theory. Namely, set

LX = ker dX
γK

∩ ker dX,∗
γK

. (5.58)

Then

H •
γK

(X, R) 
 LX . (5.59)

Theorem 5.11. The following identities hold:

e−πM/4iN
(1,0)√

2dX
γK

i−N(1,0)
eπM/4 = ∂̄X

K + ∂̄X∗
K + i(∂X

K + ∂X∗
K ),

e−πM/4iN
(1,0)√

2dX,∗
γK

i−N(1,0)
eπM/4 = ∂̄X

K + ∂̄X∗
K − i(∂X

K + ∂X∗
K ). (5.60)

In particular,

e−πM/4iN
(1,0)

√
2

2
(dX

γK
+ dX,∗

γK
)i−N(1,0)

eπM/4 = ∂̄X
K + ∂̄X∗

K . (5.61)

Proof. If K = 0, this is just Theorem 3.5 when the base S is reduced to a point. In the general
case, we use Theorem 1.5, together with the fact that

K
∗ ∧ +iK = i

cTX√
2

(JTRXKR), i(K∗ ∧ +iK) =
cTX√

2
(JTRXKR). (5.62)
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By Theorem 5.11, we deduce in particular that the map

s ∈ Ω•(X, C) → e−πM/4iN
(1,0)

s ∈ Ω•(X, C)

induces an isomorphism from LX into KX . By (5.48) and (5.49), we find that this map induces an
identification of H •

γK
(X, C) with H •

K(X, C) 
 H•
K(X, C). By (5.10) and (5.43), we know that

H
•
K(X, C) 
 H•

K(X, C) 
 H
•(Y, C). (5.63)

By (5.63), we deduce that there is an isomorphism of Z2-graded vector spaces,

H
•
γK

(X, R) 
 H
•(Y, R). (5.64)

5.9 The case where the action is Hamiltonian
We still make the same assumptions as in § 5.7. Assume that KR is a Hamiltonian vector field.
Namely we assume that there is a smooth function µK : X → R such that

dXµK = γK . (5.65)

Then

dX
γK

= e−µK dXeµK . (5.66)

By (5.66), we deduce that

H
•
γK

(X, R) 
 H
•(X, R). (5.67)

Recall that the increasing filtration G• on Ω•(X, C) was defined in (5.7). Also, by (5.8),

E1 
 H •(X, C). (5.68)

Theorem 5.12. The spectral sequence associated to the filtration G• degenerates at E1.

Proof. By (5.64) and (5.67), we get

dimHeven(X, R) = dim Heven(Y, R), dim Hodd(X, R) = dimHodd(Y, R). (5.69)

Now E1 is the first term of a spectral sequence which abuts to H •(Y, C). Using (5.68) and (5.69),
this is only possible if the differential d1 and the successive differentials vanish identically. Therefore
the spectral sequence degenerates at E1.

Remark 5.13. We already mentioned in Remark 5.2 that by a result of [CaL73], if K is just holo-
morphic, if X is connected and if Y is non-empty, the spectral sequence associated to G• degenerates
at E1. Under the assumptions of Theorem 5.12, Y is necessarily non-empty, so that Theorem 5.12
follows from [CaL73].

Conversely, if X is connected and if Y is non-empty, Lichnerowicz’s lemma [GrHa78, ch. 5,
p. 711] asserts that there exists a smooth function νK : X → C such that

∂̄XνK = −iKωX . (5.70)

By conjugating (5.70), we get

∂X ν̄K = −iKωX . (5.71)

By (5.70) and (5.71), we find that

γK = ∂̄XνK + ∂X ν̄K . (5.72)

If K = fX as in Theorem 5.12, the form γK is closed. By Hodge theory, we then find that a function
µK : X → R exists, such that (5.65) holds. So Theorem 5.12 is indeed a consequence of [CaL73].
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Take α ∈ H(p,q)(X, C). By Theorem 5.12, we can find a smooth form

a ∈
⊕

p′−q′=p−q
p′�p

Ω(p′,q′)(X)

such that
∂̄X

K a = 0, (5.73)
and that the component of a which has degree (p, q) is ∂̄X closed and represents α in Ω(p,q)(X, C).

We now claim that we can use (5.22) to localize the computation of intersection products on Y .
Indeed take α ∈ H(p,q)(X, C), β ∈ H(�−p,�−q)(X, C), and let a, b be associated to α, β as before.
Clearly, ∫

X
αβ =

∫
X

ab. (5.74)

Using (5.22) and (5.74), we obtain a formula for
∫
X αβ which is localized on Y .

5.10 An equivariant fibration
We make the same assumptions as in § 4, and we use the notation of §§ 2–5. Also K denotes a
holomorphic G-invariant section of TX . The notation of § 5 will be used either on M or on X.

Consider the operator dM
K . Then by Proposition 2.3,

dM
K = dX

K + ∇Ω•(X,R) + iT H . (5.75)

Similarly, by Theorem 2.15,
dM

K = dX
K + ∇Ω•(X,R),u + iT . (5.76)

The obvious analogue of Theorem 2.15 holds, when introducing the subscript K. The same is true
for the analogue of Theorem 2.21.

We can define B′′
K,t, B

′
K,t, BK,t as in (3.4). The obvious analogue of (3.5) is now

B′′
K,t = e−iωH/2ttN/2(∂̄X

K + ∇Ω•(X,C),u′′
)t−N/2eiωH/2t,

B′
K,t = eiωH/2tt−N/2(∂̄X∗

K + ∇Ω•(X,C),u′
)tN/2e−iωH/2t. (5.77)

Instead of (3.7), we now set

Nt = N + i
ωH

t
. (5.78)

Then, when doing the proper replacements, and replacing in particular N
(0,1)
t by Nt, the obvious

analogue of (3.8) still holds.
Using (5.10), we find that the fibres H•

K(X, C) patch into a smooth vector bundle on S, and
moreover, we have the isomorphism of vector bundles on S which are Z-graded by N ,

H•
K(X, C) 
 H

•(Y, C). (5.79)

Moreover H•
K(X, C) can be canonically equipped with a holomorphic structure ∇H•

K(X,C)′′ similar
to the one we constructed in Remark 2.22 for H •(X, C). It can be computed using ∇Ω•(X,R),u′′

.
The identification in (5.79) is then an identification of holomorphic Z-graded vector bundles.

