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Abstract
In order to ensure safe and comfortable human–robot navigation in close proximity, it is imperative for robots to
possess the capability to understand human behavioral intention. With this objective in mind, this paper introduces
a Human-Aware Navigation (HAN) algorithm. The HAN system combines insights from studies on human detec-
tion, social behavioral model, and behavior prediction, all while incorporating social distance considerations. This
information is integrated into a layer dedicated to human behavior intention cognition, achieved through the fusion
of data from laser radar and Kinect sensors, employing Gaussian functions to account for individual private space
and movement trend. To cater to the mapping requirements of the HAN system, we have reduced the computational
complexity associated with traditional multilayer cost map by implementing a “first-come, first-served” expan-
sion method. Subsequently, we have enhanced the trajectory optimization equation by incorporating an improved
dynamic triangle window method that integrates human behavior intention cognition, leading to the determination
of an appropriate trajectory for the robot. Finally, experimental evaluations have been conducted to assess and val-
idate the efficacy of the human behavior intention cognition and the HAN system. The results clearly demonstrate
that the HAN system outperforms the traditional Dynamic Window Approach algorithm in ensuring the safety and
comfort of humans in human–robot coexistence environments.

1. Introduction
As robotics technology advances, mobile robots are no longer confined to public spaces and workplaces
but are increasingly finding their way into private homes. The use of mobile service robots in social set-
tings such as airports [1], museums [2], and offices necessitates a heightened emphasis on their ability
to navigate safely and carry out tasks in proximity to humans [3, 4]. Current mobile robots demonstrate
the capability to navigate safely within their operational environments, effectively avoiding both static
and dynamic obstacles [5]. However, from the human perspective, there is a preference for maintain-
ing a certain distance from robots to ensure safety and comfort within the environment [6, 7]. Thus,
treating humans merely as dynamic obstacles to be avoided is insufficient. In light of these considera-
tions, it is essential to address the unique challenges associated with human–robot interaction in social
environments, where the safety and comfort of humans take precedence.

Human-Aware Navigation (HAN), in brief, is a study focused on the collaborative movement of robots
and humans, considering their interaction as a significant social factor. It entails the examination of the
various modes of motion when these entities are in close proximity. For instance, common scenarios
encountered in the daily activities of mobile robots involve situations where humans and robots cross
paths. When people and robots come face to face in a corridor, they engage in a spatial negotiation
to navigate past each other successfully. This often involves determining the sequence in which they
pass.
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HAN is primarily divided into two core components: the understanding of human behavioral intention
and the exploration of robot navigation algorithms. The integration of these two facets yields robotic
behaviors that are designed to enhance human comfort and safety.

In the realm of human behavior intention recognition, two predominant approaches are commonly
employed: the model method and the dynamic obstacle method. The model method primarily character-
izes various human states within an environment by establishing a series of models, including two main
models. The first model pertains to the man–robot collision cost model. Melo et al. [8] introduced an
adaptive model in which the parameters of personal and group space’s cost functions adjust according
to the arrangement of constraints. Sisbot et al. [9] incorporated considerations of safety, comfort, and
hidden areas into their developed cost model. The second model is the social force model [10], which
influences robot behavior through interactions involving humans, robots, and obstacles. However, a pri-
mary limitation of the model method is that it treats individuals within the workspace as static obstacles
rather than dynamic ones [11, 12]. Consequently, robots are unable to provide dynamic responses to
adapt to changing environments, thus impacting the human experience in human–robot coexistence
environments.

This issue has garnered attention in the context of the dynamic obstacle method. This approach
guides robots to make dynamic responses by enhancing both global path planning methods (e.g., A∗
[13], Dijkstra [14]) and local path planning methods (such as the velocity obstacle method [15] and
the dynamic window method [16]). For instance, Goller et al. [17] combined the A∗ algorithm with a
reactive local planning algorithm in densely populated supermarket environments to plan safe paths
for robots. Nevertheless, when conflicts arise between human presence and the global path, robots
may only opt for a waiting approach, which can adversely affect the comfort of individuals in the
environment.

Another crucial aspect of HAN lies in the domain of navigation algorithms, which can be broadly
categorized into global path planning [18–20] and local path planning [21–23] within the field of mobile
robot navigation. Global path planning primarily deals with devising an overarching path strategy from
the robot’s current location to its target destination, making the inclusion of social factors less impact-
ful. In this study, our focus is on optimizing local path planning algorithms by incorporating social
considerations. Among the mainstream local path planning algorithms, the Timed Elastic Band (TEB)
algorithm [24, 25] stands out. This method is optimized based on the robot’s state, velocity, and acceler-
ation constraints, as well as environmental obstacles. It exhibits strong real-time performance; however,
it is most suitable for vehicle-based robots and may encounter challenges related to local optima. The
classical artificial potential field method introduced by Khatib [26] mathematically articulates the rela-
tionship between robots and obstacles but is also prone to local optima. On the other hand, random
sampling-based path planning algorithms, such as Rapidly-exploring Random Trees (RRT) [27], sig-
nificantly enhance real-time planning and offer computational efficiency. However, due to limitations
in the number of iterations, the path’s validity and optimality are not always guaranteed. The Dynamic
Window Approach (DWA) [16] narrows down the robot’s velocity search space to a set of attainable
velocity pairs, from which the optimal trajectory is selected [28]. Each velocity pair represents a trajec-
tory with a specific value. Recent work by R. Yuan et al. [29] introduced a novel Q-learning approach for
navigation in dynamic environments that incorporates a dynamic window, yielding promising results.
Nevertheless, the existing DWA algorithm is primarily designed to avoid robot collisions and does not
explicitly consider human factors.

Based on the analysis of the literature mentioned above, the utilization of model-based approaches,
which treat individuals as static entities, comes with certain limitations. Besides, exclusively regarding
individuals as dynamic obstacles neglects the distinction between humans and inanimate objects. The
method proposed in this paper employs laser radar and RGB-D camera to detect human bodies, accu-
rately pinpoint the positions of dynamic individuals, and predict their behaviors. By introducing the
concept of social distance, this method establishes a model that aligns more closely with human private
space. Concerning navigation, in comparison to the aforementioned literature, our proposed approach
incorporates social factors. Unlike the traditional method of treating people as obstacles, our approach
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Figure 1. Improved multilayer cost map sequence configuration.

in path planning takes into account the distances between the robot and human, resulting in a more
comfortable and safer human–robot navigation experience.

