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Abstract
We study Pareto optimality in a decentralized peer-to-peer risk-sharing market where agents’ preferences are
represented by robust distortion risk measures that are not necessarily convex. We obtain a characterization of
Pareto-optimal allocations of the aggregate risk in the market, and we show that the shape of the allocations depends
primarily on each agent’s assessment of the tail of the aggregate risk. We quantify the latter via an index of proba-
bilistic risk aversion, and we illustrate our results using concrete examples of popular families of distortion functions.
As an application of our results, we revisit the market for flood risk insurance in the United States. We present the
decentralized risk sharing arrangement as an alternative to the current centralized market structure, and we char-
acterize the optimal allocations in a numerical study with historical flood data. We conclude with an in-depth
discussion of the advantages and disadvantages of a decentralized insurance scheme in this setting.

1. Introduction
The idea that individuals act to maximize their heterogeneous preferences in a context of uncertainty
and scarcity of resources is the very reason for the existence of exchange markets. A practically rel-
evant example of such markets for actuaries and insurance professionals are the markets for sharing
risks between agents with differing preferences, beliefs, and levels of risk aversion. Broadly speaking,
markets for exchanging risks can be classified into two categories: centralized risk-sharing markets and
decentralized risk-sharing markets. In centralized risk-sharing markets, a central agent (or collection
thereof) acts as the supplier of insurance. This is the traditional model of insurance, of which the basic
theoretical component is the notion of an insurance contract (a premium and an indemnity function).
Decentralized risk-sharing markets consist of a pool of agents who wish to directly insure each other,
without recourse to a central insurance provider. The agents need to determine a priori a way to allo-
cate the aggregate risk among the pool. Examples of these markets include peer-to-peer (P2P) insurance
arrangements, which have gained significant popularity in recent years.

The study of Pareto-optimal insurance contracting within centralized insurance markets has its roots
in the two-agent market consisting of one policyholder and one insurer. In early foundational work,
Arrow (1974) and Borch (1960) show that at a Pareto optimum, the indemnity function in a two-agent
market is full coverage above a constant deductible, provided that the insurer is risk-neutral and the
policyholder’s preference admits a risk-averse expected-utility representation. Numerous extensions of
the classical model were subsequently proposed, mostly aiming at introducing more realistic models
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of policyholder behavior into the theory (see Gollier, 2013 or Schlesinger, 2000 for an overview). For
instance, the effect of belief heterogeneity between the agents was examined by Ghossoub, (2019c,
2017, 2019b), Boonen and Ghossoub (2019, 2020), and Ghossoub et al. (2023). In the literature on
ambiguity in optimal insurance design, the majority of the literature considered ambiguity on the side
of the insured, as in Bernard et al. (2015) and Xu et al. (2018). Several extensions were proposed in
Amarante et al. (2015), Ghossoub, (2019c, 2019a), and Birghila et al. (2023), for instance. Insurance
market models in which the insurer and/or policyholders have preferences represented by risk measures
were also examined, such as value-at-risk (VaR) and expected shortfall (ES) (e.g., Cai et al. 2008; Chi
and Tan 2013; Cheung et al. 2015, and Asimit et al. 2021), and distortion risk measures (DRMs) (e.g.,
Cui et al. 2013; Assa 2015, and Zhuang et al. 2016). Extensions of these results to a centralized market
with multiple suppliers of insurance have been examined by Boonen et al. (2016), Asimit and Boonen
(2018), Boonen and Ghossoub (2019, 2021), and Zhu et al. (2023), for instance.

However, the focus on identifying Pareto-optimal allocations often neglects the impact of market
forces in a given insurance market. In particular, the asymmetry of bargaining power between the insurer
and the policyholder can invalidate certain Pareto-optimal allocations as likely outcomes of this market.
Furthermore, the study of Pareto efficiency takes prices (or premia) in the market as given, and it does
not address the question of how premia are determined at a market equilibrium. A popular equilibrium
concept that takes into account the aforementioned asymmetry between the insurer and the policyholder
is the Stackelberg equilibrium (or Bowley optimum), which applies to a monopolistic insurance market
where the insurer and the policyholder move sequentially in an economic game, with the insurer as the
leader and the policyholder as the follower. Specifically, the insurer is able to set the prices of insurance
before the policyholder has a chance to purchase insurance. The contracts that are expected to emerge in
markets with this leader–follower structure are Stackelberg equilibria, which were first examined in an
insurance context by Chan and Gerber (1985) for agents with exponential utility functions. These results
were further extended to the case of DRMs by Cheung et al. (2019). However, of particular economic
relevance is the relationship between these Stackelberg equilibria and Pareto optimality of allocations.
To this end, Boonen and Ghossoub (2022) show that when the insurer uses a linear pricing rule and
agents’ preferences are represented by DRMs, Stackelberg equilibria represent only a subset of Pareto-
optimal allocations. Moreover, in every Stackelberg equilibrium, the insurer’s first-mover advantage
allows it to charge prices so high that the policyholder is left with no incentive to purchase insurance. In
other words, Stackelberg equlibria do not induce a welfare gain to the policyholder. Recent results from
Ghossoub and Zhu (2024b) show that this situation occurs even in markets with multiple policyholders,
and Zhu et al. (2023) show that introducing competition on the supply side of the insurance market
alleviates this problem.

As an alternative to centralized markets of insurance, decentralized insurance markets offer the agents
the possibility of sharing risks directly among themselves, thereby avoiding interaction with traditional
insurance providers. This would circumvent the potential no-welfare-gain equilibria described above,
as there is no longer any danger of an insurance provider exploiting an advantage in bargaining power.
A primary concern of decentralized risk-sharing markets is the Pareto-efficiency of the allocations of
the aggregate risk. The seminal work of Borch (1962) and Wilson (1968) showed that when agents
have risk-averse expected-utility (EU) preferences, each individual’s allocation of risk is a nondecreas-
ing deterministic function of the aggregate risk in the market at a Pareto optimum. This, in turn, leads
to a complete characterization of efficient allocations (through the so-called Borch rule) and shows
that Pareto optima (PO) are in fact comonotone. The subsequent literature has then examined several
extensions of the classical model beyond EU. Notably, the effect of ambiguity-sensitive agents on opti-
mal allocations has attracted significant attention in the literature. For instance, Dana (2002, 2004) and
De Castro and Chateauneuf (2011) consider economies with maximum expected utility multiple-prior
preferences à la Gilboa and Schmeidler (1989). Chateauneuf et al. (2000), Dana (2004), De Castro and
Chateauneuf (2011), and Beissner and Werner (2023) study economies with non-probabilistic uncer-
tainty as in the Choquet-Expected Utility model of Schmeidler (1989). The more general class of
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variational preferences of Maccheroni et al. (2006) was examined by Dana and Le Van (2010) and
Ravanelli and Svindland (2014), for instance. In the context of risk management, Pareto-optimal alloca-
tions have been studied when preferences satisfy the properties of translation invariance, risk aversion,
convexity, coherence, or a combination thereof: we refer to Jouini et al. (2008), Filipović and Svindland
(2008), Mao and Wang (2020), Ghossoub and Zhu (2024a), and references therein for an overview of the
topic. Of particular recent interest is the risk-sharing problem for agents with quantile-based risk mea-
sures that are not necessarily convex, as studied by Embrechts et al. (2018, 2020), Liu (2020). In contrast
with the literature on risk-averse preferences, optimal allocations can be counter-monotone rather than
comonotone, as shown in Lauzier et al. (2024) and Ghossoub et al. (2024).

In practice, decentralized markets of insurance are often found in the form of risk-sharing pooling
arrangements, in which every agent pays a contribution fee to a pool in return for partial coverage of
their monetary risk. For more details on real-world examples of peer-to-peer risk sharing, we refer to
Abdikerimova and Feng (2022). Decentralized insurance is also prevalent in markets for catastrophe
risk: we refer to Bollmann and Wang (2019) for an overview, as well as Feng et al. (2023) for the flood
risk market with proportional insurance. The allocation of the ex post risk to each agent is generally
performed according to a predetermined risk-sharing rule. Examples of these rules previously studied
in the literature include the conditional mean risk-sharing rule (e.g., Denuit and Dhaene, 2012), as well
as rules based on actuarial fairness and Pareto optimality as in Feng et al. (2023). Our focus in this
paper is on the Pareto optimality of allocations. For more on desirable properties of risk-sharing rules
and recent developments, we refer to Denuit et al. (2022).

In this paper, we study Pareto optimality in a decentralized P2P risk-sharing market where agents’
preferences are represented by robust distortion risk measures that are not necessarily convex. In our
setting, robustness is with respect to the distortion function used, not with respect to the probability
measure on the space. This is in contrast to Bernard et al. (2023), but it is in line with Wang and Xu
(2023), who argue that these risk measures can be motivated by the ambiguity present in each agent’s
preference. This type of robustness also emerges naturally in the context of coherent risk measures (e.g.,
Dana, 2005). Moreover, we allow for heterogeneity both in the baseline probability measures used by
the agents and in the sets of distortion functions used by the agents. The set of feasible allocations is
assumed to consist of comonotone allocations, that is, allocations that are 1-Lipschitz functions of the
aggregate risk in the market. This is related to the so-called no-sabotage condition of Carlier and Dana
(2003, 2005) typically assumed in centralized insurance markets, which guarantees that no agent has an
incentive to misreport their actual realized loss ex post.