5.11 The case where K = fX

In the sequel, we assume that there exists f ∈ g, which is G-invariant and such that K = fX .
In particular the metric hTX and the vector bundle THM are KR-invariant. As in (5.53), set

γK = −iKRω
X . (5.80)
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Equivalently,

γK = −iKRω
M . (5.81)

Then γK is a 1-form along the fibres X. Since ωM is KR-invariant, the form γK is closed on M .
We define C†

γK ,t, C†∗
γK ,t, CγK ,t, DγK ,t as in Definition 3.4, by replacing dX , dX,∗ by dX

γK
, dX,∗

γK .
Then the obvious analogue of (3.13) holds. The analogue of (3.14) is now

C†
γK ,t = tN/2dM

γK
t−N/2. (5.82)

From (5.82), we deduce in particular that

C†2
γK ,t = 0, C†∗2

γK ,t = 0. (5.83)

More generally, the obvious analogue of (3.15) holds.

Theorem 5.14. For t > 0, the following identities hold:

e−πM/4iN
(1,0)

C†
γK ,2ti

−N(1,0)
eπM/4 =

√
t(∂̄X

K + ∂̄X∗
K + i(∂X

K + ∂X∗
K )) + ∇Ω•(X,C),u

+ iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)

− 1
2
√

2t
(cTX (TH) − icTX (TH)),

e−πM/4iN
(1,0)

C†∗
γK ,2ti

−N(1,0)
eπM/4 =

√
t(∂̄X

K + ∂̄X∗
K − i(∂X

K + ∂X∗
K )) + ∇Ω•(X,C),u

− iN
(1,0)

(∇Ω•(X,C) −∇Ω•(X,C),u)i−N(1,0)

− 1
2
√

2t
(cTX (TH) + icTX (TH)). (5.84)

In particular, for t > 0,

e−πM/4iN
(1,0)

CγK ,2ti
−N(1,0)

eπM/4 = BK,t, e
−πM/4iN

(1,0)
DγK ,2ti

−N(1,0)
eπM/4

= i(−
√

t(∂X
K + ∂X∗

K ) + fαw̄iiT (fα,w̄i) − f̄αwiiT (f̄α,wi)

− 1
2
√

2t
cTX (TH)). (5.85)

Proof. This follows from Theorems 3.5 and 5.11.

By (5.43), we find that the H •
K(X, R) patch into a smooth Z2-graded vector bundle on S, and

moreover we have a canonical identification of vector bundles on S,

H •
K(X, R) 
 H

•(Y, R). (5.86)

Moreover since K preserves all the geometric data, we get in particular,

[∇Ω•(X,R), dX
K ] = 0. (5.87)

Also the operator LKR preserves the horizontal and the vertical forms. Its action on Ω•(M, R) is
given by

LKR = [dX , iKR ]. (5.88)

Also, by (2.23), we get

∇Ω•(X,R),2 + [dX
K , iT H ] = 0 (5.89)

By (5.87)–(5.89), we see that H •
K(X, R) can be equipped with a flat Gauss–Manin connection

∇H•
K(X,R). Then (5.86) is an identification of flat vector bundles.
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Recall that KX was defined in (5.47), and that by (5.48)–(5.50),

H•
K(X, C) 
 H

•
K(X, C) 
 KX ⊗R C. (5.90)

Then KX is equipped with the L2 metric in (2.5). Therefore the vector bundles H•
K(X, C) and

H •
K(X, R) inherit corresponding metrics hH•

K(X,C) or hH•
K(X,R).

Let PKX
be the orthogonal projection operator Ω•(X, R) → KX .

Definition 5.15. Let ∇H•
K(X,R),u be the connection on H •(X, R),

∇H•
K(X,R),u = PKX∇Ω•(X,R),u. (5.91)

Theorem 5.16. The connection ∇H•
K(X,R),u preserves the metric hH•

K(X,R). The following identity
holds:

∇H•
K(X,R),u = ∇H•

K(X,R) + 1
2(hH•

K (X,R))−1∇H•
K(X,R)hH•

K(X,R). (5.92)

The connection ∇H•
K(X,R),u induces on H•

K(X, C) the corresponding holomorphic Hermitian connec-
tion. Finally, under the canonical isomorphism H •

K(X, R) 
 H •(Y, R), the connections ∇H•
K(X,R),u

and ∇H•(Y,R),u correspond.

Proof. The proof of the first part of our theorem is the same as the proof of Propositions 2.19 and
2.23.

As we saw in Remark 2.24, the connection ∇H•(Y,R),u is obtained by projecting the flat connection
∇H•(Y,R) with respect to the Hodge splitting

H
•(Y, C) =

⊕
0�p,q��

H(p,q)(Y, C).

Now we use (2.40) again and observe that the operator wiiT (f̄α,wi)
decreases the total degree by 2

with respect to the grading associated to N . Therefore one can say that the connection ∇H•(Y,R),u

is obtained from ∇H•(Y,R) by projection with respect to the splitting associated to this new num-
ber operator. The same considerations apply to the connection ∇H•

K(X,R). Since the flat connec-
tions ∇H•

K(X,R) and ∇H•(Y,R) correspond, this shows that the unitary connections also correspond.
The proof of our theorem is completed.

6. The analytic torsion forms of the double complex

In this section, we give an essentially local formula for the holomorphic torsion forms associated to
the family of double complexes considered in § 5, which extends the vanishing result of § 4.

This section is organized as follows. In § 6.1, we recall the definition of the R(θ, x) genus of
[B94]. In § 6.2, we define the superconnection forms of the double complexes. In § 6.3, we define the
associated holomorphic torsion forms TK,g(ωM ). In § 6.4, we consider the case where the fibrewise
spectral sequence associated to the filtration G of § 5.2 degenerates. Then we give a formula for
TK,g(ωM ) in terms of Bott–Chern classes. In § 6.5, we consider the case where K = fX , with
f ∈ g. In this case, we use the embedding formulas of [BL91, B97, BM02] to give a formula for
TK,g(ωM ) in terms of Bott–Chern classes and of a local formula involving the R(θ, x) genus of
[B94]. In particular, we obtain a local formula for the Ray–Singer analytic holomorphic torsion
of the fibres. Finally, in § 6.7, we relate the superconnection forms of the double complexes to
de Rham superconnection forms.
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6.1 The genus R(θ, x)

Let

L(θ, s) =
+∞∑
n=1

einθ

ns
(6.1)

be the Lerch series. Let ζ(θ, s) and η(θ, s) be its real and imaginary parts, so that

ζ(θ, s) =
+∞∑
n=1

cos(nθ)
ns

, η(θ, s) =
+∞∑
n=1

sin(nθ)
ns

. (6.2)

Definition 6.1. For θ ∈ R/2πZ, let R(θ, x) be the formal power series

R(θ, x) =
∑
n�0
n odd

{ n∑
j=1

1
j
ζ(θ,−n) + 2

∂ζ

∂s
(θ,−n)

}
xn

n!
+
∑
n�0

n even

i

{ n∑
j=1

1
j
η(θ,−n) + 2

∂η

∂s
(θ,−n)

}
xn

n!
. (6.3)

Note that R(0, x) is exactly the series R(x) introduced by Gillet and Soulé [GS91]. In the sequel,
given θ, R(θ, x) will be identified to the corresponding additive genus.