The remainder of this paper is structured as follows. In Section 2, we establish a multilayer cost
map and introduce the social behavioral model. Section 3 introduces the HAN algorithm for mobile
robots designed to enhance human comfort. Subsequently, in Section 4, we conduct experiments to
validate the effectiveness and performance of the multilayer cost map, behavioral intent cognition, and
the navigation algorithm. Finally, we discuss and conclude this paper by evaluating the performance of
the HAN algorithm.

To enhance human comfort and ensure safety and efficiency in human–robot coexistence environ-
ments, our paper makes the following contributions:

1. We propose a social behavioral model to discern human behavioral intention;
2. We present a HAN algorithm for mobile robots to derive optimized paths that prioritize human

comfort.

2. Behavioral intention cognition
HAN relies on efficient map processing and novel human processing methods. Consequently, this paper
enhances the matching and computational efficiency of traditional multilayer cost maps. Building upon
this foundation, we introduce the social behavioral model, which integrates data from laser radar and
Kinect sensors, utilizing sociological distance metrics and Gaussian functions to depict collision costs
between robots and humans within the environment. The social behavioral model is incorporated into
the improved multilayer cost map, resulting in the creation of a new multilayer cost map that incorporates
human behavioral intention cognition.

2.1. Improved multilayer cost map
Mobile robots often rely on maps with high accuracy and real-time performance when executing tasks.
The traditional multilayer cost map exhibits two primary shortcomings in human behavioral intention
cognition. First, when an obstacle is positioned at the edge of the laser radar detection range or extends
beyond this range, utilizing a linear algorithm can result in a delayed removal of obstacle information
from the previous moment, leading to significant errors in map information and path planning discrep-
ancies. Second, the traditional cost map update process employs a priority queue method, updating all
layers within a single cycle, consequently diminishing computational efficiency.

Given that the static obstacle layer is processed only once, this paper employs a preprocessing
approach to retain crucial obstacle information within the map and maintain it in the static layer. This
information remains unaltered throughout the update process and serves as the foundational data in the
cost map as shown in Fig. 1.
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Figure 2. Schematic diagram of expansion mode.

In indoor mobile robot working environments, the map frequently contains an abundance of static
obstacle data. Traditional methods involving repeated expansions may entail multiple processes for a sin-
gle grid, substantially increasing algorithmic complexity and severely impacting the initial map update
efficiency. Consequently, this paper adopts the “first-come, first-served” expansion method. In essence,
this approach takes into account the position of each obstacle within the map data, expanding to each grid
point within the map. Only when a grid is processed for the first time, it can acquire its cost value, wherein
the cost value of each grid is solely influenced by the nearest obstacle point to that grid. Subsequently,
the affected grid points are iteratively processed, updating the affected area sequentially until the itera-
tion reaches the map’s boundary or extends beyond the influence radius of the obstacle point as shown
in Fig. 2.

The algorithm takes the distance as the index value and arranges all grid points in turn to form a
quadtree structure:

Pn = {Pi|(xi, yi, hi)} (1)

where Pn reprents the n grid points, Pi repents the grid point i, xi, yi are the coordinates of the grid point
i, and hi is the depth of the quadtree structure.

Taking the depth hi of the quadtree structure as the index value of the cost value of the layer, the
corresponding cost value constructor is formed:

COSTPi =
{

COSTOBSTACLE · exp (−hi) hi ≤ hthreshold

COSTFREEELSE
(2)

where COSTPi is the cost value of the grid point i, COSTOBSTACLE is the cost value of the obstacle,
COSTFREE is the cost value of the non-obstacle, and hthreshold is the threshold of the depth of the quadtree
structure.

When an obstacle node is positioned within the quadtree to constitute a parent node, four identical
child nodes are created within each parent node to store the child nodes surrounding the parent node’s
grid. These corresponding nodes are then invoked to verify whether the node is in an available state,
typically referred to as an “unprocessed state.” As nodes within layer hi undergo processing, the subnodes
within layer hi+1 are initialized and transition into a state ready for processing. For nodes that have already
been processed, the traversal process will directly bypass the node and all its subnodes, subsequently
eliminating branches within the quadtree. Consequently, in the iterative process, the computational time
complexity of the traditional cost value method remains stable at:

COSTComplexity = O(rn) (3)

where r is the number of child nodes in the iteration process of cost value.
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Table I. Equidistant expansion method.

Algorithm: Equidistant expansion method.

Input: Initial_map

Output: Static_obstacle_layer

1.Initial ize map parameters;

2.Generate Static_obstacle_layer;

3.Analysis of obstacle data in source map;

4.for .size do

5.    Process vector [i];

6. Initialize child nodes->vector ;

7.end
8.Update Static_obstacle_layer;
9.Return Static_obstacle_layer;

process

process

<vectorprocess

vectorprocess

i

After using the “first-come, first-served” strategy, the quadtree is pruned, and the computational time
complexity is stable at:

COST
′
Complexity = O(n2) (4)

It is evident that as the amount of information regarding static obstacles in the map increases, the
number of grid points, denoted as “n,” occupied by these static obstacles also rises. The algorithm
presented in this paper offers distinct advantages over traditional methods. When the robot enters an
indoor environment, the information related to static obstacles becomes superimposed, resulting in an
increased overlap between obstacle grids and a consequent reduction in the number of processed grids.
This contributes to a slight improvement in the efficiency of the algorithm proposed in this paper. The
pseudocode for this method is provided in Table I.

2.2. Human detection
The primary task of human behavior intention cognition is the detection of human positions. Among
the sensors commonly utilized, laser radar excels in terms of high accuracy and robustness when con-
ducting large-scale measurements on a 2D horizontal plane. However, it may not provide a complete
representation of the human body. In indoor environments, obstacles often possess geometric character-
istics similar to human legs, leading to potential misidentification when solely relying on laser radar for
human leg detection. Kinect, on the other hand, offers three-dimensional data, allowing for the represen-
tation of stereo images and depth information. Nevertheless, Kinect is susceptible to interference from
lighting conditions. To address this, we combine laser radar with Kinect to avoid the error detection of
human detection.