Our main result (Theorem 3.3) provides a characterization of Pareto-optimal allocations of the aggre-
gate risk in the market. In particular, we show that the shape of the allocations depends primarily on each
agent’s assessment of the tail of the aggregate risk. We quantify the latter via an index of probabilistic
risk aversion. In a special case of our result where the set of distortion functions for each agent is in fact
a singleton (Corollary 3.4), we recover the explicit form of optimal allocations under DRMs previously
attained by Liu (2020). We then provide several illustrations of our results using concrete examples of
popular families of distortion functions.

As an application of our results, we revisit the market for flood risk insurance in the United States
through the lens of P2P insurance. We present the decentralized risk-sharing arrangement as an alter-
native to the current centralized market structure, and we characterize the optimal allocations in a
numerical study with historical flood data. Specifically, we revisit the numerical study of Boonen et al.
(2024), which examines a centralized market with the federal government acting as the sole provider
of insurance. However, as argued by Ghossoub and Zhu (2024b), this centralized structure provides an
incentive for the central authority to charge extremely high prices at the expense of the policyholders.
We therefore present the decentralized risk-sharing scheme as an alternative, and we characterize the
optimal allocations thereof using historical data. We find that while the decentralized risk-sharing mar-
ket avoids Stackelberg equilibria, the trade-off is that the average welfare gain is lower than that of the
centralized market.
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The remainder of this paper is structured as follows. Section 2 formulates the optimal allocation
problem for decentralized markets. Section 3 provides the characterization of Pareto optima in this set-
ting, as well as some general results for common families of DRMs. We apply our results to the market
for flood risk insurance in the United States in Section 4, in which we also discuss the advantages and
disadvantages of a decentralized market scheme. Section 5 concludes. Most proofs are relegated to
Appendix A.

2. Problem formulation
2.1. The market
Let X be the set of bounded real-valued measurable functions on a given measurable space (�, F),
and let X+ denote its nonnegative elements. There are n ∈N agents wishing to share their endowed risks
among themselves without any central authority involvements. For each i ∈N := {1, . . . , n}, let Xi ∈X+
denote the nonnegative loss of the ith agent. We consider a one-period, risk-sharing economy, where all
risks are realized at the end of the period. The risk-sharing mechanism in this market is as follows.

For each i ∈N, agent i pays ex ante the contribution amount πi ∈R to a pool. At the end of the period,
the aggregate loss S := ∑n

i=1 Xi is covered by the aggregate amount
∑n

i=1 πi in the pool. The residual
aggregate loss to be shared among the agents is thus given by S̃ := ∑n

i=1 Xi −∑n
i=1 πi. If S̃ ≥ 0, the pool

is subject to a residual aggregate loss; whereas if S̃ ≤ 0, the pool has a monetary surplus to be shared
among the agents at the end of the period. Let Yi be the shared loss by the ith agent, i ∈N, from the
residual aggregate loss S̃. For each i ∈N, the end-of-period, post-transfer risk exposure of agent i is thus
given by Yi + πi.

Remark 2.1. Note that this formulation slightly generalizes the usual formulation in the literature by
incorporating deterministic contributions from the agents to the pool at the beginning of the period.
This can be compared to the usual formulation by defining Zi := Yi + πi to be the resulting allocation
to agent i. Note that for each i ∈N, the allocation Zi is almost surely bounded by below.

We assume that the market is a comonotone risk-sharing market, as previously studied by Boonen
et al. (2021). This is a market in which the admissible contracts are only those that are comonotone
with the aggregate initial risk. Under this restriction, the contracts all satisfy the no-sabotage condition
of Carlier and Dana (2003, 2005), which guarantees that no agent has an incentive to misreport their
actual realized loss. This is one possible justification for the existence of such a market, since preventing
ex-post moral hazard is in the best interest of every agent. An alternative justification arises from the
situation where each agent’s preference is monotone with respect to the convex order. In this case, it is
well known that Pareto optima are comonotone (e.g., Ghossoub and Zhu, 2024a).

The set of ex ante admissible decision variables is therefore given by

A :=
{({Yi}n

i=1 , {πi}n
i=1

) ∈Xn
+ ×Rn :

n∑
i=1

(Yi + πi) =
n∑

i=1

Xi, {Yi}n
i=1 is comonotone1

}
.

Remark 2.2. Note that {Yi + πi}n
i=1 is comonotone if and only if {Yi}n

i=1 is comonotone. Recall that∑n
i=1 (Yi + πi) =∑n

i=1 Xi = S is the aggregate risk present in the insurance market. By a standard result
(e.g., Denneberg, 1994, Proposition 4.5), if {Yi + πi}n

i=1 is comonotone, then there exist increasing
1-Lipschitz functions fi such that Yi + πi = fi(S).

1A random vector {Zi}n
i=1 is said to be comonotone if [Zi(ω1) − Zi(ω2)]

[
Zj(ω1) − Zj(ω2)

]≥ 0 for all ω1, ω2 ∈ � and i, j ∈
{1, . . . , n}.
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The preferences of each agent i, for i ∈N, are represented by given risk measures ρi. Consequently,
each agent i measures their pre-transfer risk exposure by ρi (Xi), and their post-transfer risk exposure by
ρi (Yi + πi). We recall some properties of risk measures below.

Definition 2.3. A risk measure � : X→R is said to be:

• Monotone if �(Z1) ≤ �(Z2), for all Z1, Z2 ∈X such that Z1 ≤ Z2.
• Translation invariant if �(Z + c) = �(Z) + c, for all Z ∈X and c ∈R.
• Law-invariant if for all Z1, Z2 ∈X with the same distribution under P, we have �(Z1) = �(Z2).

We will assume throughout that all risk measures are monotone.

Definition 2.4. A contract
({

Y∗
i

}n

i=1
,
{
π ∗

i

}n

i=1

) ∈A is said to be:

• Individually Rational (IR) if it incentivizes the parties to participate in the market, that is,
ρi

(
Y∗

i + π ∗
i

)≤ ρi (Xi) , ∀ i ∈N.

We denote the set of all IR allocations by IR.
• Pareto Optimal (PO) if it is IR and there does not exist any other IR contract

({Yi}n
i=1 , {πi}n

i=1

)
such that

ρi (Yi + πi) ≤ ρi

(
Y∗

i + π ∗
i

)
, ∀ i ∈N,

with at least one strict inequality. We denote the set of all PO allocations by PO.

2.2. Pareto optimality in peer-to-peer arrangements
First, we show that all comonotone allocations are translations of a suitable non-decreasing function of
the aggregate endowment. To this end, define the set G by the following.

G :=
{

{gi}n
i=1

∣∣∣∣∣ gi : R+ →R+ non-decreasing Borel-measurable, and
n∑

i=1

gi (·) = Id

}
.

Note that if {gi}n
i=1 ∈ G, then each gi is 1-Lipschitz. Furthermore, since each gi is non-negative, we have

gi(0) = 0 for all i ∈N.

Lemma 2.5. Let ({Yi}n
i=1, {πi}n

i=1) ∈A. Then there exist functions {gi}n
i=1 ∈ G and constants {ci}n

i=1 ∈Rn

such that
Yi + πi = gi(S) + ci ∀i ∈N,

and
∑n

i=1 ci = 0.

In the case where every agent uses a translation invariant risk measure, we have a characterization of
PO in terms of solutions of a minimization problem. Let S denote the set of all solutions to the problem

inf
({Yi}n

i=1,{πi}n
i=1)∈IR

n∑
i=1

ρi(Yi + πi). (2.1)

Proposition 2.6. If, for each i ∈N, ρi is translation invariant, then PO= S.

3. Pareto optima for robust distortion risk measures
3.1. Robust distortion risk measures
In this section, we provide an explicit characterization of Pareto-optimal allocations when agents use
robust DRMs. These are defined below.
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Definition 3.1. A risk measure � : X→R is a robust distortion risk measure if there exists a set of
distortion functions T and a probability measure P on (�, F) such that for all random variables Z on
the probability space (�, F, P),

�(Z) = sup
T∈T

∫
Z dT ◦ P.

Robustness in the context of Definition 3.1 refers to the consideration of different distortion functions
by the decision maker, not different probability distributions on the underlying measurable space. Our
definition is in line with that of Wang and Xu (2023), who argue that these risk measures can be motivated
by the ambiguity present in each agent’s preference. We note that the use of the term robust distortion
risk measure is not consistent throughout the literature. For instance, Bernard et al. (2023) use this term
to refer to the case where the robustness relates to uncertainty in the distribution of the risk. In contrast,
Definition 3.1 assumes that the distribution of a given risk is fixed with respect to a reference probability
measure.

Lemma 3.2. For a robust distortion risk measure with respect to a set of distortion functions T, we have

sup
T∈T

∫
Z dT ◦ P= sup

T∈co(T)

∫
Z dT ◦ P,

where co(T) is the closed convex hull of T with respect to pointwise convergence.

We now assume that for each i ∈N, the risk measure ρi is a robust distortion risk measure. We
allow for each agent to have heterogeneous beliefs, represented by different probability measures Qi on
the same measurable space. Specifically, we assume that for each i ∈N, there exists a set of distortion
functions Ti such that

ρi(Z) = sup
Ti∈Ti

∫
Z dTi ◦Qi, (3.1)

for all risks Z ∈X. By Lemma 3.2, we may assume without loss of generality that each Ti is convex and
closed with respect to pointwise convergence.