Let E be a complex Hermitian vector bundle equipped with a unitary automorphism g.
We assume that E splits as

E =
⊕

θ∈R/2πZ

Eθ, (6.4)

so that g acts on Eθ by multiplication by eiθ. Set

Rg(E) =
∑

θ∈R/2πZ

R(θ,Eθ). (6.5)

6.2 The holomorphic superconnection forms of the double complex

We make the same assumptions as in § 5.10. In particular K is just assumed to be a G-invariant
holomorphic section of TX .

Definition 6.2. For t > 0, set

αK,t = Φ Trs[g exp(−B2
K,t)], βK,t =

1√
2iπ

Φ Trs

[
g

(
∂

∂t
BK,t

)
exp(−B2

K,t)
]

,

γK,t = Φ Trs[gNt exp(−B2
K,t)]. (6.6)

The same arguments as in Theorem 4.2 show that the analogue of this theorem still holds.
In particular as t → 0,

αK,t = L(g) + O(t), γK,t =
CK,−1

t
+ CK,0 + O(t). (6.7)

Using (4.19) and (4.66), instead of (4.14), we now have

CK,−1 =
∫

Xg

ωM

2π
cmax(TX g, h

TX g),

CK,0 =
n

2
L(g) − 2

∫
Xg

Td′
g(TX , hTX )Lg(TX , hTX ) +

∂̄∂

2iπ
DK,0. (6.8)
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As t → +∞, Equation (4.15) should be replaced by

αK,t = chg(H•
K(X, C), hH•

K (X,C)) + O(1/
√

t),

γK,t = Φ Trs[N exp(−∇H•
K(X,C)u,2)] + O(1/

√
t). (6.9)

Also the analogues of (4.16) and (4.17) still hold.

6.3 The analytic torsion forms of the double complex
Take g ∈ G. By using the results of § 6.2, we can proceed as in § 4.3 and construct analytic torsion
forms TK,g(ωM ) as in Definition 4.4. This form is a smooth form on S, which lies in PS.

Proposition 6.3. The following identity holds:

∂̄∂

2iπ
TK,g(ωM ) = chg(H•

K(X, C), hH•
K (X,C)) − L(g). (6.10)

Proof. Our result follows [BGS88b, Theorem 2.20] [BK92, Theorem 3.9], and also follows from the
analogue of (4.17) and from (6.7) and (6.9).

6.4 The case where the spectral sequence degenerates
In the present section, we will assume that the spectral sequence associated to the filtration G
degenerates at E1 
 H •(X, C). As we saw in Remark 5.2, this is the case if the fibres X are
connected, and the vanishing locus of K is fibrewise non-empty.

By (5.11),

GrH•
K(X, C) = H

•(X, C). (6.11)

By a construction given in [BGS88a, § 1f], there is a well-defined Bott–Chern class

c̃hg(H
•(X, C), hH•(X,C),H•

K(X, C), hH•
K (X,C)) ∈ PS/PS,0,

such that
∂̄∂

2iπ
c̃hg(H

•(X, C), hH•(X,C),H•
K(X, C), hH•

K (X,C))

= chg(H•
K(X, C), hH•

K (X,C)) − chg(H
•(X, C), hH•(X,C)). (6.12)

Taking (4.23) into account, we can rewrite (6.12) in the form

∂̄∂

2iπ
c̃hg(H

•(X, C), hH•(X,C),H•
K(X, C), hH•

K (X,C)) = chg(H•
K(X, C), hH•

K (X,C)) − L(g). (6.13)

Theorem 6.4. The following identity holds:

TK,g(ωM ) = c̃hg(H
•(X, C), hH•(X,C),H•

K(X, C), hH•
K (X,C)) in PS/PS,0. (6.14)

In particular TK,g(ω) ∈ PS/PS,0 only depends on the class of g in G/Go.

Proof. Under the given assumptions, this is a direct consequence of results in [B97, Theorem 0.2]
and [BM02, Theorem 0.2], and also of the vanishing result of Theorem 4.15. Since Go acts trivially on
H •(Y, R), by (5.10), Go acts trivially on H•

K(X, C). Therefore the right-hand side of (6.14) depends
only on the class of g in G/Go.
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Remark 6.5. Using in particular (6.11), it is clear that TzK,g(ωM ) depends continuously on z ∈ C,
the point being that the continuous dependence also extends to z = 0. This is also clear for the
right-hand side of (6.14).

Using Theorem 5.16 and proceeding as in [BLo95, Proposition 1.3], we find that if there is a
G-invariant f ∈ g such that K = fX , then

chg(H
•
K(X, R), hH•

K (X,R)) = L(g). (6.15)

By (6.13) and (6.15),

∂̄∂

2iπ
c̃hg(H

•(X, C), hH•(X,C),H•
K(X, C), hH•

K (X,C)) = 0. (6.16)

6.5 An evaluation of TK,g(ωM) when K = fX

Assume that there is f ∈ g which is G-invariant and such that K = fX . Let N be the vanishing
locus of K. Then N fibres on S, with fibre Y .

Recall that since H•
K(X, C) 
 H •(Y, C), the metrics hH•

K(X,C) and hH•(Y,C) can both be viewed
as metrics on H •(Y, C). By (4.23) and (6.15), the Bott–Chern class

c̃hg(H
•(Y, C), hH•

K (X,C), hH•(Y,C)) ∈ PS/PS,0

constructed in [BGS88a, § 1f], is such that

∂̄∂

2iπ
c̃hg(H

•(Y, C), hH•
K (X,C), hH•(Y,C))

= chg(H
•(Y, C), hH•(Y,C)) − chg(H

•(Y, C), hHK (Y,C)) = 0. (6.17)

Recall that ∇K induces an invertible endomorphism of NY/X . Then |∇K|NY/X
|2 is a self-adjoint

positive endomorphism of NY/X .

Theorem 6.6. The following identity holds:

c̃hg(H
•(Y, C), hH•

K (X,C), hH•(Y,C)) + TM
K,g(ω

M )

=
∫

Yg

cmax(TYg)(Rg(NY/X) − 〈(Td′/Td)g(NY/X), log |∇K|NY/X
|2〉) in PS/PS,0. (6.18)

Proof. The idea of the proof is to use [B97, Theorem 0.1] and [BM02, Theorem 0.1].
Indeed suppose first that N is a finite cover of S, i.e. the fibres Y are a collection of points.