To begin, 2D laser radar is employed for the initial detection of human legs. This is achieved by
defining specific features of human legs, as outlined in [18], including attributes such as data disper-
sion, geometry, and movement characteristics. The segmentation domains, derived from the point cloud
data generated by the laser radar, are subjected to classification. Using the Adaboost algorithm, an adap-
tive boosting algorithm that modifies the weight distribution at each round of the training process, it is
determined whether a given segment corresponds to a human leg.
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Figure 3. Human detection procedure. (a) Original image. (b) 2D projection. (c) cluster segmentation.
(d) Point cloud marking. (e) Upper body detection. (f) Classification result.

A weak classifier is designed using a single value feature gk as the following forms:

ik(f ) =
{

+1 qkgk(f ) < qkλk

−1 otherwise
(5)

where λk is the threshold value, qk is +1 or −1, and represents the direction of the inequality. In each
round of training, the value of λk and qk are updated, and the error classification in the weighted training
sample is minimized.

After detecting the human leg, the upper body can be identified through the analysis of RGB-D data
obtained from the Kinect sensor as shown in Fig. 3. This process involves several key steps. To begin,
the acquired point cloud data is meticulously filtered to ensure a high level of accuracy. Subsequently,
the RANSAC (Random Sample Consensus) algorithm is applied to ascertain the horizontal plane. This
plane serves as a crucial reference for classifying the point cloud into four distinct categories based
on height information: ground, objects, transition spaces, and high-altitude building structures. The
remaining point cloud, post-removal of ground and building structures, proves to be highly suitable for
region of interest (ROI) extraction. In this regard, the ROI extraction method entails projecting the 3D
point cloud onto a horizontal plane to generate a two-dimensional histogram. A Gaussian filter is then
utilized to refine the histogram, followed by threshold processing. For efficient region segmentation, the
Quick-Shift fast mode search algorithm is employed.

Using the RGB-D information as input, the robotic system runs the video frame and fully integrates
the methods covered in this article into ROS at the efficiency of 18fps in step (a) to step (f). In order to
verify the accuracy of Kinect’s upper body detection, an experiment was conducted within a corridor
scenario where three individuals freely traversed the area, with the detected individuals being clearly
marked. The experimental results of Kinect’s upper body detection showed that in the field of vision of
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Table II. Private space.

Parameter Value/m
Private area 0–0.45
Personal area 0.45–1.2
Social area 1.2–3.6
Public area >3.6

Figure 4. Human upper body detection.

Kinect, with the movement of pedestrians, the robot can recognize the upper body of the human body
as shown in Fig. 4.

After obtaining the laser radar detection results hl and the Kinect detection results hk, the infor-
mation from laser radar and Kinect is fused to complete the human tracking system based on GNN
algorithm. Both hl = (xl, yl) and hk = (xk, yk) are taken as the observation values of particle filter so that
the likelihood L in the particle filter can be calculated as follows:

L = βl × Llaser + βb × Lrgbd (6)

where βl represents the confidence of laser-based human leg detection and βb represents the confidence
of camera-based human detection algorithm.

Llaser = exp ( − (
√

(xl − xt)2 + (yl − yt)2)) (7)

Lrgbd = exp ( − (
√

(xk − xt)2 + (yk − yt)2)) (8)

where xt represents the x coordinate of human position and yt represents the y coordinate. According to
the tracking information of human body, the posture of human is extracted.

Assume that there are N people around the robot and the state of the ith people is pi = (xp
i , yp

i , θ p
i , vp

i ),
in which (xp

i , yp
i )(x

p
i , yp

i ) represents the human location, θ
p
i θ

p
i represents the human direction, and vp

i vp
i

represents the human speed. Then, the constant velocity model is used to estimate the human trajectory
that is used to predict the human motivation and to describe the possible trajectory.

2.3. Social behavioral model
Once human position detection has been successfully accomplished, the subsequent objective is to
enhance human comfort, adhere to social norms, and enable various human behaviors within the
human–robot coexistence environment. This paper introduces a social behavioral model to address the
requirements for human comfort in such a context. The spatial relationship between humans and robots,
which signifies the social distance that individuals maintain in diverse social situations, stands as a pri-
mary determinant of human comfort. The concept of private space was initially posited by Hall in 1966
[30], considering the influence of interpersonal distances on comfort. This concept categorizes the space
surrounding individuals into four distinct areas: private space, personal space, social space, and public
space, as illustrated in Table II.

https://doi.org/10.1017/S0263574723001832 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001832


Robotica 871

P3

P1

Robot

P2

Figure 5. Social behavioral model in man–robot coexistence environment.

The limitation of Hall’s classification standards is that they maintain a constant definition of private
space, without accounting for the relative pose and motion direction between the robot and individu-
als. Therefore, this paper proposes a new concept called collision probability that can be represented
with collision probability function f cp

i , which describes the relationship between human body pi and
the robot. This paper combines the collision probability and private space model, as shown in Fig. 5.
pi = (xp

i , yp
i , θ p

i , vp
i ) represents the state of human, and r = (xr, yr, θr, vr) represents the state of robot, and

then the collision probability function is written as:

f cp
i = 0.5 + 1/

(
2 + exp (γ

vrp

drp

)

)
(9)

drp =
√

(xp
i − xr)2 + (yp

i − yr)2 (10)

vrp = vp
i cos (ϕi) + vr cos (βi) (11)

where f cp
i denotes the probability of collision between human and robot, with a range of values 0.5∼1,

and γ is a constant default value. Hence, as vrp increases and drp decreases, the collision probability f cp
i

increases.
In order to create a private space model, a 2D Gaussian function based on collision probability is

developed in this section. The function f cp
i (x, y) is used to indicate the social behavioral model that has

the maximum value at the center of human (xi, yi) and decreases as the distance increases gradually from
(xi, yi). The private space is represented as:

f p
i (x, y) = Ap exp

⎛
⎜⎜⎜⎜⎝−

⎛
⎜⎜⎜⎜⎝

(
d cos

(
θ − θ

p
i

)
√

2σ
px
i

)2

+(
d sin

(
θ − θ

p
i

)
√

2σ
py
i

)2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (12)

Here, d and θ are represented as:

d =
√(

x − xp
i

)2 + (
y − yp

i

)2 (13)

θ = atan2
((

y − yp
i

)
,
(
x − xp

i

))
(14)

where (xp
i , yp

i ) represents the central position of human pi, θ
p
i represents the direction of human, σ

px
i and

σ
py
i are the standard deviations of the Gaussian distribution, and Ap represents the average value.
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Table III. Social behavioral model parameter.