Note that DRMs are translation invariant. For translation-invariant risk measures, a characterization
of Pareto-optimal allocations is given by Proposition 2.6. However, in the case of robust DRMs, a more
explicit characterization of the set S is possible, as shown by the following result.

Theorem 3.3. Suppose that for each i ∈N, the risk measure ρi is given by a robust distortion risk
measure as in (3.1). Then the following hold:

(i) There exists a solution to the problem

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

∫ ∞

0

min
i∈N

{Ti(Qi(S > x))} dx. (3.2)

(ii) A necessary condition for the allocation ({Y∗
i }n

i=1, {π ∗
i }n

i=1) to be Pareto optimal is that

Y∗
i + π ∗

i = g∗
i (S) + c∗

i ,

where {c∗
i }n

i=1 ∈Rn is chosen such that
∑n

i=1 c∗
i = 0 and {g∗

i (S) + c∗
i }n

i=1 ∈ IR, and {g∗
i }n

i=1 ∈ G
can be written in terms of the integrals of suitable functions hi. Specifically, for each i ∈N,
we can write g∗

i (x) = ∫ x

0
hi(z) dz, where each hi : R+ → [0, 1] is a function such that for almost

every x ∈R+, ∑
i∈Lx

hi(x) = 1 and
∑
i∈LC

x

hi(x) = 0,
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where

Lx :=
{

i ∈N : T∗
i (Qi(S > x)) = min

j∈N
{T∗

j (Qj(S > x))}
}

,

LC
x =N \ Lx,

and (T∗
1 , . . . , T∗

n ) is a solution to (3.2).

In other words, Theorem 3.3 provides a necessary condition for an allocation to be Pareto-optimal
allocation. This result is similar to the characterization obtained by Ghossoub and Zhu (2024a,
Theorem 4.15). However, a key difference is that the present result of Theorem 3.3 does not require con-
cavity of the distortion function (or equivalently, the convexity of the risk measure). The present result
also holds under a setting of heterogeneous beliefs, as represented by the different probability measures
Qi. These stronger conclusions can be obtained in the setting of this paper because the admissible allo-
cations are constrained to be comonotone, which was not the case in Ghossoub and Zhu (2024a). The
assumption that the risk-sharing market is comonotone is necessary for Theorem 3.3, since there does
not necessarily exist a comonotone Pareto-optimal allocation when risk measures are not convex.

Theorem 3.3 can also be seen as an extension of previous characterizations of Pareto optima for
DRMs: see Liu (2020, Theorem 3.3) and Ghossoub and Zhu (2024a, Corollary 5.3). Indeed, if the set Ti

is a singleton, then a robust distortion risk measure reduces to an ordinary distortion risk measure. The
main technical difficulty introduced by robustness is that a solution (T∗

1 , . . . , T∗
n ) to problem (3.2) must

be obtained, and there is no closed-form expression for such a solution. Nonetheless, once (T∗
1 , . . . , T∗

n )
is determined, the characterization for Pareto optima can be obtained explicitly in terms of (T∗

1 , . . . , T∗
n ).

In particular, Pareto-optimal allocations are obtained as translations of suitable functions of the aggre-
gate risk. Part (ii) of Theorem 3.3 decomposes the optimal risk allocation for agent i into a constant c∗

i

and a risky portion g∗
i (S), which is normalized so that g∗

i (0) = 0. Additionally, for any fixed {g∗
i }n

i=1 given
by Theorem 3.3, it is always possible to choose {c∗

i }n
i=1 ∈Rn such that {g∗

i (S) + c∗
i }n

i=1 ∈ IR. One such
choice is given by

c∗
i := ρi(Xi) − ρ(g∗

i (S)), i ∈ {1, . . . , n − 1}, c∗
n := −

n−1∑
i=1

c∗
i . (3.3)

Then by translation invariance of each ρi, we have ρi(Xi) − ρ(g∗
i (S) + c∗

i ) = 0 for i ∈ {1, . . . , n}.
Furthermore,

ρn(Xn) − ρn(g∗
n(S) + c∗

n) = ρn(Xn) − ρn(g∗
n(S)) +

n−1∑
i=1

(ρi(Xi) − ρ(g∗
i (S)))

=
(

n∑
i=1

ρi(Xi)

)
−
(

n∑
i=1

ρi(g
∗
i (S))

)
≥ 0,

where the last inequality follows since {g∗
i (S) + c∗

i }n
i=1 ∈ S and the no-risk-sharing arrangement {Xi} is

individually rational.
More generally, the role of the constants c∗

i is to determine the distribution of the aggregate welfare
gain from P2P insurance among the agents in the market. We define the aggregate welfare gain as the
difference between the aggregate valuation of the individuals’ initial risks, given by

∑n
i=1 ρ∗

i (Xi), and
the aggregate valuation of the agents’ post-transfer risks, given by

∑n
i=1 ρi(g∗

i (S) + c∗
i ):

W :=
n∑

i=1

(
ρi(Xi) − ρi(g

∗
i (S) + c∗

i )
)=

n∑
i=1

(
ρi(Xi) − ρi(g

∗
i (S))

)
.

Note that
∑n

i=1 ρi(g∗
i (S) + c∗

i ) is the value of problem (2.1), and therefore does not depend on the choice
of the Pareto-optimal allocation {g∗

i (S) + c∗
i }n

i=1. Hence, the aggregate welfare gain W is well-defined,
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and W ≥ 0. Now let {wi}n
i=1 ∈Rn be such that

∑n
i=1 wi = W and wi ≥ 0 for all i ∈N. Fix {g∗

i }n
i=1 satisfying

Theorem 3.3 and define

c∗
i := ρi(Xi) − ρ(g∗

i (S)) − wi, ∀i ∈N.

By construction, we have
∑n

i=1 c∗
i = (∑n

i=1 ρi(Xi)
)− (∑n

i=1 ρ(g∗
i (S))

)− W = 0. The allocation {g∗
i (S) +

c∗
i } is the risk-sharing arrangement that provides a welfare gain of wi to each agent i, in the sense that

ρi(Xi) − ρ(g∗
i (S) + c∗

i ) = wi ≥ 0.

Hence, {g∗
i (S) + c∗

i } ∈ IR. Note that the above example (3.3) corresponds to the arrangement that
allocates the entire welfare gain to agent n: that is, (w1, . . . , wn) = (0, 0, . . . , W).

3.2. Common parametric families of distortion functions
When each set of distortion functions Ti is a singleton, there is no robustness in the risk measure of each
agent, and we recover the simpler setting of P2P risk-sharing with DRMs. Suppose that Ti = {Ti} for
all i ∈N. As a special case of Theorem 3.3, we obtain a closed-form solution for Pareto optima that is
known in the literature (e.g., Liu, 2020, Theorem 3.3). This result is restated below.

Corollary 3.4. Suppose that for each i ∈N, the risk measure ρi is given by a distortion risk measure.
Then an allocation ({Y∗

i }n
i=1, {π ∗

i }n
i=1) is Pareto optimal if and only if

Y∗
i + π ∗

i = g∗
i (S) + c∗

i ,

where {c∗
i }n

i=1 ∈Rn is chosen such that
∑n

i=1 c∗
i = 0 and {g∗

i (S) + c∗
i }n

i=1 ∈ IR, and {g∗
i }n

i=1 ∈ G can be
written in terms of the integrals of suitable functions hi. Specifically, for each i ∈N, we can write g∗

i (x) =∫ x

0
hi(z) dz, where each hi : R+ → [0, 1] is a function such that for almost every x ∈R+,∑

i∈Lx

hi(x) = 1 and
∑
i∈LC

x

hi(x) = 0,

where

Lx :=
{

i ∈N : Ti(Qi(S > x)) = min
j∈N

{Tj(Qj(S > x))}
}

,

LC
x =N \ Lx.

Proof. We apply Theorem 3.3 in the special case where for i ∈N, each Ti is given by the singleton
set {Ti}. However, note that we obtain a stronger result by showing sufficiency of the characterization as
well as necessity. The result follows from the same proof as that of Theorem 3.3, after applying the fact
that problems (A4) and (A5) are identical problems in this special case. �

In this subsection, we examine the consequences of Corollary 3.4 when agents’ preferences are deter-
mined by common parametric families of probability distortion functions. First, suppose that each Ti is
an inverse S-shaped distortion function from a parametric family, and let αi denote the value of the
parameter that determines Ti. It can be verified that certain values of the parameter αi are “more S-
shaped,” which indicates a larger deviation from risk neutrality. To facilitate an economically meaningful
comparison, we provide the following definition, which can be interpreted as a proxy for the level of
risk aversion for a distortion function.

Definition 3.5 (Probabilistic Risk Aversion Index). For a given distortion Ti assumed to be twice
differentiable, we define the Probabilistic Risk Aversion Index of Ti to be

PRAi(t) := −T ′′
i (t)

T ′
i (t)

.

This index is similar to the index of ambiguity aversion proposed by Carlier and Dana (2008). Indeed,
if T2 = g ◦ T1 where g is a concave function, then it can be verified that PRA2 ≥ PRA1. Hence, T2 is more
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risk averse than T1, which is consistent with the notion that the risk aversion of DRMs is due to concavity
of the distortion function (see Yaari 1987 for more on this interpretation). Alternatively, we may use an
index of relative probabilistic risk aversion, as defined below.

