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ON A CONJECTURE REGARDING THE MOUSE ORDER FOR WEASELS
JAN KRUSCHEWSKI2) AND FARMER SCHLUTZENBERG

Abstract. We investigate Steel’s conjecture in “The Core Model Iterability Problem’ [10]. that if VW and
R are Q + l-iterable, 1-small weasels, then W <* R iff there is a club C C Q such that foralla € C. if
a is regular, then otV < o™ . We will show that the conjecture fails, assuming that there is an iterable
premouse M which models KP and which has a X-Woodin cardinal. On the other hand, we show that

assuming there is no transitive model of KP with a Woodin cardinal the conjecture holds. In the course
of this we will also show that if M is a premouse which models KP with a largest. regular, uncountable
cardinal 6. and P € M is a forcing poset such that M |= “P has the -c.c.”, and g C P is M-generic, then
M|[g] = KP. Additionally, we study the preservation of admissibility under iteration maps. At last, we will
prove a fact about the closure of the set of ordinals at which a weasel has the S-hull property. This answers
another question implicit in remarks in [10].

§1. Introduction. In the book ‘The Core Model Iterability Problem’ [10, p. 28],
John Steel conjectured the following:

CoNJECTURE 1. Let W and R be 1-small weasels which are Q + 1-iterable. Then
the following are equivalent:

1. W<*R,and
2. there is a club C C Q such that (a™)" < (a™)R for all regular cardinals
ae C.

In the terminology of the book a weasel is premouse of ordinal height QQ, where Q
1s a fixed measurable cardinal. The relation <* is the mouse order, i.e., if YW and R are
weasels which are sufficiently iterable to successfully coiterate (by results of the book
Q -+ l-iterability suffices). then W <* R if and only if R wins the coiteration, i.e. if
(T.U) is the successful coiteration of VW, R) and 1h(T) = 0 + 1 and (i) = y + 1,
then M7 < MY.

Steel showed in [10] that Conjecture 1 holds for weasels small enough that linear
iterations suffice for comparison. His proof is based on universal linear iterations.

In the following we will prove Conjecture 1 under the assumption that neither W
nor R have an initial segment which models the theory KP + “there is a Woodin
cardinal”, see Theorem 26. In particular, Conjecture 1 holds if there is no transitive
model of KP + “there is a Woodin cardinal”.
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MOUSE ORDER FOR WEASELS 365

On the other hand, assuming the existence of an iterable admissible passive
premouse M with a X;-Woodin cardinal,! we will show that there is an inner model

that thinks there is a counterexample to Conjecture 1, see Section 4.2.

For the construction of the counterexample from the assumption just described
we will need to investigate the extender algebra over admissible mice. In the
course of this, we will show that if M is an iterable premouse modelling KP
with a largest, regular, uncountable cardinal 6, P € M is a forcing poset such that
M = “P has the d-c.c.”, and g C P is M-generic, M[g] = KP, see Theorem 10.

In Section 5 we will answer another question implicit in remarks from [10, p. 32]
about the S-hull property in 1-small weasels. We will show that for any Q + 1-iterable
weasel W such that Q is S-thick in W the set of points that have the S-hull property
is almost closed, see Theorem 37 and Definition 36.

We will use the notation from [9]. A k-maximal iteration tree is as in Definition
3.4 of [11].

§2. Admissible premice.

DEFINITION 2. A passive’ premouse M = (| M |, €,EM () is called admissible if
M = KP.

REMARK. Note that an active premouse M. i.e. so that FM £ (). cannot model
KP. We leave this as an exercise.

For n < w, we say an n-sound premouse M is n-countably iterable if every
countable elementary substructure of M is (n, w;,w; + 1)*-iterable. If M is
w-countably iterable we also say that M is countably iterable.

The following is a nice criterion for the admissibility of a passive premouse, whose
proof we leave to the reader.

LemMA 3. Let M be a passive premouse. Then M = KP if and only if for all
S € M (M) such that fis a function with dom(f) € M., f € M.

Moreover, if M has a largest cardinal 6, then M |= KP if and only if for all
f € ZM(M) such that f is a function with dom(f) = 9. f € M.

REmARK. If M isa 0-countably iterable premouse without a largest cardinal, then
M is admissible. The proof of this uses the Condensation Lemma.

LEMMA 4. Suppose M is an admissible passive premouse. If pM < ORM _ then pM
is the largest cardinal of M.

PrOOF. Let p := pM. Assume for the sake of contradiction that p™ exists, i.e..
p™ < ORM | Let

H':=Hully (p U {p}. p}).

ISee Definition 28 for the definition of a £;-Woodin cardinal.

2Note that an active premouse cannot model KP with the active extender as a predicate and without
the active extender as a predicate it models ZF~, so trivially KP.
3For a definition of the theory KP see Definition 2.3 in [1].
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Let ¢ := sup(H' N p*M). Suppose first that ¢ = p*M . In this case by the upwards
absoluteness of X; formulas

M =V < 3030 (¢ e HulY (pu {pM. p}) A B < C < &).

Note that the part of the formula in parentheses is ;. Thus, by Ag-collection, there
is some y < ORM such that

M =YB< 30 e HUlY " (p U {plf. p) AB << &).

Thus, thereis f € J(M|y) < M such that 1 : p — p™™ is cofinal. But then there is
also f': p — p*™™ onto and f’ € J(M]|y). Contradiction!

Let us suppose now that & < p*™. Note that since Hull{’ (p U {pM}) c H' and
HullY (p U {p}}) is unbounded in ORM, H' is unbounded in OR™ . Again we have
that

M =Y < E3a3l (¢ e HUY " (pu {pM. pY) A< £ <€)
Thus, by A-collection there is some y < ORM such that
M B < &3¢ e HullY (p u{pl. pH AR < <)

Since H' is unbounded in OR™ | there is some such y € H'. But then since p € H'
thereis f € H' such that f : p — £ is cofinal and thus also some f” : p — ¢ which
is surjective and /' € H'. But this means that ¢ € H’. Contradiction! —1

2.1. Forcing over admissible premice. In this subsection, we will prove that if M is
an admissible passive premouse with a largest cardinal & which is Woodin in M, B is
the extender algebra as defined inside M, and g C B is M-generic, then M[g] = KP.
This will be Corollary 11 which is an instance of the more general Theorem 10.

Note that if M is an admissible passive premouse with a largest, regular, and
uncountable cardinal d and P € M is a forcing poset, then we may assume without
loss of generality that P C J, as there is a surjection f : 6 — P in M. We will do so
throughout without further mention.

LeEMMA 5. Let M be an admissible passive premouse with a largest, regu-
lar, and uncountable cardinal 6 and let P € M be a forcing poset such that
M = “P has the 6-c.c.” Then there isno A € Y (M) such that A C P is an antichain
in P which is unbounded in 9.

PROOF. Suppose there is 4 € Z¥ (M) is such that 4 C P is an antichain in P
which is unbounded in . Since P has the J-c.c. in M, and ¢ is regular in M, this
means that 4 ¢ M. Let ¢ be a X;-formula such that for some p € M,

xX€A = M p(x p).
Define for a < ORM \¢ such that p € M|a.
Ag:={¢€0: Mla (& p)}.

Note that 4 = J,_or A and A, € M for all a such that « € ORM\¢ and
p € M|a. In particular, since A, C 4 is an antichain, IP has the d-c.c. in M, and ¢
is regular in M, A, is bounded in ¢ for all such «.
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Note that since 4 = [,
M EVE<Fa(Fy(y> B Ay € Ay)).

rM Ag is by assumption unbounded in J,

Since the last part of this formula is £;, we have by Ag-collection that there is some
a’ € M such that o’ works for all f < J uniformly, i.e.

M E3VB<(Fy(y> B Ay e Ay)).
This contradicts the fact that every A4, is bounded in o! -

LEMMA 6. Suppose that M is an admissible passive premouse with a largest, regular,
and uncountable cardinal 6. Then & is a ¥M (M )-regular cardinal. i.e. for alln < § and
[ €M (M) such that f =5 — 6. ran(f') is bounded in §. i.e., sup(ran(f’)) < .

The proof of the Lemma is very similar to the proof of Lemma 5. Thus, we leave
it as an exercise for the reader.

DEermNITION 7. Let M be an admissible passive premouse, P € M be a forcing
poset. and g C Pbe M-generic. Let £ < ORM suchthatP € M|¢é + 1. Forf > w - ¢

it is a standard fact that IF]LH pEM. where IPLH 5 is the syntactical forcing relation

with M ||f as a ground model using P-names in M ||f. Moreover, the function F is
AY ({P}), where F (B) = H—%Hﬁ forp > w- & Welet M[g]||f = (L4[EM.g]. €. EM |
B.g) and have that | M[g]||#] is the collection of the evaluations of the P-names in
M||p. Welet M||Blg] = M[g]||p.*

Suppose that g C P is M-generic and that for a Xj-formula w, M[g]
Ixw(x, z1,.... z4), where {z|,....z,} C M[g]. Let ¢ = Ixy be the corresponding

Y, formula and let Z1, ..., Z,, be P-names for z1, ..., z,,. We let
W s ={peP:3F<ORY 3% e (M|B) (pIFy s w21, 20)) )

We call the set W%lw_’én the set of conditions strongly forcing ¢ (with parameters

Z]yeees Z'n).3

REMARK. Since M [ “Pairing” it follows easily (using P-names) that M[g] =
“Pairing”. Therefore, we may arrange that n has any specific value which we want it
to have. In particular, 1.