Parameter Value
Average Ap 255
Standard deviation σ

px
0 0.25

Standard deviation σ
py
0 0.45

Collision probability factor γ −3.0
Speed factor fv 0.8
Pre-domain effect factor ffront 0.2
Forbidden radius r0 0.25

Table IV. The results of parameter calculation in four states.

Parameter fcp
i σ

py
i σ

px
i front σ

py
i back

1 0.8333 0.2083 0.4500 0.3750
2 0.9498 0.2375 0.6839 0.4274
3 0.9045 0.2261 0.6512 0.4070
4 0.9498 0.2375 0.8548 0.4274

As shown in Eq. (12), the size and shape of private space are related to the basic parameters Ap, σ
px
i ,

and σ
py
i . In this paper, the human state information and collision probability will be incorporated into the

social behavioral model to affect σ
px
i and σ

py
i . The space around people can be divided into pre-domain

and post-domain. In the pre-domain, the new velocity effect factor fv and the pre-domain effect factor
ffront are introduced, and σ

px
i and σ

py
i are calculated as follows:.

σ
py
i =

{(
1 + vp

i fv + ffront
)

f cp
i σ

py
0 front

f cp
i σ

py
0 back

(15)

σ
px
i = f cp

i σ
px
0 (16)

Under the framework of HAN, the parameters of the social behavioral model are shown in Table III.
To validate the accuracy of the social behavioral model, we conducted a simulation under specific

initial conditions. When the human states are defined as p1 = (0, 2, − π

2
, 0), p2 = (0, 3.5, − π

2
, 0), and p3 =

(0, 2, − π

2
, 0.5), respectively, the corresponding robot state is consistently represented as r = (0, 0, 0, 0);

when the human state is p4 = (0, 2, − π

2
, 0.5), the robot state shifts to r = (0, 0, 0, 0.5). According to the

parameters in Table IV, the social behavioral model of the above four states can be obtained, respectively,
as shown in Fig. 6. Table IV lists the calculated collision probability f cp

i and standard deviations σ
px
0 and

σ
py
0 . Notably, our observations reveal that as relative velocity increases and relative distance decreases,

the model’s range expands accordingly.

2.4. Behavior prediction
Behavior prediction has a profound impact on the performance of HAN in the context of mobile robots.
Among the elements influencing behavior intention, the human movement trajectory stands out as the
most crucial. For short-term predictions, both uniform velocity models and constant acceleration mod-
els are widely employed due to their ability to ensure adequate accuracy. However, it is important to
acknowledge that observational data concerning the object’s movement trajectory is often subject to
noise and errors. To address this challenge, we introduce the use of a particle filter into the trajectory
prediction model, aimed at mitigating the impact of observation noise. The motion prediction model we
employ consists of both a uniform velocity model and a particle filter, as illustrated in Fig. 7.
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Figure 6. Collision cost. (a) State 1. (b) State 2. (c) State 3. (d) State 4.

Figure 7. Flow chart of behavior prediction.

Assuming that the robot runs in a spacious environment with fewer obstacles, the uniform velocity
model is reasonable. State sk and time tk of the robot can be predicted using the known state at tk−1:

sk = m(sk−1) + lk (17)

where lk is prediction error and m is prediction equation. The state s of robot in 2D environment is

s =
[

p
v

]
(18)
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Collision cost 
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Static layer 

processing

Static layer 

processing

Radar layer 

processing

Figure 8. A new multilayer cost map with behavioral intention cognition.

where p = [ x y θ ]T is the state matrix of robot, including robot’s position and posture and v = [ vx vy w]T

is a velocity matrix, and prediction equation m is

m

([
p
v

])
=
[

p + v · 	t
v

]
(19)

In addition, the robot observes the motion state of the person through the observation function e and
the observation value zk of robot depends on the real state sk. There will inevitably be sensor noise rk.
Thus, the observation function can be expressed as:

zk = e(sk) + rk (20)

In general, the visible information is position p, which means that zk = [ x y θ ]T and e can be
expressed as:

e

([
p
v

])
= p (21)

In order to deal with prediction error l and sensor noise r, since the distribution of the two does not
have a fixed form, such as a Gaussian distribution, a particle filter is preferred.

2.5. Behavioral intention cognition layer
We utilize a multilayer dynamic cost map, composed of multiple dynamic layers, to establish the
behavioral intention cognition layer and represent dynamic social constraints associated with temporal
factors, as illustrated in Fig. 8. Each layer is a two-dimensional grid map. Once all layers are inte-
grated, the attributes of each grid represent the cost value to be assigned when encountering navigation
constraints.

The behavioral intent cognition layer provides a carrier for the social behavioral model and contains
the cost value related to some social constraints. This layer evolves over time, giving rise to a sequence
of dynamic layers. Each dynamic layer represents the prediction of human trajectories from the time step
i to i + 1 and fills cost value in the current layer. The main cost map can be formed by superimposing
the ith multilayer dynamic cost map of this section on the multilayer cost map mentioned in Section 2.1
as shown in Table V. As a result, in the process of path planning by the robot, the estimated path cost
value at time ti can be obtained from the main cost map. If ti exceeds the time that can be expressed
by the multilayer dynamic cost map, the cost value will only be obtained from the original multilevel
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Table V. Formation of the main cost map.

