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Abstract

Let Y be a fixed nonempty subset of a set X and let 7 (X, Y) denote the semigroup of all total
transformations from X into Y. In 1975, Symons described the automorphisms of 7 (X, Y). Three
decades later, Nenthein, Youngkhong and Kemprasit determined its regular elements, and more recently
Sanwong, Singha and Sullivan characterized all maximal and minimal congruences on 7 (X, Y). In 2008,
Sanwong and Sommanee determined the largest regular subsemigroup of 7'(X, Y) when |Y |3 1 and
Y # X; and using this, they described the Green’s relations on 7'(X, Y). Here, we use their work to
describe the ideal structure of 7'(X, Y). We also correct the proof of the corresponding result for a linear
analogue of T'(X, Y).

2010 Mathematics subject classification: primary 20M20; secondary 15A04.

Keywords and phrases: transformation semigroups, ideals, maximal, reductive.

1. Introduction

Let X be a nonempty set and let 7' (X) denote the semigroup (under composition) of all
total transformations of X. For each « in T(X), we let Xa = ran « denote the range
of o and we define the rank of @ tobe r(o) = [ran«|. f @ #£ Y C X, we write

T(X,Y)={aeT(X): Xa CY).

Clearly T(X, Y) is a subsemigroup of 7(X), and if ¥ = X then T(X, Y) =T (X).
Also, if |Y| =1 then T (X, Y) contains exactly one element: the constant map with
range Y. Hence, throughout the following, we assume that Y is a proper subset of X
with at least two elements.

In [9], Symons described all the automorphisms of 7' (X, Y). Several years later,
its regular elements were characterized in [4]. Also, in [6], the authors determined
the largest regular subsemigroup of 7' (X, Y) and, using this, they described Green’s
relations on 7' (X, Y). More recently, in [5], Sanwong et al. characterized all maximal
and minimal congruences on 7' (X, Y).
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In [8] Sullivan described Green’s relations and ideals in a linear analogue of
T(X,Y). Namely, if W is a nonzero proper subspace of a vector space V, we let
T(V, W) denote the semigroup (under composition) of all linear o : V — V such
that Va € W. That is, we use the ‘V’ and ‘W’ in T (V, W) to denote the fact that
we are considering linear transformations. By [8, Corollary 12], T(V, W) is rarely
isomorphic to the semigroup 7 (U) of all linear transformations of an arbitrary vector
space U. In addition, whereas T (V, W) always contains a zero element (namely,
the map V — {0}), the same is not true for 7 (X, Y) if |Y| > 2. Hence, these two
semigroups are not isomorphic and so they are worthy of study in their own right.

In Section 4, using the work in [6], we describe the ideal structure of 7 (X, Y) and,
as a consequence, we prove that this semigroup is almost never isomorphic to 7 (Z) for
any set Z. Also, in Section 5, we show how certain algebraic semigroups can be ‘anti-
embedded’ in some T (X, Y). However, before we present these nonlinear results, we
correct the proof of [8, Theorem 11] which describes all of the ideals of 7 (V, W): the
argument we give for this in Section 3 then suggests how to derive the corresponding
result for T(X, Y).

In effect, this paper completes a project in which Green’s relations and ideals are
determined for semigroups which appear to be related but are almost never isomorphic
or anti-isomorphic: namely, the semigroup 7' (X, Y) and its linear analogue 7'(V, W),
as well as the semigroups

KWV, W)y={aeT(V): W Ckera},
EX,0)={aeT(X):0 Cmy},

where o is a fixed equivalence on X and 7, = o o a1 (see [3, 7]).

2. Green’s relations on 7'(X, Y)

Throughout this paper, we write id4 for the identity transformation on a set A and
we let A, denote the constant mapping with domain A and range {b}. We also write
A U B for the disjoint union of sets A and B. In addition, we adopt the convention
introduced by Clifford and Preston in [1, Vol. 2, p. 241]: that is, if « € T (X) then we

write
( i)
o =
Xi

and take as understood that the subscript i belongs to some (unmentioned) index set 7,
that the abbreviation {x;} denotes {x; : i € I}, and that ran @ = {x;} and x;a~! = A;.