We will write Wz, if it is clear from the context what M is.
Since F € AM({P}). it follows easily that W,,: € =M ({z. ¢.P}). Moreover, since
P € M. there is § < ORM such that P € M|f so that W, : is not trivially empty.
However, in general we cannot assume that W, : € M.

We also write p IFF ¢(2) for p € W, .

For # < ORM we might interpret the ¥; formula defining W, : over the structure

M |p. We will denote the set defined over M |f in this way by W;_i_.w .

for wM .
02 seemsZn

‘We have the following forcing theorem for X; statements for admissible premice.

4One could define this also for M| that is including the active extender. However, this kind of
generality is not necessary for our context.
5The W stands for witness.
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THEOREM 8. Suppose that M is an admissible passive premouse. Let p(y) be the
Sormula 3xy(x. ). where y is a o formula. Let P € M be a forcing poset, 2 € M¥,
and suppose that g C P is M-generic. Then the following are equivalent:

o M[g] = (25).
o thereisp € W, :Ng.and

o there is p € g such that p II—% e(2).

ReMARK. Here p IF5, (2) refers to the classical notion of forcing an existential
statement. i.e., for every g < p there is some r < ¢ such that there is X € M such
that r IF5, w(x, Z). In order to show that this is equivalent to the existence of some
p € W,: N g, wemust use the admissibility of M. The rest of the proof'is standard.

Itis not in general the case that if NV is admissible and g C Pis N-generic for some
forcing poset P € N, then N[g] is admissible. See Proposition 13 and the remark
preceding it for examples of admissible structures where the generic extension fails
to be admissible. For N[g] to be admissible, it is sufficient that g meets all dense
open subsets of PP that are unions of a £ (V) and a I1{ (V) class over N. See [5] for
more on this. With Theorem 10 we will give another criterion for ensuring that the
forcing extension of an admissible premouse is a model of KP.

LEMMA 9. Let M be an admissible passive premouse with a largest, regular, and
uncountable cardinal . Let P € M be a forcing such that M |= “P has the d-c.c.”. Let
g C P be M-generic. Let /. < 6 and suppose that M[g] = Va < 3xy(x, o, z), where
w is a Xo-formula and z € M[g]. Let ¢ = 3xy and 2 € M be a name for .

Then thereis A € M suchthat A C ). x d and if fora < A, Ao == {p : (a, ) € A},
then Aoy C W, 4 : is amaximal antichainin W, s ;. in particular, for every p € W, 4 :
there is some q € A, such that q || p.

PrOOF. We construct the set A recursively along the ordinals of M. More
specifically, we will define via a X,-recursion a sequence ((4'. ;) : i < ORM) with
each A" € M and ; € ORM _and ((4'. §;) : i < A) € M foreach A < ORM . We will
then set 4 = [ J,_orm A'. Let fy be the least § such that

M|B | 3a < i3p e P(3% € MY (p by, w(x.d.2))).

i.e., [ is such that there is some a < 4 such that Wsﬁlﬁ # 0. Let A° be the set
of all (a. p) € A° such that o < A, Wf&lf,.‘) # (0, and p is the <,s-least element in
w b, Here, <,s denotes the canonical X;-definable well-order of M. Note that

p.a.z
A% € M, since it is definable over M | 0. Moreover, A% is a bounded subset of o.
(Actually, of 6%, but via coding we may assume that 4° C J). Before we continue
the construction let us introduce the following notation: For & < 4 and i < ORY
let A :={q € P: (a.q) € A"}, where A’ is to be defined.

Let y +1 <ORM and suppose that ((4’.f;):i <y) is defined such that
(A", B:) i <y) e EM ({4, w.2.P}). We define f3,. as the least 8 such that

M|pE3a<idpeP((Vge AL(p Lq)) Ap € Wyss),

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

MOUSE ORDER FOR WEASELS 369

if there is such f. In other words f is such that for some « there is an element
pE W;Ma'ﬁ incompatible with the elements of 4. In case £, is undefined we stop
the recursion. Note that in this case 47 € M.

In case 8,41 is defined, we set A7*! to be the union of A” with the set of all (e, p)

such that p is the <,,-least ¢ such that
M|py1l=qe Wys:ANVreAlL(r Lq).

z

if there is such ¢. Since A”*! is definable over M|B, .1, A7+ € M.

Now suppose that y < ORM is a limit ordinal and (4 : i < y) is defined. We set
B, =0and 47 = |J,_, A". Note that since (4, : i < y) € 2}/ (M) by KP. 47 € M.

We aim to see that the recursive definition of ((4', §;) : i < ORM) stops before
the ordinal height of OR™ _i.e. there is some y < OR™ such that B, is not defined.
Suppose that this is not the case. We claim that 4 := (J,_ogwr A € ZM (M) is an
unbounded subset of §. For suppose not. Then, since pM =, A e M. But the
definition of A gives a cofinal and total f : 4 — ORM such that f € T} (M).
Contradiction!

In particular, the following holds in M,

VB <3 (a.y)(a< ANy €(B.6) AIBi(“y is added to 4, at stage §;”)).

But by Ag-collection, there is some f; < ORM such that for all p < d. there is some
7 € (B.5) added to 4!, for some o < 4. But this is inside M|f; + w. Thus, asd is a
regular cardinal of M, there is some « to which unboundedly many y < ¢ are added.
Contradiction, since P has the d-c.c. in M.

Let y < ORY be least such that B, is undefined. Note that y is by definition a
successor ordinal, i.e. y = # + 1 for some 7 < ORM . Set 4 := 4". By construction
Ae M. Fora<setd,:={pecP:(a p)e A}.Since f,. is undefined, we have
that for all & < 4, A, C W, 4+ is a maximal antichain in W :. a

THEOREM 10. Let M be an admissible passive premouse with a largest, regular,
and uncountable cardinal 6 and P € M be such that M |= “P has the 6-c.c.” Then
M|g] &= KP for any M-generic g C P.

Proor. We will verify that M[g] satisfies Aj-collection and leave the remaining
axioms of KP as an exercise.

Let g C IP be M-generic and suppose for the sake of contradiction that M[g] |~
“Ag-collection”. Let y be a Xy-formula and y € M[g] such that they constitute a
counterexample to Ay-collection, i.e.

M[g] E Va <03x(y(a. x. p)).
but there exists no z € M[g] such that
M[g] = Va <d3x € z(y(a, x,y)).

We distinguish two cases. First, suppose that there is some 4 < J such that there
exists no z € M|[g] such that

M[g] = Va < i3x € z(y(a. x.p)).
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Then, by the previous Lemma 9 there is 4 € M such that for o < 4, 4, :={p €
P: (a. p) € A} is a maximal antichain in W, 5 ;. where ¢ = Ixy and y € MPisa
P-name for y.

Ciam 1. Fora< A, A, Ng # 0.

Proor. Fix some a < 4. Note that since M[g] = Ixw(a. x. y), there is some
b € M[g] such that M[g] = w(a.b, y). By Theorem 8 we can fix some p € g N
W, 45 We claim that this implies that 4, N g # (). To this end let D, == {r € P:
Vq € A,(r L q)}. Note that since 4, € M, D, € M. Moreover, A, U D, € M is
a pre-dense subset of P in M and thus, g N (4, U D,) # 0 by the M-genericity of
g. Suppose for the sake of contradiction that g N D, # () and let ¢ € g N D,,. Since
g.p € g. there is r € g such that r < ¢, p. However. this means that r € W4 ;.
since r < p. But r is incompatible with every element of 4, so A4, is not a maximal

antichain in W, 5 ;. Contradiction! Thus, 4, N g # 0. 4

We have established that for all o < A, 4, N g # 0. Moreover, by Theorem 8. we
have that

M =Va € A3x(3p c PIa < Ala = (a. p) A pIFY, w(a. x. 7).

This is the antecedence of an instance of the Ag-collection scheme since the part in
parentheses is £; (note that we are using here the fact that I}, for £; statements is
¥ definable over M which is true by Theorem 8). Thus, there is z € M such that

M =Va € A3x € z(3p € PIa < Ala = (a. p) A p IFE, w(a. x.7))).

Let z¢ := {%8:x € zN MF¥}. Note that z¢ € M[g]. as zNMF € M N MF. Tt
follows that

M[g] EVa < 23x € 24 (y(a. x. p)).

a contradiction!
Let us now turn towards the second case, i.e., we assume that for all 4 < ¢ there
is z € M|[g] such that

M[g] E Va < J3x € z(y(a. x.y)).

