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ON A CONJECTURE REGARDING THE MOUSE ORDER FOR WEASELS

JAN KRUSCHEWSKI AND FARMER SCHLUTZENBERG

Abstract. We investigate Steel’s conjecture in ‘The Core Model Iterability Problem’ [10], that if W and
R are Ω + 1-iterable, 1-small weasels, then W ≤∗ R iff there is a club C ⊂ Ω such that for all α ∈ C , if
α is regular, then α+W ≤ α+R. We will show that the conjecture fails, assuming that there is an iterable
premouse M which models KP and which has a Σ

˜1-Woodin cardinal. On the other hand, we show that

assuming there is no transitive model of KP with a Woodin cardinal the conjecture holds. In the course
of this we will also show that if M is a premouse which models KP with a largest, regular, uncountable
cardinal �, and P ∈ M is a forcing poset such thatM |= “P has the �-c.c.”, and g ⊂ P is M-generic, then
M [g] |= KP. Additionally, we study the preservation of admissibility under iteration maps. At last, we will
prove a fact about the closure of the set of ordinals at which a weasel has the S-hull property. This answers
another question implicit in remarks in [10].

§1. Introduction. In the book ‘The Core Model Iterability Problem’ [10, p. 28],
John Steel conjectured the following:

Conjecture 1. Let W and R be 1-small weasels which are Ω + 1-iterable. Then
the following are equivalent:

1. W ≤∗ R, and
2. there is a club C ⊂ Ω such that (α+)W ≤ (α+)R for all regular cardinals
α ∈ C .

In the terminology of the book a weasel is premouse of ordinal height Ω, where Ω
is a fixed measurable cardinal. The relation≤∗ is the mouse order, i.e., ifW andR are
weasels which are sufficiently iterable to successfully coiterate (by results of the book
Ω + 1-iterability suffices), then W ≤∗ R if and only if R wins the coiteration, i.e. if
(T ,U) is the successful coiteration of (W ,R) and lh(T ) = � + 1 and lh(U) = � + 1,
then MT

� �MU
� .

Steel showed in [10] that Conjecture 1 holds for weasels small enough that linear
iterations suffice for comparison. His proof is based on universal linear iterations.

In the following we will prove Conjecture 1 under the assumption that neither W
nor R have an initial segment which models the theory KP + “there is a Woodin
cardinal”, see Theorem 26. In particular, Conjecture 1 holds if there is no transitive
model of KP + “there is a Woodin cardinal”.
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MOUSE ORDER FOR WEASELS 365

On the other hand, assuming the existence of an iterable admissible passive
premouse M with a Σ

˜1-Woodin cardinal,1 we will show that there is an inner model

that thinks there is a counterexample to Conjecture 1, see Section 4.2.
For the construction of the counterexample from the assumption just described

we will need to investigate the extender algebra over admissible mice. In the
course of this, we will show that if M is an iterable premouse modelling KP
with a largest, regular, uncountable cardinal �, P ∈M is a forcing poset such that
M |= “P has the �-c.c.”, and g ⊆ P is M-generic,M [g] |= KP, see Theorem 10.

In Section 5 we will answer another question implicit in remarks from [10, p. 32]
about the S-hull property in 1-small weasels. We will show that for any Ω + 1-iterable
weasel W such that Ω is S-thick in W the set of points that have the S-hull property
is almost closed, see Theorem 37 and Definition 36.

We will use the notation from [9]. A k-maximal iteration tree is as in Definition
3.4 of [11].

§2. Admissible premice.

Definition 2. A passive2 premouseM = (�M�,∈,EM, ∅) is called admissible if
M |= KP.3

Remark. Note that an active premouse M, i.e. so that FM 	= ∅, cannot model
KP. We leave this as an exercise.

For n ≤ �, we say an n-sound premouse M is n-countably iterable if every
countable elementary substructure of M is (n,�1, �1 + 1)∗-iterable. If M is
�-countably iterable we also say that M is countably iterable.

The following is a nice criterion for the admissibility of a passive premouse, whose
proof we leave to the reader.

Lemma 3. Let M be a passive premouse. Then M |= KP if and only if for all
f ∈ ΣM1 (M ) such that f is a function with dom(f) ∈M , f ∈M .

Moreover, if M has a largest cardinal �, then M |= KP if and only if for all
f ∈ ΣM1 (M ) such that f is a function with dom(f) = �, f ∈M .

Remark. If M is a 0-countably iterable premouse without a largest cardinal, then
M is admissible. The proof of this uses the Condensation Lemma.

Lemma 4. Suppose M is an admissible passive premouse. If �M1 < ORM , then �M1
is the largest cardinal of M.

Proof. Let � := �M1 . Assume for the sake of contradiction that �+M exists, i.e.,
�+M < ORM . Let

H ′ := HullM1 (� ∪ {pM1 , �}).

1See Definition 28 for the definition of a Σ
˜1-Woodin cardinal.

2Note that an active premouse cannot model KP with the active extender as a predicate and without
the active extender as a predicate it models ZF–, so trivially KP.

3For a definition of the theory KP see Definition 2.3 in [1].
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Let � := sup(H ′ ∩ �+M ). Suppose first that � = �+M . In this case by the upwards
absoluteness of Σ1 formulas

M |= ∀	 < �∃α∃
(
 ∈ HullM |α
1 (� ∪ {pM1 , �}) ∧ 	 < 
 < �).

Note that the part of the formula in parentheses is Σ1. Thus, by Δ0-collection, there
is some � < ORM such that

M |= ∀	 < �∃
(
 ∈ HullM |�
1 (� ∪ {pM1 , �}) ∧ 	 < 
 < �).

Thus, there is f ∈ J (M |�) �M such that f : � → �+M is cofinal. But then there is
also f′ : � → �+M onto and f′ ∈ J (M |�). Contradiction!

Let us suppose now that � < �+M . Note that since HullM1 (� ∪ {pM1 }) ⊂ H ′ and
HullM1 (� ∪ {pM1 }) is unbounded in ORM ,H ′ is unbounded in ORM . Again we have
that

M |= ∀	 < �∃α∃
(
 ∈ HullM |α
1 (� ∪ {pM1 , �}) ∧ 	 < 
 < �).

Thus, by Δ0-collection there is some � < ORM such that

M |= ∀	 < �∃
(
 ∈ HullM |�
1 (� ∪ {pM1 , �}) ∧ 	 < 
 < �).

Since H ′ is unbounded in ORM , there is some such � ∈ H ′. But then since � ∈ H ′

there is f ∈ H ′ such that f : � → � is cofinal and thus also some f′ : � → � which
is surjective and f′ ∈ H ′. But this means that � ∈ H ′. Contradiction! �

2.1. Forcing over admissible premice. In this subsection, we will prove that if M is
an admissible passive premouse with a largest cardinal � which is Woodin in M, B is
the extender algebra as defined inside M, and g ⊂ B is M-generic, thenM [g] |= KP.
This will be Corollary 11 which is an instance of the more general Theorem 10.

Note that if M is an admissible passive premouse with a largest, regular, and
uncountable cardinal � and P ∈M is a forcing poset, then we may assume without
loss of generality that P ⊂ �, as there is a surjection f : � → P in M. We will do so
throughout without further mention.

Lemma 5. Let M be an admissible passive premouse with a largest, regu-
lar, and uncountable cardinal � and let P ∈M be a forcing poset such that
M |= “P has the �-c.c.” Then there is no A ∈ ΣM1 (M ) such that A ⊂ P is an antichain
in P which is unbounded in �.

Proof. Suppose there is A ∈ ΣM1 (M ) is such that A ⊂ P is an antichain in P

which is unbounded in �. Since P has the �-c.c. in M, and � is regular in M, this
means that A /∈M . Let ϕ be a Σ1-formula such that for some p ∈M ,

x ∈ A ⇐⇒ M |= ϕ(x, p).

Define for α < ORM \� such that p ∈M |α,

Aα := {� ∈ � :M |α |= ϕ(�, p)}.

Note that A =
⋃
α<ORM Aα and Aα ∈M for all α such that α ∈ ORM \� and

p ∈M |α. In particular, since Aα ⊂ A is an antichain, P has the �-c.c. in M, and �
is regular in M, Aα is bounded in � for all such α.
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Note that since A =
⋃
α<ORM Aα is by assumption unbounded in �,

M |= ∀	 < �∃α(∃�(� > 	 ∧ � ∈ Aα)).

Since the last part of this formula is Σ1, we have by Δ0-collection that there is some
α′ ∈M such that α′ works for all 	 < � uniformly, i.e.

M |= ∃α′∀	 < �(∃�(� > 	 ∧ � ∈ Aα′)).

This contradicts the fact that every Aα is bounded in �! �
Lemma 6. Suppose that M is an admissible passive premouse with a largest, regular,

and uncountable cardinal �. Then � is a ΣM1 (M )-regular cardinal, i.e. for all � < � and
f ∈ ΣM1 (M ) such that f : � → �, ran(f) is bounded in �, i.e., sup(ran(f)) < �.

The proof of the Lemma is very similar to the proof of Lemma 5. Thus, we leave
it as an exercise for the reader.

Definition 7. Let M be an admissible passive premouse, P ∈M be a forcing
poset, and g ⊂ P be M-generic. Let � < ORM such thatP ∈M |� + 1. For 	 ≥ � · �
it is a standard fact that �P

M ||	∈M , where �P

M ||	 is the syntactical forcing relation
withM ||	 as a ground model using P-names inM ||	 . Moreover, the function F is
ΔM1 ({P}), whereF (	) = �P

M ||	 for 	 ≥ � · �. We letM [g]||	 = (L	 [EM, g],∈,EM �
	, g) and have that �M [g]||	� is the collection of the evaluations of the P-names in
M ||	 . We letM ||	[g] =M [g]||	 .4

Suppose that g ⊂ P is M-generic and that for a Σ0-formula , M [g] |=
∃x(x, z1, ..., zn), where {z1, ..., zn} ⊂M [g]. Let ϕ ≡ ∃x be the corresponding
Σ1 formula and let ż1, ..., żn be P-names for z1, ..., zn. We let

WM
ϕ,ż1,...,żn

:= {p ∈ P : ∃	 < ORM ∃ẋ ∈ (M |	)P(p �P

M |	 (ẋ, ż1, ..., żn))}.

We call the set WM
ϕ,ż1,...,żn

the set of conditions strongly forcing ϕ (with parameters
ż1, ..., żn).5

Remark. Since M |= “Pairing” it follows easily (using P-names) that M [g] |=
“Pairing”. Therefore, we may arrange that n has any specific value which we want it
to have. In particular, 1.