Algorithm: Dynamic Layered Costmap

Input: PeoplePrediction{ }, master_map, applitude, variance_x,variance_y;
Output: Dynamic layered Costmap;
1 Initialize the time_resolution, time_steps, dynamic_layers_plugin;
2 for count 
3 Initialize (onemap, );
4 timed_costmap.push_back(onemap);
5 end
6 Update Map;
7 Initialize intermediate variavle ;
8 for < do
9 gauss=calcGussian(x ,y ,P.x, P.y, applitude, variance_x,
10 variance_y, angle);
11 Identify pre-domain and post-domain;
12 Update Map;
13 MarkHumanInCostMap(P.x, P.y, timed_costmap);
14 end
15 Coordinate system joint processing;
16 Return Dynamic layered Costmap_joint calibration

k time_steps

< dok time_steps

P

k

k

cost map. Therefore, the estimated total length of time should be as long as possible to deal with more
complex situations.

The superposition map can effectively represent the time-related navigation task. Furthermore, the
resolution and prediction time can be adjusted according to the complexity of the specific environment
to optimize storage space usage.

At this stage, the robot can perceive pedestrian space and motion trends based on the fused multilayer
cost map and navigate with human information.

3. Human-Aware Navigation
3.1 Navigation velocity sampling
The mobile robot employed in this paper is a two-wheel differential drive platform, which allows it to
alter its azimuth angle by independently adjusting the speed of its left and right wheels.

In an ideal condition, the next state of the robot st+1 = (x′, y′, θ ′)T at t + 1 moment is related to the
last state st = (x, y, θ )T and the control signal ut during the time interval 	t. The control ut at t moment
is expressed as ut = (v, w)T .

Assuming that the robot keeps constant (v, w)T during a brief time interval 	t with an initial state of
st = (x, y, θ )T , the state st+1 = (x′, y′, θ ′)T is derived as:

⎛
⎝ x′

y′

θ ′

⎞
⎠=

⎛
⎜⎜⎜⎝

xc + v

w
sin (θ + w	t)

yc − v

w
cos (θ + w	t)

θ + w	t

⎞
⎟⎟⎟⎠=

⎛
⎝ x

y
θ

⎞
⎠+

⎛
⎜⎜⎜⎝

− v

w
sin θ + v

w
sin (θ + w	t)

v

w
cos θ − v

w
cos (θ + w	t)

w	t

⎞
⎟⎟⎟⎠ (22)

where (xc, yc) is the center of the circular path of the robot and xc = x − v
w

sin θ , yc = y + v
w

cos θ .
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Figure 9. Dynamic triangle window.

In fact, there are limited relationships among linear speed, angular velocity and motor performance
of robot. The maximum linear speed is Eq. (23), but the angular velocity at this time is zero as Eq. (24):

ν = lim
νl → νmax

νr → νmax

(νr + νl)/2 = νmax (23)

w = lim
νl → νmax

νr → νmax

(νr − νl)/l = 0
(24)

where vl is the speed of the left wheel, vr is the speed of the right wheel, vmax is the maximum speed for
each wheel, and l is the distance between two wheels.

Thus, the robot cannot increase angular velocity merely by increasing the speed of a certain wheel.
Similarly, the linear speed will be zero at the point of maximum angular velocity. Therefore, based on
this characteristic, this paper proposes a dynamic triangle window that aligns with the actual situation,
as shown in Fig. 9. It is considered that all the optional speed pairs of the robot are included in the
accessible space within a triangle during the moving process, and the model is used to study the local
path planning algorithm to improve the efficiency of planning.

The dynamic triangle window first determines the reachable space Vw of linear speed and angular
speed according to the motor speed, which includes all the actual speed pairs (v, w) as:

Vw =
{

(v, w)| − vmax

wmax

|w| + vmax − v ≥ 0
∧

v ≥ 0

}
(25)

Due to the maximum linear acceleration av
max and angular acceleration aw

max have been known, the
optional velocity pair window (blue block shown in Fig. 9) is a small triangle similar to the overall
reachable space, which contains all the speed pairs (v, w) that the robot can make at the next moment.

The key point of the connection between robot navigation and movement is to select a point as the
next speed control instruction in the dynamic triangle window Vd. However, since Vd is a continuous
Euclidean space and cannot be used for the selection and evaluation of speed pairs, it is necessary to
divide Vd into grids and complete the sampling process of speed pairs (v, w).

Taking specific numerical values as an example, based on the parameters in Table VI, where nv and nw

represent the number of discrete divisions for the v and w in the dynamic triangle window Vd, and using
the current speed pair (vc, wc) from Table VII, we can obtain five discrete velocities for the triangular
area Vd after discretization, as shown in Table VII.

After velocity sampling, assuming that the current pose of the robot is [Px
t, Py

t, θt]T , and the next
state after the interval 	t can be derived according to Eq. (22). However, due to the value 	t is small, it
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Table VI. Parameters in dynamic triangle window.

vmax (m/s) wmax (rad/s) av
max (m/s2) aw

max (m/s2) �t (s) nv nw

0.7 0.8 0.7 1.5 0.1 3

Table VII. Speed pairs in dynamic trian-
gle window.

v (m/s) w (rad/s)
(vc, wc) 0.2 0.2
(v, w)1 0.13 0.05
(v, w)2 0.13 0.20
(v, w)3 0.20 0.20
(v, w)4 0.27 0.20
(v, w)5 0.13 0.35

is not enough to get features that can be used to assess. In order to generate the virtual path, we set the
simulation time tsim to show obvious trajectories. The trajectory is defined as a hypothetical circular arc
made by the robot moving while following the line speed and angular speed commands within tsim.

But actually, the circular arc is unable to be expressed in the program, so we will use time interval
tsim to linearize the circular arc. Using every straight segment of the robot during time interval tsim to fit
the circular, the robot state [Px

e, Py
e, θe]T at the end of tsim is calculated by Eq. (22). The iteration and

processing are integrated into the trajectory optimization equation as shown in Table VIII. Finally, a
collection of trajectories is obtained.

3.2 Navigation trajectory optimization
After obtaining all feasible trajectories, it is necessary to evaluate the cost value of each trajectory to
obtain the speed control instruction corresponding to the optimal trajectory.