Then the Koszul complex (Λ•(T ∗X), iK) together with the restriction map j∗ provides us with a
resolution of the sheaf j∗ON , i.e. we have the exact sequence of sheaves on M ,

0 → OM (Λ�(T ∗X)) iK→ · · ·OM (Λ�−1(T ∗X)) · · · iK→ OM (C)
j∗→ j∗ON (C) → 0. (6.19)

We can then directly use the results of [B97] and [BM02]. We briefly explain how to adapt these
results in the situation which is considered here. By Theorem 4.15,

Tg(j∗ωM ) = 0 in H
•(S, C). (6.20)

Observe that since K is G-invariant, K|Mg is a section of TX g. Let jg : Ng → Mg be the
obvious embedding. Then the Koszul complex (Λ•(T ∗Xg), iK) is a resolution of the sheaf j∗gONg(C).
Tautologically, it verifies assumption (A) of [B90b] with respect to a G-invariant metric on NY/X .
Note that this metric is in general distinct from the metric one obtains by identifying NY/X to the
orthogonal vector bundle to TY in (TX |N , hTX |N ). However the anomaly formulas of [BK92] and
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[M00] on the analytic torsion forms and their equivariant version show that one can adapt without
any change the results of [B97] and [BM02].

We now describe these results in the specific situation which is considered here. By a construction
given in [BGS90, Theorem 3.14], to this Koszul complex and to the metric hTX g , one can associate
a canonically defined current c̃max(TX g, h

TX g ) on Mg, of degree (�g − 1, �g − 1), such that

∂̄∂

2iπ
c̃max(TX g, h

TX g ) = δNg − cmax(TX g, h
TX g ). (6.21)

Set

T̃ (TX g, h
TX g) = Td−1(TX g, h

TX g)c̃max(TX g, h
TX g). (6.22)

By (6.21) and (6.22), we get

∂̄∂

2iπ
T̃ (TX g, h

TX g) = Td−1(TX g, h
TX g)δNg − ch(Λ•(T ∗Xg), hΛ•(T ∗Xg)). (6.23)

By [BGS90, Theorem 3.17], the Bott–Chern current T̃ (TX g, h
TX g) is exactly the current (evaluated

modulo irrelevant ∂ or ∂̄ coboundaries) one can associate to the above resolution on Mg.
On the other hand, on Mg, we have the holomorphic and metric splitting

TX |Mg = TX g ⊕ NXg/X . (6.24)

It is then elementary to verify that the current Tg(TX , hTX ) on Mg which is constructed in [B95,
§ VI] is given by

Tg(TX , hTX ) = chg(Λ
•(N∗

Xg/X), hΛ•(N∗
Xg/X

))T̃ (TX g, h
TX g). (6.25)

In particular, by (6.22) and (6.23), we get

∂̄∂

2iπ
Tg(TX , hTX ) = Td−1

g (TX , hTX )δNg − chg(Λ
•(T ∗X), hΛ•(T ∗X)). (6.26)

By (6.22) and (6.25), we get

Tdg(TX , hTX )Tg(TX , hTX ) = c̃max(TX g, h
TX g). (6.27)

In particular the above current has degree (�g −1, �g −1). So its integral along the fibre Xg vanishes
identically. An application of the formula of [B97] and [BM02] then leads to (6.18).

Now we explain how to obtain (6.18) in the general case. Strictly speaking, we cannot use
directly the above results, because the complex (Λ•(T ∗X), iK) does not give a projective resolution
of a sheaf localized on N . However as we saw in the proof of Theorem 5.1, the map j∗ gives a quasi-
isomorphism of the complex of Z-graded sheaves (Λ•(T ∗X), iK) and (Λ•(T ∗Y ), 0), the Z-grading
being defined by N . From this, we showed in Theorem 5.1 that j∗ : (Ω•(X, R), ∂̄X

K ) → (Ω•(Y ), ∂̄Y ) is
a quasi-isomorphism. We then claim that all the arguments in the above references can be adapted
without any change. Indeed the general scheme of the proof remains the same. All the local index
theoretic computations are also strictly identical except for assumption (A) of [B90b] and for the
behaviour as a parameter T → +∞ of the fibrewise harmonic forms, which was obtained in [BL91,
ch. 10] and in [B97, ch. 10].

We will explain in some detail how to get around these difficulties. First it will be conve-
nient to equip the twisting vector bundle Λ•(T ∗X) with a G-invariant metric coming from a new
G-invariant metric h̃TX . Let hNY/X be the metric on NY/X which is obtained by identifying NY/X

to the orthogonal bundle to TY in TX |N . We just require that the metric induced by h̃TX on
Im(∇TX K|N ) ⊂ TX |N is the image of hNY/X by the map f → ∇TX

f K, and also that it induces
on TY the given metric hTY . This is the analogue of assumption (A) in the present situation.
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Then one verifies easily that as far as local index theoretic computations are concerned, the situa-
tion is exactly the same as in [B97]. The only remaining difficulty is the behaviour of the eigenvalues
of the operator (∂̄X

TK + ∂̄X∗
TK)2 as T → +∞. Because of the quasi-isomorphism of Theorem 5.1, there

are no ‘small’ eigenvalues which appear in the process.
The Bott–Chern currents which appear in the process are exactly the ones obtained in [B92].

Indeed in [B92, Theorem 3.6], a current c̃max(TX g, h
TX g) was obtained on Xg such that

∂̄∂

2iπ
c̃max(TX g, h

TX g) = cmax(TYg, h
TYg )δNg − cmax(TX g, h

TX g ). (6.28)

We still define T̃ (TX g, h
TX g ) as in (6.22). Ultimately, it is still the integral along the fibre of

c̃max(TY, hTY ) which appears in the formula. This integral vanishes identically. So we still obtain
Equation (6.18). The proof of our theorem is completed.

Now we will specialize Theorem 6.6 in degree 0.

Theorem 6.7. The following identity holds:

TM
K,g(ω

M )(0) =
∫

Yg

cmax(TYg)(Rg(NY/X) − 〈(Td′/Td)g(NY/X) − 1
2 , log |∇K|NY/X

|2〉)(0). (6.29)

Proof. Clearly,

c̃hg(H
•(Y, C), hH•

K (X,C), hH•(Y,C))(0) = log

( | |λX
K

| |λY

)2

(g). (6.30)

By Theorems 5.8 and 6.6, we get (6.29).

Remark 6.8. Assume that the fibres X are connected, and the fibres Y are non-empty. As we saw
in Remark 6.5, TzK,g(ωM ) depends continuously on z ∈ C. We will show in § 7 how to reconcile this
fact with Theorem 6.7.