We will write Wϕ,ż1,...,żn for WM
ϕ,ż1,...,żn

if it is clear from the context what M is.
Since F ∈ ΔM1 ({P}), it follows easily that Wϕ,ż ∈ ΣM1 ({ż, ϕ,P}). Moreover, since
P ∈M , there is 	 < ORM such that P ∈M |	 so that Wϕ,ż is not trivially empty.
However, in general we cannot assume thatWϕ,ż ∈M .

We also write p �w.PM ϕ(ż) for p ∈Wϕ,ż .
For 	 < ORM we might interpret the Σ1 formula definingWϕ,ż over the structure

M |	 . We will denote the set defined overM |	 in this way byWM |	
ϕ,ż .

We have the following forcing theorem for Σ1 statements for admissible premice.

4One could define this also for M |	 that is including the active extender. However, this kind of
generality is not necessary for our context.

5The W stands for witness.
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Theorem 8. Suppose that M is an admissible passive premouse. Let ϕ(y) be the
formula ∃x(x, y), where  is a Σ0 formula. Let P ∈M be a forcing poset, ż ∈MP,
and suppose that g ⊂ P is M-generic. Then the following are equivalent:

• M [g] |= ϕ(żg),
• there is p ∈Wϕ,ż ∩ g, and
• there is p ∈ g such that p �P

M ϕ(ż).

Remark. Here p �P

M ϕ(ż) refers to the classical notion of forcing an existential
statement, i.e., for every q ≤ p there is some r ≤ q such that there is ẋ ∈MP such
that r �P

M (ẋ, ż). In order to show that this is equivalent to the existence of some
p ∈Wϕ,ż ∩ g, we must use the admissibility of M. The rest of the proof is standard.

It is not in general the case that if N is admissible and g ⊂ P is N-generic for some
forcing poset P ∈ N , then N [g] is admissible. See Proposition 13 and the remark
preceding it for examples of admissible structures where the generic extension fails
to be admissible. For N [g] to be admissible, it is sufficient that g meets all dense
open subsets of P that are unions of a ΣN1 (N ) and a ΠN1 (N ) class over N. See [5] for
more on this. With Theorem 10 we will give another criterion for ensuring that the
forcing extension of an admissible premouse is a model of KP.

Lemma 9. Let M be an admissible passive premouse with a largest, regular, and
uncountable cardinal �. Let P ∈M be a forcing such thatM |= “P has the �-c.c.”. Let
g ⊂ P be M-generic. Let � < � and suppose thatM [g] |= ∀α < �∃x(x, α, z), where
 is a Σ0-formula and z ∈M [g]. Let ϕ ≡ ∃x and ż ∈MP be a name for z.

Then there isA ∈M such thatA ⊂ �× � and if for α < �,Aα := {	 : (α, 	) ∈ A},
thenAα ⊂Wϕ,α̌,ż is a maximal antichain inWϕ,α̌,ż , in particular, for every p ∈Wϕ,α̌,ż
there is some q ∈ Aα such that q || p.

Proof. We construct the set A recursively along the ordinals of M. More
specifically, we will define via a Σ1-recursion a sequence 〈(Ai , 	i) : i < ORM 〉 with
eachAi ∈M and 	i ∈ ORM , and 〈(Ai , 	i) : i < �〉 ∈M for each � < ORM . We will
then set A =

⋃
i<ORM A

i . Let 	0 be the least 	 such that

M |	 |= ∃α < �∃p ∈ P(∃ẋ ∈MP(p �P

M |	 (ẋ, α̌, ż))),

i.e., 	 is such that there is some α < � such that WM |	
ϕ,α̌,ż

	= ∅. Let A0 be the set

of all (α, p) ∈ A0 such that α < �, WM |	0
ϕ,α̌,ż

	= ∅, and p is the <M -least element in

W
M |	0
ϕ,α̌,ż

. Here, <M denotes the canonical Σ1-definable well-order of M. Note that

A0 ∈M , since it is definable over M |	0. Moreover, A0 is a bounded subset of �.
(Actually, of �2, but via coding we may assume that A0 ⊂ �). Before we continue
the construction let us introduce the following notation: For α < � and i < ORM

let Aiα := {q ∈ P : (α, q) ∈ Ai}, where Ai is to be defined.
Let � + 1 < ORM and suppose that 〈(Ai , 	i) : i ≤ �〉 is defined such that

〈(Ai , 	i) : i ≤ �〉 ∈ ΣM1 ({�,, ż,P}). We define 	�+1 as the least 	 such that

M |	 |= ∃α < �∃p ∈ P((∀q ∈ A�α(p ⊥ q)) ∧ p ∈Wϕ,α̌,ż),
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if there is such 	 . In other words 	 is such that for some α there is an element
p ∈WM |	

ϕ,α̌,ż
incompatible with the elements of A�α . In case 	�+1 is undefined we stop

the recursion. Note that in this case A� ∈M .
In case 	�+1 is defined, we set A�+1 to be the union of A� with the set of all (α, p)

such that p is the <M -least q such that

M |	�+1 |= q ∈Wϕ,α̌,ż ∧ ∀r ∈ A�α(r ⊥ q),

if there is such q. Since A�+1 is definable overM |	�+1, A�+1 ∈M .
Now suppose that � < ORM is a limit ordinal and 〈Ai : i < �〉 is defined. We set

	� = 0 and A� =
⋃
i<� A

i . Note that since 〈Ai : i < �〉 ∈ ΣM1 (M ) by KP, A� ∈M .
We aim to see that the recursive definition of 〈(Ai , 	i) : i < ORM 〉 stops before

the ordinal height of ORM , i.e. there is some � < ORM such that 	� is not defined.
Suppose that this is not the case. We claim that Ā :=

⋃
i<ORM A

i ∈ ΣM1 (M ) is an
unbounded subset of �. For suppose not. Then, since �M1 = �, Ā ∈M . But the
definition of Ā gives a cofinal and total f : Ā→ ORM such that f ∈ ΣM1 (M ).
Contradiction!

In particular, the following holds in M,

∀	 < �∃(α, �)(α < � ∧ � ∈ (	, �) ∧ ∃	i(“� is added to Aα at stage 	i”)).

But by Δ0-collection, there is some 	i < ORM such that for all 	 < �, there is some
� ∈ (	, �) added to Aiα for some α < �. But this is insideM |	i + �. Thus, as � is a
regular cardinal of M, there is some α to which unboundedly many � < � are added.
Contradiction, since P has the �-c.c. in M.

Let � < ORM be least such that 	� is undefined. Note that � is by definition a
successor ordinal, i.e. � = � + 1 for some � < ORM . Set A := A�. By construction
A ∈M . For α < �, setAα := {p ∈ P : (α, p) ∈ A}. Since 	�+1 is undefined, we have
that for all α < �, Aα ⊂Wϕ,α̌,ż is a maximal antichain inWϕ,α̌,ż . �

Theorem 10. Let M be an admissible passive premouse with a largest, regular,
and uncountable cardinal � and P ∈M be such that M |= “P has the �-c.c.” Then
M [g] |= KP for any M-generic g ⊂ P.

Proof. We will verify that M [g] satisfies Δ0-collection and leave the remaining
axioms of KP as an exercise.

Let g ⊂ P be M-generic and suppose for the sake of contradiction thatM [g] 	|=
“Δ0-collection”. Let  be a Σ0-formula and y ∈M [g] such that they constitute a
counterexample to Δ0-collection, i.e.

M [g] |= ∀α < �∃x((α, x, y)),

but there exists no z ∈M [g] such that

M [g] |= ∀α < �∃x ∈ z((α, x, y)).

We distinguish two cases. First, suppose that there is some � < � such that there
exists no z ∈M [g] such that

M [g] |= ∀α < �∃x ∈ z((α, x, y)).
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Then, by the previous Lemma 9 there is A ∈M such that for α < �, Aα := {p ∈
P : (α, p) ∈ A} is a maximal antichain inWϕ,α̌,ẏ , where ϕ ≡ ∃x and ẏ ∈MP is a
P-name for y.

Claim 1. For α < �, Aα ∩ g 	= ∅.

Proof. Fix some α < �. Note that since M [g] |= ∃x(α, x, y), there is some
b ∈M [g] such that M [g] |= (α, b, y). By Theorem 8 we can fix some p ∈ g ∩
Wϕ,α̌,ẏ . We claim that this implies that Aα ∩ g 	= ∅. To this end let Dα := {r ∈ P :
∀q ∈ Aα(r ⊥ q)}. Note that since Aα ∈M , Dα ∈M . Moreover, Aα ∪Dα ∈M is
a pre-dense subset of P in M and thus, g ∩ (Aα ∪Dα) 	= ∅ by the M-genericity of
g. Suppose for the sake of contradiction that g ∩Dα 	= ∅ and let q ∈ g ∩Dα . Since
q, p ∈ g, there is r ∈ g such that r ≤ q, p. However, this means that r ∈Wϕ,α̌,ẏ ,
since r ≤ p. But r is incompatible with every element of Aα , so Aα is not a maximal
antichain inWϕ,α̌,ẏ . Contradiction! Thus, Aα ∩ g 	= ∅. �

We have established that for all α < �, Aα ∩ g 	= ∅. Moreover, by Theorem 8, we
have that

M |= ∀a ∈ A∃ẋ(∃p ∈ P∃α < �(a = (α, p) ∧ p �P

M (α̌, ẋ, ẏ))).

This is the antecedence of an instance of the Δ0-collection scheme since the part in
parentheses is Σ1 (note that we are using here the fact that �P

M for Σ1 statements is
Σ1 definable over M which is true by Theorem 8). Thus, there is z ∈M such that

M |= ∀a ∈ A∃ẋ ∈ z(∃p ∈ P∃α < �(a = (α, p) ∧ p �P

M (α̌, ẋ, ẏ))).

Let zg := {ẋg : x ∈ z ∩MP}. Note that zg ∈M [g], as z ∩MP ∈M ∩MP. It
follows that

M [g] |= ∀α < �∃x ∈ zg((α, x, y)),

a contradiction!
Let us now turn towards the second case, i.e., we assume that for all � < � there

is z ∈M [g] such that

M [g] |= ∀α < �∃x ∈ z((α, x, y)).