Definition 3.6 (Relative Probabilistic Risk Aversion Index). For a given distortion Ti assumed to be
twice differentiable, we define the Relative Probabilistic Risk Aversion Index of Ti to be

RPRAi(t) := t × PRAi(t) = − t T ′′
i (t)

T ′
i (t)

.

One example of inverse S-shaped distortion functions is the parametric family of Prelec-1 distortion
functions introduced by Prelec (1998), who showed that these distortion functions are inverse-S shaped
with a unique inflection point at (e−1, e−1). These distortion functions are of the form

Ti(t) = exp (−(− ln (t))αi ),

where αi ∈ (0, 1).
In the following, suppose that each ρi is a distortion risk measure with respect to a Prelec-1 distortion

function with parameter αi. Let j, k ∈N such that αj = maxi∈N αi and αk = mini∈N αi.

Proposition 3.7. For t ∈ (0, e−1), the probabilistic risk aversion index PRAi(t) is larger for smaller
values of the parameter αi. In particular,

PRAk(t) ≥ PRAi(t) ≥ PRAj(t).

This result can be interpreted in the following manner. Recall that in the context of DRMs, each
distortion function Ti is applied to the survival function P(S > x). Hence, the argument of the distortion
t ∈ (0, e−1) represents the probability of a tail event. Proposition 3.7 then implies that agent k is most
averse to tail events, provided that the probability of this tail event is no more than e−1 ≈ 0.3679.

Proposition 3.8. Suppose each ρi is distortion risk measure given by a Prelec-1 distortion func-
tion with parameter αi, and let αj = maxi∈N αi and αk = mini∈N αi. Then a Pareto-optimal allocation
({Y∗

i }n
i=1, {π ∗

i }n
i=1) is given by

Y∗
i + π ∗

i = g∗
i (S) + c∗

i ,

where {ci}n
i=1 ∈Rn is chosen so that the allocation is IR, and

g∗
k(x) = min{x, d∗},

g∗
j (x) = max{x − d∗, 0},

g∗
i (x) = 0, for i ∈N \ {j, k}.

where d∗ = VaRe−1 (S).

Consequently, when all agents use a Prelec-1 distortion function, a possible PO allocation is a trans-
late of the contract where agent k provides full coverage of the aggregate risk up to a limit d∗, and the
excess aggregate loss beyond the level d∗ is covered by agent j. By Proposition 3.7, agent k exhibits the
most risk aversion toward tail events. This is reflected by the form of Pareto optima in this case, since
agent k does not cover losses beyond the deductible. Instead, the tail risk is assumed by agent j, who
exhibits the least risk aversion toward tail events.

Prelec (1998) also defines a two-parameter family of distortion functions (Prelec-2 distortion
functions), by

Ti(t) = exp (−βi(− ln (t))αi ),
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where αi ∈ (0, 1) and βi > 0. It can be verified that these distortion functions have an inflection point at
(e−1, e−βi ). In this case, we have a result similar to that of Proposition 3.7.

Proposition 3.9. If each ρi is a distortion risk measure given by a Prelec-2 distortion function with
parameters αi, βi, then we have the following:

(i) For a fixed αi and for all t ∈ (0, 1), the probabilistic risk aversion index PRAi(t) is larger for
smaller values of the parameter βi.

(ii) For a fixed βi and for all t ∈ (0, ε) where ε > 0, the probabilistic risk aversion index PRAi(t) is
larger for smaller values of the parameter αi.

Hence, if there exists an agent k such that αk = mini∈N αi and βk = mini∈N βi, then this agent exhibits
the most risk aversion to tail events. A similar result to that of Proposition 3.8 is given below.

Proposition 3.10. Suppose each ρi is distortion risk measure given by a Prelec-2 distortion function
with parameters αi and βi.

(i) Suppose that β1 = β2 = . . . = βn := β. Let αj = maxi∈N αi and αk = mini∈N αi. Then a Pareto-
optimal allocation ({Y∗

i }n
i=1, {π ∗

i }n
i=1) is given by

Y∗
i + π ∗

i = g∗
i (S) + c∗

i ,

where {ci}n
i=1 ∈Rn is chosen so that the allocation is IR, and

g∗
k(x) = min{x, d∗},

g∗
j (x) = max{x − d∗, 0},

g∗
i (x) = 0, for i ∈N \ {j, k}.

where d∗ = VaRe−1 (S).
(ii) Suppose that α1 = α2 = . . . = αn := α. Let βj = maxi∈N βi. Then a Pareto-optimal allocation

({Y∗
i }n

i=1, {π ∗
i }n

i=1) is given by

Y∗
i + π ∗

i = g∗
i (S) + c∗

i ,

where {ci}n
i=1 ∈Rn is chosen so that the allocation is IR, and

g∗
j (x) = x,

g∗
i (x) = 0, for i ∈N \ {j}.

Part (i) of Proposition 3.10 is a similar result to that of Proposition 3.8 in the case where every
agent has the same second parameter. That is, the agent with the largest aversion to tail events provides
coverage up to a deductible. Part (ii) states that if every agent uses the same first parameter α, then the
agent with the least aversion to tail events provides full insurance.

Similar results can be obtained for the family of S-shaped distortion functions first introduced by
Kahneman and Tversky (1979), Tversky and Kahneman (1992):

Ti(t) = tγi

(tγi + (1 − t)γi)
1/γi

,

where γi ∈ (0.279, 1]. Let γj = maxi∈N γi and γk = mini∈N γi.

Remark 3.11. It can be numerically verified that for any t ∈ (0, ε) for a sufficiently small ε > 0, the
probabilistic risk aversion index PRAi(t) is larger for smaller values of the parameter γi. The probabilistic
risk aversion index is plotted in Figure 1(b). In particular,

PRAk(t) ≥ PRAi(t) ≥ PRAj(t).

Again, since small values of t correspond to tail events, we see that agent k exhibits the most aversion
to the risk of tail events, whereas agent j exhibits the least aversion.
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(a) (b)

Figure 1. Kahneman–Tversky inverse S-shaped distortion functions.

It can be shown using numerical methods that there exists t∗ ∈ (0, 1) for which
j ∈ Lx, if P(S > x) ≤ t∗,

k ∈ Lx, if P(S > x) > t∗.

Distortion functions for different values of the parameter γ are shown in Figure 1(a). It is clear from
the figure that the minimum of the distortion functions is obtained by either the agent with the largest
parameter (agent j) or by the agent with the smallest parameter (agent k). Thus, by the same arguments
as those of Proposition 3.8, it follows that a PO allocation of a similar form exists. That is, consider the
contract such that agent k provides full coverage of the aggregate risk up to a limit d∗, and the excess
aggregate loss beyond the level d∗ is covered by agent j. Then a suitable translate of this contract is PO.

4. Centralized versus decentralized insurance for flood risk
As an application of our explicit characterization of Pareto-optimal risk-sharing contracts, we reex-
amine the problem of flood risk insurance in the United States. This setting has been examined in
detail by Boonen et al. (2024) and Ghossoub and Zhu (2024b), who consider a market where each
State may insure their flood risk with the federal government. We refer to this structure as a central-
ized insurance market, namely, one where insurance is only provided by a limited set of entities in
the market.

In contrast, the main result of the present paper characterizes Pareto optima in a decentralized insur-
ance market or P2P insurance market. This market structure allows for agents to ensure each other’s
risk through participation in a risk-sharing pool, which is not possible in a centralized insurance market.
In the context of flood risk insurance, a decentralized insurance market is one where individual agents
(communities, municipalities, or state-level agencies) agree to combine their flood risk exposures, and
each covers a portion of the aggregate risk exposure. For the purposes of this section, we assume that the
individual agents are States that wish to pool state-level flood risk. This is mainly for ease of comparison
with the centralized setting. However, the conclusions of our analysis are also applicable to agents at a
higher level of granularity (e.g., individual communities, etc.). Feng et al. (2023) also applied their P2P
risk-sharing results to flood risk insurance in the United States, but they considered a market where only
quota-share risk-sharing rules (i.e., proportional insurance) are available.

The purpose of the numerical illustrations presented in this section is to study the differences between
centralized and decentralized insurance markets for flood risk and to assess the economic implications
thereof. For this reason, we use DRMs for each agent and the associated characterization result of
Corollary 3.4, to facilitate a direct comparison with the previous work, which did not consider the effect
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of robustness. The effects of introducing robustness of DRMs are therefore not explored in the current
study.

4.1. A centralized insurance market
First, we revisit the scenario of a centralized insurance market, in which a single monopolistic insurer is
the sole provider of insurance. In the context of flood risk in the United States, this insurer is the National
Flood Insurance Program (NFIP)2 overseen by the Federal Emergency Management Agency (FEMA).
Under the NFIP, the federal government of the United States is ultimately responsible for financial gains
and losses.