Let us associate to w a function f € 2{” [e1(M[g]) such that / : 6 — ORM) and
for a <3, f(a) is the least § such that there is x € M||f[g] such that M[g] =
w(a. x, y). By our assumption f [a € M[g] for every o < J, but f* ¢ M|[g]. Let us
define an auxiliary function F with domain & such that F(a) = f [a. Note that
F e Ey[g](M[g]). Let ¢ be a X formula and z € M[g] such that

(c.d) e F <= MI[g]l = ¢p(c.d.z),
and let ¢r(a, b, z) be the formula
Jedd (pp(c.d.z) Na<cAb=da). (2.1)
Let
X :={peP:3F<OR(pI , Vo <dIypr(a.y.2))}.
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Note that X € 2 (M) and let py be the defining formula and a € M the
corresponding parameter.

We now aim to construct in a similar way as in the proof of Lemma 9 a maximal
antichain 4 in X. If X # 0, let A¢ := {p} for some p € X. Otherwise, set 49 = 0.
Suppose that (4, : i < y) is defined via a X,-recursion for some y < ORM . If y is a
limit ordinal, let 4, = {J,_, 4;. Then, 4, € M and (4, : i <y) € ZY(M). If y is
not a limit, let g, < OR™ be the least § such that

M|p t=3p € Plox(p.a) A\¥q € 4,.1(q L p)).

if there exists such f. In the case that there is no such f, stop the recursion. In case
B, is defined. let p, be the <;/-least p such that

M|B, = x(p.a) ANYq € A,1(q L p).

Let A, := A, U{p,}. It is not hard to verify that (4;:i <y) € XV (M) and
4, € M.

Similar to the proof of the Lemma 9 we aim to see that there is a least y < ORM
such that f, is undefined, which will show that 4 := A4, ; is a maximal antichain in
Xand 4 € M.

Suppose for the sake of contradiction that for all y < ORM B, is defined. Let
A= U, <orm 4;. Clearly, A €XM(M). Since A is by construction an antichain,
by Lemma 5 A4 is bounded in J. In particular, 4 € M. However, as in the previous
proof, the definition of 4 give rise to a function f* € M (M) such that dom(f) = 4
and f is cofinal in OR™ . But this is a contradiction!

Let D:={peP:Vgec Alq L p)}. AsA€ M, D € M and thus, AUD € M.
AUM is pre-dense and therefore, g N (4 UD) # (0. Note that gnN A =0, so
gnND#0.

Let p € D N g. Note that this means that there is no extension p of p such that

pIFYE 3B((M|B)E] E Va < 63ypr(a. y. 2)). (2.2)

We claim that there is p = (p; : i <J) € M such that for all i <5, p; < p and
M = w(i. z. p;), where y (i, Z, p) is the statement

pIEE Iyerp(i y.2). (2.3)
We may find such (p; : i < J) in M, as Aq-collection holds in M and
M =i <o3p((p IFi" ver(i.y.2) Ap < ).

For every i < J there exists such p € P, since p € g and M[g] = Vi < 03ypr(i, y. z)
and so by Theorem 8§ the existence of p follows.

Cramm 2. There is iy < & such that for all i € [iy,d) and all ¢ € P with q < p; and
Jorall j € (i,0), there is k € [j.0) such that q || px.

ProoOF. This follows routinely from the §-c.c. of P in M (otherwise, working in
M, construct by recursion on 8 an antichain {g;);s). -
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Now since p;, < p. the following claim gives a contradiction, completing the
proof:

CLAaM 3. Replacing p with p;,. line (2.2) holds.

PrOOF. Let h be (M, P)-generic with p;, € h. By Claim 2, for every f € (io.d).
hn{p;|j € (i.6)} # 0. So there are cofinally many / < ¢ such that p; € . By KP
in M, we can fix & < ORM such that M |¢ satisfies w (i. 2, p;) for all i < §. Therefore.
M ||E[h] satisfies Ty (i, y, z) for cofinally many i < . Note that for all jo < j; <o
and all p € P, if M|¢ satisfies w(j1,Z, p) then M|¢E satisfies w(jo,Z, p).° Thus,
M ||E[h] satisfies Fypr (i, y, z) for all i < 6. -

As stated prior the claim, this completes the proof. #
From Theorem 10 we immediately get the following corollary.

COROLLARY 11. Suppose that M is an admissible passive premouse with a largest,
regular, and uncountable cardinal 6 which is Woodinin M andletB € M be the extender
algebra with 6-many generators as defined inside M. Let g C B be M-generic. Then
Mlg] = KP.

If we replaced M |= “P has the d-c.c.” in the statement of Theorem 10 with
M | “Pis < d-closed,” Theorem 10 is false as Proposition 13 shows.

LEMMA 12. Suppose that M, M., and M, are sound premice such that ORM is a
regular, uncountable cardinal (in V), pgl = pgz =ORM M <M, M A M,, and
Condensation holds of M\ and M. Then, either M| < M> or My < M.

The Lemma follows from the proof of Lemma 3.1 in [4].
Let M = L“'1CK and P be Cohen forcing. By [2], there are (M, IP)-generics g such

that M[g] & KP.” The following proposition establishes a variant of this fact.

PrROPOSITION 13. Let M = (|[M|.€.EM.() be a l-sound admissible passive
premouse with a largest, regular cardinal § such that pM < ORM and suppose that
Condensation holds in M. Let Cs := (6<°)™ . Then there is an M-generic g C Cs such
that (|M[g]). €) ¥~ KP.

Proor. Note that C5 € M is such that

M = “Csisa < d-closed, separable, and atom-less forcing”.

By Lemma 4 and 1-soundness, § = pi and M = HM (6 U {p¥}). Thus, there is a
partial surjective function /2 : 6 — M such that h € 2} ({pM}). Let

D :={(<d:ME“h(&) C Cysis dense in Cy”}.
Note that D ¢ M as otherwise M could construct an M-generic. Let
D= (¢ :i<9),
be the monotone enumeration of D. Note that D has ordertyped. Since h € M(M),

D € =M (M). However, D ¢ M (M), as otherwise by Ag-collection, D € M.

This is why we formulated o as in line (2.1).
"The authors thank Philipp Schlicht for pointing out this result to them.

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

MOUSE ORDER FOR WEASELS 373

The idea is now to construct an M-generic g which codes in a X;-fashion the set
Dsothat D € M[g]if (|[M][g]].€) = KP.

Let us define @ = (p; : i <J) via a recursion on i such that for all a <J,
(pi 1 i < ) is uniformly X; over M in the parameters {D [, Cs}. We will have
that p; < p; for j < i.Set py := (&) and p; to be the <)-least p € h(&y) such that
p < po. Note that there is such p, since /(&) is dense in Cs.

Suppose that (p; : i < ) is defined, where 1 < ¢ is a limit ordinal, such that
pi < p; for j <i< ) Notethat D[4 € M, since D € ¥ (M) and J is TV (M)-
regular by Lemma 6. By our induction hypothesis the construction so far is uniformly
¥, in the parameters D | A and Cy. This implies that (p; : i < 1) € M. Thus, we can
set p, = (U, pi) " (&;:). Let p;.q be the <js-least p € h(&;) such that p < p;.

We now turn towards the successor case. Suppose we have defined (py) <, where
y is an odd successor (that is, y = 4+ 2n + 1 for some n < w and / is a limit less
than y orequal to 0). Set p, 1 := p;~(;1,) and let p, 5 be the <p-least p € h(E;10)
such that p < p, 1.

Let g be the upwards-closure of g in Cs. By definition of g, g is M-generic.
Note that since EM |5 € M[g] by Lemma 12 we can define EM over M([g] in
a X, fashion as the extender sequence of the stack of sound premice extending
Mo which project to 0 and for which condensation holds. Thus, it follows that

(M. e.EM) ¢ ZELM[g”‘E)({MW}). Note that therefore g is definable over (M[g]. €)
from {Cs.d. g. M |0} via a £, recursion of length d. Thus, if (| M[g]]. €) = KP, then
g€ Mlglandso D € MJ[g].

Let 7' : 5 — ORM be the partial function such that 4’(e) is the least § < ORM
such that h(a) € M|B. if h() is defined. Clearly, i’ € ZM ({pM}). We have that
h' e ZiLM[g”‘@(LM[g]j). Moreover, as Cs is < d-closed and atom-less, ran(/#’ | D)
is cofinal in M. Since ORM = ORMEl 1/ D is cofinal in M[g]. But now
if (|[M][g]]. €)= KP. since D € M[g]. ORM) ¢ M[g]. Contradiction! Thus.
(|Mgl). €) i KP. 4

2.2. Preservation of admissibility between iterates of premice. Next we deal with
the preservation of admissibility between iterates of premice. Parts of this will be
used in the proof of Lemma 25.

LemMa 14. Suppose that M and N are premice and let i: M — N be
rXz-elementary. Then M |= KP iff N |= KP.

The lemma follows directly from the fact that the part of KP excluding the
induction axioms has an rIl; axiomatization and is therefore preserved under
rXs-elementary embeddings between premice.

Thus, by Lemma 14, if Ult, (M, E) is wellfounded, Ult, (M. E) = KPifn > 2and
M is an admissible passive premouse.