Let us associate to  a function f ∈ ΣM [g]
1 (M [g]) such that f : � → ORM [g] and

for α < �, f(α) is the least 	 such that there is x ∈M ||	[g] such that M [g] |=
(α, x, y). By our assumption f �α ∈M [g] for every α < �, but f /∈M [g]. Let us
define an auxiliary function F with domain � such that F (α) = f �α. Note that
F ∈ ΣM [g]

1 (M [g]). Let ϕ′
F be a Σ1 formula and z ∈M [g] such that

(c, d ) ∈ F ⇐⇒ M [g] |= ϕ′
F (c, d, z),

and let ϕF (a, b, z) be the formula

∃c∃d (ϕ′
F (c, d, z) ∧ a ≤ c ∧ b = d �a). (2.1)

Let

X := {p ∈ P : ∃	 < ORM (p �P

M |	 ∀α < �̌∃yϕF (α, y, ż))}.
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Note that X ∈ ΣM1 (M ) and let ϕX be the defining formula and a ∈M the
corresponding parameter.

We now aim to construct in a similar way as in the proof of Lemma 9 a maximal
antichain A in X. If X 	= ∅, let A0 := {p} for some p ∈ X . Otherwise, set A0 = ∅.
Suppose that 〈Ai : i < �〉 is defined via a Σ1-recursion for some � < ORM . If � is a
limit ordinal, let A� =

⋃
i<� Ai . Then, A� ∈M and 〈Ai : i ≤ �〉 ∈ ΣM1 (M ). If � is

not a limit, let 	� < ORM be the least 	 such that

M |	 |= ∃p ∈ P(ϕX (p, a) ∧ ∀q ∈ A�–1(q ⊥ p)),

if there exists such 	 . In the case that there is no such 	 , stop the recursion. In case
	� is defined, let p� be the <M -least p such that

M |	� |= ϕX (p, a) ∧ ∀q ∈ A�–1(q ⊥ p).

Let A� := A�–1 ∪ {p�}. It is not hard to verify that 〈Ai : i ≤ �〉 ∈ ΣM1 (M ) and
A� ∈M .

Similar to the proof of the Lemma 9 we aim to see that there is a least � < ORM

such that 	� is undefined, which will show that A := A�–1 is a maximal antichain in
X and A ∈M .

Suppose for the sake of contradiction that for all � < ORM , 	� is defined. Let
Ā :=

⋃
�<ORM A� . Clearly, Ā ∈ ΣM1 (M ). Since Ā is by construction an antichain,

by Lemma 5 Ā is bounded in �. In particular, Ā ∈M . However, as in the previous
proof, the definition of Ā give rise to a functionf ∈ ΣM1 (M ) such that dom(f) = Ā
and f is cofinal in ORM . But this is a contradiction!

Let D := {p ∈ P : ∀q ∈ A(q ⊥ p)}. As A ∈M , D ∈M and thus, A ∪D ∈M .
A ∪M is pre-dense and therefore, g ∩ (A ∪D) 	= ∅. Note that g ∩ A = ∅, so
g ∩D 	= ∅.

Let p̃ ∈ D ∩ g. Note that this means that there is no extension p of p̃ such that

p �w.PM ∃	((M |	)[ġ] |= ∀α < �̌∃yϕF (α, y, ż)). (2.2)

We claim that there is �p = 〈pi : i < �〉 ∈M such that for all i < �, pi ≤ p̃ and
M |= (i, ż, pi), where (i, ż, p) is the statement

p �w.PM ∃yϕF (i, y, ż). (2.3)

We may find such 〈pi : i < �〉 in M, as Δ0-collection holds in M and

M |= ∀i < �∃p((p �w.PM ∃yϕF (i, y, ż)) ∧ p ≤ p̃).

For every i < � there exists such p ∈ P, since p̃ ∈ g andM [g] |= ∀i < �∃yϕF (i, y, z)
and so by Theorem 8 the existence of p follows.

Claim 2. There is i0 < � such that for all i ∈ [i0, �) and all q ∈ P with q ≤ pi and
for all j ∈ (i, �), there is k ∈ [j, �) such that q || pk .

Proof. This follows routinely from the �-c.c. of P in M (otherwise, working in
M, construct by recursion on 	 an antichain 〈qi〉i<�). �
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Now since pi0 ≤ p̃, the following claim gives a contradiction, completing the
proof:

Claim 3. Replacing p with pi0 , line (2.2) holds.

Proof. Let h be (M,P)-generic with pi0 ∈ h. By Claim 2, for every 	 ∈ (i0, �),
h ∩ {pj | j ∈ (i, �)} 	= ∅. So there are cofinally many i < � such that pi ∈ h. By KP
in M, we can fix � < ORM such thatM |� satisfies(i, ż, pi) for all i < �. Therefore,
M ||�[h] satisfies ∃yϕF (i, y, z) for cofinally many i < �. Note that for all j0 < j1 < �
and all p ∈ P, if M |� satisfies (j1, ż, p) then M |� satisfies (j0, ż, p).6 Thus,
M ||�[h] satisfies ∃yϕF (i, y, z) for all i < �. �

As stated prior the claim, this completes the proof. �
From Theorem 10 we immediately get the following corollary.

Corollary 11. Suppose that M is an admissible passive premouse with a largest,
regular, and uncountable cardinal � which is Woodin in M and letB ∈M be the extender
algebra with �-many generators as defined inside M. Let g ⊂ B be M-generic. Then
M [g] |= KP.

If we replaced M |= “P has the �-c.c.” in the statement of Theorem 10 with
M |= “P is < �-closed,” Theorem 10 is false as Proposition 13 shows.

Lemma 12. Suppose that M, M1, and M2 are sound premice such that ORM is a
regular, uncountable cardinal (in V), �M1

� = �M2
� = ORM , M �M1, M �M2, and

Condensation holds ofM1 andM2. Then, eitherM1 �M2 orM2 �M1.

The Lemma follows from the proof of Lemma 3.1 in [4].
LetM = L�CK

1
and P be Cohen forcing. By [2], there are (M,P)-generics g such

thatM [g] 	|= KP.7 The following proposition establishes a variant of this fact.

Proposition 13. Let M = (�M�,∈,EM, ∅) be a 1-sound admissible passive
premouse with a largest, regular cardinal � such that �M1 < ORM and suppose that
Condensation holds in M. Let C� := (�<�)M . Then there is an M-generic g ⊂ C� such
that (�M [g]�,∈) 	|= KP.

Proof. Note that C� ∈M is such that

M |= “C� is a < �-closed, separable, and atom-less forcing”.

By Lemma 4 and 1-soundness, � = �M1 andM = HM1 (� ∪ {pM1 }). Thus, there is a
partial surjective function h : � →M such that h ∈ ΣM1 ({pM1 }). Let

D̃ := {� < � :M |= “h(�) ⊂ C� is dense in C�”}.

Note that D̃ /∈M , as otherwise M could construct an M-generic. Let

D := 〈�i : i < �〉,

be the monotone enumeration of D̃. Note that D̃ has ordertype �. Since h ∈ ΣM1 (M ),
D̃ ∈ ΣM1 (M ). However, D /∈ ΣM1 (M ), as otherwise by Δ0-collection, D ∈M .

6This is why we formulated ϕF as in line (2.1).
7The authors thank Philipp Schlicht for pointing out this result to them.
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The idea is now to construct an M-generic g which codes in a Σ1-fashion the set
D so that D ∈M [g] if (�M [g]�,∈) |= KP.

Let us define g̃ = 〈pi : i < �〉 via a recursion on i such that for all α < �,
〈pi : i < α〉 is uniformly Σ1 over M in the parameters {D �α,C�}. We will have
that pi ≤ pj for j < i . Set p0 := 〈�0〉 and p1 to be the<M -least p ∈ h(�0) such that
p ≤ p0. Note that there is such p, since h(�0) is dense in C� .

Suppose that 〈pi : i < �〉 is defined, where � < � is a limit ordinal, such that
pi ≤ pj for j ≤ i < �. Note that D �� ∈M , since D̃ ∈ ΣM1 (M ) and � is ΣM1 (M )-
regular by Lemma 6. By our induction hypothesis the construction so far is uniformly
Σ1 in the parameters D �� and C� . This implies that 〈pi : i < �〉 ∈M . Thus, we can
set p� = (

⋃
i<� pi)

�〈��〉. Let p�+1 be the <M -least p ∈ h(��) such that p ≤ p�.
We now turn towards the successor case. Suppose we have defined 〈p	〉	≤� where

� is an odd successor (that is, � = �+ 2n + 1 for some n < � and � is a limit less
than � or equal to 0). Setp�+1 := p�� 〈��+n〉 and letp�+2 be the<M -leastp ∈ h(��+n)
such that p ≤ p�+1.

Let g be the upwards-closure of g̃ in C� . By definition of g̃, g is M-generic.
Note that since E

M �� ∈M [g] by Lemma 12 we can define E
M over M [g] in

a Σ1 fashion as the extender sequence of the stack of sound premice extending
M |� which project to � and for which condensation holds. Thus, it follows that
(M,∈,EM ) ∈ Σ(�M [g]�,∈)

1 ({M |�}). Note that therefore g̃ is definable over (M [g],∈)
from {C� , �, g,M |�} via a Σ1 recursion of length �. Thus, if (�M [g]�,∈) |= KP, then
g̃ ∈M [g] and so D ∈M [g].

Let h′ : � → ORM be the partial function such that h′(α) is the least 	 < ORM

such that h(α) ∈M |	 , if h(α) is defined. Clearly, h′ ∈ ΣM1 ({pM1 }). We have that

h′ ∈ Σ(�M [g]�,∈)
1 (�M [g]�). Moreover, as C� is < �-closed and atom-less, ran(h′ �D)

is cofinal in M. Since ORM = ORM [g], h′ �D is cofinal in M [g]. But now
if (�M [g]�, ∈) |= KP, since D ∈M [g], ORM [g] ∈M [g]. Contradiction! Thus,
(�M [g]�,∈) 	|= KP. �

2.2. Preservation of admissibility between iterates of premice. Next we deal with
the preservation of admissibility between iterates of premice. Parts of this will be
used in the proof of Lemma 25.

Lemma 14. Suppose that M and N are premice and let i :M → N be
rΣ3-elementary. ThenM |= KP iff N |= KP.

The lemma follows directly from the fact that the part of KP excluding the
induction axioms has an rΠ3 axiomatization and is therefore preserved under
rΣ3-elementary embeddings between premice.

Thus, by Lemma 14, if Ultn(M,E) is wellfounded, Ultn(M,E) |= KP if n ≥ 2 and
M is an admissible passive premouse.