A comprehensive numerical study of flood risk insurance in this centralized market is performed
by Boonen et al. (2024), using a public dataset of claims statistics dating back to the year 1978. They
find that by aggregating the flood risk across geographically distant regions, a centralized market is able
to realize a significant welfare gain. In the following, we provide a similar but updated analysis of a
centralized market. First, the public NFIP dataset has recently been updated to include the amount of
financial loss for each flood event, instead of only including the claim amount. As a result, we no longer
need to use the claim amount as a proxy for the loss amount. Additionally, Ghossoub and Zhu (2024b)
are able to characterize Pareto optima without requiring that each agent uses a coherent risk measure.
As a result, we are able to identify Pareto-optimal contracts under more general conditions. Finally, in
our example, the risk measure of the central agent will be given by the expected shortfall (ES), which is
the most popular coherent risk measure in practice. We recall the following standard definitions:

Definition 4.1. The value-at-risk (VaR) at level α ∈ (0, 1) of a random variable Z ∈X under the
probability measure P is

VaRP

α
(Z) := inf

t∈R
{P(Z > t) ≤ α} .

Definition 4.2. The ES at level α ∈ (0, 1) of a random variable Z ∈X under the probability measure P

is

ESP

α
(Z) := 1

α

∫ α

0

VaRP

u (Z) du.

In the context of centralized insurance markets with n agents and a central insurer, an insurance
contract is a pair

({Ii}n
i=1, {πi}n

i=1

) ∈ In ×Rn, where I denotes an admissible set of indemnity functions
(usually monotone and 1-Lipschitz). Here, Ii represents the amount of coverage (i.e., the indemnity)
that agent i receives from the central insurer, in exchange for a premium of the amount πi. In other
words, agent i cedes the risk Ii(Xi) to the central insurer. We denote the retained risk of agent i by
Ri(Xi) := Xi − Ii(Xi).

The concepts of individual rationality and Pareto optimality for centralized markets are defined
similarly to IR and PO in decentralized markets (see Definition 2.4). In particular, IR allocations for
centralized markets also incentivize the central insurer to participate. A characterization of Pareto- opti-
mal contracts in a centralized market is provided by the following result, which extends the result of
Ghossoub and Zhu (2024b, Corollary 3.7) to the case of robust DRMs.

Proposition 4.3 (Pareto Optima in a Centralized Market). Suppose that the insurer’s risk measure
is given by an expected shortfall ESP

α
, and that each policyholder i ∈N uses a robust distortion risk

measure ρi with respect to the closed convex set Ti. Suppose further that Ti is compact with respect to
the topology of pointwise convergence. Then the following hold:

2A comprehensive overview of the NFIP can be found on the website of the Congressional Research Service: https://sgp.fas.
org/crs/homesec/R44593.pdf.
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(1) There exists a solution to the problem

sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
n∑

i=1

∫ ∞

0

min{Ti(Qi(Xi > t)), Q(Xi > t)} dt

}
, (4.1)

where

Q :=
{
Q a probability measure : Q<< P,

dQ

dP
≤ 1

α

}
.

(2) A necessary condition for the contract
({I∗

i }n
i=1, {π ∗

i }n
i=1

)
to be Pareto optimal is that for every

Q∗, T∗
1 , . . . , T∗

n solving (4.1), we have

(I∗
i )′(t) =

⎧⎪⎨⎪⎩
1, if Q∗(Xi > t) < T∗

i (Qi(Xi > t)),

hi(t), if Q∗(Xi > t) = T∗
i (Qi(Xi > t)),

0, if Q∗(Xi > t) > T∗
i (Qi(Xi > t)),

where each hi(t) is a [0,1]-valued measurable function, and {π ∗
i }n

i=1 are chosen so that({I∗
i }n

i=1, {π ∗
i }n

i=1

)
is individually rational.

Remark 4.4. Compared to Theorem 3.3, the statement of Proposition 4.3 requires the additional
assumption of compactness of each Ti. One scenario where compactness is automatically satisfied is
when Ti is the convex hull of finitely many distortion functions (e.g., Aliprantis and Border, 2006,
Corollary 5.30).

For ease of comparison with Boonen et al. (2024) and Ghossoub and Zhu (2024b), we will adopt their
model parameters for the remainder of this section. Specifically, we will assume that the distribution of
the financial losses arising from floods in a given month adheres to the historical data. Specifically, we
assume a discrete probability space (�, F, P), where � has 553 states, corresponding to each of the
months from January 1978 to January 2024. The measure P assigns an equal probability to each of the
states in �. The risk measures used by each agent are DRMs on this probability space. That is, for all
Z ∈X and i ∈ {1, . . . , n},

ρi(Z) =
∫

Z dTi ◦ P,

where each Ti is a distortion function. Let νi := Ti ◦ P.
We now apply the result of Proposition 4.3 to obtain Pareto-optimal contracts in the centralized

insurance market. We consider a market with three agents: the States of California (i = 1), New York
(i = 2), and Texas (i = 3). The correlation between the monthly losses of these States is given by the
matrix ⎡⎣ 1 −0.0094 −0.0109

−0.0094 1 −0.0044
−0.0109 −0.0044 1

⎤⎦ ,

which indicates very little correlation. Some summary statistics for the monthly losses for these States are
shown in Table 1, in which all values are dollar amounts. We see that the financial losses are right-skewed
and that it is possible to experience losses far larger than the average.

We assume that the distortion functions T1 and T2 are both inverse S-shaped distortion functions, as
in Kahneman and Tversky (1979), Tversky and Kahneman (1992). Specifically, for i = 1, 2, we take

Ti(t) = tγi

(tγi + (1 − t)γi )
1
γi

,

with γ1 = 0.4 and γ2 = 0.5. A parameter value of approximately 0.5 has recently been estimated by
Rieger et al. (2017) to be descriptive of actual behavior. We assume a power distortion for the remaining
agent. Specifically,
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Table 1. Summary statistics for monthly losses due to floods.

California New York Texas
Average 1.6038 × 106 1.1005 × 107 3.3259 × 107

Median 2.7647 × 104 1.4873 × 105 4.7270 × 105

VaR5% 4.9501 × 106 7.1506 × 106 4.6885 × 107

Maximum 1.1725 × 108 4.3537 × 109 9.4550 × 109

Standard deviation 8.6640 × 106 1.8625 × 108 4.2063 × 108

Figure 2. Centralized Pareto-optimal retention, CA/NY/TX.

T3(t) = tγ3 ,

with γ3 = 0.4. Finally, we assume that the central insurer uses the Expected Shortfall with parameter
α = 15%. While this parameter may seem large, this is to allow for the central insurer’s risk measure
to be display enough risk tolerance that it will accept a significant portion of risk from the agents in
the market. If this parameter is too low, then the central insurer would be too conservative and avoid
taking on any flood risk, leading to a market where no insurance is possible. Indeed, it can be verified
that under these parameters, no insurance is provided if α ≈ 2.5%.

The retained risk of each agent in a Pareto-optimal contract is shown in Figure 2. Note that in this
figure and subsequent figures, the amount of the premium is not shown, for visual clarity and to facilitate
easier comparison between plots. In other words, each plot has been normalized so that an experienced
loss of $0 corresponds to a retention of $0 as well. We see that in each State prefers to cede a portion of
their tail risk to the central insurer, while choosing to retain some of the smaller financial losses. This
suggests that a deductible contract is best in this situation, with losses beyond the deductible fully covered
by the insurer. The value of this deductible is approximately 1.9047 × 107 for California, 4.0645 × 107

for New York, and 5.1287 × 107 for Texas.
As a measure of the effectiveness of this contract, we calculate the aggregate welfare gain that results

from this arrangement. The welfare gain for each agent i is the difference between their evaluation of
the initial risk and their evaluation of the post-contract position:

ρi(Xi) − ρi(Ri(Xi) + πi).

On the other hand, the welfare gain for the central insurer is the sum of premia received less their
evaluation of their assumed risk:

n∑
i=1

πi − ESP

α

(
n∑

i=1

Ii(Xi)

)
.

The aggregate welfare gain is defined to be the sum of the welfare gain of each agent in the market,
including the central insurer. Under our assumptions, the aggregate welfare gain is maximized in a
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Table 2. Premium paid in a stackelberg
equilibrium, CA/NY/TX.

California 9.1543 × 106

New York 1.7795 × 108

Texas 8.6323 × 108

Figure 3. Decentralized Pareto-optimal distribution, CA/NY/TX.

Pareto-optimal allocation (see, e.g., Boonen et al. 2024, Theorem 2.1). In the example above, the maxi-
mum aggregate welfare gain achievable through centralized insurance is 7.9785 × 108. The average gain
per agent is in this example is 1.9946 × 108. Note that including the centralized insurer, there are four
agents in the market in this example.

However, while a significant welfare gain is possible in a centralized market, Ghossoub and Zhu
(2024b) warn that a monopolistic insurer with a first-mover’s advantage can absorb the entirety of the
welfare gain by increasing premium prices. In particular, the central insurer has an incentive to increase
prices and ultimately leave each policyholder with no welfare gain at an equilibrium. The amount of
premium paid by each State in a Stackelberg equilibrium in our example is shown in Table 2. These
amounts are extremely high, even exceeding the value-at-risk at the 5% level. In this case, the entire
aggregate welfare gain of 7.9785 × 108 is allocated only to the central insurer.

4.2. Peer-to-peer risk sharing
As a partial solution to the concerns arising from the Stackelberg setting, the present paper proposes
a P2P risk-sharing scheme among the agents themselves without the presence of a central agency. In
the context of flood risk, this is the scenario where the individual State governments of California,
New York, and Texas choose to pool their flood risk and each assume a portion of the aggregate financial
loss.