Lemma 15. Let k < w and let N be a k-sound premouse. Let T be a k-maximal
iteration tree on N such that \W(T) = 0 + 1. Let b :=[0,0]” be the main branch of
T and o be least such that o +1 € b and (o + 1,0]7 does not drop in model. Let
n=oa+1. Then M;;T is an admissible passive premouse with a largest, regular, and
uncountable cardinal if and only if MOT is an admissible passive premouse with a
largest, regular, and uncountable cardinal.

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

374 JAN KRUSCHEWSKI AND FARMER SCHLUTZENBERG
PrOOF. We prove the two directions separately.

Cram 1. Suppose M,’;T is an admissible passive premouse with a largest, regular,
and uncountable cardinal. Then so is MOT.

PrOOF. Note that in the case that degT(G) > 2, the lemma holds by Lemma 14.
Thus, we may assume that degT(H) <.

By standard facts Mg is a passive premouse with a largest, regular, and
uncountable cardinal. We have to verify that M is admissible. By Lemma 3, it
suffices to show that Ay-collection holds in MOT.

CaASE 1. 0 = { + lis a successor ordinal.

We inductively assume that M;T is an admissible passive premouse with a largest,
regular, and uncountable cardinal.

Let n:=deg’ (0). M == M7, E := ET. and M':=Ult,(M;7 E). By our
initial remarks n < 1. By standard arguments x := crit(E) is strictly less than the
largest cardinal of M. In particular, by Lemma 4, £ < pi/.

Since M is admissible we have by Agp-collection that for any m < w,
f €=M (M) N" M implies that f € M. This means that the canonical factor
map 7: Ulty(M, E) — Ult; (M, E) is the identity. Thus, Ultg(M, E) = Ult; (M, E)
and the associated ultrapower maps are the same. In particular, i(jT: M — M'isa

1-embedding and i;7 is cofinal in OR" ",
SuBcLAM 1. For a € [Ih(E)]<?, Ulty(M, E,) = KP.

Proor. Leta € [Ih(E)]<? and suppose for contradiction that Ulty(M, E,,) i~ KP.
By our initial remarks this means that Ag-collection fails in Ulty (M, E,), i.e., there
is a Zg-formula ¢, & < ORUItO(M’E“), and p € Ultg(M, E,) such that

Ulty(M. E,) E Va < E3xp(a, x, p), (2.4)
but there is no z € Ulty(M, E,) such that
Ulty(M. E,) E Va < E3x € zp(a, x, p). (2.5)

Leti: M — Ulty(M, E,) be the ultrapower embedding. By our previous remarks
we have that i is a 1-embedding and cofinal in ORVlo(M-Ea)

Let § be the largest cardinal of M and &’ = i(6) be the largest cardinal of
Ultg(M, E,). By Lemma 3 we may assume that & in (2.4) is equal to §’. Let j = |a|.
Let g’: &' — Ulty(M. E,) be the canonical function derived from ¢ by taking the
<Ulty(M.E,)-least witness. Note that g" € ZF“‘)(M’E“) ({p}) as ¢ is Zy. We will now show
that g’ is bounded in Ulty(M, E,). This will contradict the failure of Ag-collection,
completing the proof. .

By the definition of Ulty(M. E,) we have for a: < ¢’ some f, € ("5 N M such
that a = [a. fo]¥ . Also, there is f, € ("Y' M) N M such that p = [a. f,]¥. Since
we assumed that J is regular in M and k <J we may assume that for a <J’,
fo € N (M |0). Moreover, since £.0§’s Theorem holds for X;-formulae, we have
by (2.4) forall a < ',

Ay :={b e [r) : M | Ixp(fo(b).x. £,(b))} € E,.
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Note that for any & € ?V'§ 0 (M) there is some a < ¢’ such that o = [a, h]¥.
Thus,

M (= vh € W5 1 (M[6)3A(A € E, AYb € A3xp(h(b). x. £,(b))).

Note that this does make sense since £, € M: By standard facts about k-maximal
iteration trees E is close to M and therefore in particular, for every b € [lh(E)]<®,
E, € M (M). But since M is admissible and x < ¢, this implies that E, € M.

Using Ap-collection, we have for every i € "V M 1 (M|5) and A such that
M= A€ E, ANVb € A3xp(h(b). x. 1,(b)).
there is some Y € M such that
M E=AecE,ANVb e A3x € Yo(h(b). x, f,(b)).
Thus,
M =Yh € W5 (M[6)3AY (4 € E, AVb € A3x € Yo(h(b). x. £,(b))).

By another application of Ag-collection this gives us f# < ORM such that

M =vh € W51 (M|0)3A € E, (Vb € A3x € (M|B)p(h(b). x. £,(b))).
It now easily follows that g’ is bounded by M’|i (). -

In the case that E is finitely generated this argument shows that M’ = KP. Thus,
we may assume that E is not finitely generated. In this case, M is the direct limit of

(Ulty(M. E,). 7t : a.b € [v(E)]<” Aa C b),

where 7, is the canonical factor embedding. For a € [v(E)]<® let X, :=
Taoo[Ulto(M, E,)]. By Lo$’s Theorem it follows that 7, : Ultg(M, E,) — M’ is
¥ -elementary.

Suppose now that f’ € E{”/(M’). There is some a € [v(E)]<® such that
f'e 2{”,({1)’}) for some p’ € X,. Let p =n,' (p’) and let f be the function,
which is defined over Ulty(M, E,) via the parameter p, as f’ is defined over M’
via the parameter p’. By the claim we have that / € Ulty(M. E,). But this means
that f/ € M’. Thus, by Lemma 3, M’ is admissible.

CasE 2. 1h(T") = Ois a limit ordinal.
This is proven much as in the case that § = { + 1 is a successor ordinal and E; is
not finitely generated.

This finishes the proof of Claim 1. -

Cram 2. Suppose /\/l;r is an admissible passive premouse with a largest, regular,
and uncountable cardinal. Then so is M,’;T.

ProOOF. Again we argue by induction on 6. Suppose first that § = { + 1 and let
M] = M'and M = M7 . Again, by standard arguments we may assume that M
is a premouse with a largest, regular, and uncountable cardinal J. It suffices to see
that M is admissible for which in turn it suffices to see that Ay-collection holds in M.
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Suppose for the sake of contradiction that this is not true and let 7 < ORY witness
the least failure of Ag-collection, i.e.,

1. there is a X;-formula ¢ and p € M such that M | Va < n3xp(x. . p). but
there is no z € M such that M = Va < 3x € zp(x, a, p). and

2. for all X;-formulas v and ¢ € M we have that if y <y and M E Va <
y3Ixy(x,q), then there is z € M such that M = Va < y3x € zy(x, q).

Let n = deg] so that M’ = Ult, (M. E). where E = E] . As before we may assume

that n < 1. Leti :=i;7 : M — M’ be the ultrapower map and let &’ = i(5) be the
largest cardinal of M’. Note that we can no longer assume that i is both a 0- and a
I-embedding, unlike in Claim 1.

Casel.n=1.

Note that it suffices to see that M’ = Va < i(7)3xe(x, a,i(p)) because then
by the admissibility of M’, M’ = 3z'Va < i(n)3x € z’p(x, o, i(p)) and so by the
elementarity of i there is a bound in M. Note that i is a 1-embedding and therefore
rX,-elementary. But this means that M’ = Va < i()3xp(x. a,i(p)).

Case2.n =0.

Let #’ :=sup(i[#]) and note that #’ is a limit ordinal. We claim that for
every a<n'., M' = 3xp(x.a,i(p)). Suppose otherwise and let o’ <7’ be a
counterexample, i.e.

M’ =Vx—p(x.a'.i(p)).

Let a <7 be such that i(a) > o’. Note that since # is the minimal failure of
Ap-collection in M,

M E 3zVB < adx € zp(x. B, p).
But this is a X;-statement, so that
M’ =3V < i(a)Ix € zp(x. B.i(p)).
But then in particular,

M' = 3Ixp(x,a,i(p)).

Contradiction! Therefore, by Ag-collection in M’, there is ' < ORM ' such that
M’ =Va <n'3x € (M'|B")p(x.a.i(p)). Since i is cofinal, we may assume without
loss of generality that ’ € ran(i). Let f < OR™ be such that i(f) = f’. We claim
that

M | Va < n3x € (M|B)p(x. a. p).
which would be a contradiction! So suppose that there is & < # such that
M |EVx € (M|B)-p(x. a.p).

This is a A, statement, so that
M’ = Vx € (M'|B)~p(x.a.i(p)).

Contradiction!

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

MOUSE ORDER FOR WEASELS 377

Now let us suppose that 0 is a limit ordinal. In the case that thereissomey € b N 0
such that forall & € (y,0) N b, degéT > 1, we can argue as in Case 1 of the successor
case. If otherwise we can use the argument from Case 2 of the successor case, since

iyz will be cofinal. -

This completes the proof of the lemma. -

If we would not require J to be regular in the statement of Lemma 15, the lemma
would be provably false as the following example shows.

EXAMPLE 16. Let M be a 1-sound premouse such that M = KP. Suppose that M
has a largest cardinal 6 > w such that for some k < J, cof M (6) = x and there is an
M-total E € EM such that crit(E) = . Let 7 : M — Ult; (M, E) be the ultrapower
embedding.