Lemma 15. Let k ≤ � and let N be a k-sound premouse. Let T be a k-maximal
iteration tree on N such that lh(T ) = � + 1. Let b := [0, �]T be the main branch of
T and α be least such that α + 1 ∈ b and (α + 1, �]T does not drop in model. Let
� = α + 1. Then M∗T

� is an admissible passive premouse with a largest, regular, and
uncountable cardinal if and only if MT

� is an admissible passive premouse with a
largest, regular, and uncountable cardinal.
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Proof. We prove the two directions separately.

Claim 1. Suppose M∗T
� is an admissible passive premouse with a largest, regular,

and uncountable cardinal. Then so is MT
� .

Proof. Note that in the case that degT (�) ≥ 2, the lemma holds by Lemma 14.
Thus, we may assume that degT (�) ≤ 1.

By standard facts MT
� is a passive premouse with a largest, regular, and

uncountable cardinal. We have to verify that MT
� is admissible. By Lemma 3, it

suffices to show that Δ0-collection holds in MT
� .

Case 1. � = 
 + 1is a successor ordinal.
We inductively assume thatM∗T

� is an admissible passive premouse with a largest,
regular, and uncountable cardinal.

Let n := degT (�), M := M∗T
� , E := ET


 , and M ′ := Ultn(M∗T
� , E). By our

initial remarks n ≤ 1. By standard arguments κ := crit(E) is strictly less than the
largest cardinal of M. In particular, by Lemma 4, κ < �M1 .

Since M is admissible we have by Δ0-collection that for any m < �,
f ∈ ΣM1 (M ) ∩ [κ]mM implies that f ∈M . This means that the canonical factor
map � : Ult0(M,E) → Ult1(M,E) is the identity. Thus, Ult0(M,E) = Ult1(M,E)
and the associated ultrapower maps are the same. In particular, i∗T� : M →M ′ is a

1-embedding and i∗T� is cofinal in ORM
′
.

Subclaim 1. For a ∈ [lh(E)]<� , Ult0(M,Ea) |= KP.

Proof. Leta ∈ [lh(E)]<� and suppose for contradiction that Ult0(M,Ea) 	|= KP.
By our initial remarks this means that Δ0-collection fails in Ult0(M,Ea), i.e., there
is a Σ0-formula ϕ, � < ORUlt0(M,Ea ), and p ∈ Ult0(M,Ea) such that

Ult0(M,Ea) |= ∀α < �∃xϕ(α, x, p), (2.4)

but there is no z ∈ Ult0(M,Ea) such that

Ult0(M,Ea) |= ∀α < �∃x ∈ zϕ(α, x, p). (2.5)

Let i : M → Ult0(M,Ea) be the ultrapower embedding. By our previous remarks
we have that i is a 1-embedding and cofinal in ORUlt0(M,Ea ).

Let � be the largest cardinal of M and �′ = i(�) be the largest cardinal of
Ult0(M,Ea). By Lemma 3 we may assume that � in (2.4) is equal to �′. Let j = |a|.
Let g ′ : �′ → Ult0(M,Ea) be the canonical function derived from ϕ by taking the
<Ult0(M,Ea )-least witness. Note thatg ′ ∈ ΣUlt0(M,Ea )

1 ({p}) asϕ is Σ0. We will now show
that g ′ is bounded in Ult0(M,Ea). This will contradict the failure of Δ0-collection,
completing the proof.

By the definition of Ult0(M,Ea) we have for α < �′ some fα ∈ [κ]j � ∩M such
that α = [a,fα]MEa . Also, there is fp ∈ ([κ]jM ) ∩M such that p = [a,fp]ME . Since
we assumed that � is regular in M and κ < � we may assume that for α < �′,
fα ∈ [κ]j � ∩ (M |�). Moreover, since Łoś’s Theorem holds for Σ1-formulae, we have
by (2.4) for all α < �′,

Aα := {b ∈ [κ]j :M |= ∃xϕ(fα(b), x, fp(b))} ∈ Ea.
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Note that for any h ∈ [κ]j � ∩ (M |�) there is some α < �′ such that α = [a, h]ME .
Thus,

M |= ∀h ∈ [κ]j � ∩ (M |�)∃A(A ∈ Ea ∧ ∀b ∈ A∃xϕ(h(b), x, fp(b))).

Note that this does make sense since Ea ∈M : By standard facts about k-maximal
iteration trees E is close to M and therefore in particular, for every b ∈ [lh(E)]<� ,
Eb ∈ ΣM1 (M ). But since M is admissible and κ < �, this implies that Ea ∈M .

Using Δ0-collection, we have for every h ∈ [κ]jM ∩ (M |�) and A such that

M |= A ∈ Ea ∧ ∀b ∈ A∃xϕ(h(b), x, fp(b)),

there is some Y ∈M such that

M |= A ∈ Ea ∧ ∀b ∈ A∃x ∈ Yϕ(h(b), x, fp(b)).

Thus,

M |= ∀h ∈ [κ]j � ∩ (M |�)∃A∃Y (A ∈ Ea ∧ ∀b ∈ A∃x ∈ Yϕ(h(b), x, fp(b))).

By another application of Δ0-collection this gives us 	 < ORM such that

M |= ∀h ∈ [κ]j � ∩ (M |�)∃A ∈ Ea(∀b ∈ A∃x ∈ (M |	)ϕ(h(b), x, fp(b))).

It now easily follows that g ′ is bounded byM ′|i(	). �

In the case that E is finitely generated this argument shows thatM ′ |= KP. Thus,
we may assume that E is not finitely generated. In this case,M ′ is the direct limit of

(Ult0(M,Ea), �ab : a, b ∈ [�(E)]<� ∧ a ⊂ b),

where �ab is the canonical factor embedding. For a ∈ [�(E)]<� let Xa :=
�a∞[Ult0(M,Ea)]. By Łoś’s Theorem it follows that �a∞ : Ult0(M,Ea) →M ′ is
Σ1-elementary.

Suppose now that f′ ∈ ΣM
′

1 (M ′). There is some a ∈ [�(E)]<� such that
f′ ∈ ΣM

′
1 ({p′}) for some p′ ∈ Xa . Let p = �–1

a∞(p′) and let f be the function,
which is defined over Ult0(M,Ea) via the parameter p, as f′ is defined over M ′

via the parameter p′. By the claim we have that f ∈ Ult0(M,Ea). But this means
that f′ ∈M ′. Thus, by Lemma 3,M ′ is admissible.

Case 2. lh(T ) = �is a limit ordinal.
This is proven much as in the case that � = 
 + 1 is a successor ordinal and E
 is

not finitely generated.

This finishes the proof of Claim 1. �

Claim 2. Suppose MT
� is an admissible passive premouse with a largest, regular,

and uncountable cardinal. Then so is M∗T
� .

Proof. Again we argue by induction on �. Suppose first that � = 
 + 1 and let
MT
� =M ′ andM = M∗T

� . Again, by standard arguments we may assume that M
is a premouse with a largest, regular, and uncountable cardinal �. It suffices to see
that M is admissible for which in turn it suffices to see that Δ0-collection holds in M.

https://doi.org/10.1017/jsl.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.63


376 JAN KRUSCHEWSKI AND FARMER SCHLUTZENBERG

Suppose for the sake of contradiction that this is not true and let � < ORM witness
the least failure of Δ0-collection, i.e.,

1. there is a Σ1-formula ϕ and p ∈M such that M |= ∀α < �∃xϕ(x, α, p), but
there is no z ∈M such thatM |= ∀α < �∃x ∈ zϕ(x, α, p), and

2. for all Σ1-formulas  and q ∈M we have that if � < � and M |= ∀α <
�∃x(x, q), then there is z ∈M such thatM |= ∀α < �∃x ∈ z(x, q).

Let n = degT
� so thatM ′ = Ultn(M,E), where E = ET


 . As before we may assume
that n ≤ 1. Let i := i∗T� :M →M ′ be the ultrapower map and let �′ = i(�) be the
largest cardinal ofM ′. Note that we can no longer assume that i is both a 0- and a
1-embedding, unlike in Claim 1.

Case 1. n = 1.
Note that it suffices to see that M ′ |= ∀α < i(�)∃xϕ(x, α, i(p)) because then

by the admissibility of M ′, M ′ |= ∃z ′∀α < i(�)∃x ∈ z ′ϕ(x, α, i(p)) and so by the
elementarity of i there is a bound in M. Note that i is a 1-embedding and therefore
rΣ2-elementary. But this means thatM ′ |= ∀α < i(�)∃xϕ(x, α, i(p)).

Case 2. n = 0.
Let �′ := sup(i [�]) and note that �′ is a limit ordinal. We claim that for

every α < �′, M ′ |= ∃xϕ(x, α, i(p)). Suppose otherwise and let α′ < �′ be a
counterexample, i.e.

M ′ |= ∀x¬ϕ(x, α′, i(p)).

Let α < � be such that i(α) > α′. Note that since � is the minimal failure of
Δ0-collection in M,

M |= ∃z∀	 < α∃x ∈ zϕ(x, 	, p).

But this is a Σ1-statement, so that

M ′ |= ∃z∀	 < i(α)∃x ∈ zϕ(x, 	, i(p)).

But then in particular,

M ′ |= ∃xϕ(x, α′, i(p)).

Contradiction! Therefore, by Δ0-collection in M ′, there is 	 ′ < ORM
′

such that
M ′ |= ∀α < �′∃x ∈ (M ′|	 ′)ϕ(x, α, i(p)). Since i is cofinal, we may assume without
loss of generality that 	 ′ ∈ ran(i). Let 	 < ORM be such that i(	) = 	 ′. We claim
that

M |= ∀α < �∃x ∈ (M |	)ϕ(x, α, p),

which would be a contradiction! So suppose that there is α < � such that

M |= ∀x ∈ (M |	)¬ϕ(x, α, p).

This is a Δ0 statement, so that

M ′ |= ∀x ∈ (M ′|	 ′)¬ϕ(x, α, i(p)).

Contradiction!
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Now let us suppose that � is a limit ordinal. In the case that there is some � ∈ b ∩ �
such that for all � ∈ (�, �) ∩ b, degT� ≥ 1, we can argue as in Case 1 of the successor
case. If otherwise we can use the argument from Case 2 of the successor case, since
iT�� will be cofinal. �

This completes the proof of the lemma. �

If we would not require � to be regular in the statement of Lemma 15, the lemma
would be provably false as the following example shows.

Example 16. Let M be a 1-sound premouse such thatM |= KP. Suppose that M
has a largest cardinal � > � such that for some κ < �, cofM (�) = κ and there is an
M-total E ∈ E

M such that crit(E) = κ. Let � :M → Ult1(M,E) be the ultrapower
embedding.