Now we assume that the fibres X are connected and the fibres Y are non-empty, so that the spec-
tral sequence associated to the filtration G degenerates at E1. Let c̃h(H •(X, C), hH•(X,C), H •(Y, C),
hH•(Y,C)) ∈ PS/PS,0 be the associated Bott–Chern class as in [BGS88a, § 1f]. Then

∂̄∂

2iπ
c̃hg(H

•(X, C), hH•(X,C),H
•(Y, C), hH•(Y,C)) = 0. (6.31)

Theorem 6.9. The following identity holds:

c̃hg(H
•(X, C), hH•(X,C),H

•(Y, C), hH•(Y,C))

=
∫

Yg

cmax(TYg)(Rg(NY/X) − 〈(Td′/Td)g(NY/X), log |∇K|NY/X
|2〉) in PS/PS,0. (6.32)

In particular the class of (6.32) in PS/PS,0 depends only on the class of g in G/Go.

Proof. Note that by the functoriality of Bott–Chern classes [BGS88a, § 1f],

c̃hg(H
•(X, C), hH•(X,C),H•

K(X, C), hH•
K (X,C)) + c̃hg(H

•(Y, C), hH•
K (X,C), hH•(Y,C))

= c̃hg(H
•(X, C), hH•(X,C),H

•(Y, C), hH•(Y,C)). (6.33)

Our theorem then follows from Theorems 6.4 and 6.6 and from (6.33).
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6.6 The de Rham superconnection forms
We make the same assumptions as in § 6.5. In particular, we still assume that K = fX .

Definition 6.10. For t > 0, set

aK,t = Φ Trs[g exp(−C2
γK ,t)], bK,t =

1√
2iπ

Φ Trs

[
g

∂

∂t
CγK ,t exp(−C2

γK ,t)
]

. (6.34)

Proposition 6.11. The following identities hold:

aK,t = L(g), bK,t = 0. (6.35)

Proof. The proof of our proposition is the same as the proof of Proposition 4.7.

6.7 Comparing the holomorphic and de Rham superconnection forms

We make the same assumptions as in § 6.6.

Theorem 6.12. For any t > 0, the following identities hold:

αK,t = L(g), βK,t = 0, dγK,t = 0. (6.36)

Moreover,

γK,t = Φ Trs[gNt exp(−C2
γK ,2t)]. (6.37)

The forms Φ−1γK,t are purely imaginary.

Proof. Using Theorem 5.14 and Proposition 6.11 instead of Theorem 3.5 and Proposition 4.7, the
proof of (6.36) and (6.37) is the same as the proof of Theorem 4.8. To prove that γK,t is purely
imaginary, we proceed as in the proof of Theorem 4.8. Namely we use the fact that N (1,0) and N (0,1)

are conjugate operators, while g and exp(−C2
γK ,2t) are real operators. From (6.37), we deduce that

Φ−1γK,t is purely imaginary.

Theorem 6.13. The form TK,g(ωM ) ∈ PS is closed. Moreover Φ−1TK,g(ωM ) is purely imaginary.

Proof. By Theorem 6.12, the forms γK,t are closed, and their image by Φ−1 is purely imaginary,
which establishes our theorem.

Remark 6.14. By Theorem 6.4, we know that the class of TK,g(ωM ) in PS/PS,0 depends only on
the class of g in G/Go. In Theorem 7.7, we will show that TK,g(ωM )(0) vanishes.

7. Rigidity, the genus R(θ, x) in degree 0 and the vanishing of TK,g(ωM)(0)

The purpose of this section is to establish rigidity properties of genera which are related to the
function R(θ, 0). Also we will show that TK,g(ωM )(0) vanishes.

This section is organized as follows. In § 7.1, we introduce the rigid genus associated to the
obvious rigid action of G on the H(p,·)(X, C). If f ∈ g is G-invariant, and if K = fX , by taking a
Mellin transform of a constant genus, we obtain a vanishing genus depending on s ∈ C. In § 7.2, by
taking the derivative of this identity at s = 0, we get a non-trivial identity involving the function
R(θ, 0), and we show that this identity is equivalent to the vanishing of TK,g(ωM )(0).

7.1 A rigid genus
We make the same assumptions as in § 6.5. Take g ∈ G.
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Proposition 7.1. The following identity holds:

dim X∑
p=0

(−1)pp chg(H(p,·)(X, C)) =
∫

Xg

cmax(TX g)(Td′/Td)g(TX ) in H
•(S, C). (7.1)

Proof. Observe that
Tdg(TX )Lg(TX ) = cmax(TX g). (7.2)

Our proposition follows from (4.19) in Theorem 4.2, from the differentiation of (4.67) at b = 0 and
from (7.2).

Take now f ∈ g which is g-invariant. Set K = fX . Then Xg and Y intersect along Yg. Moreover
we have a holomorphic splitting,

NYg/X = NYg/Xg
⊕ NYg/Y ⊕ Ñ . (7.3)

The definition of Ñ is self-explanatory. Each vector bundle on the right-hand side of (7.3) is stable
by g and by ∇K|Yg .

In particular ∇K|Yg acts on NY/X = NYg/Xg
⊕ Ñ with locally constant eigenvalues iα, α ∈ R

∗.
Let N±

Y/X be the subbundle of NY/X corresponding to α > 0 or α < 0. Then

NY/X = N+
Y/X ⊕ N−

Y/X . (7.4)

Recall that N is the vanishing locus of K. Let Ng ⊂ N be the fixed point set of g. Then Ng

fibres on S with fibre Yg. For any t ∈ R
∗, on Ng, the cohomology classes (Td′/Td)g(TY ) and

(Td′/Td)geitK (NY/X) are well defined.

Theorem 7.2. For any t ∈ R
∗, the following identity holds:

dim X∑
p=0

(−1)pp chg(H(p,·)(X, C))

=
∫

Yg

cmax(TYg)((Td′/Td)g(TY ) + (Td′/Td)geitK (NY/X)) in H
•(S, C). (7.5)

In particular,

dim X∑
p=0

(−1)pp chg(H(p,·)(X, C)) =
∫

Yg

cmax(TYg)((Td′/Td)g(TY ) + dim N±
Y/X) in H

•(S, C). (7.6)

Proof. Take z ∈ R
∗ . Then for z close enough to 0, XgezK = Yg. By Proposition 7.1, for z ∈ R

∗

close enough to 0,
dimX∑
p=0

(−1)pp chgezK (H(p,·)(X, C)) =
∫

Yg

cmax(TYg)(Td′/Td)gezK (TX ) in H
•(S, C). (7.7)

Moreover Go acts trivially on H •(X, C), so that on the left-hand side of (7.7), we can as well replace
gezK by g. The right-hand side of (7.7) extends tautologically to a holomorphic function of z, which
turns out to be constant. We can then change z into it, with t ∈ R

∗, and we get (7.5) by using the
fact that Td′/Td is additive. When making t → ±∞ in (7.5), we get (7.6) easily.