Then = is discontinuous at § so that z(6) > sup(n[d]). However, since r is a 1-
embedding, p = sup(z[6]). But 7(9) is the largest cardinal of Ult; (M. E). So by
Lemma 4, Ult; (M. E) (= KP.

In this subsection we have established the following (cf. [11, Chapter 7.2]).

THEOREM 17. Let k < w and suppose that M is a k-sound, (k, |M|* + 1)-iterable
admissible passive premouse with a largest, regular, and uncountable cardinal 6.
Suppose that 6 is Woodin in M and let X C |M |. Then there is a k-maximal iteration
tree T on M with last model M_, which does not drop in model anywhere, such that
X is generic over M7 for the extender algebra of M7 and M [X] = KP.

2.3. A version of the truncation Lemma. For the proof of Lemma 24, we need a
version of the Truncation Lemma for premice. Recall the following coarse definition.
If M is a possibly ill-founded structure in some signature extending L, we call

wip(M) == {x € [ M| |€M] (trecu ({x}))? is wellfounded}

the wellfounded part of M. By [1] and Problem 5.27 of [8], if M = KP, then
wip(M) = KP. We aim to show something similar in the case that M is an ill-
founded premouse.

DErINITION 18. Let M = ([M|. €™ EM) be an L ;-structure. We say that
M E“V = L[E]”, if M models the Axiom of Extensionality, the Axiom of
Foundation, and

Vx3a(x € Su[E]) AVadx(x ¢ Sa[E]). (2.6)
where S,[E]is the refinement of the J[E]-hierarchy as described in Chapter 5 of [8].

Note that the second conjunct of 2.6 makes sure that the model is an actual
instance of its internal J-hierarchy.

DEFINITION 19. Let M = (| M |. €M EM) be an L_ j-structure such that M =
“V = L[E]” and wip(M) is transitive. Letting wfo(M ) = OR Nwip(M ), we call

whe(M) == (S, €. EY [wlo(M))
the wellfounded cut of M.
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The next lemma is the version of the Truncation Lemma we need for the proof of
Lemma 24. The proof is essentially identical to the proof of Proposition 2.4 in [3].

LemMma 20. Let M = (| M |, €™ EM) be an ill-founded L g-structure such that
M |=“V = L[E]” and wfp(M) is transitive. Then wfc(M) = KP.

PrOOF. We may assume that w € wfc(M ), as otherwise wic(M) = L,, which is
clearly admissible. It suffices to see that wfc(M) = A¢-Collection. By induction, it
easily follows that for oo < wfo(M). SEM = (S§,)M € wfp(M). so that wic(M) C
wip(M). Let ¢ be a X formula and a, p € wic(M) such that

wic(M) E Vx € adye(x, . p).

Note that by £; upwards absoluteness this holds in M. Let y be a non-standard
ordinal of M. In S}’,"’ ., we may define a function F with dom(F) = a such that for
X €a,

Fx)=1n < S}{” Exeandy €S plx.py.p) AVy € Sy—e(x. y. p).

Since wfc(M) C SM. it follows by Z; upwards absoluteness that F (x) < wfo(M).
However. this means that 7 := | J ., F(x) C wfo(M). Since F is definable over M.
we must have that # < wfo(M). This means that

wic(M) |=Vx € ady € Syp(x.y. p).
Thus, wic(M) = KP. 4

§3. Where the conjecture holds. In this section, we will show under the assumption
that there is no transitive model of KP with a Woodin cardinal that Conjecture |
holds. This will be a consequence of Theorem 26. Lemma 24 is the key insight for
proving Theorem 26. First, let us recall some well-known basic properties of weasels
and their coiterations.

The following theorem from [10] guarantees that the coiteration of two
Q + l-iterable weasels of height Q is successful.

THEOREM 21. Let k be an inaccessible cardinal. Let M and N be premice such
that ORM = ORY = k. Let (T.U) be a successful coiteration of (M.N). Then
max{lh(7).lh(U)} < k + 1. Moreover, setting 1h(T) =6+ 1 and 1h(U) =y + 1,
either

1. DT (0,017 = 0. i],[k] C &, MT QMY and ORM = &, or

2. DU (0.7 = 0. iY [x] C k. MY M. and ORM = k.

The next lemma collects basic facts about iteration trees whose proof is well-
known.

LEMMA 22. Let k be a regular and uncountable cardinal. Let M be a premouse such
that ORM = k and let T be a 0-maximal iteration tree on M such that h(T) = x + 1.
Let b := [0, k]7. Then the following hold:

1.if bn D7 =0 and iOTN[n] C K, then there is a club C, C b such that for all
a € Clﬂb,ig;[oz]Ca,
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2. ifORMZ < k forall o < k., then there is a club Cy C b such that for all o € C;,
a =sup{lh(E]): f < a}. and

3. ifORMaT <k forall a < K, and ORMHT > k, then there is a club C3 C b such
that for all « € C3, a > sup(DY Nb), il (a) = k and crit(i]) = a.

We need the following version of the Z%-Bounding Theorem in order to prove
Lemma 24.

THEOREM 23. Let x € “w and suppose that A C WO is X{(x)-definable, where
WO C “w is the set of reals coding well orderings of w. Then

sup{otp(R,) : y € A} < o *(x).

where R, C w X w is the relation coded by y and a)ICK(x) is the least ordinal a such
that L,[x] = KP.}

The proof of Theorem 23 is basically a refinement of the Kunen—Martin Theorem,
which may be found in [6, p. 75].

LEMMA 24. Let M be a premouse such that o is a regular, uncountable cardinal of
M and M = “6% exists”. Suppose that M is (0,6 + 1)-iterable, and there is no initial
segment of M which models KP + “there is a Woodin cardinal”. Let U be a 0-maximal
iteration tree on M such that

e lh(U) =6 +1,

e sup{lh(EY) : a <0} =9.

e bN DY =0, where b :=[0.0], i.e.. U is non-dropping on its main branch, and

o i (6) =9.

Then il (6™M) =6+M.

PROOF. Suppose otherwise, and let i be a counterexample. Let ¢ < 67 be such
that i¥%(¢) > 0™ and pjy I = 5. Note that such ¢ exists since it is continuous
at 0™ as §*M and its images are not of measurable cofinality in any MY for
a € [0,5)” and U is 0-maximal. Moreover, it is a standard fact that the ordinals #
such that pM!" = § are cofinal in 6+M . We also assume that & > ORZ, where QO <1 M
is least such that J(Q) = “0 is not Woodin”. Note that Q exists and OR? < §*+M
since there is no initial segment of M which models KP and has ¢ as a Woodin.

Letg C Col(w,d) be V-generic. In particular, gis also M-generic. Let x € M[g] N
@ code M ¢ + w.

Let us define in 7 [g] the set 4 such that 7 € A4 if and only if

1. T is a 0-maximal putative iteration tree on M |¢ + w such that Ih(7) =6 + 1

2. 7T is non-dropping on its main branch,

3. sup{lh(E]) : a <6} =4, and

4. i:(6) = 4. thus in particular, M] |6 € wip(M] ).

Note that if 7 € 4. then 7 | ¢ is guided by Q-structures.

Cramm 1. If T € A, then there is a Q-structure for T | in V[g]. i.e.. there is
a < OR such that Jo,(M(T [6)) E “6 = (T |5) is not Woodin”.

8Here otp(Ry) is the transitive collapse of the wellorder R,
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PrOOF. Suppose that there is no Q-structure in V[g]. This means that for
all @ < OR, Jo,(M(T [6)) E “6 is Woodin”. Let a be least such that J,(M(T |
d)) = KP. Since 6 is regular in L(M(T [9)), there is X < Jo(M(T |d)) such
that X Nd €. Let N be the transitive collapse of X; then by condensation,
N G M(T [6). Note that since M(T 19) = Uyeos)7 MT|Ih(ET) and by elemen-
tarity there is no initial segment of M (7 [J) which models KP and has a Woodin.
However, N models KP and has a Woodin. Contradiction! o

Since for 7 € A thereis a Q-structure for 7 |6 and sup{lh(E]) : a < 6} = 6 (and
thus Q-structures for 7 | o with a < J are of ordinal height less than §) it follows by
the usual absoluteness arguments that there is a unique cofinal well-founded branch
bfor 7T [din V[g].

However, at this point we do not know whether for 7 € A, the unique cofinal
wellfounded branch of 7 [d was actually chosen, i.e. whether 7 is an iteration tree.
This is verified in the next claim.

Cram 2. If T € A, then Mg— is wellfounded.

PROOF. Suppose otherwise. Let 7 € A be such that M(ST is ill-founded. By 4 we
have that M] |6 € wfp(M]). As we are assuming that M is ill-founded. we may
apply Lemma 20 and get that wfc(/\/l(;r) = KP. To arrive at a contradiction, we
distinguish two cases.

The first case is that Q(c. T [6) < wic(M] ). where ¢ =[0.5]7. Let b be the
unique, cofinal, and wellfounded branch b for 7 [6 in V'[g]. By 1-smallness, we have
that Q(c. T [6) = Q(b. T 16). Note that Q(b. T [6) # M] . since otherwise there is
a drop on b and thus Q(c. 7 [d) is not sound. but Q(c. 7 [§) < wic(M] ). which
would be a contradiction! But then by the Zipper Lemma, we have that ¢ is Woodin
in J(Q(b, T |6)). Contradiction!