Then � is discontinuous at � so that �(�) > sup(�[�]). However, since � is a 1-
embedding, �M1 = sup(�[�]). But �(�) is the largest cardinal of Ult1(M,E). So by
Lemma 4, Ult1(M,E) 	|= KP.

In this subsection we have established the following (cf. [11, Chapter 7.2]).

Theorem 17. Let k ≤ � and suppose that M is a k-sound, (k, |M |+ + 1)-iterable
admissible passive premouse with a largest, regular, and uncountable cardinal �.
Suppose that � is Woodin in M and let X ⊂ |M |. Then there is a k-maximal iteration
tree T on M with last model MT

∞, which does not drop in model anywhere, such that
X is generic over MT

∞ for the extender algebra of MT
∞ and MT

∞[X ] |= KP.

2.3. A version of the truncation Lemma. For the proof of Lemma 24, we need a
version of the Truncation Lemma for premice. Recall the following coarse definition.
If M is a possibly ill-founded structure in some signature extending L∈̇, we call

wfp(M ) := {x ∈ �M� |∈M�(trc∈M ({x}))2 is wellfounded}

the wellfounded part of M. By [1] and Problem 5.27 of [8], if M |= KP, then
wfp(M ) |= KP. We aim to show something similar in the case that M is an ill-
founded premouse.

Definition 18. Let M = (�M�,∈M,EM ) be an L∈̇,Ė -structure. We say that
M |= “V = L[E]”, if M models the Axiom of Extensionality, the Axiom of
Foundation, and

∀x∃α(x ∈ Sα[Ė]) ∧ ∀α∃x(x /∈ Sα[Ė]), (2.6)

where Sα[Ė] is the refinement of the J [Ė]-hierarchy as described in Chapter 5 of [8].

Note that the second conjunct of 2.6 makes sure that the model is an actual
instance of its internal J-hierarchy.

Definition 19. Let M = (�M�,∈M,EM ) be an L∈,Ė -structure such that M |=
“V = L[E]” and wfp(M ) is transitive. Letting wfo(M ) = OR∩wfp(M ), we call

wfc(M ) := (SE
M

wfo(M ),∈,E
M �wfo(M ))

the wellfounded cut of M.

https://doi.org/10.1017/jsl.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.63


378 JAN KRUSCHEWSKI AND FARMER SCHLUTZENBERG

The next lemma is the version of the Truncation Lemma we need for the proof of
Lemma 24. The proof is essentially identical to the proof of Proposition 2.4 in [3].

Lemma 20. Let M = (�M�,∈M,EM ) be an ill-founded L∈,Ė -structure such that
M |= “V = L[E]” and wfp(M ) is transitive. Then wfc(M ) |= KP.

Proof. We may assume that � ∈ wfc(M ), as otherwise wfc(M ) = L� which is
clearly admissible. It suffices to see that wfc(M ) |= Δ0-Collection. By induction, it
easily follows that for α < wfo(M ), SE

M

α = (Sα)M ∈ wfp(M ), so that wfc(M ) ⊆
wfp(M ). Let ϕ be a Σ0 formula and a, p ∈ wfc(M ) such that

wfc(M ) |= ∀x ∈ a∃yϕ(x, y, p).

Note that by Σ1 upwards absoluteness this holds in M. Let � be a non-standard
ordinal of M. In SM� , we may define a function F with dom(F ) = a such that for
x ∈ a,

F (x) = � ⇐⇒ SM� |= x ∈ a ∧ ∃y ∈ S�+1ϕ(x, y, p) ∧ ∀y ∈ S�¬ϕ(x, y, p).

Since wfc(M ) ⊆ SM� , it follows by Σ1 upwards absoluteness that F (x) < wfo(M ).
However, this means that � :=

⋃
x∈a F (x) ⊂ wfo(M ). Since F is definable over M,

we must have that � < wfo(M ). This means that

wfc(M ) |= ∀x ∈ a∃y ∈ S�ϕ(x, y, p).

Thus, wfc(M ) |= KP. �

§3. Where the conjecture holds. In this section, we will show under the assumption
that there is no transitive model of KP with a Woodin cardinal that Conjecture 1
holds. This will be a consequence of Theorem 26. Lemma 24 is the key insight for
proving Theorem 26. First, let us recall some well-known basic properties of weasels
and their coiterations.

The following theorem from [10] guarantees that the coiteration of two
Ω + 1-iterable weasels of height Ω is successful.

Theorem 21. Let κ be an inaccessible cardinal. Let M and N be premice such
that ORM = ORN = κ. Let (T ,U) be a successful coiteration of (M,N ). Then
max{lh(T ), lh(U)} ≤ κ + 1. Moreover, setting lh(T ) = � + 1 and lh(U) = � + 1,
either

1. DT ∩ [0, �]T = ∅, iT0,� [κ] ⊂ κ, MT
� �MU

� , and ORMT
� = κ, or

2. DU ∩ [0, �]U = ∅, iU0,� [κ] ⊂ κ, MU
� �MT

� , and ORMU
� = κ.

The next lemma collects basic facts about iteration trees whose proof is well-
known.

Lemma 22. Let κ be a regular and uncountable cardinal. Let M be a premouse such
that ORM = κ and let T be a 0-maximal iteration tree onM such that lh(T ) = κ + 1.
Let b := [0, κ]T . Then the following hold:

1. if b ∩DT = ∅ and iT0κ[κ] ⊂ κ, then there is a club C1 ⊂ b such that for all
α ∈ C1 ∩ b, iT0α[α] ⊂ α,
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2. if ORMT
α ≤ κ for all α < κ, then there is a clubC2 ⊂ b such that for all α ∈ C2,

α = sup{lh(ET
	 ) : 	 < α}, and

3. if ORMT
α ≤ κ for all α < κ, and ORMT

κ > κ, then there is a club C3 ⊂ b such
that for all α ∈ C3, α > sup(DU ∩ b), iTακ(α) = κ and crit(iTακ) = α.

We need the following version of the Σ1
1-Bounding Theorem in order to prove

Lemma 24.

Theorem 23. Let x ∈ �� and suppose that A ⊂ WO is Σ1
1(x)-definable, where

WO ⊂ �� is the set of reals coding well orderings of �. Then

sup{otp(Ry) : y ∈ A} < �CK
1 (x),

where Ry ⊂ � × � is the relation coded by y and �CK
1 (x) is the least ordinal α such

that Lα[x] |= KP.8

The proof of Theorem 23 is basically a refinement of the Kunen–Martin Theorem,
which may be found in [6, p. 75].

Lemma 24. Let M be a premouse such that � is a regular, uncountable cardinal of
M andM |= “�+ exists”. Suppose that M is (0, � + 1)-iterable, and there is no initial
segment of M which models KP + “there is a Woodin cardinal”. Let U be a 0-maximal
iteration tree on M such that

• lh(U) = � + 1,
• sup{lh(EU

α ) : α < �} = �,
• b ∩DU = ∅, where b := [0, �]U , i.e., U is non-dropping on its main branch, and
• iU0�(�) = �.

Then iU0�(�
+M ) = �+M .

Proof. Suppose otherwise, and let U be a counterexample. Let � < �+M be such
that iU0�(�) > �

+M and �M |�
� = �. Note that such � exists since iU0� is continuous

at �+M , as �+M and its images are not of measurable cofinality in any MU
α for

α ∈ [0, �)U and U is 0-maximal. Moreover, it is a standard fact that the ordinals �
such that �M |�

� = � are cofinal in �+M . We also assume that � > ORQ, whereQ �M
is least such that J (Q) |= “� is not Woodin”. Note that Q exists and ORQ < �+M ,
since there is no initial segment of M which models KP and has � as a Woodin.

Let g ⊂ Col(�, �) be V -generic. In particular, g is also M-generic. Letx ∈M [g] ∩
�� codeM |� + �.

Let us define in V [g] the set Ā such that T ∈ Ā if and only if
1. T is a 0-maximal putative iteration tree onM |� + � such that lh(T ) = � + 1
2. T is non-dropping on its main branch,
3. sup{lh(ET

α ) : α < �} = �, and
4. iT0� (�) = �, thus in particular, MT

� |� ∈ wfp(MT
� ).

Note that if T ∈ Ā, then T �� is guided by Q-structures.

Claim 1. If T ∈ Ā, then there is a Q-structure for T �� in V [g], i.e., there is
α < OR such that Jα(M(T ��)) |= “� = �(T ��) is not Woodin”.

8Here otp(Ry) is the transitive collapse of the wellorder Ry .
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Proof. Suppose that there is no Q-structure in V [g]. This means that for
all α < OR, Jα(M(T ��)) |= “� is Woodin”. Let α be least such that Jα(M(T �
�)) |= KP. Since � is regular in L(M(T ��)), there is X ≺ Jα(M(T ��)) such
that X ∩ � ∈ �. Let N be the transitive collapse of X ; then by condensation,
N �M(T ��). Note that since M(T ��) =

⋃
α∈[0,�)T MT

α | lh(ET
α ) and by elemen-

tarity there is no initial segment of M(T ��) which models KP and has a Woodin.
However, N models KP and has a Woodin. Contradiction! �

Since for T ∈ Ā there is a Q-structure for T �� and sup{lh(ET
α ) : α < �} = � (and

thus Q-structures for T �α with α < � are of ordinal height less than �) it follows by
the usual absoluteness arguments that there is a unique cofinal well-founded branch
b for T �� in V [g].

However, at this point we do not know whether for T ∈ Ā, the unique cofinal
wellfounded branch of T �� was actually chosen, i.e. whether T is an iteration tree.
This is verified in the next claim.

Claim 2. If T ∈ Ā, then MT
� is wellfounded.

Proof. Suppose otherwise. Let T ∈ Ā be such that MT
� is ill-founded. By 4 we

have that MT
� |� ∈ wfp(MT

� ). As we are assuming that MT
� is ill-founded, we may

apply Lemma 20 and get that wfc(MT
� ) |= KP. To arrive at a contradiction, we

distinguish two cases.
The first case is that Q(c, T ��) � wfc(MT

� ), where c = [0, �]T . Let b be the
unique, cofinal, and wellfounded branch b for T �� inV [g]. By 1-smallness, we have
that Q(c, T ��) = Q(b, T ��). Note that Q(b, T ��) 	= MT

b , since otherwise there is
a drop on b and thus Q(c, T ��) is not sound, but Q(c, T ��) � wfc(MT

� ), which
would be a contradiction! But then by the Zipper Lemma, we have that � is Woodin
in J (Q(b, T ��)). Contradiction!