Green’s relations on 7'(X) are well known: if «, 8 € T (X), then « L if and only
if rana =ran 8; oRB if and only if 7y, =7g; aDB if and only if r(a) =r(B);
and J =D (see [1, Vol. 1, Lemmas 2.5, 2.6 and 2.8 and Theorem 2.9]). In [6,
Theorem 2.4], the authors determined the largest regular subsemigroup of 7(X, Y)
when X # Y and |Y| # 1: the set F given by

F={aeT(X,Y): Xa CYa),
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which is needed to describe Green’s relations on 7' (X, Y). This was done by Sanwong
and Sommanee in [6, Theorems 3.2, 3.3, 3.7 and 3.9], and we quote their results for
convenience.

LEMMA 1. Let y €e Fand B e T(X,Y). Then p =Ly for some A€ T(X,Y) if and
only if ran B Cran y. Consequently, ifa, B € T(X,Y), then «LB in T(X,Y) if and
onlyifa =B or(rana =ran S and o, B € F).

LEMMA 2. If a, BeT(X,Y), then B=au for some weT(X,Y) if and only if
o € mg. Consequently, RS in T (X, Y) if and only if my = 7.

LEMMA 3. If o, BeT(X,Y), then aDB in T(X,Y) if and only if my =mg or
(r(e)y=r(B)and o, BeF).

LEMMA 4. Ifa, B e T(X,Y), then B = Aau for some ,, u € T(X, Y) if and only if
r(B) < |Yal. Consequently, aJBinT (X, Y) ifand only ifty =mg orr(a) = |Ya| =
|YBl =r(B).

By Hall’s theorem [2, Proposition 11.4.5], any regular subsemigroup of 7 (X)
inherits characterizations of its relations £ and R from those on 7(X). Thus, by
Lemmas 1 and 2, if o, § € F, then « LB in F if and only if ran @ =ran §, and R B
in F if and only if 7y = mg.

As observed in [6, Corollary 3.11], 7 =D on F. In fact, the next result shows that
if o, B € F, then «J B in F if and only if r() = r(B): this is comparable with the
J-relation on T (X).

LEMMA 5. Ifa, B € F, then B = lau for some A, u € F if and only if r(B) < r(a).
Consequently, a J B in F if and only if r(a) = r(B).

PROOF. Suppose that 8 = Aoy for some A, u € F. By Lemma 4, r(8) < |Y«|.
Since @ € F, then Xa € Yo € X, and so |Yo| = | Xa| =r(x). Thus, r(8) < r(w).
Conversely, suppose that the latter holds and let ran 8 = {b;} and ran « = {g;} U {a it
where {b;} = Y8 = XB C Y and {a;} U laj}=Ya=XaCY. Foreachi,leth; ! =
B; and a;a~' = A;, and choose y; € A;NY (possible since a; € Ya). Define A €

T(X) by
Yi

Clearly, XA ={y;} €Y. Since {b;} = Y8, it follows that B; NY # @ for every i.
Therefore, YA = {y;} = XX, and hence A € F. Now fix ip € [ and let Y \ Xo = {ax}
(note that this set may be empty). Write {a;} U{ar} U(X\Y)=C and define

n e T(X) by
_fai C
=\t by,)

Then Xu =Yu={b;j} CY,andso u € F. Also 8 = Aau.
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Next we show that if « 78 in F then r(a) = r(8) (the converse follows from the
first part of this lemma). Suppose that 8 = Aap and a = A’ B’ for some A, A/, u, ' €
F'. Then