3.2.1. Trajectory optimization preprocessing
Navigation using only local paths is limited to local minima, necessitating its combination with global
paths. However, when optimizing local paths within the local cost map, referencing global paths that
extend beyond the local cost map becomes irrelevant. Therefore, we define the local guidance point
which is the junction point of the global path and the local cost map and is updated with the moving
process of the robot, so as to guide the robot never deviating from the global path as shown in Fig. 10.

Based on the local guidance point, this paper introduces the calculation methods of dpath and dgoal. We
take the side length of the map grid as the distance unit, take the local guidance point and the subsegment
of the global path in the local cost map as two goals, and take the minimum distance value between the
predicted trajectory from the two goals under the influence of the global path subsegment and local path
as the reference value of dpath and dgoal, respectively. As shown in Fig. 11, the larger the value, the greater
the tendency of the robot to deviate from the local path and global path.

3.2.2. Trajectory optimization equation
Through preprocessing, the dynamic triangle window is combined with the human social behavioral
model to predict the human trajectory, and the trajectory optimization equation is proposed.
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Table VIII. The configuration of the navigation algorithm.

Algorithm: Planner implementation.

17

While

if Collision(Sr(t),costmap,Sh(t)=true) then
for t = tc + tsim step Δ t do

for all V(r,w) Vr do

Iuput: Sh(t);Vh(t);sets of positions and velocities of all humans at time t

Output: BestTr , the optimal track;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Gpath ← A*(global_costmap,Start,Goal);

Initialize:Sr(tc)←Start;
Sr(tc)  ≠ Goal  do

//Update pose/vel of the robot and humans
[Sr(tc),Vr(tc)]←UpdateRobotOdometry()
[Sh(tc),Vh(tc)]←HumanDetection()
Vr←list of dynamically admissable velocities

collision = true;

else
break

dobs = min(dobs,dobs(t))

Tri ←push(Sr(t))
[Sh(t+Δ t),Vh(t+Δ t)] = HAM(Sh(t),Vh(t),Sr(t),costmap)
Sr(t+Δ t)←UpdateRobotPosition(Vr

i)

return BestTr
end

end

end
end

28
27
26
25
24
23

21
20
19
18

if collision = true then
TrCosti = -1

else
TrCosti = α· dgoal(v,w)+β·dpath(v,w)+γ·exp{-η[dobs(v,w)-dgoal]}
+κ·obs_cost

22

end
TrSet← push(Tri,TrCosti)

BestTr = MinimumCost(TrSet)
Excuse BestTr for one time step

Px
t,Py

t,θ t,vt,wt,robot’ s position, orientation and velocity

Vr = CalcVelSamples(Px
t,Py

t,θ t,vt,wt)
//Velocity Sampling

29
30

For a series of trajectories generated by dynamic triangle window, we use trajectory optimization
equation TrCost to evaluate all trajectories:

TrCost (v, w) = α · dgoal (v, w) + β · dpath (v, w)

+ γ · e−η·[dobs(v,w)−dgoal] + κ · obs_cost (26)

where α is the weight of dgoal, β is the weight of dpath, γ is the weight of dobs, and κ is the weight of
obs_cost.

The specific definitions of each standard are as follows:

• Distance dgoal from the local guidance point: In this paper, the distance dgoal between the grid at
the end point of the generated trajectory and the local guide point is obtained. The larger this
value is, the further the path is away from the global path.
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Figure 10. Trajectory preprocessing and local guidance point setting.

Figure 11. Estimated distance of cost map. (a) Calculation of distance from local guidance point.
(b) Calculation of the minimum distance from the global path.

• The deviation dpath from the global path: The optimal trajectory should be oriented toward the
local guidance point and close to the global path. Therefore, in this paper, the shortest distance
dpath between the last point of trajectory Tr and the global path is taken as the shortest distance.
The smaller the value is, the closer the path is to the global path.

• Minimum distance dobs from pedestrian: This evaluation standard represents the minimum dis-
tance from pedestrians along the whole generated track. Human pose Sh(tc) and speed Vh(tc) are
predicted in each time step length t ∈ [tc, tc + tsim]. The distance dobs(tc) is obtained according to
Sh(tc) and Vh(tc). Using the constant speed prediction model to obtain the human state at the next
moment: Sh(t + 	t) and Vh(t + 	t), and then obtain the pose of the robot Sr(tc + 	t), the distance
dobs(tc + 	t) can be figured out. By calculating all the dobs(tc) in the whole simulation time, the
minimum value dobs

min is used to evaluate the trajectory Tr that is negatively correlated with the
cost value dobs.

• Cost value obs_cost of the trajectory in the grid: In this paper, the cost value of trajectory is
affected by the cost value of cost map grid points. The cost value acquired at the end point
of each trajectory is generated as obs_cost. If some fatal obstacle is touched in the generated
trajectory, this trajectory is directly eliminated. Trajectory with smaller obs_cost has the priority
when no fatal obstacle is found.
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Figure 12. The mobile robot.

The optimization equation selects the path with the lowest total cost value, and the corresponding
velocity pair (v, w) for the trajectory represents the speed control instruction for the robot at the next
moment.

3.3 The frame of the algorithm
When a target point is set for the robot, the navigation algorithm combines the dynamic triangle window
with human perception and applies the trajectory optimization equation to all the generated trajectories
to select the optimal speed. The overall configuration of the navigation algorithm is shown in Table VIII.

4. Experiment
The experimental platform used in this paper is independently built by the laboratory as shown in Fig. 12.

The experimental platform is a two-wheel differential drive platform. The robot body is 500 mm ×
500 mm. The platform is a three-layer structure with the top layer for industrial control, router, and
Kinect, the middle one for the bottom control module and laser radar, and the bottom layer for the installa-
tion of motors and power module. At the core of the robot chassis control system lies the Freescale i. Max
28 ARM chip. The upper control system utilizes a portable PC running Ubuntu 14.04 and ROS Indigo.
This configuration allows for the effective collection of sensor data and the execution of autonomous
navigation tasks.