The second case is that the Q-structure is not an element in wfc(MT
� ). In this

case we have that for every proper initial segment of wfc(MT
� ), MT

� thinks that
� is Woodin in that segment. Moreover, by 1-smallness we have that wfc(MT

� ) =
J	(M(T ��)) for some 	 . But this means that � is Woodin in wfc(MT

� ).
Let b be unique cofinal and wellfounded branch b for T �� in V [g]. By

1-smallness, Q(b, T ��) = Jα(M(T ��)) for some α ∈ OR. Since J	(M(T ��)) |=
“� is Woodin”, we must have that 	 ≤ α and Jα(M(T ��)) �MT

b . But since
J	(M(T ��)) satisfies KP + “�(T ) is Woodin” and M has no segment modelling
this theory, we must have 	 = α = OR(MT

b ); that is, J	(M(T ��)) = Q(T ��, b) =
MT
b . Since M |(� + �) satisfies “there is no Woodin cardinal ≤ �”, b must drop.

But since MT
b |= KP + “there is a Woodin”, by Lemma 15, the last drop in model

along b is to a segment modelling this same theory, contradicting the fact that M
has no segment modelling this theory. �

The set Ā gives rise to the set A = {ORMT
∞ : T ∈ Ā}. Note that A is a set of

countable ordinals in V [g], since the trees are countable in V [g] and alsoM |� + �
is countable inV [g]. Thus, we may code A as a set of realsA∗ by settingA∗ := {y ∈
WO : otp(Ry) ∈ A}.

Claim 3. A∗ is Σ1
1(x).
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Proof. The main difficulty is in expressing in a Σ1
1(x)-fashion that for α < �,

MT
α is wellfounded. Fix some α < �. Note that if α is a successor, then MT

α

is always wellfounded, since M is (0, � + 1)-iterable in V [g] as can be seen by
standard arguments, and we may assume inductively that U �α is guided by
Q-structures. Suppose that α < � is a limit. Since sup{lh(ET

α ) : α < �} = �, we
have that �(T �α) < �. Note that lh(ET

α ) > �(T �α) and MT
α is 1-small below �.

Thus, Q(b, T �α), where b = [0, α]T , must exist and Q(b, T �α) �MT
α | lh(ET

α ).
Thus, the wellfoundedness of Q(b, T �α) can be expressed via the existence of an
isomorphism between the ordinals of Q(b, T �α) and an initial segment of the
ordinals of the model coded by x. This is Σ1

1(x). �
Claim 4. sup(A) < �CK

1 (x).

Proof. This follows immediately from Theorem 23 and the previous claim. �
Let U∗ be the 0-maximal iteration tree on M |(� + �) which is otherwise

equivalent to U , i.e. it has the same length and tree order, and uses the same
extenders as U . Since sup{lh(EU

α ) : α < �} = � and � is a cardinal of M, this makes
sense, sup{lh(EU∗

α ) : α < �} = �, iU
∗

0� exists, and iU
∗

0� (�) = �. It follows that U∗

is in Ā.
The following claim is a simpler version of Lemma 4.64 of [7].

Claim 5. iU0�(�) = iU
∗

0� (�).

Proof. Let κ < �. It suffices to see that every function f : κ → � which is in
M is also in M |� + �. To this end note that since �M |�

� = �, there is a surjection
g : � → � such that g ∈M |� + � = J (M |�). Define a function h : κ → � such that
for α < κ, h(α) = min(g–1(f(α))). As � is regular and κ < �, h is essentially a
bounded subset of � and thus, h ∈M |�. But since f is definable from g and h this
means that f ∈M |� + �. �

By Claims 4, 5, and the fact that U∗ ∈ Ā, iU
∗

0� (�) + � = iU0�(�) + � =

OR(MU∗
� ) < �CK(x)

1 . But x is inM [g], so �CK(x)
1 < �M [g]

1 = �+M [g]. But we chose
� with �+M [g] < iU0�(�), a contradiction! �

We need a second lemma with a similar flavor.

Lemma 25. Let M be a premouse such that � is a regular, uncountable cardinal of
M andM |= “�+ exists”. Suppose that M is (0, � + 1)-iterable, and there is no initial
segment of M which models KP + “there is a Woodin cardinal”. Let U be a 0-maximal
iteration tree on M such that lh(U) = � + 1 and sup{lh(EU

α ) : α < �} = �. Let bU :=
[0, �]U . Suppose that there is � ∈ bU ∩ (� \ sup(DU ∩ bU )) such that iU��(�) = � for

some � < �. Then �+MU
� < �+M .

Proof. The proof follows closely the proof of Lemma 24. Again we work in
V [g], where g ⊂ Col(�, �) is V -generic. We modify the definition of Ā by omitting
2 and modifying 4 to “there exists an � ∈ bT ∩ (� \ sup(DT ∩ bT )) and a � < � such
that iT�� (�) = �, where bT := [0, �]T ”. Moreover, we alter 1 by requiring that T is a
putative iteration tree onM |�.

As before, for all T ∈ Ā, T is an iteration tree. Similar to before U∗ will be the
tree U considered onM |�. Again, U∗ ∈ Ā and the tree- and dropping-structure of
U and U∗ are the same. We have that MU∗

α �MU
α for all α ≤ �.
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By the same argument as in the proof of Lemma 24, we will have that

ORMU∗
� < �CK

1 (x) < �+M where x codes M |�. We claim that this implies that

�+MU
� < �+M . If DU ∩ bU 	= ∅, i.e. U is dropping on its main branch, MU

� = MU∗
� ,

so that �+MU
� ≤ ORMU

� < �+M . So suppose that DU ∩ bU = ∅, equivalently that
DU∗ ∩ bU = ∅. Then iU :M → MU

� and iU
∗

:M |� → MU∗
� exist. Let � < � be

least such that there is �̄ < � such that iU
∗
�� (�̄) = �. If � = 0, then since � is regu-

lar in M and sup{lh(EU
α ) : α < �} = �, �+MU

� = iU (�̄+M ) ≤ iU (�) = sup iU
∗
[�] <

�CK
1 (x) < �+M . So suppose that � > 0. Note that �̄+MU∗

� must exist, since otherwise
�̄ is the largest cardinal of MU∗

� which would imply that �̄ ∈ ran(iU
∗

0� ) and so � = 0,
contradicting our assumption on �. Moreover, since there is no dropping on the main

branch, iU
∗

0� is cofinal in ORMU∗
� . But then, �+MU

� = iU��(�̄
+MU

� ) = iU
∗
�� (�̄+MU∗

� ) ≤
iU

∗
�� (iU

∗
0� (�)) = iU

∗
(�) < �CK

1 (x) for some � < �where it is not the case that � = �+M

and iU
∗

0,� (�) = �̄, since � > 0. �

We are now ready to prove the main theorem of this section.

Theorem 26. Let Ω be a measurable cardinal. Let W and R be premice such
that ORW = ORR = Ω and suppose that both are (0,Ω + 1)-iterable. Suppose that
neither W nor R have an initial segment which models KP ∧ ∃�(“� is Woodin”). Then
the following are equivalent:

1. W ≤∗ R,
2. there is a club C ⊂ Ω such that for all α ∈ C , if α is regular, then (α+)W ≤

(α+)R, and
3. there is a stationary set S ⊂ Ω such that for all α ∈ S, α is regular and

(α+)W ≤ (α+)R.

Proof. Let us first show that clause 1 implies clause 2, i.e. suppose that W ≤∗ R.
We aim to show that there is a club C ⊂ Ω such that for all α ∈ C , if α is regular,
then (α+)W ≤ (α+)R. Let (T ,U) be the coiteration of (W ,R). By Theorem 21, the
coiteration is successful. SinceW ≤∗ R,MT

Ω �MU
Ω andT does not drop on its main

branch. In particular, iT : W → MT
Ω exists. We may assume by padding the trees

if necessary that lh(T ) = lh(U) = Ω + 1. Note that by Theorem 21, ORMT
Ω = Ω.

Thus, by Lemma 22 (1), there is a clubCT ⊂ Ω such that for all α ∈ CT , iT0α[α] ⊂ α
and bT ⊃ CT . Let C̃T be the club given by Lemma 22 (2) for T . SetBT := CT ∩ C̃T .
Let α ∈ BT and suppose that it is regular. Then iT0α(α) = α. Thus, by Lemma 24,

we have that α+W = α+MT
α . But since α ∈ C̃T , crit(iTαΩ) ≥ α. Therefore, α+MT

α =

α+MT
Ω . Since MT

Ω �MU
Ω and Ω is a cardinal, we have that α+MT

Ω = α+MU
Ω for all

α ∈ BT .

Case 1. ORMU
Ω > Ω.

Let CU ⊂ Ω be the club given by Lemma 22 (3) for U intersected with the club
given by Lemma 22 (2) for U . Then for all α, 	 ∈ CU such that α < 	 , we have that
iUα	(α) = 	 . Suppose that α ∈ C ′

U is regular, where C ′
U is the club of limit points of

CU . We have by Lemma 25, that α+MU
α < α+R. Moreover, since crit(iUαΩ) = α (note
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we are beyond the drops of bU ), α+MU
α = α+MU

Ω . Thus, C := C ′
U ∩ BT witnesses

clause 2 of the theorem in Case 1.

Case 2. ORMU
Ω = Ω.

Then iU0Ω exists. In this case we can construct a clubCU forU asCT was constructed
for T and set C := CT ∩ CU . This C witnesses clause 2 of the theorem in Case 2.

The argument for showing that clause 2 implies clause 3 is standard. We now
show that clause 3 implies clause 1. Suppose that there is a stationary set of
regular cardinals S ⊂ Ω such that for all α ∈ S, α+W ≤ α+R. We aim to show
that W ≤∗ R. Let (T ,U) be the coiteration of (W ,R) which again by Theorem 21
is successful. Suppose for the sake of contradiction that MT

∞ �MU
∞. By the same

arguments as before we can construct a clubD ⊂ Ω such that for all regular α ∈ D,
α+W > α+R. But since S is stationary and consists of regular cardinals, S ∩D 	= ∅,
contradiction! �

Corollary 27. Let Ω be a measurable cardinal. Let W and R be premice such that
ORW = ORR = Ω and suppose that both are (0,Ω + 1)-iterable. Suppose that there
is no transitive model of KP ∧ ∃�(“� is Woodin”). Then the following are equivalent:

• W ≤∗ R,
• there is a club C ⊂ Ω such that for all α ∈ C , if α is regular, then (α+)W ≤

(α+)R, and
• there is a stationary set S ⊂ Ω such that for all α ∈ S, α ∈ S is regular and

(α+)W ≤ (α+)R.