Remark 7.3. Using (7.7) and the fact that the limit of the right-hand side exists when z = it and
t → ±∞, one can recover the fact that (7.7) does not depend on z.
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As we saw before, the eigenvalues iα of ∇K|Y acting on NY/X are locally constant. We can then
split NY/X into the eigenbundles Nα

Y/X , so that

NY/X =
⊕

Nα
Y/X . (7.8)

The splitting (7.8) refines on (7.4). In the sequel, given s ∈ C, we identify ζ(−·, s), η(−i·, s)
to the corresponding additive genera. In particular since g acts on the Nα

Y/X , ζ(−i·, s)g(Nα
Y/X),

η(−i·, s)g(Nα
Y/X) are well-defined cohomology classes on Yg. If g acts on Nα

NY/X
like eiθ, if the xj

are the Chern roots of Nα
NY/X

, then

ζ(−i·, s)g(Nα
Y/X) =

∑
j

ζ(−i(xj + iθ), s),

η(−i·, s)g(Nα
Y/X) =

∑
j

η(−i(xj + iθ), s). (7.9)

Theorem 7.4. For any s ∈ C, the following identities hold:∫
Yg

cmax(TYg)
∑

sgn α|α|−sζ(−i·, s)g(Nα
Y/X) = 0 in H •(S, C),

∫
Yg

cmax(TYg)
∑

|α|−sη(−i·, s)g(Nα
Y/X) = 0 in H

•(S, C). (7.10)

Moreover,∫
Yg

cmax(TYg)
∑

|α|−s

(
∂

∂s
η(−i·, s)g(Nα

Y/X) − log(|α|)η(−i·, s)g(Nα
Y/X)

)
= 0 in H

•(S, C). (7.11)

In particular,∫
Yg

cmax(TYg)
∑(

∂

∂s
η(−i·, 0)g(Nα

Y/X) − log(|α|)η(−i·, 0)g(Nα
Y/X)

)
= 0 in H

•(S, C). (7.12)

Proof. Consider the Mellin transform in the variable t ∈ R
∗
+ of the identity (7.5) in Theorem 7.2,

while taking into account the fact that the right-hand side of (7.6) is the limit of (7.5) as t → ±∞.
This Mellin transform vanishes tautologically. Moreover, if α ∈ R

∗, x ∈ C,

1
Γ(s)

∫ +∞

0

−e−(x−tα)

1 − e−(x−tα)
ts−1 dt = sgn α|α|−sL(−sgn αix, s). (7.13)

Then we get from (7.5) and (7.13),∫
Yg

cmax(TYg)
∑

sgn α|α|−sL(−sgn αi·, s)g(Nα
Y/X) = 0 in H

•(S, C). (7.14)

We can rewrite (7.14) in the form∫
Yg

cmax(TYg)
∑

|α|−s(sgn αζ(−i·, s)g(Nα
Y/X) + iη(−i·, s)g(Nα

Y/X)) = 0. (7.15)

Using (7.15) for K and −K, we get (7.10). By differentiating the second equality in (7.10), we get
(7.11), and (7.12) when making s = 0.
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Remark 7.5. Recall that

L(θ, 0) =
eiθ

1 − eiθ
if θ /∈ 2πZ,

= −1
2

if θ ∈ 2πZ, (7.16)

so that

ζ(·, 0) = −1
2
,

η(θ, 0) =
1
2

cot(θ/2) if θ /∈ 2πZ,

= 0 if θ ∈ 2πZ. (7.17)

From (7.10) and (7.17), we recover the fact that the right-hand side of (7.6) does not depend on
the choice of sign. Also observe that when replacing g by gezK with z ∈ R close enough to 0, by
differentiating (7.10) in the variable z, we find that the two identities in (7.10) are equivalent to
each other. Also observe that when replacing K by tK for t ∈ R

∗, we get a new identity (7.12),
which is equivalent to the initial one because of the second identity in (7.10).

7.2 The case where S is a point
Theorem 7.6. The following identity holds:∫

Yg

cmax(TYg)(Rg(NY/X) − 〈(Td′/Td)g(NY/X) − 1
2 , log |∇K|NY/X

|2〉)(0) = 0. (7.18)

Proof. Recall that Ñ was defined in (7.3). Then

(Td′/Td)g(NY/X) = (Td′/Td)(NYg/Xg
) + (Td′/Td)g(Ñ). (7.19)

Since

Td(x) = 1 + 1
2x + · · · , (7.20)

we find that ∫
Yg

cmax(TYg)〈(Td′/Td)(NYg/Xg
) − 1

2 , log |∇K|NYg/Xg
|2〉 = 0. (7.21)

Set

Â(x) =
1

2 sinh(x/2)
. (7.22)

Then

(Â′/Â)(x) = −1
2 coth(x/2). (7.23)

Moreover,

Tdθ(x) = Â(x + iθ)e(x+iθ)/2. (7.24)

From (7.24), we deduce that

(Td′
θ/Tdθ)(x) = (Â′/Â)(x + iθ) + 1

2 . (7.25)

By (7.17) and (7.23)–(7.25), we get∫
Yg

cmax(TYg)〈(Td′/Td)g(Ñ) − 1
2 , log |∇K|

Ñ
|2〉(0) =

∫
Yg

cmax(TYg)
∑

log |α|2iη(−i·, 0)g(Ñα)(0).

(7.26)
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Clearly, η(0, s) = 0. Therefore, from (7.19), (7.21) and (7.26), we obtain∫
Yg

cmax(TYg)〈(Td′/Td)g(NY/X) − 1
2 , log |∇K|NY/X

|2〉(0)

=
∫

Yg

cmax(TYg)
∑

log |α|2iη(−i·, 0)g(Nα
Y/X)(0). (7.27)

By (6.3), (7.10), (7.12) and (7.27), we get (7.18). The proof of our theorem is completed.

Theorem 7.7. The following identities hold:

TK,g(ωM )(0) = 0, log

( | |λX
K

| |λX

)2

(g) = 0. (7.28)

Proof. Clearly

c̃hg(H
•(X, C), hH•(X,C),H•

K(X, C), hH•
K (X,C))(0) = −log

( | |λX
K

| |λX

)2

(g). (7.29)

Our theorem now follows from Theorems 6.4, 6.7 and 7.6.

8. Morse and holomorphic instantons

In this section, we show that in the case where K = fX , the arguments of semi-classical analysis
which are needed to study the localization on Y of the Witten instantons [W82] and of the harmonic
forms in the holomorphic double complex are not only parallel, but conjugate to each other. In other
words, we are dealing with the same objects, which are distorted by a Lefschetz conjugation, which
makes them apparently very different.