The platform is equipped with two environmental sensors. The first is the Sick TiM 561 laser radar,
which can provide 2D point cloud information of the horizontal plane with high precision and strong
environmental anti-interference capability. In order to increase the richness of the robot perception,
the RGB-D sensor (Kinect) is also added on the platform. It has rich three-dimensional point cloud
information, and the depth information can be used to sense the human body, which provides extensive
scalability for the function of the robot.

4.1. Behavioral intention cognition experiment
The experiment combines human body detection, social behavioral model, and trajectory prediction
in the cognitive layer of behavioral intention. In this experimental scenario, a single person gradually
approaches a stationary robot in a corridor. The social behavioral model defines the private space around
the human body in the behavioral intention cognition layer and assigns certain costs value to the grids
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private space
trajectory 
prediction

Figure 13. Experiment of behavioral intention cognition.

Figure 14. Trajectory of pedestrian.

around according to the social behavioral model function. In the rviz emulator, these cost values are
represented with different colors.

Figure 13 depicts the evolving scene graph over time. Notably, the pedestrian’s private space model
transitions from yellow to blue in the cost map, signifying a progressive reduction in the cost value.
Experimental findings substantiate the robot’s ability to extract human information from the behav-
ioral intention cognition layer, allowing it to perceive human behavioral intention. In forthcoming
experiments, these social constraints can be effectively integrated into the navigation system.

Figure 14 depicts the pedestrian trajectory map, while Fig. 15 displays information related to pedes-
trian speed, orientation, and trajectory prediction length. Figure 16 demonstrates that the magnitude of
collision probability directly influences the variance of the two-dimensional Gaussian distribution, sub-
sequently shaping the social behavioral model. Specifically, when the relative distance decreases and
the speed increases, collision probability grows, leading to an increase in variance. Consequently, the
social behavioral model allows the robot to dynamically adjust its choice of human private space based
on the risk of collision.

From the pedestrian data detected, this paper extracts information pertaining to the identified pedes-
trian within the behavioral intention cognition layer. Figure 17 illustrates the cost value curve within the
multilevel cost map aligned with the vector representing the pedestrian’s trajectory. The cost value curve
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Figure 15. Pedestrian velocity, trajectory prediction length, and direction.

Figure 16. Time–distance, collision probability, and variance curve.

indicates that at the central position of the detected pedestrian, a cost value of 255 is recorded, signifying
a critical obstacle. This value gradually decreases as the distance from the pedestrian’s center increases.
Due to variations in the variances between the pre-domain and post-domain, distinct attenuation trends
are observed in their respective values.

4.2. The Human-Aware Navigation experiments
4.2.1. Experimental scene 1
First, static experiments are designed to compare the results of traditional DWA algorithm and the pro-
posed algorithm in path planning in a static pedestrian environment. The experimental setting was
chosen to be a laboratory corridor, with the pedestrian positioned between the robot’s starting point
and the target point.

The use of the traditional DWA algorithm is illustrated in Fig. 18. To facilitate a clear observation of
the spatial relationship between the path planned by the robot and pedestrians, pedestrian detection is
carried out during the experiment. Over time, it becomes evident that the robot only regards humans as
ordinary obstacles, often approaching them too closely, which may lead to discomfort for people. The
concept of private space for humans can not be incorporated into the path planning algorithm.

The HAN navigation algorithm is also employed in the same experimental scenario. As depicted
in Fig. 19, it represents a temporal scene graph and records the distance between the pedestrian and
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Figure 17. Cost curve of pedestrian direction.

Figure 18. DWA algorithm.

the robot throughout the entire path planning process. This verification demonstrates the algorithm’s
capability to enable the robot to distinguish pedestrians from other common obstacles.

From Fig. 19, it can be seen that the trajectory optimization equation not only allows the robot to
plan a reasonable path but also respects the private space. Compared with Fig. 18, it can be concluded
that the proposed algorithm can make the robot maintain a more reasonable distance with the pedestrian
during the movement, thereby increasing the comfort of human.

Similarly, according to the comparison presented in Fig. 20 and Table IX, the social behavioral model
can dynamically describe human private space. In nearly identical collision probability scenarios, where
the experimental environment remains largely consistent, the proposed algorithm in this study results
in a greater distance between the machine and the human. This approach, in turn, better respects the
individual’s private space.

4.2.2. Experimental scene 2
The second experiment is also conducted within the corridor. In this experiment, both the robot and
the person initiate their motion in opposite directions along the same straight path. The trajectory of
the robot’s planned path and the relative positional relationship between the human and the robot are
documented, as shown in Fig. 21.
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Figure 19. HAN algorithm.

Figure 20. Time–distance, collision probability, and variance curve. (a) DWA algorithm. (b) HAN
algorithm.
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Table IX. Navigation results in a static environment.

HAN algorithm DWA algorithm
Average pedestrian speed [m/s] 0.0 0.0
Average pedestrian position [rad] 5.918 5.934
Planning times 62 58
Minimum distance [m] 0.849 0.5022

(a) (b)

(c) (d)

private 
space

trajectory 
prediction t=7.323s t=10.825s

t=14.806s t=17.671s

Figure 21. The result of HAN algorithm in real scenes. (a) t = 7.323 s. (b) t = 10.825 s. (c) t = 14.806 s.
(d) t = 17.671 s.

As shown in Fig. 21(a), the predicted human trajectory does not intersect with the robot’s path plan-
ning scope, resulting in the robot remaining unresponsive to the detected pedestrian. However, as the
robot enters the pedestrian’s vicinity, as shown in Fig. 21(b) and (c), it promptly shifts to the opposite
side of the corridor, thereby ensuring ample space for the individual and avoiding any obstruction to
their path. As shown in Fig. 21(d), when the pedestrian exits the range of the laser radar detection, the
robot no longer considers their presence and continues to employ trajectory optimization equations to
determine the most optimal path.

For the same experimental scene, this paper compares the DWA algorithm with the proposed algo-
rithm in their dynamic performance. Figure 22 illustrates the trajectory of both the robot and the human’s
actual movement, with RGB data employed to represent the time axis.