Applying the result of Theorem 3.3 to the present example yields the Pareto-optimal allocation shown
in Figure 3. The States of California and New York end up with all of the variability of the risk, since
the risk measure of Texas is more risk averse under our chosen parameters. However, this does not mean
that Texas is receiving free insurance, since each State must pay a premium for participation in the
risk-sharing pool. Both Figures 3 and 2 show that Texas prefers retaining less risk than the other agents.

A comparison between the centralized and decentralized insurance schemes is shown in Figure 4,
which also includes the scenario of no insurance. The vertical axis represents the retained monthly loss
in dollars, and the horizontal axis represents the 553 states of the world ω ∈ �, which are sorted by the
value of S(ω), the realized aggregate loss in state ω ∈ �. For ease of comparison, the plots have been
normalized so that each agent is indifferent between each retention structure. In the case of centralized
insurance, we see that each agent pays a premium to insure their risk beyond a deductible. This results
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Figure 4. Retained Loss, CA/NY/TX.

in significantly less variance in retained risk, at a cost of a monthly premium. On the other hand, the
structure of the Pareto-optimal risk-sharing arrangement is different for each agent. The plots show that
California’s retention is similar to that under centralized insurance, in the sense that variation is reduced
and extreme losses are insured. However, extreme losses are transferred to New York, who accepts a
payment of a premium as compensation. Since there is no exogenous insurer in the decentralized market,
all flood risk must be retained among the three agents in the market. The plot in Figure 4 shows that New
York is the agent that accepts the extreme tail risk in this example. Finally, Texas elects to pay a premium
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Table 3. Average welfare gain with varying parameter γ3.

RPRA3 Centralized market Decentralized market Percent decrease (%)
0.60 1.9946 × 108 1.9512 × 108 2.1750
0.55 1.4460 × 108 1.2112 × 108 16.2383
0.50 1.0415 × 108 6.6055 × 107 36.5774
0.45 7.4503 × 107 4.8805 × 107 34.4927
0.40 5.3190 × 107 5.0507 × 107 5.0434
0.35 3.8565 × 107 5.2590 × 107 −36.3683
0.30 3.0251 × 107 5.4502 × 107 −80.1628

to transfer all the flood risk to the other two agents, and so its retention structure is a flat horizontal line.
This suggests that Texas is the most risk-averse in this scenario.

By Theorem 3.3, both the aggregate welfare gain and the average welfare gain are maximized by
Pareto-optimal allocations. Hence, evaluating the effectiveness of the P2P risk-sharing scheme is pos-
sible by using the average welfare gain as a metric. Recall that the welfare gain for agent i is defined as
the improvement in the risk-sharing scheme over the status quo:

ρi(Xi) − ρi(Yi + πi).

The average welfare gain for the P2P risk-sharing scheme is the arithmetic average of the welfare gains
of the three agents in the market. In this example, the average welfare gain is 1.9512 × 108. While this
is a significant gain, this is not quite as large as the average gain of 1.9946 × 108 that is possible from a
centralized insurance market with the monopolistic insurer. Hence, we see the P2P risk-sharing scheme
as a compromise compared to the centralized structure. While a larger welfare gain is ultimately possible
in the centralized setting, this carries the risk that the welfare gain is absorbed by only the monopolistic
insurer through aggressive pricing schemes; again, see Ghossoub and Zhu (2024b). On the other hand,
the decentralized market admits no such risk, since the welfare gain is necessarily distributed among
the agents participating in the risk-sharing pool. However, the trade-off is that the maximum possible
average welfare gain is potentially lower in the P2P market.

In Table 3, we show the average welfare gain per agent in both centralized and decentralized markets
for varying values of the parameter γ3 in the distortion function of the third agent T3. It can be verified that
power distortion functions have a constant relative index of probabilistic risk aversion. As γ3 increases,
the RPRA of the third agent decreases, and the hence the third agent eventually prefers to retain more
of the flood risk in the market. In the extreme case, we see that the P2P market can actually dominate
that of the centralized market in terms of possible welfare gain, since the decentralized scheme allows
for the third agent to insure others’ risk whereas the centralized scheme does not. Hence, it is possible
for the decentralized market’s average welfare gain to exceed that of the centralized market. However, in
practical settings, we would expect that the policyholders are more risk averse than the central authority,
which would lead to an advantage for the centralized insurance market in general.

5. Conclusion
In this paper, we obtain a novel characterization of Pareto-optimal allocations in risk-sharing markets
when agents use robust DRMs. As a special case of our result, we recover the characterization of optima
under DRMs, and we provide some general results for risk-sharing using common families of distortion
functions. We find that the form of allocations depends primarily on the risk attitude of each agent to
tail events, which we quantify through the probabilistic risk aversion index.

As an application of our results, we reexamine the setting of flood risk in the United States from the
perspective of a decentralized market. While this market currently operates under a centralized structure
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with the federal government as the central authority, this comes at a risk associated with Stackelberg
equilibria, namely that the central insurer has an incentive to raise prices and eliminate any welfare gain
for the policyholders. We therefore argue that the decentralized structure is an alternative that avoids
the Stackelberg situation, and we characterize optimal decentralized allocations using historical data.
Our results show that there is less welfare gain possible in the decentralized market compared to the
centralized one, which we interpret as a necessary compromise.
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Appendix A. Proofs of Main Results
A.1. Proof of Lemma 2.5
Let ({Yi}n

i=1, {πi}n
i=1) be a comonotone allocation. By Remark 2.2, for each i ∈N, there exists an increasing

1-Lipschitz function fi : R→R such that fi(S) = Yi + πi. Define the function gi by

gi : R→R

x → fi(x) − fi(0).

Then gi(0) = 0, and gi is non-decreasing and 1-Lipschitz, which implies that gi is non-negative when its
domain is restricted to R+. Since fi(S) is an allocation, we have A

S =
n∑

i=1

fi(S) =
n∑

i=1

gi(S) +
n∑

i=1

fi(0) (A1)

Substituting 0 for S in (A1) gives

0 =
n∑

i=1

gi(0) +
n∑

i=1

fi(0) =
n∑

i=1

fi(0),

which implies that
n∑

i=1

gi(S) = S,

and so {gi}n
i=1 ∈ G. Substituting this into (A1) gives

∑n
i=1 fi(0) = 0. Hence, defining ci := fi(0) gives the

desired result.

A.2. Proof of Proposition 2.6
Note that S⊆PO can be easily proved by contradiction. To show the reverse inclusion, assume, by way
of contradiction, that there exist

({
Y∗

i

}n

i=1
,
{
π ∗

i

}n

i=1

) ∈PO such that
({

Y∗
i

}n

i=1
,
{
π ∗

i

}n

i=1

)
/∈ S. Then, there

exist
({

Ỹi

}n

i=1
, {π̃i}n

i=1

) ∈ IR such that
n∑

i=1

ρi

(
Ỹi + π̃i

)
<

n∑
i=1

ρi

(
Y∗

i + π ∗
i

)
. (A2)
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Define N1, N2, N3 ⊆N such that,
ρi

(
Ỹi + π̃i

)
> ρi

(
Y∗

i + π ∗
i

)
, ∀i ∈N1,

ρi

(
Ỹi + π̃i

)= ρi

(
Y∗

i + π ∗
i

)
, ∀i ∈N2,

ρi

(
Ỹi + π̃i

)
< ρi

(
Y∗

i + π ∗
i

)
, ∀i ∈N3.

Note that N1, N2, N3 is a partition of N; also, by (A2), N3 �=∅.
By assumption,

({
Y∗

i

}n

i=1
,
{
π ∗

i

}n

i=1

) ∈PO, which implies N1 �=∅ since N3 �=∅. Define, for i ∈N1,

εi = ρi

(
Ỹi + π̃i

)− ρi

(
Y∗

i + π ∗
i

)
> 0.

Then, by (A2), there exist {εi}i∈N3
such that, (i) εi ≥ 0, for i ∈N3, (ii) ρi

(
Ỹi + π̃i + εi

)≤ ρi

(
Y∗

i + π ∗
i

)
,

for i ∈N3, with at least one strict inequality, and (iii)
∑

i∈N3
εi =∑

i∈N1
εi. Define

π̂i = π̃i − εi, ∀i ∈N1,

π̂i = π̃i, ∀i ∈N2,

π̂i = π̃i + εi, ∀i ∈N3.

Note that
({

Ỹi

}n

i=1
,
{
π̂i

}n

i=1

) ∈A; indeed,
n∑

i=1

π̂i =
n∑

i=1

π̃i −
∑
i∈N1

εi +
∑
i∈N3

εi =
n∑

i=1

π̃i =
n∑

i=1

Xi −
n∑

i=1

Yi.

Moreover,
({

Ỹi

}n

i=1
,
{
π̂i

}n

i=1

) ∈ IR, since

ρi

(
Ỹi + π̂i

)= ρi

(
Ỹi + π̃i

)− εi = ρi

(
Ỹi + π̃i

)− (
ρi

(
Ỹi + π̃i

)− ρi

(
Y∗

i + π ∗
i

))
= ρi

(
Y∗

i + π ∗
i

)≤ ρi (Xi) , ∀i ∈N1,

ρi

(
Ỹi + π̂i

)= ρi

(
Ỹi + π̃i

)= ρi

(
Y∗

i + π ∗
i

)≤ ρi (Xi) , ∀i ∈N2,

ρi

(
Ỹi + π̂i

)= ρi

(
Ỹi + π̃i + εi

)≤ ρi

(
Y∗

i + π ∗
i

)≤ ρi (Xi) , ∀i ∈N3, (A3)

in which (A3) has at least one strict inequality, which implies
({

Y∗
i

}n

i=1
,
{
π ∗

i

}n

i=1

) �∈PO, a
contradiction.