This section is organized as follows. In § 8.1, we compare the Morse and holomorphic instantons.
In § 8.2, we consider the case of a complex vector space, equipped with a linear holomorphic Killing
vector field, and with the associated quadratic Morse function. In this case, we relate the associated
Witten and Dolbeault–Koszul complexes. In particular we show that the corresponding harmonic
forms are related to each other by a Lefschetz transformation. Finally, in § 8.3, we consider the case
of a vector bundle, with fibres taken as before. We show that the genus R(θ, x) and a related genus
J(θ, x) constructed in [BGo01] can in fact be obtained by closely related constructions.

8.1 Morse and Koszul localization
We make the same assumptions as in §§ 5.7, 5.8 and 5.9. As explained in Remark 5.13, our assump-
tions are verified in particular if X is connected and Y is non-empty.

By Theorem 5.1, we know that we have a canonical isomorphism,

H•
K(X, C) 
 H

•(Y, C), (8.1)

the identification being obtained via the restriction map j∗. Also by (5.11), we know that the spectral
sequence associated to the filtration G• degenerates at E1, and moreover,

E1 
 H •(X, C). (8.2)

Also, by a result of Bismut and Lebeau [BL91, Theorem 9.25], we know that for T > 0, the dimension
of ker(∂̄X

TK + ∂̄X∗
TK) does not depend on T , and moreover that for T � 1, there is c > 0 such that

the non-zero eigenvalues of ∂̄X
TK + ∂̄X∗

TK remain in the complement of the interval [−c, c]. This fact
is essentially related to Theorem 5.1.
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Now, we consider H •
γK

(X, R). By (5.67),

H
•
γK

(X, R) 
 H
•(X, R) (8.3)

Assume first that Y consists of isolated points. Then µK is a Morse function, whose indices at the
critical points in Y are even. In this case, the corresponding Morse–Smale complex [T49, Sm61,
Sm67] associated to −∇µK is trivial. More precisely, as explained in [BZ92, ch. 1c], there is a
canonical isomorphism

H
•(X, R) 
 C

•(X, R) (8.4)

In (8.4), C •(X, R) is the Z-graded vector space which is a direct sum of copies of R indexed by
y ∈ Y , the grading being given by the index of µK .

More generally, since the Bott index of µK on the connected components y of the critical manifold
Y are even, the same sort of argument shows that we have a canonical isomorphism

H
•(X, R) 


⊕
y∈Y

H ·+ind(y)H
•(y, R). (8.5)

Note that the identification in (8.5) involves the de Rham isomorphism of Laudenbach [BZ92],
i.e. integration on unstable cells of −∇µK . It should also be pointed out that (8.5) is valid over Z.

Consider now the Witten Laplacian (dTγK
+ d∗TγK

)2. For general Morse functions, as explained
in [W82], [HSj85], [BZ92, ch. VIII] and [BZ94, § 6], there are in principle non-zero eigenvalues which
behave like e−cT with c > 0 as T → +∞, related to the eigenvalues of the combinatorial Laplacian
of the associated Morse–Smale complex. If Y only consists of a finite number of points, since the
indexes of the critical points of the Morse function µK are even, the corresponding Morse–Smale
complex is trivial, so that indeed there are no non-zero exponentially small eigenvalues as T → +∞.
In the general case, µK is just Morse–Bott, but the same analysis carries through.

Equations (8.1), (8.2) and (8.3), (8.5) are not directly related, since the canonical isomorphisms
which are involved are very different. However, (5.61) shows that the spectral theories for ∂̄X

TK + ∂̄X∗
TK

and for 1
2

√
2(dX

γTK
+ dX∗

γTK
) are the same, and that their harmonic forms correspond by an explicit

conjugation. A consequence is that, for example, any argument on small eigenvalues for the first
operator is necessarily valid for the other one.

Equation (5.61) has other striking consequences. It indicates in particular not only that the two
kinds of analysis involved in studying the holomorphic or de Rham torsions as in [BL91] and in
[BZ92, BZ94] are closely related, but also that the two problems are indeed conjugate to each other.

8.2 A complex Hermitian vector space

Let V be a finite dimensional vector space, of even dimension n = 2� equipped with a scalar product.
Let JV be an almost complex structure on V which is antisymmetric. Set W = ker(JV −i) ⊂ V ⊗RC,
so that

V ⊗R C = W ⊕ W. (8.6)

Then W is a Hermitian vector space. In the sequel, if Z ∈ V , we write Z = z + z̄, with z ∈ W , and
z̄ ∈ W the conjugate of z. Let ωV be the Kähler form of V , so that

ωV = 〈·, JV ·〉. (8.7)

Let A ∈ End(V ) be antisymmetric and invertible. Assume that A commutes with JV . Then A
also acts on W as a skew-adjoint invertible element of End(W ).

Set

K = Az. (8.8)
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Then K is a holomorphic section of W which vanishes at 0. The corresponding real vector field KR
is given by

KR = AZ. (8.9)

Now we will use the notation of § 5 with V = X. In particular, as in (5.53), set

γK = −iKRω
V . (8.10)

By (5.61), we get

e−πM/4iN
(1,0)

√
2

2
(dV

γK
+ dV,∗

γK
)i−N(1,0)

eπM/4 = ∂̄V
K + ∂̄V ∗

K . (8.11)

Let e1, . . . , en be an orthonormal basis of V .

Proposition 8.1. The following identities hold:

1
2
(dV

γK
+ dV,∗

γK
)2 = −1

2
∆V +

1
2
|AZ|2 +

1
2
c(ei)ĉ(JV Aei),

(∂̄V
K + ∂̄V ∗

K )2 = −1
2
∆V +

1
2
|AZ|2 +

i

2
cW (ei)cW (JV Aei). (8.12)

Proof. This follows from a trivial computation which is left to the reader.

Clearly both operators in (8.12) are harmonic oscillators on V , and so they have a discrete
spectrum.

Set

B =
A

|A| . (8.13)

Then B is antisymmetric and invertible, and commutes with JV , so that it preserves W and W .
If X,Y ∈ V , set

θB(X,Y ) = 〈X,BY 〉. (8.14)
Then θB is a symplectic form on V , which is of type (1, 1).

Put
µK(Z) = 1

2〈JV AZ,Z〉. (8.15)
Then µK is a Morse function, and

dµK = γK . (8.16)
Clearly JV A ∈ End(V ) is symmetric. Let V = V+⊕V− be the orthogonal splitting of V correspond-
ing to the positive and negative eigenvalues of JV A. Then V+ and V− are stable by JV . The form
ωV restricts to a symplectic (1, 1) form ωV− on V−. Let κV− be the corresponding volume
form on V−.