I XB| = [(XMap| < [(Xa)u| < |Xal,

even if A=1 or w=1. Similarly, |Xa| <|[(XA)Bu'| <|XB|, and hence r(a) =
r(B). 0

Although the R-relation on 7' (X, Y) can be described just like the corresponding
one on 7T (X), the other Green’s relations differ substantially from the corresponding
ones on T(X). In particular, from Lemma 4, we conclude that « 78 in T(X, Y)
implies that r (o) = r (), but the converse does not hold when X # Y and |Y| # 1. To
see this, choose two distinct elements y1, y» in ¥ and write ¥ = A U B, with y; € A
and y; € B. Also, let X \ Y = C. Now define «, 8 € T(X) by

(A UB c) (A uc B)
o= , B= .
V1 y2 y2 Y1
Clearly, o, B € T(X, Y) and r (@) =r(B), since ran « =ran 8 = {y1, y2} € Y. On the
other hand, |Y«| # |YB| and 7y # 7g, and this implies that o and 8 are not J-related
inT(X,Y).

In passing, we observe that in [6, Theorem 3.12], the authors proved that if Y
is finite, then D=7 on T (X, Y), but the same does not hold in general (see [0,
Example 3.10]).

3. Idealsin T(V, W)

Before determining all of the ideals in 7 (X, Y), we correct the proof of the
corresponding result for 7(V, W) in [8, Theorem 11]. The argument for that result
appeals to [8, Lemma 10] where, using the notation of its proof, {w,} U {w,} is
a linearly independent subset of W and u € V \ W, so {w,,} U {u + w,} is linearly
independent in V and each u + w, ¢ W. However, it is asserted that dim(Wy) <
dim(Vy) for some y € T(V, W), which may be false. For example, (¥ + w;) —
(u+wr)eWif 1,2e N (see [8, p. 450]), and this may change the relative di-
mensions of Wy and Vy. The result in [8, Theorem 11] is correct, but it requires
a different lemma (recall that, as assumed in [8, p. 442], to avoid trivialities, W is a
nonzero proper subspace of V). In what follows, we use the notation of [8], but change
it slightly to avoid any confusion with our notation in Section 4.

Asin [8, p. 442],welet Q ={ax e T(V, W): Va C Wa}. By [8, Lemma 1], Q is
the largest regular subsemigroup of 7(V, W).

LEMMA 6. If B € Q and r < dim(WpB) = s, then there exists A € T (V, W) such that
AB ¢ Q and dim(WAB) =r.

PROOF. If B € Q and dim(WB) = s > r’, we can write

u w i
=0 o)
J
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where |J| =s. Choose K U {1} C J with [K|=r,letu eV \ W, write V = (v;) ®
() @ (wy) where W C (vg) @ (wy), and define A € T(V, W) by

Cfve u wy
A= (O wq wk)'
Then WAB = (wy) # (w]) ® (w;) = VAB,so AB ¢ Q and dim(WApB) =r. O

We now prove [8, Theorem 11]: in essence, the only difference between what
follows and the argument for [8, Theorem 11] lies in the choice of the subset ¥ of
the ideal I in T(V, W). For convenience, we recall some notation in [8, p. 448]:
namely, for each 1 <r <dim W, T, denotes the set {« € T(V, W) : r(«x) < r}, and if
¥ is a nonempty subset of T (V, W), then

r(X) =min{r : r > dim(Wa) for all « € X},
KX)={BeT(V,W):ker B Dker« for some o € X}.

THEOREM 7. The ideals of T(V, W) are precisely the sets T, U K(X) and T, U
K(X), where r =r(X) and X is a nonempty subset of T(V, W).

PROOF. Let T be an ideal of T(V, W). If 1={0}, we let ¥ =1, so r(X) =1,
T1 = {0}; and, if 8 € K({0}) then ker 8 =V, so B = 0 and thus K ({0}) = {0}. That s,
{0} =T, U K({0}).

Suppose « € I is nonzero and write

fup wj v
a_<0 w', wk>
J
where W C (u,) ® (w;) and W N (vg) = {0}. If J =0, then K # § and Wa = {0} #

(wg) =Va,soa €\ Q. On the other hand, if J # @, choose 1 € J andu € V \ W,
write V = (u) & (v,,) where W C (v,,), and let

_(vm u
x_<0 wl).