The second case is that the Q-structure is not an element in wfc(MéT). In this
case we have that for every proper initial segment of wfc(M] ), M] thinks that
0 is Woodin in that segment. Moreover, by 1-smallness we have that wfc(/\/l()T) =
J3(M(T 16)) for some . But this means that & is Woodin in wfc(M]).

Let b be unique cofinal and wellfounded branch b for 7 [6 in V[g]. By
l-smallness, Q(b. T [6) = Jo(M(T [5)) for some a € OR. Since J3(M(T [5)) =
“6 is Woodin”, we must have that f < a and J,(M(T [d)) <M]. But since
Jg(M(T 19)) satisfies KP + “6(T) is Woodin” and M has no segment modelling
this theory, we must have f = o = OR(M]): thatis, Js(M(T [9)) = Q(T [6.b) =
MbT Since M |(é + w) satisfies “there is no Woodin cardinal < ¢”, b must drop.
But since /\/le E KP + “there is a Woodin”, by Lemma 15, the last drop in model
along b is to a segment modelling this same theory, contradicting the fact that M
has no segment modelling this theory. #

The set A gives rise to the set 4 = {ORM; :T € A}. Note that 4 is a set of
countable ordinals in ¥'[g]. since the trees are countable in V'[g] and also M| + w
is countable in V' [g]. Thus, we may code A4 as a set of reals A* by setting A* := {y €
WO : otp(R,) € A4}.

Cram 3. A* isZl(x).
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ProOF. The main difficulty is in expressing in a X{(x)-fashion that for a <.
MY is wellfounded. Fix some a <J. Note that if « is a successor, then M7
is always wellfounded, since M is (0.6 + 1)-iterable in V[g] as can be seen by
standard arguments, and we may assume inductively that U [« is guided by
Q-structures. Suppose that o < J is a limit. Since sup{lh(E]):a <6} =6, we
have that 6(7 [a) < J. Note that h(E]) > 5(7 [a) and M is 1-small below J.
Thus, Q(b. T [a). where b = [0,a]”. must exist and Q(b. T [a) < M |h(E]T).
Thus, the wellfoundedness of Q(b, T [a) can be expressed via the existence of an
isomorphism between the ordinals of Q(b, T [«) and an initial segment of the
ordinals of the model coded by x. This is £} (x). =

Cranm 4. sup(4) < of¥(x).
Proor. This follows immediately from Theorem 23 and the previous claim.

Let U* be the 0-maximal iteration tree on M|(¢ + w) which is otherwise
equivalent to U, i.e. it has the same length and tree order, and uses the same
extenders as U. Since sup{lh(EY) : @ < §} = 6 and J is a cardinal of M, this makes
sense, sup{lh(E¥ ) :a <6} =6, il exists, and i (5) = 6. It follows that U*
isin A.

The following claim is a simpler version of Lemma 4.64 of [7].

Cramm 5. ¥ (&) = il (&).

Proor. Let k <. It suffices to see that every function f : kK — & which is in
M is also in M |& + w. To this end note that since pé‘f < =5, there is a surjection
g:6 — Esuchthatg € M|¢ + w = J(M|E). Define a function 4 : k — J such that
for a < k. h(a) = min(g7'(f(a))). As J is regular and & < &, h is essentially a
bounded subset of 6 and thus, & € M|&. But since f is definable from g and / this

means that f € M|¢ + . =
By Claims 4, 5. and the fact that U* € A, il (&) + o =i%(&) +w =

OR(MY") < wam. But x is in M[g]. so wam < M = 5+MIs], But we chose
& with 6M1El < (), a contradiction! .

‘We need a second lemma with a similar flavor.

LemmA 25. Let M be a premouse such that d is a regular, uncountable cardinal of
M and M |= <67 exists”. Suppose that M is (0.6 + 1)-iterable, and there is no initial
segment of M which models KP + “there is a Woodin cardinal”. Let U be a 0-maximal
iteration tree on M such thatlh(U) = 6 + 1 and sup{lh(EY) : @ < 6} = 5. Let b¥ :=
[0.01%. Suppose that there is 5 € b (1 (6 \ sup(DY N bY)) such that il5(y) = J for

some y < 8. Then M5 < 5+M.

Proor. The proof follows closely the proof of Lemma 24. Again we work in
V[g]. where g C Col(w,d) is V-generic. We modify the definition of 4 by omitting
2 and modifying 4 to “there existsany € b7 N (6 \ sup(D” Nb7))anday < J such
that i (y) = 6. where b7 :=[0,6]7 . Moreover, we alter 1 by requiring that 7 is a
putative iteration tree on M.

As before, for all T € A, T is an iteration tree. Similar to before Z/* will be the
tree U considered on M|d. Again, U* € A and the tree- and dropping-structure of
U and U* are the same. We have that MY~ < MY forall a < 6.
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By the same argument as in the proof of Lemma 24, we will have that
ORM < ¥ (x) <6™™ where x codes M|5. We claim that this implies that
MG < 5+M If DU A bY £ 0, i.e. U is dropping on its main branch, MY = MY,
so that 67M5 < ORMS' < 6+M . So suppose that DY N pY = (), equivalently that
DY nb¥ =§. Then i : M — MY and %" : M|6 — MY exist. Let 7 <J be
least such that there is 6 < & such that i%* (6) = 6. If n = 0, then since 6 is regu-
lar in M and sup{lh(EY) :a <5} =4, SHME — JU(GHMY) < U (5) = sup i1’ [0] <
w1CK (x) < 0*tM ., Sosuppose that 7 > 0. Note that 5_+Mﬂu* must exist, since otherwise
J is the largest cardinal of /\/ll,f* which would imply thatd € ran(ié’fy*) andson =0,
contradicting our assumption on 7. Moreover, since there is no dropping on the main
branch, ié’f: is cofinal in ORMZWA*. But then, 5+M§4 = i,% (5+Ms{) = i,%* (5_+MZ7{*) <
i,%* (iéf; (y)) =i (y) < ©*(x) forsome y < & whereitis not the case thatd = y+M
and igf;(y) = 4. since 7 > 0. 8

We are now ready to prove the main theorem of this section.

THEOREM 26. Let Q be a measurable cardinal. Let W and R be premice such
that ORYY = OR™ = Q and suppose that both are (0,Q + 1)-iterable. Suppose that
neither W nor R have an initial segment which models KP N 36 (“0 is Woodin™). Then
the following are equivalent:

. W<*R,

2. there is a club C C Q such that for all a € C, if « is regular, then (at)V <

(a™)R, and
3. there is a stationary set S C Q such that for all a € S, « is regular and
(@™ < (ah)®.

PrOOF. Let us first show that clause 1 implies clause 2, i.e. suppose that VW <* R.
We aim to show that there is a club C C Q such that for all & € C, if « is regular,
then (a™)" < (a™)®. Let (7.U) be the coiteration of (W, R). By Theorem 21, the
coiteration is successful. Since W <* R, Mg g Mg and 7 does not drop on its main
branch. In particular, i7 : W — Mg exists. We may assume by padding the trees
if necessary that h(7) = 1h(i/) = Q + 1. Note that by Theorem 21, ORMS — 0.
Thus, by Lemma 22 (1), thereis a club C+ C Qsuch that foralla € Cr, i07; [@] Ca
andb” > Cr.Let C7 be the club given by Lemma 22 (2) for 7. Set By := Cr N Cr.
Let @ € By and suppose that it is regular. Then iOZ(a) = «. Thus, by Lemma 24,
we have that oW = o*Md  But since o € Crr, crit(i’,) > a. Therefore, atMd —

T . . & 4
a*Ma . Since M < MY and Q is a cardinal, we have that a*Mo = a™Ma for all
a € Br.

Case 1. ORMA > Q.

Let Gy C Q be the club given by Lemma 22 (3) for i intersected with the club
given by Lemma 22 (2) for 4. Then for all a. B € Cy; such that a < 8, we have that
ia”ﬁ(a) = f. Suppose that a € C, is regular, where () is the club of limit points of

u . /.
Cy. We have by Lemma 25, that o ™M < o™®. Moreover, since crit(i%,) = o (note

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

MOUSE ORDER FOR WEASELS 383

we are beyond the drops of b)), atME = ot MG Thus, € = C/, N By witnesses
clause 2 of the theorem in Case 1.

u
Casg 2. ORMa = Q.
Then i(%z exists. In this case we can construct a club Cy, forUf as Cy was constructed
for 7 and set C := C+ N Cy. This C witnesses clause 2 of the theorem in Case 2.