A.3. Proof of Lemma 3.2
Since the Choquet integral is linear in T , we have that

sup
T∈T

∫
Z dT ◦ P= sup

T∈co(T)

∫
Z dT ◦ P,

where co(T) denotes the convex hull of T. It suffices to show that the Choquet integral is continuous with
respect to pointwise convergence of T . To this end, let {T (k)}∞

k=1 be a sequence of continuous functions
converging pointwise to T . Then we have

lim
k→∞

∫
Z dTk ◦ P= lim

k→∞

∫ ∞

0

Tk(P(Z > x)) dx =
∫ ∞

0

lim
k→∞

Tk(P(Z > x)) dx

=
∫ ∞

0

T(P(Z > x)) dx =
∫

Z dT ◦ P,
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where we may apply the dominated convergence theorem since∫ ∞

0

|Tk(P(Z > x))| dx ≤
∫ ∞

0

1{||Z||∞>x} dx = ||Z||∞ < ∞.

A.4. Proof of Theorem 3.3
(i) Since S is essentially bounded by M := ||S||∞ < ∞, we have

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

∫ ∞

0

min
i∈N

{Ti(Qi(S > x))} dx := V ≤ ||S||∞ < ∞.

Let {(T (k)
1 , . . . , T (k)

n }∞
k=1 be a sequence such that∫ ∞

0

min
i∈N

{Ti(Qi(S > x))} dx ≥ V − 1

k
.

Then by repeatedly applying Helly’s compactness theorem (e.g., Doob 1994, pp. 165–166), there exists
a subsequence {(T (kj)

1 , . . . , T
(kj)
n }∞

j=1 that converges pointwise to a limit (T∗
1 , . . . , T∗

n ) ∈∏n
i=1 Ti. By the

proof of Lemma 3.2, the objective of (3.2) is continuous with respect to pointwise convergence of the
distortion functions. Hence,

V ≥
∫ ∞

0

min
i∈N

{T∗
i (Qi(S > x))} dx = lim

j→∞

∫ ∞

0

min
i∈N

{Tkj
i (Qi(S > x))} dx

≥ V − lim
j→∞

1

kj

= V ,

which implies that (T∗
1 , . . . , T∗

n ) solves (3.2).
(ii) Let ({Yi}n

i=1, {πi}n
i=1) ∈A. By Lemma 2.5, this allocation can be written in terms of functions

{gi}n
i=1 ∈ G and constants {ci}n

i=1 ∈Rn where
∑n

i=1 ci = 0. Conversely, if {gi}n
i=1 ∈ G and {ci}n

i=1 ∈Rn, then
({gi(S)}n

i=1, {ci}n
i=1) ∈A. Therefore,

inf
({Yi}n

i=1,{πi}n
i=1)∈IR∩A

{
n∑

i=1

ρi (Yi + πi)

}
= inf

({gi}n
i=1,{ci}n

i=1)∈IR∩(G×Rn)

{
n∑

i=1

ρi (gi(S) + ci)

}

= inf
({gi}n

i=1,{ci}n
i=1)∈IR∩(G×Rn)

{
n∑

i=1

ρi (gi(S))

}
,

where we write ({gi}n
i=1, {ci}n

i=1) ∈ IR when the allocation ({gi(S)}n
i=1, {ci}n

i=1) ∈ IR. This problem is
solved by ({g∗

i }n
i=1, {c∗

i }n
i=1) ∈ G×Rn if and only if {g∗

i }n
i=1 solves

inf
{gi}n

i=1∈G

{
n∑

i=1

ρi(gi(S))

}
, (A4)

and the constants c∗
i are chosen such that ({g∗

i (S)}n
i=1, {c∗

i }n
i=1) ∈ IR. It remains to show that solutions to

(A4) are of the given form.
Since each ρi is a robust distortion risk measure, (A4) can be written as

inf
{gi}n

i=1∈G

{
n∑

i=1

sup
Ti∈Ti

∫
gi(S) dTi ◦Qi

}
= inf

{gi}n
i=1∈G

sup
{Ti}n

i=1∈∏n
i=1 Ti

{
n∑

i=1

∫
gi(S) dTi ◦Qi

}
.

We now verify that the minimax equality holds for this problem. To this end, let C([0, M]) denote
the set of continuous functions on [0, M], which is a Banach space under the supremum norm. Let
D := R[0,1] denote the space of functions from [0, 1] →R, which is a topological vector space under
the topology of pointwise convergence. With the embeddings G⊆ C([0, M])n and Ti ⊆D, the objective
function above can be viewed as a function from C([0, M])n ×Dn to R.
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Note that the sets G and Ti are closed and convex. Since G is a closed subset of a product of 1-Lipschitz
functions on the interval [0,M], it is compact by the Arzela-Ascoli Theorem (Dunford and Schwartz,
1958, IV.6.7). Furthermore, the objective function is linear in both gi and Ti. Finally, the objective is
continuous with respect to the topologies above, since the Choquet integral is continuous with respect
to the supremum norm,3 and it is also sequentially continuous with respect to pointwise convergence of
Ti as shown by Lemma 3.2.

Therefore by Sion’s minimax theorem (Barbu and Precupanu, 2012, Theorem 2.132), the minimax
equality holds. Exchanging the order of the infimum and supremum yields the problem

sup
{Ti}n

i=1∈∏n
i=1 Ti

inf
{gi}n

i=1∈G

{
n∑

i=1

∫
gi(S) dTi ◦Qi

}
. (A5)

By standard results on minimax problems (e.g., Barbu and Precupanu 2012, Section 2.3), a necessary
condition for {g∗

i }n
i=1 to solve (A4) is that for every (T∗

1 , . . . , T∗
n ) solving (A5), we have

n∑
i=1

∫
g∗

i (S) dT∗
i ◦Qi = inf

{gi}n
i=1∈G

{
n∑

i=1

∫
gi(S) dT∗

i ◦Qi

}
.

To complete the proof, it suffices to show that for every fixed choice of distortion functions
(T1, . . . , Tn), the functions {g∗

i }n
i=1 solve the problem

inf
{gi}n

i=1∈G

{
n∑

i=1

∫
gi(S) dTi ◦Qi

}
(A6)

if and only if {g∗
i }n

i=1 are of the given form, and that the value of problem (A6) is∫ ∞

0

min
i∈N

{Ti(Qi(S > x))} dx.

To this end, we first check that {g∗
i }n

i=1 ∈ G. For all x ∈R+, we have

n∑
i=1

g∗
i (x) =

n∑
i=1

∫ x

0

hi(z) dz =
∫ x

0

n∑
i=1

hi(z) dz =
∫ x

0

1 dz = x.

Furthermore, since the derivative of g∗
i is nonnegative, g∗

i is increasing, and so {g∗
i }n

i=1 ∈ G and g∗
i (S) is

comonotone with S. Now let {̃gi}n
i=1 ∈ G. We have

n∑
i=1

ρi (̃gi(S)) =
n∑

i=1

∫ ∞

0

Ti(Qi(S > x))̃g′
i(x) dx =

∫ ∞

0

n∑
i=1

Ti(Qi(S > x))̃g′
i(x) dx (A7)

≥
∫ ∞

0

n∑
i=1

min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x) dx

=
∫ ∞

0

min
i=1,...,n

{Ti(Qi(S > x))}
n∑

i=1

g̃′
i(x) dx

=
∫ ∞

0

min
i=1,...,n

{Ti(Qi(S > x))} dx

3In fact, it is Lipschitz continuous by Marinacci and Montrucchio (2004), Proposition 4.11.
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=
∫ ∞

0

min
i=1,...,n

{Ti(Qi(S > x))} · 1 +
∑
i∈LC

x

Ti(Qi(S > x)) · 0 dx

=
∫ ∞

0

min
i=1,...,n

{Ti(Qi(S > x))} ·
∑
i∈Lx

hi(x) +
∑
i∈LC

x

Ti(Qi(S > x)) · hi(x) dx

=
∫ ∞

0

∑
i∈Lx

min
i=1,...,n

{Ti(Qi(S > x))} · hi(x) +
∑
i∈LC

x

Ti(Qi(S > x)) · hi(x) dx

=
∫ ∞

0

∑
i∈Lx

Ti(Qi(S > x)) · hi(x) +
∑
i∈LC

x

Ti(Qi(S > x)) · hi(x) dx

=
∫ ∞

0

n∑
i=1

Ti(Qi(S > x))hi(x) dx

=
n∑

i=1

∫ ∞

0

Ti(Qi(S > x))hi(x) dx =
n∑

i=1

ρi(g
∗
i (S)).