§4. The counterexample. In this section we construct a counterexample to
Conjecture 1 assuming large cardinals. In order to construct the counterexample
we need an iterable premouse M which has an initial segment N �M such that
N |= KP, N has a largest cardinal κ which is Woodin in N, κ is a measurable
cardinal in the larger premouse M, and there exists some Ω ∈ (κ+M,ORM ) which
is measurable in M.

We want to show that such N exists if we assume that M is the least iterable sound
premouse, which models KP and has a largest cardinal � which is Σ

˜1-Woodin in M.9

In Section 4.1 we will construct the above N. Note that since M is the least mouse
with a Σ

˜1-Woodin, we will have that κ, the largest cardinal of N, is not Σ
˜1-Woodin

in N. For the construction of the counterexample it will be important that if g codes
a wellorder and is generic over N for the extender algebra, then the ordertype of g
is less than ORN . This will work since we showed in Section 2.1 that N [g] |= KP
if g ⊂ P ∈ N is N-generic, N |= KP, and N |= “P has the �-c.c.”, where � is the
largest cardinal of N. In Section 4.2 we will construct the counterexample.

4.1. The construction of N .

Definition 28. Let M be a passive premouse and let � < OR∩M . We say that
� is a Σ

˜1-Woodin cardinal (of M) if for all A ∈ ΣM1 (M ) there is some κ < � which is

< �,A-reflecting in M.

9See Definition 28 for the definition of Σ
˜1-Woodin cardinal.
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Definition 29. Let M ad
Σ˜1

be the least (0, �1 + 1)-iterable and sound premouse

which models KP ∧ ∃�(“� is Σ
˜1-Woodin”).

Let M =M ad
Σ˜1

. Note that M has a unique Woodin cardinal �. Moreover, � is

acutally Σ
˜1-Woodin in M and is the largest cardinal of M. Furthermore, � = �M1 ,

pM1 = {�}, and �M2 = �. Also, by the remarks in the proof of Lemma 15, M is
actually (1, �1 + 1)-iterable.

Definition 30. Let M be an admissible passive premouse such that �M1 < ORM .
We let TM ⊂ �M1 be the set of ordinals coding ThMΣ1

(�M1 ∪ {pM1 }).

Note that by Lemma 4, �M1 is the largest cardinal of M. Moreover, by definition
TM /∈M , but TM ∈ ΣM1 (M ). However, for every α < �M1 , TM ∩ α ∈M . In the
proof of Lemma 31 below, we will consider degree 1 ultrapower embeddings
iE :M → U = Ult1(M,E), where U is wellfounded. Note that in this case,
TU = iE(TM ), where iE(TM ) denotes

⋃
α<�M1

iE(TM ∩ α).

Lemma 31. Let � be the largest cardinal of M ad
Σ˜1

. In M ad
Σ˜1

, let κ be (< �, T
Mad

Σ˜1 )-

reflecting and let H := HullM1 (κ ∪ {�}). Then

• H ∩ � = κ, and
• if � : N ∼= H ≺Σ1 M

ad
Σ
˜1

is the transitive collapse of H, then N |= KP.

Proof. LetM =M ad
Σ˜1

. Recall that pM1 = {�} and �M1 = �. Let us first proof that

H ∩ � = κ. Suppose for the sake of contradiction that there is � ∈ H ∩ [κ, �). Letϕ�
be a Σ1 formula andα ∈ κ be such that � is the unique � such thatM |= ϕ�(�, α, pM1 ).
Note that ϕ�(�, α, pM1 ) ∈ ThM1 (� ∪ {pM1 }). Thus, there is some � < � such that
the code for ϕ�(�, α, pM1 ) is below �, i.e. ϕ�(�, α, ṗ) ∈ TM ∩ �. Let E ∈ E

M be an
extender witnessing that κ is (�, TM )-strong. LetU := Ult1(M,E) and let iE :M →
U be the canonical ultrapower embedding. Note that we are taking a 1-ultrapower,
which makes sense since κ = crit(E) < � = �M1 . This means that iE(TM ) = TU (see
the remarks following Definition 30). But since E is (�, TM )-strong, we have TU ∩
� = iE(TM ) ∩ � = TM ∩ �. Thus, ϕ�(�, α, ṗ) ∈ TU ∩ �, which means that U |=
ϕ�(�, α, pU1 ). Moreover, since M |= ϕ�(�, α, pM1 ), U |= ϕ�(iE(�), iE(α), iE(pM1 )).
But iE(α) = α < κ and iE(pM1 ) = pU1 ,10 so U |= ϕ�(iE(�), α, pU1 ). But since � was
the unique witness for ∃xϕ�(x, α, pM1 ) in M, we have

M |= ∀x(x 	= � → ¬ϕ�(x, α, pM1 )).

However, this is rΠ1 and thus,

U |= ∀x(x 	= iE(�) → ¬ϕ�(x, α, pU1 )).

This means iE(�) = �. Contradiction!

10We actually have that iE (pM1 ) = pU1 = {�} = pM1 .
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Let us now verify that N |= KP. By what we have shown so far �(κ) = �. In
particular, κ is the largest cardinal of N. So by Lemma 3 it suffices to check
Δ0-collection. Suppose that

N |= ∀α < κ∃yϕ(α, y, p̄),

where ϕ is a Σ1 formula and p̄ ∈ N . Note that sinceH := HullM1 (κ ∪ {�}), we may
replace p̄ with some tuple of ordinals �αp ∈ [κ]<� and {κ}. Letting p = �(p̄), we
have that p = �αp ∪ {{�}}. Then

M |= ∀α < κ∃yϕ(α, y, �αp, {�}).

We aim to see that the bound κ can be replaced by � here, giving that

M |= ∀α < �∃yϕ(α, y, �αp, {�}).

Suppose for the sake of contradiction that there is some � ∈ [κ, �) such that
M |= ∀y¬ϕ(�, y, �αp, {�}). This means that ∃yϕ(�, y, �αp, ṗ) /∈ TM . But then there
is some � ∈ (�, �) such that this is witnessed by TM ∩ �, i.e. the formula
∃yϕ(�, y, �αp, ṗ) /∈ TM ∩ � even though �, �αp ∈M |�. (Note that since we codedTM

as a theory with constant symbol ṗ it suffices if we pick � > sup{�, �αp}.) LetE ∈ E
M

be (�, TM )-strong. Then as in the previous argument, ∃yϕ(�, y, �αp, ṗ) /∈ TU ∩ �.
However, since iE is rΣ2-elementary, we have that

U |= ∀α < iE(κ)∃yϕ(α, y, iE( �αp, {�})).

Note that iE( �αp, {�}) = ( �αp, {�}), since �αp ∈ [κ]<� and iE({�}) = pU1 = pM1 =
{�}. Thus, since iE(κ) > �,

U |= ∃yϕ(�, y, �αp, {�}).

Contradiction! �

Lemma 32. Let N be as in Lemma 31. ThenN �M and N is an admissible passive
premouse with largest cardinal κ which is Woodin in N.

Proof. Note that a failure of κ being Woodin in N is an rΣ1 fact aboutN |κ. Since
H ≺Σ1 M , this would imply by upwards-absoluteness that � fails to be Woodin in
M. Thus, κ is Woodin in N. Moreover, as already mentioned in the previous proof κ
is the largest cardinal of N. But then as N |κ =M |κ and so N = Jα(M |κ), we will
have that N �M , and we are done. �

4.2. The construction of the counterexample. Let M :=M ad
Σ˜1

and let N �M be

as given by Lemma 32, i.e. the following hold:

• M has a largest cardinal � which is Σ
˜1-Woodin in M,

• N is an admissible mouse with a largest cardinal κ which is Woodin in N, but
not Σ

˜1-Woodin in N,

• ORN < κ+M , and
• κ is measurable in M, as witnessed by an extender E from the extender sequence

of M.
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The construction of the counterexample is now as follows: Fix Ω ∈ (κ++M, �),
which is a regular cardinal in M. Working inside M we will linearly iterateM | lh(E)
for Ω many times via E and its images. Let T be the corresponding iteration tree on
M | lh(E) of length lh(T ) = Ω + 1. Note that T ∈M . Let iT :M | lh(E) → MT

Ω be
the iteration map. We will have the following:

• iT (κ) = Ω,
• sup(iT [κ+M ]) = iT (κ+M ) = Ω+MT

Ω < Ω+M ,
• W := iT (N ) |= KP and ORW < Ω+MT

Ω , and
• W is an admissible mouse with a largest cardinal Ω which is Woodin in W, but

not Σ
˜1-Woodin in W.

Since Ω+MT
Ω < Ω+M , there is, inside M, some A ⊂ Ω which codes a well order

<A such that otp(<A) = Ω+MT
Ω . Let U be the A-genericity iteration of W with

respect to the Ω-generator extender algebra of W at Ω. Note that U ∈M , since
by standard arguments there is for every limit α ≤ Ω a Q-structure for U �α in M.
Moreover, since Ω is inaccessible in W, and a cardinal in M, by the usual arguments
U is non-dropping, lh(U) = Ω + 1, and iU0Ω(Ω) = Ω.

Inside M we construct a club C ⊂ Ω such that for all α ∈ C :

• there exists some �α :Mα ∼= Xα ≺1000 M ||Ω++ such that M |(lh(E) + �) ∪
{Ω, A} ⊂ ran(�α), crit(�α) = α, and �α(α) = Ω,

• α = sup{lh(EU
	 ) : 	 < α},

• α ∈ b := [0,Ω]U , and
• α = crit(ET

α ).

The construction of such C is fairly standard, so we will omit it. Note that for
α ∈ C , crit(iUαΩ) ≥ α, since α = sup{lh(EU

	 ) : 	 < α}. Thus, by the usual argument

α+MU
α = α+MU

Ω .

Claim. For α ∈ C , α+MU
α > α+MT

Ω .

Proof. Fix α ∈ C . Let (T̄ , Ū , Ā, W̄ ) ∈Mα such that �α((T̄ , Ū , Ā, W̄ )) =
(T ,U , A,W ). Note that there are such T̄ , Ū , W̄ ∈Mα , since T ,U ,W are definable
fromM | lh(E), A, and Ω overM ||Ω++.

By the properties of �α , Ā is generic over MŪ
α and otp(<Ā) = α+MT̄

α = α+MT
α .