Then Wia = {0} # (w}) = VAa, so A €I and A ¢ Q. That is, in each case, if
¥ =1\ Q then ¥ # ¢ and we assert that I equals 7, U K(X) or 7T,» U K (%), where
r=r(X).

First suppose that dim(Wpg) < r for all 8 € . In this case, suppose that g € .
Now, if r(8) < r, then 8 € T, and, if dim(WgB) <r <r(B),then W8 £ VB,s0B € X
and hence B € K(X). Thus, in this case, [ C 7, U K(X). Conversely, suppose that
BeT,. Ifdm(Wa) <r(B) <r for all @ € X, we contradict the choice of r = r(XZ).
Therefore, r(8) < dim(Wa) for some o € ¥ C 1, and hence € I by [8, Lemma 4].
Clearly, K (%) C I by [8, Lemma 3], so we conclude that 1 =7, U K (X).

Next suppose that r <dim(Wm) for some w € I. In this case, if Wr # Vo,
then m € ¥ and we contradict the choice of r. Hence W = Vxr and thus 7 € Q,
where r () = s > r. Now, if s > r/, then Lemma 6 says that there exists A € T(V, W)
such that Ar €1\ Q =¥ and dim(WAx) =r, which contradicts the choice of r.
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Hence, in this case, r =s and thus w € 7,». Clearly this conclusion holds for any
B € I such that » < dim(Wg). On the other hand, if 8 € I and dim(Wg) < r, then we
have already seen that 8 € T, U K (X). So, in this case, [ € 7,» U K (X). Conversely, if
B € T, thenr(B) <r =dim(Wm) for the same 7 as before, so 8 € I by [8, Lemma 4].
Like before, K (X) C I, and we now conclude that [ = 7,» U K (X). O

4. Idealsin T (X, Y)

As in Section 3, for each cardinal r, we let r’ denote the successor of . It is well
known that the ideals of 7' (X) are precisely the sets {« € T(X) : r(a) < r}, where
1 <r <|X/, and hence they form a chain under containment. The same is true for the
ideals in F, as we now show.

THEOREM 8. The ideals in F are exactly the sets
Fr={aeF :r(a)<r},

where 1 <r <|Y|'. Moreover, F, is a principal ideal of F if and only if r is a successor
cardinal.

PROOF. Itis easy to see that F; is nonempty. For, given y € ¥, r(Xy) =1 < r and so
Xy e F,. Nowleta € F, and § € F. Then o8, B € F and

r(af) =|Xaf| < |Xa|=r(a) <r.

Also XBa C Xa, and so r(Ba) < r(a) < r. Therefore «B, Ba € F,, and hence F; is
an ideal of F. Conversely, let I be an ideal of F and let r be the least cardinal greater
than r (o) for every o € I (this is possible since the cardinals are well ordered). Then
I C F,. To see that F,. C 1, let 8 € F,. Then there exists « € I such that r(8) < r(«);
otherwise, r(a) < r(B) < r for every « € I, and this contradicts our choice of r. By
Lemma 5, r(8) < r(«) implies that 8 = Aap for some A, u € F. Since I is an ideal
of F,Bel,andso F, =1.

Next we determine all the principal ideals of F. To do this, let r be a successor
cardinal, say r = s/, and choose « € F, with r(a) =s. If r(8) > s for some 8 € F,,
then r(B) > s’ = r, a contradiction. Thus, for every 8 € F,, r(8) <s =r(a) and, by
Lemma 5, 8 € J (&), the principal ideal of F generated by «. Hence, F; € J (o). Since
the reverse inclusion also holds, F, is principal. Conversely, suppose that F, = J ()
for some « € F,. Let r(«) = s and assume that s < t < r for some cardinal . Clearly,
t =r(y) for some y € F (since t <r <|Y|). By Lemma 5, J(ax) C J(y) C F,,
contradicting our supposition. In other words, r is the least cardinal greater than s,
andsor =ys'. O

We proceed to describe the ideals of 7 (X, Y). To do this, let 1 < r < |Y|" and write
T,={aeT(X,Y):r(a) <r}.