Therefore, {g∗
i }n

i=1 solves (A4).
To show the converse, let ({Yi}n

i=1, {πi}n
i=1) ∈A. By Lemma 2.5, we may write

Yi + πi = g̃i(x) + ci,

for some {̃gi}n
i=1 ∈ G and {ci}n

i=1 ∈Rn such that
∑n

i=1 ci = 0. Suppose that g̃i are not of the specified form.
Namely,

∑
i∈LC

x
g̃′

i(x) > 0 on a set A of positive measure. Then for every x in A, we have
n∑

i=1

Ti(Qi(S > x))̃g′
i(x) =

∑
i∈Lx

Ti(Qi(S > x))̃g′
i(x) +

∑
i∈LC

x

Ti(Qi(S > x))̃g′
i(x)

= min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x) +

∑
i∈LC

x

Ti(Qi(S > x))̃g′
i(x)

> min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x) +

∑
i∈LC

x

min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x)

= min
i=1,...,n

{Ti(Qi(S > x))} =
n∑

i=1

min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x),

where the strict inequality follows because LC
x is nonempty and g̃′

i(x) are not all zero for i ∈ LC
x . Taking

the integral over the set A of positive measure gives∫
A

n∑
i=1

Ti(Qi(S > x))̃g′
i(x) dx >

∫
A

n∑
i=1

min
i=1,...,n

{Ti(Qi(S > x))}̃g′
i(x) dx.

Therefore in this case, the inequality (A7) is strict, and so g̃i(x) does not solve (A4).

A.5. Proof of Proposition 3.7
For a given parameter αi ∈ (0, 1), we have

d

dt
exp (−(− ln (t))αi ) = −αie−(− ln(t))αi · (− ln (t))αi

t ln (t)
d2

dt2
exp (−(− ln (t))αi ) = αie−(− ln(t))αi · (− ln (t))αi (ln (t) + αi · (− ln (t))αi − αi + 1)

t2 ln2
(t)

PRAi(t) = ln (t) + αi(− ln (t))αi − αi + 1

t ln (t)
.
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Differentiating this with respect to αi gives
d

dαi

PRAi(t) = (− ln (t))αi + αi · ln (− ln (t)) · (− ln (t))αi − 1

t ln (t)
.

For t ∈ (0, e−1), we have − ln (t) > 1. Therefore

(− ln (t))αi + αi · ln (− ln (t)) · (− ln (t))αi − 1 > 1αi + αi · ln (1) · 1αi − 1 = 0.

Since t ln (t) < 0, this implies that
d

dαi

PRAi(t) < 0,

which yields the desired result.

A.6. Proof of Proposition 3.8
We first show that

j ∈ Lx, if P(S > x) ≤ e−1,

k ∈ Lx, if P(S > x) > e−1.

Suppose first that P(S > x) ≤ e−1. Then we have

P(S > x) ≤ e−1,

ln(P(S > x)) ≤ −1, and − ln (P(S > x)) ≥ 1.

It follows that for all i ∈N,

(− ln (P(S > x)))αj ≥ (− ln (P(S > x)))αi

and

exp (−(− ln (P(S > x)))αj ) ≤ exp (−(− ln (P(S > x)))αi ),

which implies that j ∈ Lx.
The second case is similar. Suppose that P(S > x) > e−1. Then we have

− ln (P(S > x)) < 1,

from which it is straightforward to conclude that k ∈ Lx. Therefore, letting

hj(x) := 1{x≥d∗}, hk(x) := 1{x<d∗}, and hi(x) := 0, for i ∈N \ {j, k},
satisfies the conditions of Theorem 3.3. The result follows by taking g∗

i (x) = ∫ x

0
hi(z) dz, for all i ∈N.

A.7. Proof of Proposition 3.9
Similarly to the calculation in the proof of Proposition 3.7, we have

PRAi(t) = ln (t) + αiβi(− ln (t))αi − αi + 1

t ln (t)
,

d

dαi

PRAi(t) = βi(− ln (t))αi + αiβi · ln (− ln (t)) · (− ln (t))αi − 1

t ln (t)
,

d

dβi

PRAi(t) = αi(− ln (t))αi

t ln (t)
.

We see that d
dβi

PRAi(t) < 0 for all t ∈ (0, 1), which shows (i). For (ii), if we take

ε = min

{
e−1, exp

(
−
(

1

αi

)(
1
βi

))}
,
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then for t ∈ (0, ε), we have

− ln (t) > 1 and βi(− ln (t))αi .

Therefore

βi(− ln (t))αi + αiβi · ln (− ln (t)) · (− ln (t))αi − 1 > 1 + 0 − 1 = 0.

Since t ln (t) < 0, this implies that

d

dαi

PRAi(t) < 0,

which yields the desired result.

A.8. Proof of Proposition 3.10
Similarly to the proof of Proposition 3.8, we show that

j ∈ Lx, if P(S > x) ≤ e−1,

k ∈ Lx, if P(S > x) > e−1.

Suppose first that P(S > x) ≤ e−1. Then we have

P(S > x) ≤ e−1, ln (P(S > x)) ≤ −1, and − ln (P(S > x)) ≥ 1.

It follows that for all i ∈N, (− ln (P(S > x)))αj ≥ (− ln (P(S > x)))αi , and so

β(− ln (P(S > x)))αj ≥ β(− ln (P(S > x)))αi ,

thereby yielding

exp (−(− ln (P(S > x)))αj ) ≤ exp (−(− ln (P(S > x)))αi ),

which implies that j ∈ Lx.
The second case is similar. Suppose that P(S > x) > e−1. Then we have

− ln (P(S > x)) < 1,

from which it is straightforward to conclude that k ∈ Lx. Applying Theorem 3.3 gives (i).
To show (ii), note that if βj ≥ βi, then

exp (−βj(− ln (t))α) ≤ exp (−βi(− ln (t))α).

Therefore j ∈ Lx for all x ∈R+. The result then follows by applying Theorem 3.3.

A.9. Proof of Proposition 4.3
The proof of the result follows closely the methodology of Ghossoub and Zhu (2024b, Theorem 3.5).
First, by Ghossoub and Zhu (2024b, Remark 2.9), it suffices to show that solutions to the problem

inf
{Ii}n

i=1∈In

{
ESP

α

(
n∑

i=1

Ii(Xi)

)
+

n∑
i=1

ρi(Xi − Ii(Xi))

}
(A8)

are necessarily of the form given in part (2) of Proposition 4.3. It is well known (e.g., McNeil et al.
2015, Theorem 8.14) that the expected shortfall satisfies

ESP

α
(Z) = max

{
EQ[Z]:Q<< P,

dQ

dP
≤ 1

α

}
,
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for all Z ∈X. Let Q be the set of probability measures such that Q<< P and dQ
dP

≤ 1
α
. Then we may

rewrite the problem (A8) as

inf
{Ii}n

i=1∈In
sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
Q

(
n∑

i=1

Ii(Xi)

)
+

n∑
i=1

∫
Xi − Ii(Xi) dTi ◦Qi

}
.

We now rewrite the above in terms of the marginal indemnification functions. Let M < ∞ be an upper
bound for every Xi, and define the set MI := {h ∈ L∞([0, M]) : ||h||∞ ≤ 1, h ≥ 0 a.e.}. Then the above
problem simplifies to

inf
{Ii}n

i=1∈In
sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
n∑

i=1

∫ M

0

Q(Xi > t)I ′
i(t) + Ti(Qi(Xi > t))(1 − I ′

i(t)) dt

}

= inf
{Ii}n

i=1∈In
sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
n∑

i=1

∫ M

0

Ti(Qi(Xi > t)) + (Q(Xi > t) − Ti(Qi(Xi > t)))I ′
i(t) dt

}

= inf
{hi}n

i=1∈MIn
sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
n∑

i=1

∫ M

0

Ti(Qi(Xi > t)) + (Q(Xi > t) − Ti(Qi(Xi > t)))hi(t) dt

}
Note that the objective function is an affine transformation when viewed as a function of either {hi}n

i=1,
Q, or {Ti}n

i=1. The objective is also continuous in {hi}n
i=1 with respect to the norm topology on L∞([0, M]),

continuous in Q with respect to the weak topology on L1(�, F, P), and continuous in {Ti}n
i=1 with respect

to the topology of pointwise convergence (as shown in the proof of Lemma 3.2). Since Q is a set of
measures with bounded Radon-Nikodym derivative, it is weakly compact in L1. By compactness of Q
and each Ti, Sion’s minimax theorem may be applied, and the problem becomes:

sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

inf
{hi}n

i=1∈MIn

{
n∑

i=1

∫ M

0

Ti(Qi(Xi > t)) + (Q(Xi > t) − Ti(Qi(Xi > t)))hi(t) dt

}
. (A9)

It follows that the inner infimum is attained if and only if foe each i ∈N, the function hi satisfies

hi(t) :=
{

1, Q(Xi > t) < Ti(Qi(Xi > t))

0, Q(Xi > t) > Ti(Qi(Xi > t))
.

By compactness, both suprema are attained. Hence, {I∗
i }n

i=1 solves (A8) only if for every Q∗ and every
(T∗

1 , . . . , T∗
n ) solving (A9), we have

(I∗
i )′(t) :=

{
1, Q∗(Xi > t) < T∗

i (Qi(Xi > t))

0, Q∗(Xi > t) > T∗
i (Qi(Xi > t))

.

Problem (A9) then simplifies to

sup
Q∈Q

sup
{Ti}n

i=1 ∈∏n
i=1 Ti

{
n∑

i=1

∫ M

0

min{Ti(Qi(Xi > t)), Q(Xi > t)} dt

}
,

which is precisely (4.1). Note that by continuity and compactness, a solution to (4.1), which proves
(1). Part (2) follows from standard results on minimax problems using the argument above.
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