By Corollary 11, MŪ
α [Ā] |= KP. Since <Ā ∈ MŪ

α [Ā] and the transitive collapse

of <Ā is a Σ1-recursion, otp(<Ā) = α+MT
α ∈ MŪ

α [Ā]. In particular, ORMŪ
α [Ā] =

ORMŪ
α > α+MT

α . Note that since crit(ET
α ) = α it follows by the usual argument

that α+MT
α = α+MT

Ω . So in order to finish the proof it suffices to see that ORMŪ
α ≤

α+MU
α .

Since crit(�α) = α, we have that MŪ
α |α = MU

α |α. Moreover, since iU0,Ω(Ω) =

Ω, i Ū0α(α) = α and so MŪ
α |= “α is Woodin”, since �α(MŪ

α ) = MU
Ω and MU

Ω |=
“Ω is Woodin”. By the 1-smallness ofMU

Ω it follows thatMŪ
α = J	(MŪ

α |α) for some

	 < Ω and so MŪ
α �Q(U �α), so that MŪ

α �MU
Ω. Since Q(U �α) �MU

Ω |α+MU
Ω ,

we have ORMŪ
α ≤ α+MU

α . �
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We have shown that for every α ∈ C , α+MT
Ω < α+MU

Ω . If we consider the tree U∗

which is just the tree U considered not on W but onW |Ω, we will have that for all

α ∈ C , α+W |Ω < α+MU∗
Ω . Moreover, since iU (Ω) = Ω, we have ORMU∗

Ω = Ω, so
MU∗

Ω is a weasel in the sense of M.
However, if (T ′,U ′) is the coiteration of (W |Ω,MU∗

Ω ), then T ′ = U∗ and U ′ is
the trivial tree. Thus,W |Ω =∗ MU∗

Ω and there exists a club C ⊂ Ω such that for all

α ∈ C , α+W |Ω < α+MU∗
Ω . This contradicts Conjecture 1 inside M.

Remark. The construction above also works if we picked Ω to be �. However,
in this case, we have to modify the construction slightly: Let � > κ be a measurable
cardinal of M and let F ∈ E

M be the measure witnessing this. Let T ′ the linear
iteration ofM |�++M via F and its images of length � + 1. Note that by Δ0-collection
T ′ ∈M and that �+ exists in MT ′

� . Now as before we let T be a linear iteration of
M | lh(E) via E and its images of length � + 1. However, note that T ∈ MT ′

� . Thus,

there is A ∈ MT ′
� such that otp(<A) = �+MT

� and A ⊂ �. Since �+MT ′
� exists and

there is no initial segment of MT ′
� which models KP and has a Σ

˜1-Woodin cardinal,

we see by the same argument as before, that Q-structures exist for U , where U is the
genericity iteration of iT0� (N ) making A generic.

§5. On another question from CMIP. In this last section we discuss another
question remarked about in [10, prior to Lemma 4.6] concerning the S-hull property.
Throughout this section Ω is a fixed measurable cardinal and �0 is a fixed normal
measure on Ω. We call a premouse of ordinal height Ω a weasel.

Note that our definitions of thickness and the Hull property are different from
the ones in [10], yet equivalent. We chose these different definitions in order to
emphasize that thickness is a property independent of a specific weasel.

Definition 33. Let W be a weasel and S ⊂ Ω be stationary. We say that S is good
for W iff there is a club C ⊂ Ω such that for all α ∈ C ∩ S

• α is inaccessible,
• α+ = (α+)W , and
• α is not the critical point of a total-on-W extender from the extender sequence

of W .

Definition 34. Let Γ ⊂ Ω and S be stationary. We say that Γ is S-thick iff there
is a club C ⊂ Ω such that for all α ∈ C ∩ S, Γ ∩ α+ contains an α-club and α ∈ Γ.

Definition 35. Let W be a weasel and S ⊂ Ω such that S is good for W . Let
α < Ω. We say that W has the S-hull property at α iff for all Γ ⊂ Ω which are S-thick

P(α) ∩W ⊂ transitive collapse of HullW� (α ∪ Γ).

In Lemma 4.6 of [10, p. 32] it is proven that for an Ω + 1-iterable weasel W , if S
is good for W , then for �0-a.e. α < Ω the S-hull property holds at α.

However, in [10, p. 32, prior to Lemma 4.6], Steel raises the issue whether the
set HPW

S := {α < Ω : W has the S-hull property at α} is closed. Note that HPW
S

clearly cannot be closed in the usual sense, as the following example from [10, p. 29]

https://doi.org/10.1017/jsl.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.63


388 JAN KRUSCHEWSKI AND FARMER SCHLUTZENBERG

shows: Suppose that M is an Ω + 1-iterable weasel which has the S-hull property
at all α < Ω and there is a total-on-ME ∈ E

M with at least two generators. Then
Ult0(M,E) has the S-hull property at all α < (crit(E)+)M but not at (crit(E)+)M .
However, Ult0(M,E) is still Ω + 1-iterable. Thus, HPW

S cannot be closed in the
usual sense.

Definition 36. We say that X ⊂ Ω is almost closed if for every � < Ω, if � is the
supremum of elements of X and elements of Ω \ X , then � ∈ X .

Given the preceding remarks, we will substitute almost closure for closure in
the issue raised in [10], and hence consider the following question: Let W be a
(0,Ω + 1)-iterable weasel and S ⊂ Ω such that S is good for W , is the set HPW

S

almost closed?
This question is answered positively by the following theorem.

Theorem 37. Let W be an Ω + 1-iterable weasel and S ⊂ Ω be such that S is good
for W . Then the set {α < Ω : W has the S-hull property at α} is almost closed.

Proof. By Lemma 4.5 of [10] there is an Ω + 1-iterable weasel M and an
elementary embedding � :M → W such that ran(�) is S-thick and M has the
S-hull property at all α < Ω, i.e. HPMS = Ω. Let (T ,U) be the coiteration of W
and M. We will prove the theorem assuming that lh(T ) = lh(U) = Ω + 1 and leave
the remaining cases as an exercise to the reader. Since W and M are universal,
iT : W → MT

Ω and iU :M → MU
Ω exist and MT

Ω = MU
Ω =:M∞.

Note that by the remark following Example 4.3 in [10, p. 29], M∞ has the

S-hull property at � iff for no 	 + 1 ∈ [0,Ω]U , � ∈ [crit(EU
	 )+MU

� , �(EU
	 )), where

� = predU (	 + 1). Thus, the set HPM∞
S is almost closed. Moreover, by arguments

from the proof of Lemma 4.6 in [10] (using that the set of fixed points of iT is
S-thick) we have that for all α < Ω, W has the S-hull property at α iffM∞ has the
S-hull property at iT (α).

Suppose for the sake of contradiction that HPW
S is not almost closed. Let � < Ω be

a witness for this. Since HPM∞
S is almost closed this means that iT (�) > sup(iT [�]).

There are two ways this can happen.

Case 1. There is 	 + 1 ∈ [0,Ω]T such that crit(ET
	 ) = iT0� (�), where � =

predT (	 + 1).
Let us assume that 	 is least such. Note that in this case we must have that

sup(iT0� [�]) = iT0� (�) and �′ := iT0� (�) ∈ HPM∞
S . Since crit(iT	+1,Ω) > �′, MT

	+1 has
the S-hull property at �′. But then, since MT

	+1 has the S-hull property at �′ and
P(�′) ∩MT

� = P(�′) ∩MT
	+1, MT

� has the S-hull property at �′. Contradiction!

Case 2.W |= “� is singular with cofinality �” and there is a minimal α ∈ [0,Ω]T

such that iT0α(�) = crit(iTαΩ).
Let � + 1 ∈ [0,Ω]T such that predT (� + 1) = α and set W ′ := MT

α , W ′′ :=
MT
�+1, �′ := iT0α(�), j := iTα,�+1, and �′′ := sup(j[�′]). Note that �′′ < j(�′). More-

over, letting i := iT0α , we have that �′ = i(�) = sup(i [�]).
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Claim 1. The S-hull property holds at �′′ inW ′′.

Proof. Note that �′′ is a limit of HPW
′′

S and Ω \ HPW
′′

S . So in order to see that
the S-hull property holds at �′′ in W ′′ it suffices to see that iT�+1,Ω is continuous at

�′′. To this end note that cof(�′′)W
′′

= κ and that all extenders used along [0,Ω]T

after ET
� have critical points greater than κ. Thus, iT�+1,Ω is continuous at �′′ from

which the claim follows. �
We claim that this implies that the S-hull property holds at �′ inW ′, which would

be a contradiction. Let A ⊂ �′ such that A ∈W ′ and Γ be an S-thick set. We need
to show that there is a term �, �� ∈ [Γ]<� , and �	 ∈ [�′]<� such that

A = �W
′
[ ��, �	] ∩ �′.

Note that j(A) ∩ �′′ ∈W ′′. Thus, there is a term �, �
 ∈ [Γ]<� , and �� ∈ �′′ such that

j(A) ∩ �′′ = �W
′′

[�
, ��] ∩ �′′.
We may assume that j fixes �
. Let �� = ([a0, f0]W

′
E , ..., [an, fn]

W ′
E ), where for k ≤ n,

ak ∈ [�(E)]<� and fk ∈ [κ]<�W ′ ∩W ′. Note that by Łoś’s Theorem,

j(�) ∈ �W ′′
[�
, ��] ⇐⇒

{b ∈ [κ]<� :W ′ |= � ∈ �[�
, fa0,a
0 (b), ..., fan,an (b)]} ∈ Ea, (5.1)

where a =
⋃
i≤n an. Furthermore, for � < �′,

j(�) ∈ �W ′′
[�
, ��] ⇐⇒ j(�) ∈ j(A) ⇐⇒ � ∈ A. (5.2)

Note that for every c ∈ [�(E)]<� ,Ec is close toW ′. In particular, sinceW ′ |= ZFC,
Ec ∈W ′ for every c ∈ [�(E)]<� . Moreover, �′ is a limit cardinal inW ′ and GCH
holds in W ′. Thus, for every c ∈ [�(E)]<� the ordinal of the measure Ec in the
W ′-order <W ′ is an ordinal less than �′. Furthermore, as the ordinals below �′′

might be represented via functions bounded in �′, we may assume that for k ≤ n,
fk is bounded in �′ and thus also their ordinals in theW ′-order are less than �′. But
this means that 5.1 and 5.2 give us a term � and �	 ∈ [�′]<� such that

A = �W
′
[�
, �	] ∩ �′.

This finishes the proof of the theorem. �
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