The argument for showing that clause 2 implies clause 3 is standard. We now
show that clause 3 implies clause 1. Suppose that there is a stationary set of
regular cardinals S C Q such that for all @ € S. o™ < a*®. We aim to show
that W <* R. Let (T.U) be the coiteration of (W, R) which again by Theorem 21
is successful. Suppose for the sake of contradiction that M7 > MY . By the same
arguments as before we can construct a club D C Q such that for all regular @ € D,
a™ > ot Butsince S is stationary and consists of regular cardinals, S N D # (),
contradiction! -

COROLLARY 27. Let Q be a measurable cardinal. Let VW and R be premice such that
ORY = OR* = Q and suppose that both are (0, Q + 1)-iterable. Suppose that there
is no transitive model of KP A\ 30(“6 is Woodin™). Then the following are equivalent:

oW TR,

o there is a club C C Q such that for all « € C., if « is regular, then (o) <

(™R, and
e there is a stationary set S C Q such that for all a € S, o € S is regular and
(@M)W < (ah)R.

§4. The counterexample. In this section we construct a counterexample to
Conjecture 1 assuming large cardinals. In order to construct the counterexample
we need an iterable premouse M which has an initial segment N <1 M such that
N E KP, N has a largest cardinal x which is Woodin in N, k is a measurable
cardinal in the larger premouse M. and there exists some Q € (x**, ORM) which
is measurable in M.

We want to show that such N exists if we assume that M is the least iterable sound
premouse, which models KP and has a largest cardinal & which is £;-Woodin in M.’

In Section 4.1 we will construct the above N. Note that since M is the least mouse
with a £;-Woodin, we will have that «, the largest cardinal of N, is not £;-Woodin

in N. For the construction of the counterexample it will be important that if g codes
a wellorder and is generic over N for the extender algebra, then the ordertype of g
is less than OR" . This will work since we showed in Section 2.1 that N[g] = KP
if g CPe N is N-generic, N = KP, and N | “IP has the #-c.c.”, where # is the
largest cardinal of V. In Section 4.2 we will construct the counterexample.

4.1. The construction of N.

DEeFINITION 28. Let M be a passive premouse and let 6 < OR NM . We say that
d is a X1-Woodin cardinal (of M) if for all A € M (M) there is some k < J which is

< 6, A-reflecting in M.

9See Definition 28 for the definition of £;-Woodin cardinal.
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DErFINITION 29. Let Mzaf be the least (0, w; + 1)-iterable and sound premouse

which models KP A 35(“J is £;-Woodin™).

Let M = Mgf' Note that M has a unique Woodin cardinal 6. Moreover, 0 is
acutally X;-Woodin in M and is the largest cardinal of M. Furthermore, § = p{/.

pM = {6}, and p = w. Also, by the remarks in the proof of Lemma 15, M is
actually (1, w; + 1)-iterable.

DEFINITION 30. Let M be an admissible passive premouse such that p < OR™M.
We let T™ C pM be the set of ordinals coding Thg’{(pf” u{p¥}).

Note that by Lemma 4. p}/ is the largest cardinal of M. Moreover, by definition
™ ¢ M, but TM € M (M). However, for every a < p}. TM Na € M. In the
proof of Lemma 31 below, we will consider degree 1 ultrapower embeddings
ir: M — U=Ult;j(M E), where U is wellfounded. Note that in this case,

TY = ig(TM), where i (T™) denotes Ua<p{‘4 ig(TM Na).

Mad

LEMMA 31. Let 0 be the largest cardinal of Mf‘f In Mz“f let k be (<6, T 3 )-

reflecting and let H == Hull™ (k U {0}). Then

e HNO =k, and
eifn: N=2H <5, Mgld is the transitive collapse of H, then N = KP.

PROOF. Let M = Mgf‘. Recall that p}! = {6} and p}! = 4. Let us first proof that

H N = k. Suppose for the sake of contradiction that thereis £ € H N [k.0). Let ¢
beaX; formulaand a € k besuch that  is the unique 7 such that M = ¢ (n, ., pi).
Note that ¢: (& . pM) € Thi' (6 U {pM}). Thus, there is some 4 <& such that
the code for ¢ (&, a. pM) is below A, i.e. gz (& . p) € TM NA. Let E € EM be an
extender witnessing that x is (4, T™)-strong. Let U := Ult; (M, E) and let iy : M —
U be the canonical ultrapower embedding. Note that we are taking a 1-ultrapower,
which makes sense since k = crit(E) < § = p. This means that ip (T™) = T (see
the remarks following Definition 30). But since E is (4. T )-strong. we have TV N
A=ig(TM)Ni=TM N Thus, p:(¢ a.p) € TY N A, which means that U =

p: (& a, pY). Moreover, since M = s (& . pM). U = @ (ip(&). ip(a).ip(p)).

Butir(a) =a < rkand ig(p}) = pV."" so U |= p:(ig (&), . pY). But since & was

the unique witness for Ixo; (x, ., pi) in M., we have

M = Vx(x # & = —pe(x.a. pi')).
However, this is rI1; and thus,
U E=Vx(x #ig(é) = —pe(x.a. pl')).

This means ig (&) = &. Contradiction!

10We actually have that i (p}) = pV = {6} = pM.

https://doi.org/10.1017/js1.2024.63 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.63

MOUSE ORDER FOR WEASELS 385

Let us now verify that N = KP. By what we have shown so far n(k) = 4. In
particular, « is the largest cardinal of N. So by Lemma 3 it suffices to check
Ag-collection. Suppose that

N EVa < kIypla,y. p).

where ¢ is a £ formula and j € N. Note that since H := Hull}’ (x U {d}), we may
replace p with some tuple of ordinals &, € [£]<” and {x}. Letting p = zn(p). we
have that p = &, U {{0}}. Then

M E=Va < kIyp(a.y.a,. {0}).
We aim to see that the bound  can be replaced by ¢ here, giving that
M =Va <dTyp(a.y.a,. {0}).

Suppose for the sake of contradiction that there is some ¢ € [k,d) such that
M EVy—¢(& y.a,. {6}). This means that Iyp(&. y.@,. p) ¢ TM. But then there
is some A€ (£.6) such that this is witnessed by TM N4, ie. the formula
Jyp(E. y.a,. p) ¢ TY N ieventhoughé, a, € M|A. (Note that since we coded T™
as a theory with constant symbol p it suffices if we pick 4 > sup{¢, @, }.) Let E € EM
be (4, TM)-strong. Then as in the previous argument, Iyp (&, y.a,. p) ¢ TV N A
However, since ig is rX;-elementary, we have that

U | Va <ig(k)3yela. y.ip(a,. {0})).
Note that ig(@,.{0}) = (a,.{0}). since @, € [s]<” and ig({6}) = p = pM =
{6}. Thus, since ir(k) > &,

U= 3yp(E y.a, {0}).
Contradiction! B

LemmA 32. Let N be as in Lemma 31. Then N << M and N is an admissible passive
premouse with largest cardinal & which is Woodin in N.

PrROOF. Note that a failure of k being Woodin in N is an rX, fact about N |«. Since
H <5, M, this would imply by upwards-absoluteness that ¢ fails to be Woodin in
M. Thus, « is Woodin in N. Moreover, as already mentioned in the previous proof
is the largest cardinal of N. But then as N|k = M|x and so N = J,(M|x), we will
have that N <« M, and we are done. -

4.2. The construction of the counterexample. Let M = Mgf and let N < M be
as given by Lemma 32, i.e. the following hold:
e M has a largest cardinal § which is £;-Woodin in M,

e N is an admissible mouse with a largest cardinal x which is Woodin in N, but
not £;-Woodin in N,

e ORY < k™™ and
e x ismeasurable in M, as witnessed by an extender E from the extender sequence
of M.
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The construction of the counterexample is now as follows: Fix Q € (s*+¥§),
which is a regular cardinal in M. Working inside M we will linearly iterate M | 1h(E)
for Q many times via £ and its images. Let 7 be the corresponding iteration tree on
M|1Ih(E) of length Ih(7T) = Q + 1. Note that 7 € M. Leti” : M|Ih(E) — M/, be
the iteration map. We will have the following:

° iT(/i) =Q,

o sup(iT[k+M]) = iT (k+M) = QtME < OtM
o W :=iT(N) = KPand OR" < Q*Mg;, and
e J¥ is an admissible mouse with a largest cardinal QQ which is Woodin in W, but

not X;-Woodin in W.

Since Q*M& < "M there is, inside M, some A C Q which codes a well order
<4 such that otp(<,) = QME | Let U be the A-genericity iteration of W with
respect to the Q-generator extender algebra of W at Q. Note that &/ € M, since
by standard arguments there is for every limit o < Q a Q-structure for U/ [« in M.
Moreover, since Q is inaccessible in I, and a cardinal in M, by the usual arguments
U is non-dropping, 1h(i/) = Q + 1. and i}, (Q) = Q.

Inside M we construct a club C C Q such that foralla € C:

e there exists some 7, : My = Xy <1000 M||QTT such that M|(Ih(E) + w) U

{Q, A} C ran(ny,), crit(ny) = «, and 7, () = Q,

ea = sup{lh(Eﬂu) p<al,

each:=[0.Q and

e =crit(E]).