Theorem 8.2. The kernel of (∂̄V
K + ∂̄V ∗

K )2 is one-dimensional, and is spanned by

β = exp(θB − 1
2 〈|A|Z,Z〉). (8.17)

Moreover,

∂̄V
Kβ = 0, ∂Kβ = 0,

∂̄V ∗
K β = 0, ∂∗

Kβ = 0. (8.18)

The kernel of 1
2 (dV

γK
+ dV,∗

γK )2 is one-dimensional and spanned by

δ = exp(−1
2 〈|A|Z,Z〉)κV− . (8.19)
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Moreover,

dV
γK

δ = 0, dV ∗
γK

δ = 0. (8.20)

Finally,

i−N(1,0)
eπM/4β = (−i)dim V−/22dim V/2δ. (8.21)

Proof. The fact that the kernel of (∂̄V
K + ∂̄V ∗

K )2 is one-dimensional was proved in [B90a, Theorem
1.6] when A = JV . A trivial rescaling argument shows that this is still the case in general. The same
reference, or a trivial computation, shows that (8.18) holds.

The second part of our theorem is established in [W82]. Equation (8.20) can be given a direct
easy proof.

Now to establish (8.21), it is enough to consider the case where n = 2. In this case JV A is just
multiplication by λ ∈ R

∗. Then

θB = −sgn(λ)ωV . (8.22)

Using (1.5) and (1.6), we get

M1 = ωV , MωV = −1. (8.23)

By (8.23), we find that

eπM/41 =
√

2
2

(ωV + 1), eπM/4ωV =
√

2
2

(ωV − 1). (8.24)

By (8.22) and (8.23), we get

eπM/4eθB = eπM/4(1 − sgn(λ)ωV ), (8.25)

so that

eπM/4eθB =
√

2 if λ > 0,

=
√

2ωV if λ < 0. (8.26)

By (8.17), (8.19) and (8.26), we get (8.21). The proof of our theorem is completed.

Remark 8.3. Equation (8.21) is natural in view of (8.11). Also note that the results of the present
section can be viewed as special cases of the arguments given in § 8.1. Theorem 8.2 is interesting.
Indeed in the proof of the embedding formulas of [BL91, B97], a key idea is to reduce the embedding
of Y into X to the embedding of Y in the normal bundle NY/X . The form β plays a critical role
to relate the holomorphic Hodge theory of X to the Hodge theory of Y . For the Witten complex
[W82] associated to a Morse–Bott function f , the form δ plays a similar role, to relate the de Rham
Hodge theory of X to the corresponding theory on Y . As demonstrated by (8.21), the two sorts of
localizations are indeed identical.

8.3 The real and holomorphic superconnections of a vector bundle
Let now S be a complex manifold. Let W be a holomorphic Hermitian vector bundle on S, let V be
the underlying real vector bundle, and let JV be the associated complex structure. Set n = dimV .
Let ∇W be the holomorphic Hermitian connection on W , and let RW be its curvature. In the sequel,
we will take K = iz.

For T ∈ R
∗
+, we define BTK,t in § 5.10. Then

BTK,t =
√

t(∂̄V
TK + ∂̄V,∗

TK) + ∇Ω•(V,C) − 1
2
√

2t
cW (RW Z). (8.27)
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We still define the fibrewise 1-form γTK as in (8.10) and the function µTK on the total space of
V as in (8.15). We define CγTK

= CγTK ,1 as in § 5.11. We get

CγTK ,t =
√

t

2
(dV

γTK
+ dV,∗

γTK
) + ∇Ω•(V,R) − 1

2
√

t
c(RW Z). (8.28)

By (5.85) in Theorem 5.14, we get

e−πM/4iN
(1,0)

CγTK ,2ti
−N(1,0)

eπM/4 = BTK,t. (8.29)

Proposition 8.4. The following identities hold:

Trs[g exp(−B2
TK,1)] = Trs[g exp(−C2

TK,2)] = 1,

Trs[gN (1,0) exp(−B2
TK,1)] = Trs

[
g

(
−1

2
N + i

M

2

)
exp(−C2

TK,2)
]

+
n

4
. (8.30)

The form Trs[gN (1,0) exp(−B2
TK,1)] − n/4 is purely imaginary.

Proof. By (8.29), we get the first equality in (8.30). By proceeding as in the proofs of Propositions
4.7 and 6.11, we get the second equality in the first row of (8.30). Using Theorem 1.5 and (8.29),
we obtain

Trs[gN (1,0) exp(−B2
TK,1)] = Trs

[(
−1

2
N +

n

4
+

i

2
M

)
exp(−C2

TK,2)
]

. (8.31)

Using (8.31), we get the second identity in (8.30). Using the fact that the operators N (1,0) and
N (0,1) are conjugate, and that the other operators which appear on the right-hand side of the
second identity in (8.30) are real, we obtain the last part of our proposition.

In [B94, Definition 6.1], the genus Rg(E) is essentially obtained as the derivative at s = 0 of the
Mellin transform in the variable T ∈ R

∗
+ of the form Φ Trs[gN (1,0) exp(−B2

TK,1)]. By Proposition 8.4,
we find that the class Φ−1Rg(E) should be purely imaginary, as confirmed by (6.3).

Now we recall the definition in [BGo01, ch. 4] of a formal power series J(θ, x) formally closely
related to R(θ, x).

Definition 8.5. For θ ∈ R/2πZ, let J(θ, x) be the formal power series,

J(θ, x) =
1
4

[ ∑
n�0

n even

{ n∑
j=1

1
j
ζ(θ,−n) + 2

∂ζ

∂s
(θ,−n)

}
xn

n!
+
∑
n�0
n odd

i

{ n∑
j=1

1
j
η(θ,−n) + 2

∂η

∂s
(θ,−n)

}
xn

n!

]
.

(8.32)

It should be pointed out that η(θ,−n) vanishes for n ∈ N
∗ odd, and ζ(θ,−n) = 0 for n ∈ N

∗ even.
So the terms containing

∑n
j=1 1/j in (8.32) can be eliminated.

Let Jg(E) be the corresponding genus which is constructed as in (6.5). As explained in [BGo01,
ch. 4], the genus Jg(E) is essentially obtained as the derivative at s = 0 of the Mellin transform
in the variable T ∈ R

∗
+ of the form −Trs[g(N/2) exp(−C2

TK,1)]. Note that the precise procedure is
more complicated than in [B94], but it is still natural from the point of secondary characteristic
classes.

Now we use (8.30). We obtain the remarkable fact that the genera Rg(E) and Jg(E) can
both be expressed in terms of Mellin transforms of the forms Trs[g(M/2) exp(−C2

TK,1)], Trs[gN
exp(−C2

TK,1)] and Trs[g(N/2) exp(−C2
TK,1)]. This suggests that the underlying sl2 symmetry in

(1.6) should play a role in explaining the formal similarities in the series (6.3) and (8.32) which
define R(θ, x) and J(θ, x).
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