Let x €T, and B T(X,Y). Then XBa C X, and so r(Ba) <r(ax) <r. Also
r(af) =|Xaf| < |Xa| =r(a) < r. Therefore, T, is an ideal of T (X, Y).
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Now let & be a nonempty subset of 7 (X, Y) and let

r(6) = min{r : |Ya| < r for every a € G},
MNG)={eT(X,Y):my Cng for some a € &}.

LEMMA 9. For each nonempty subset & of T(X,Y), Tye) UII(6) and T,y U
(&) are ideals of T(X, Y).

PROOF. Given B, u € T(X, Y), mg Cmg,. Thus, I1(&) is a right ideal of T(X, Y).
Now, let A€ T(X,Y) and B € II(6). Then ny C mg for some o € & and, by
Lemma 2, 8 = au for some p € T(X, Y). Therefore, since XA C Y,

r(p) =1XAB| = |YB| = Yau| < [Ya| <r(6).

Hence, AB € T,(s). By the remark above, T, (g) is an ideal of T(X, Y). Thus,
given B € T UII(S) and A, n € T(X, Y)!, we have ABu € T UII(6), and
so T) UTI(O) is an ideal of T (X, Y). Since T,y is an ideal of T (X, Y) and
Ts) € Ty sy, it follows that T,y U IT(8) is also an ideal of T' (X, Y). O

Next we show that the above ideals are the only ones in 7 (X, Y). Although the
following argument is similar to the one given for 7'(V, W) in Section 3, we provide
most of the details in this nonlinear context. As before, we start with a technical result.

LEMMA 10. If B€ F and r < |YB| =s, then there exists L € T(X,Y) such that
AB ¢ Fand|YAB|=r.

PROOF. If B € F and |YB| = s > r/, we can write

_(A)
ﬂ‘(%)

where |J/|=s and Y N A; # ¢ for each j. Choose K U{l} < J with |K|=r, and
let y e Y NA; for each i € K U{1}. Also, choose 2 € K and write L = K \ {2}
(which may be empty). Finally, choose u € X \ Y, let B = X \ [{¢#} U {y¢}] and define

AeT(X,Y)by
A= (B u yﬁ).
Y2 Y1 e

Then YAB = {y}} U {y,} # XAB,s0 AB ¢ F and |YAB| =r. O

Recall that, as stated in Section 1, Y is a proper subset of X with at least two
elements. We let C(Y) denote the set of all constants in 7' (X, Y) and observe that this
is the smallest ideal of T (X, Y).

THEOREM 11. The ideals of T(X, Y) are precisely the sets T, UTI(S) and T, U
[1(S), where r = r(6) and S is a nonempty subset of T (X, Y).

PROOF. Let I be an ideal of T(X, Y). If I=C(Y), we let S =1, so r(&) =2 and
T, =C(Y); and, if B € [1(&), then B is constant and thus IT(&) =&. That is,
C(Y)=T, UII(G), where & = C(Y).
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Suppose that o € I is nonconstant and write

<Aj Ak)

o= / /

Yi Yk

where Y N A; @ for each j and Y N{J Ax =9. If K # 0 then Yo = {y}} # Xe,

so o ¢ F. On the other hand, if K = then |J| >2. Now choose 1,2 € J and
vieA;NY fori=1,2,letu e X\Y and define A € T(X, Y) by

_ (u X\ {u}>

o o» )
Then YAa = {y5} # {¥]. ¥} = XAa, so ke € [ and A ¢ F. That is, in each case, if
G =1\ F then G # ¢ and we assert that I equals 7, U I1(&) or T,» U I1(S), where
r=r(6).