From the comparison of Fig. 22(a) and (b), it is evident that the HAN algorithm initiates the robot’s
avoidance maneuver at t = 7.323 s, while the DWA algorithm begins avoidance at t = 8.756 s. Therefore,
the navigation algorithm studied in this paper demonstrates an ability to make decisions earlier based
on the predicted trajectory of pedestrians in the scene, without significantly impacting the pedestrians’
paths. Examining the distance data between the robot and the pedestrian in Fig. 22, it becomes apparent
that the HAN algorithm effectively maintains a reasonable separation between the robot and pedestrian,
thereby achieving the objective of respecting human private space.
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Table X. Navigation results in a corridor scene.

HAN algorithm DWA algorithm
Average pedestrian speed [m/s] 0.957 0.962
Average pedestrian position [rad] 5.936 5.917
Planning times 128 102
Minimum distance [m] 2.06 0.849

Figure 22. Trajectory comparison in corridor scenes. (a) DWA algorithm. (b) HAN algorithm.

The curve of the variance parameters of pedestrian’s private space, specifically social behavioral
model, is shown in Fig. 23. A comparison between the data presented in Table X and the contrast between
Fig. 23(a) and (b) reveal that, under nearly identical collision probabilities, the distance between the robot
and the human is greater when the HAN algorithm is employed. This effect demonstrates the algorithm’s
ability to better respect the private space of individuals in a social context.

4.2.3. Experimental scene 3
The third typical scenario involves an intersection with a unique characteristic: the robot’s environmental
sensing is limited to the area surrounding the door. It is only when the robot approaches the door that
the laser radar can collect data from outside. If a pedestrian is suddenly detected at this point, there may
not be sufficient time to plan a reasonable path based on predicted movements. Consequently, in the
event of unforeseen circumstances resulting from dynamic changes in the environment, the robot may
make inconsistent decisions. The algorithm presented in this paper addresses this issue by instructing
the robot to come to a halt upon encountering a sudden obstacle, and it will remain stationary until safety
is confirmed. Once confirmed, the robot will then proceed along its original path.

The experimental scenario involves both the robot and a person arriving near a door simultaneously.
Figure 24(a) shows that the robot detects the pedestrian and determines the pedestrian’s private space and
movement trend. At this point, the pedestrian is treated as an immediate safety concern, an emergency
obstacle. Figure 24(b) represents that when faced with the presence of this emergency obstacle, the robot
halts and remains stationary until the pedestrian moves out of the way as shown in Fig. 24(c). Once the
robot confirms that it is in a safe state, it then resumes its course toward the intended destination along
the original path.
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Figure 23. The distance between a robot and pedestrian. (a) DWA algorithm. (b) HAN algorithm.

(a) (b)

(d)(c)

t=3.368s t=7.732s

t=9.562s t=12.425s

Figure 24. The result of HAN algorithm in special cases. (a) t = 3.368 s. (b) t = 7.732 s. (c) t = 9.562 s.
(d) t = 12.425 s.
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Table XI. Navigation results at intersection.

HAN algorithm DWA algorithm
Average pedestrian speed [m/s] 0.493 0.465
Average pedestrian position [rad] 0.538 0.549
Planning times 64 48
Minimum distance [m] 0.771 0.287

robot

(a) (b)

robot

humanhuman

Figure 25. Comparison of robot and human trajectory at intersection. (a) DWA algorithm. (b) HAN
algorithm.

In the same experimental scene, this paper compares the DWA path algorithm with the proposed
algorithm and Fig. 25 shows the trajectories of the robot and the human.

Figure 25(a) presents the experimental data obtained using the DWA algorithm. The figure reveals
that the robot does not take actions to avoid pedestrian behavior at the intersection. Comparing the
positions of the robot and the pedestrian based on RGB data, it becomes evident that the robot crosses
in front of the pedestrian, obstructing the pedestrian’s intended path. In contrast, the HAN algorithm
proposed in this paper addresses this issue. As shown in Fig. 25(b) and Table XI, the robot waits at the
intersection at 3.576 s until the robot maintains a reasonable distance from the pedestrian and starts to
travel along the original path at 7.431 s. This validates that the path planning algorithm presented in
this paper offers a more effective strategy for responding to the sudden presence of pedestrians, thus
enhancing human comfort to a certain extent.

5. Discussion
Through the implementation of human behavioral intention cognition and human–robot navigation tra-
jectory optimization, we have realized the HAN algorithm that takes into account social factors. Analyses
of the experimental results validates the effectiveness of the human behavioral model. In both static and
dynamic navigation experiments, our data demonstrates that, in comparison to the traditional DWA
method, which treats humans as dynamic obstacles, our HAN algorithm maintains a more appropriate
distance from humans. The human model exhibits greater variance, ensuring human comfort, safety,
and priority. Our approach has been proven effective, and in a human–robot coexistence environment,
the robot successfully navigates socially aware paths, which holds promise for applications in real-life
scenario.

However, it is important to note that this study focused solely on individual human interaction. In
practical scenarios, more complex situations involving multiple individuals are prevalent. Besides, it is
worth noting that the path planning frequency is higher, resulting in longer navigation time. Therefore,
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in the future, we aspire to achieve human–robot interaction in a manner similar to human–human inter-
action, promoting safety, harmony, and comfort in social navigation. Another avenue for improvement
is to ensure human positive experience while enhancing the efficiency of robot operations.

6. Conclusion
In this paper, a mobile robot navigation algorithm based on human–robot coexistence environment is
investigated. The following key aspects are explored:

1. A kind of behavior intention cognition method based on social behavioral model using multilayer
cost map is studied. The social behavioral model is proposed to depict the concept of human
private space, where the shape of the private space can adapt based on the collision probability
between the robot and the human.

2. Based on the improved multilayer cost map containing human information, the HAN algorithm
is then studied. The optimization equation is designed to take into account the human private
space and motion trend in trajectory optimization. This approach allows the robot to choose the
optimal trajectory while considering the comfort of the human.

3. The social behavioral model and the motion trend are combined to generate the cost value, which
is converted into a form that the robot can recognize and used by the navigation algorithm. The
robot navigation algorithm is realized by utilizing the rich scalability offered by the multilayer
cost map.
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