The construction of such C is fairly standard, so we will omit it. Note that for
a € C.crit(i%,) > a.sincea = sup{lh(Ez’) : B < a}. Thus, by the usual argument
atMY — oMY

u T
Ciam. Fora € C,a™Ma > qtMa,

Proor. Fix a € C. Let (T.U. A, W) € M, such that n,((T.U. 4. W)) =
(T.U, A, W). Note that there are such 7., W € M,, since T.U, W are definable
from M|1h(E), 4, and Q over M ||Q*T. )

By the properties of 7,. 4 is generic over MU and otp(< ;) = atMd = otMd
By Corollary 11, MY[A] = KP. Since <; € MY[A] and the transitive collapse

. ) 7o T . U
of < is a Xj-recursion, otp(< ;) = atMd ¢ MHY[A]. In particular, ORMa 4] —

u . . .
ORM¢ > o+Md  Note that since crit(E]) = a it follows by the usual argument

that a*Ma = a*M& . So in order to finish the proof it suffices to see that ORM« <
a+MY

Since crit(n,) = a. we have that MY|a = MY|a. Moreover. since il (Q) =
Q. iff(a) = o and so MY |= “a is Woodin”, since 7,(MY) = MY and MY |=
“Q is Woodin”. By the 1-smallness of M it follows that MY = Jz(MY|a) for some
B < Qand so MY < QU Ta), so that MY < Mg. Since QU [a) < Mg\oﬁMg,

u u
we have ORMe < oMo, -
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‘We have shown that for every a € C, atME < o+ ME If we consider the tree U{*
which is just the tree I/ considered not on W but on W |Q, we will have that for all

aeC,ate < atME Moreover, since i¥(Q) = Q, we have ORMZ(AZ* =Q, so
MUY is a weasel in the sense of M.

However, if (77,U') is the coiteration of (W|Q, MY"), then T’ = U* and U’ is
the trivial tree. Thus, W |Q =* Mg* and there exists a club C C Q such that for all

u* . . . . .
ac C, a2 < otMa | This contradicts Conjecture | inside M.

ReEmARK. The construction above also works if we picked Q to be J. However,
in this case, we have to modify the construction slightly: Let # > x be a measurable
cardinal of M and let F € EM be the measure witnessing this. Let 7' the linear
iteration of M |*+M via F and its images of length § + 1. Note that by Ag-collection
T’ € M and that 6 exists in /\/lg—l. Now as before we let 7 be a linear iteration of

M |1h(E) via E and its images of length § + 1. However, note that 7 € /\/léT/. Thus,

there is 4 € M] " such that otp(< ) = Ot MJ and 4 C 9. Since 9tMJ  exists and
there is no initial segment of MT which models KP and has a ¥;-Woodin cardinal,

we see by the same argument as before, that Q-structures exist for I/, where U is the
genericity iteration of iog (N) making 4 generic.

§5. On another question from CMIP. In this last section we discuss another
question remarked about in [10, prior to Lemma 4.6] concerning the S-hull property.
Throughout this section Q is a fixed measurable cardinal and uy is a fixed normal
measure on Q. We call a premouse of ordinal height Q a weasel.

Note that our definitions of thickness and the Hull property are different from
the ones in [10], yet equivalent. We chose these different definitions in order to
emphasize that thickness is a property independent of a specific weasel.

DEeFINITION 33, Let W be a weasel and S C Q be stationary. We say that S is good
for W iff there is a club C C Q such that foralla € C NS
e o is inaccessible,
et = (a*)w, and
e o is not the critical point of a total-on-W extender from the extender sequence
of W.

DEermNITION 34, Let I' € Q and S be stationary. We say that I is S-thick iff there
isaclub C c Qsuchthatforalla € C NS, T Na’ contains an a-cluband a € T'.

DrrmNiTION 35. Let W be a weasel and S C Q such that S is good for W. Let
a < Q. We say that W has the S-hull property at o iff for all ' C Q which are S-thick

P(a) N W C transitive collapse of Hull”’ (o UT).

In Lemma 4.6 of [10, p. 32] it is proven that for an Q + 1-iterable weasel W, if S
is good for W, then for up-a.e. @ < Q the S-hull property holds at o.

However, in [10, p. 32, prior to Lemma 4.6], Steel raises the issue whether the
set HPY := {a < Q : W has the S-hull property at o} is closed. Note that HPY’
clearly cannot be closed in the usual sense, as the following example from [10, p. 29]
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shows: Suppose that M is an Q + l-iterable weasel which has the S-hull property
at all @ < Q and there is a total-on-ME € EM with at least two generators. Then
Ulto(M, E) has the S-hull property at all & < (crit(E)*)M but not at (crit(E)*)M.
However, Ulty(M. E) is still Q + 1-iterable. Thus, HPY’ cannot be closed in the
usual sense.

DEFINITION 36. We say that X C Q is almost closed if for every 6 < Q, if J is the
supremum of elements of X and elements of Q \ X, thend € X.

Given the preceding remarks, we will substitute almost closure for closure in
the issue raised in [10], and hence consider the following question: Let W be a
(0.Q + 1)-iterable weasel and S C Q such that S is good for W, is the set HPY’
almost closed?

This question is answered positively by the following theorem.

THEOREM 37. Let W be an Q + 1-iterable weasel and S C Q be such that S is good
Jor W. Then the set {ae < Q : W has the S-hull property at o} is almost closed.

PrOOE. By Lemma 4.5 of [10] there is an Q + l-iterable weasel M and an
elementary embedding 7 : M — W such that ran(z) is S-thick and M has the
S-hull property at all a < Q. i.e. HPY' = Q. Let (7.U) be the coiteration of W
and M. We will prove the theorem assuming that 1h(7") = Ih(if) = Q + 1 and leave
the remaining cases as an exercise to the reader. Since W and M are universal,

i7 W= M and i1 M — Mg exist and M{ = M{ =

Note that by the remark followmg Example 4.3 in [10 p- 29] M has the

S-hull property at ¢ iff for no g+ 1€ [0.Q]Y, & € [crlt(Eff)JrM'i v(EY)). where

n = pred” (B + 1). Thus, the set HP?oo is almost closed. Moreover, by arguments
from the proof of Lemma 4.6 in [10] (using that the set of fixed points of i7 is
S-thick) we have that for all @ < Q, W has the S-hull property at « iff M, has the
S-hull property at i7 («).

Suppose for the sake of contradiction that HPEV isnot almost closed. Letd < Q be
a witness for this. Since HP? * is almost closed this means that ;7 () > sup(i7 [0]).
There are two ways this can happen.

Case 1. There is f+1€[0.Q7 such that crit(E]) = i] (3), where y =
pred(f + 1).

Let us assume that f is least such. Note that in this case we must have that
sup(zo} 0] = ig, T(9) and ¢’ := i0 (0) € HPMOo Since crit(i ﬂ+1(2) >0, /\/l,BT+1 has
the S-hull property at §’. But then, since M7 441 has the S-hull property at 0’ and

P©’) N MyT =Pl)nN MIEI, ./\/lyT has the S-hull property at 6’. Contradiction!

CaSE 2. W = “6 is singular with cofinality u” and there is a minimal o € [0, Q)7
such that if (1) = crit(iy,).

Let y +1 € [0.Q]7 such that pred/(y + 1) =« and set W' := M], W" =
M7, 0" =i, (). j =i, and 8" := sup(j[0']). Note that 6” < j(¢"). More-
over, letting i := i] . we have that 6’ = i(J) = sup(i[d]).
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Cram 1. The S-hull property holds at 6" in W".

PrOOF. Note that ¢ is a limit of HP;VU and Q\ HP;VN. So in order to see that
the S-hull property holds at 6” in W it suffices to see that i;;l,g is continuous at

8" To this end note that cof (5”)"" = k and that all extenders used along [0. Q]
after EyT have critical points greater than . Thus, i},TJrLQ is continuous at 6" from
which the claim follows. =

We claim that this implies that the S-hull property holds at ¢’ in W', which would

be a contradiction. Let 4 C ¢’ such that 4 € Ify’ and I" be an S-thick set. We need
to show that there is a term 7, £ € [[T']<®, and f € [0']<“ such that

=" RINS.
Note that j(4) N6” € W". Thus, thereisa term . ¢ € [[]<?., and 7 € 6" such that
j(A) " =a""[C.71ns".

We may assume that j fixes {. Let 7 = ([a. SV ... [an. £,17). where for k < n,
ar € V(E)]<® and f; € W™ W’ 0 W', Note that by Lo$’s Theorem,

j(& ea (7] =
(bel[r]=: W' el for4b). . [ (b))} € E. (5.1)

where a = |, ., a,. Furthermore, for & < ¢,

J(&) ea™L.7] = j(&) € j(d) « €A (5.2)

Note that for every ¢ € [v(E)]<“, E. is close to W’. In particular, since W' = ZFC,
E. € W' for every ¢ € [v(E)]<®. Moreover, ¢’ is a limit cardinal in W' and GCH
holds in W'. Thus, for every ¢ € [v(E)]<® the ordinal of the measure E. in the
W'-order <y is an ordinal less than ¢’. Furthermore, as the ordinals below 6"
might be represented via functions bounded in ¢’, we may assume that for k < n,
[k is bounded in ¢’ and thus also their ordinals in the W’-order are less than ¢’. But
this means that 5.1 and 5.2 give us a term 7 and 8 € [6']<® such that

A=""C.f1Nns.
This finishes the proof of the theorem. —
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