First suppose that |YB| < r for all 8 € I. In this case, suppose that 8 € I. Now, if
r(B) <r, then B €T, and, if |YB| <r <r(B), then Y8 # X, so B € G and hence
B € T1(6). Thus, in this case, I C T, U I1(&). Conversely, suppose that 8 € T,.. Then,
as in the linear case, r(8) < |Y«/| for some o« € G C I, and hence § € 1 by Lemma 4.
Clearly, [1(&) € I by Lemma 2, so we conclude that I = 7, U I1(&).

Next suppose that r < |Yy| for some y €. In this case, if Yy # Xy, then
y € G and we contradict the choice of r. Hence Yy = Xy and thus y € F, where
r(y) =s >r. Now, if s > r/, then Lemma 10 says that there exists A € T (X, Y) such
that Ay e I\ F =& and |YAy| =r, which contradicts the choice of r. Hence, in
this case, r = s and y € T,». The rest of the proof proceeds in the same way as for
Theorem 7, so we omit the details. O

COROLLARY 12. If|Y| >3, then T (X, Y) is not isomorphic to T (Z) for any set Z.

PROOF. Suppose that |Y| > 3, write Y as a disjoint union of three sets, say A U B U C,
and let y1, y2, y3 € Y be distinct. By our assumption, X \ Y # . Define o1, o €
T(X,Y)by

(AOB C X\Y) (A BUC X\Y)
o] = , Op)= .
yoooy2 o»m yiooo»n y3

Clearly, |[Ya1| =2 <3 =|Xwq| and so, if 61 = {«1}, then r(&;) =3 and oy € T3 U
[1(&1) and this is an ideal of T(X, Y) by Lemma 9. Likewise, if &> = {ap} then
T3 UTI(S,) is an ideal of T(X, Y) and ap € T3 UTI(S3). Now, o) ¢ T3 UTI(S))
since r (1) =3 and 7wy, € 7q,, 50 T3 UTI(G1) € T3 UTI(S;). Similarly, r(az) =3
and 7y, & 7o, imply o ¢ 73 UTI(S), and hence 73 U I1(&2) € T3 UTI(Sy). In
other words, we have shown that, if |Y| > 3, then T (X, Y) contains two ideals which
are not comparable under containment, and so it cannot be isomorphic to 7'(Z) for any
set Z. O

https://doi.org/10.1017/S0004972710001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972710001814

[9] Transformations with restricted range 297

It is obvious that, if |X| > 2, then the largest proper ideal of T (X) is {« € T(X) :
r(a) < |X|}. However, to determine the maximal ideals in 7 (X, Y), we need a
technical lemma, which we motivate by observing that, foreacha € T(X, Y), |[Ya| <
| Xa| < [Y].

LEMMA 13. No proper ideal of T (X, Y) contains any element y with |Yy| = |Xy|=
Y.

PROOF. Let J be an ideal of T (X, Y) and suppose that there exists y € J such that
|Yy|=|Xy|=1Y]. Given B T(X,Y), we have ran 8 C Y, and so r(B) < |Y|=
|Yy|. By Lemma 4, 8 =Ayu for some A, u € T(X, Y), and so 8 € J. Therefore,
J=T(X,7Y). O

THEOREM 14. If |Y| = p > 2, then the largest proper ideal of T(X,Y) is the set
T,UGS, where G ={a € T(X,Y):|Ya| < |Xa|= p} (which may be empty).

PROOF. First suppose that & = (. By the remark before Lemma 9, T), is an ideal of
T (X, Y). Clearly, it is a proper ideal and, by Lemma 13, every proper ideal of T (X, Y)
is contained in 7),. Hence, in this case, T), is the largest proper ideal of T'(X, Y).

If & #0, then let « € G and write Yo = {a;}. Since [Ya| < p =[Xa|, we can
write Xoa = {a;} U {a;} for some subset {a;} of Y, where |J|+ |I| = p. Clearly,
{ai}=Xa\Ya S (X \Y)a,andso | X\ Y|>|I|.

If p is infinite, then |X \ Y| > |I| = p =|Y| and so, for every cardinal g such
that ¢ < p, we can write ¥ = {y,,} U {y,} and X \ ¥ = {x,,} U {x¢}, where |M| =g¢,
IN|=pand|L]|=|X\Y]. Choose 1 € M and define 8 € T (X, Y) by

ﬂ:<ym i} 2 {xe}>
Ym YL Yo Y1)

Since YB = {y,} and XB = {y,,} U {y,} =Y, it follows that |Y8| = g and B € &. That
is, for each cardinal ¢ < p, there exists 8 € & with |Y8| = ¢ and so r (&) = p.

Now suppose that p > 2 is finite and write ¥ ={y1, ..., yp—1, yp}. Let X \ ¥ =
{xx} (nonempty since we assume ¥ C X) and define 8 € T(X, Y) by
B = <Y1 cee Yp=1 Yp {Xk})
Y o--- Yp—1 Y1 Yp

Clearly, p — 1 =|Yo| < | Xa| = p, and so r (&) = p.

By Lemma 9, T, UTI(G) is an ideal of T(X, Y). It is not difficult to see that
T, UII(8) =T, U &. Forexample, clearly, T, UG C T}, U II(S). Given 8 € [1(5),
then 7y € g for some o € &. But this implies that p > [Ya| > |[YB|. If r(B) < p,
then B € T,,. If not, then B € &, and the equality follows. Also, if J is a proper ideal of
T(X,Y) then, by Lemma 13, JC T(X, Y)\{e¢ e T(X, Y) : | X| = |Y«a| = p}: that
is, J € T, U G and this is the largest proper ideal of T'(X, Y). O
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EXAMPLE 15. As in the proof of Theorem 14, it is easy to see that if Y is finite,
then & is nonempty. Now suppose |Y|=p >8p and |X \ Y| < p. Then |X]| = p.
Clearly, there exists o € T(X, Y) such that | Xa| = p. For example, write ¥ = {y,}
and X = {x;} with |J| = p, and define « € T (X, Y) by

o= (XJ').
Yj
But, given 8 € T (X, Y) with | X8| = p, we know that |YB| = p (since [(X \ V)| <
|X \ Y| < p), and so G = ¢ in this case.

5. An embedding problem

It is well known that any semigroup S can be embedded in T (S'), where S! equals §
with an identity adjoined. This is achieved via the mapping p : S — T(S'), a — pq,
where p, : S I 5 §! x = xa, foreacha € S. However, if we want p to embed some S
into T(S!, Y) for some proper subset Y of S!, then we must have Sa U {a} = ran p, C
Y foralla € §, and hence Y = S. On the other hand, if we do not add an identity to S,
then we need S to be ‘cancellative’ in some way: compare the embedding of a right
cancellative semigroup S into the semigroup of all injective transformations of S in [1,
Vol. 1, Lemma 1.0].

If |Y|>3,then T =T (X, Y) is right reductive (see [1, Vol. 1, p. 9]). In fact, it
is G-right-reductive for some nonempty subset S of T': that is, if ay = By for all
y € G, then o = B. For example, let &3 denote the set of all y € T with the form

_ (A B C)
r= yroy2 )3
where precisely one of A, B and C contains no element of Y. Suppose thata, g € T

and oy = By for all y € G3, and assume that xo = y; # y» = xp for some x € X.
Now, since |Y| > 3 and there exists u € X \ ¥, we can write X = A U {y»} U {u} and

let
A y u
= € 6s.
Y <y1 » Y3> ’

Then xay = y; and xBy = y;, contradicting the supposition. That is, xa = x for all
x € X, and thus o = 8.

Next recall that 73 = {o € T : r(a) < 3} is an ideal of T, and observe that 6% CTs;.
In fact, if we write an arbitrary « € T as

o (Aj Ak)
Yj Yk
where Y N A # ¢ for each j and Y N J A = 0, then it can be seen that r(ay) <2

for each y € G3. That is, for each « € T, «S3 C T3. Consequently, if L = &3 U T3,
then Lisaleftideal of T(X, Y)andoL C 73 C Lforalla e T.

https://doi.org/10.1017/S0004972710001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972710001814

[11] Transformations with restricted range 299

With the above in mind, we say that, if M, N are semigroups, then 6 : M — N is
an anti-embedding if 6 is injective and (xy)0 = (y0)(x0) for all x, y € M. We now
modify the regular anti-representation of a semigroup (see [1, Vol. 1, p. 9]) to anti-
embed certain semigroups into 7 (X, Y) for some sets X and Y.

THEOREM 16. Suppose K C L are left ideals of a semigroup S such that al. C K for
all a € S. If S is L-right-reductive, then S can be anti-embedded into T (L, K).

PrROOF. Let A:S— T(L), a —> Ay, Where A, : L — L, x — ax, for each a € S.
Clearly, X is well defined (since aL < L for each a € S) and (ab)A = (bA)(aAr) for
alla, b € S. Also, if A, = Ap, then ax = bx for all x € L and so a = b by supposition.
In addition, ran A, =alL C K,soeach A, € T(L, K). O

The dual of the above result embeds certain semigroups into 7 (X, Y) for some
sets X and Y and, for interest, we now state it explicitly. However, we note that if
1 <|Y|and Y C X, then T (X, Y) is not &-left-reductive for any nonempty subset &
of T'; that is, there exist distinct o, 8 € T (X, Y) such that ya = y 8 for every y € G.
To see this, choose x; € X \ Y and distinct y;, y, € Y, and let «, 8 € T(X) be such
that xja = y1, x18 = y2, and xa = y; = xf for every x € X \ {x1}. Clearly, «, 8
are distinct elements of 7 (X, Y) and, since «|Y = B|Y, we have ya = yf for every
y € 6.

THEOREM 17. Suppose that K C R are right ideals of a semigroup S such that
Ra C K foralla € S. If S is R-left-reductive, then S can be embedded into T (R, K).

EXAMPLE 18. We give one example of a semigroup which satisfies the algebraic
conditions of Theorem 16 but differs from every 7' (X, Y) with |Y| > 2. Suppose that
X ={a, b, c, d}, and let a; denote the partial transformation with domain {a} and
range {b}. Also let I ={« € I (X) : r(a) < 2}: that is, the smallest nonzero ideal of
I (X), the symmetric inverse semigroup on X [, Vol. 1, p. 29]. Now write

K=, L:Ku{(‘c‘ Z)}’ S=LU{ide.q)}-

Clearly, S is a semigroup with ¢ as a zero element, and S? # {#} (that is, the operation
on § is nontrivial). Also K C L, and K, L are left ideals of S such that L C K for
all @ € S (moreover, oL # {{J} for some o € §).

To show that S is L-right-reductive, suppose that apy = By for all y e L. In
particular, if y = b, then ay, - b, # ¥ implies that 8 - b, # , so b € ran § and such 8 €
S cannot have rank two; hence, by comparing domains, we see that § = ay, as required.
Also, if acy = By for all y € L, then ¢ € ran 8 and a € dom B; and, if r(8) = 2 then
Bdg # @ for dg € L, whereas a. -d; =@. Thus B =ac, as required. Likewise, if
byy =By for all y € L, then by, - b, # ¥, so b eran § and we deduce that § = by.
Similarly, if (¢ %)y = By forall y € L, then ¢, d € ran § and a, b € dom g, and thus

B must equal (? Z). Similarly, we can show that if o, 8 # ¥ in S and oy = By for
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all y € L, then o« = B. In addition, it is obvious that #y = By for all y € L precisely
when § = (. Finally, recall that T (X, Y) does not contain a zero if | Y| > 2.
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