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Abstract
We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank
generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show
that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce
a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants,
including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler
characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical
types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe
a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.

Introduction

In this work, we are interested in studying a quiver description of the local model for nested Hilbert
schemes on complex surfaces – that is, nested Hilbert schemes of points on the affine plane A2. We are
also interested in its natural higher-rank generalization, which is given by the moduli space of flags of
framed torsion-free sheaves on the projective plane P2. For reasons which we will explain later in this
introduction, we call the quiver modelling our moduli problem the nested instantons quiver, which is
shown in Figure 1. Algebraic constructions arising from stable representations of these quivers appear
to be generalizations of Nakajima’s ADHM presentation of framed torsion-free sheaves on P2 and, as
a special case, of Hilbert schemes of points on the affine plane; [43]. The possibility of exploiting
an ADHM-type construction is very powerful by itself in that it provides an explicit construction for
an a priori very complicated moduli space of sheaves in terms of purely linear algebraic data. Other
constructions of this kind can also be found in the literature for different moduli spaces of sheaves on
algebraic varieties (cf. for instance, [1, 14, 43, 12, 28, 29, 27, 2]). Moreover, there has been some recent
interest surrounding moduli spaces of flags of sheaves on surfaces, and in particular nested Hilbert
schemes, due to their relevance to the context of Vafa-Witten theory; [50, 51]. It is indeed known that
monopole contributions to Vafa-Witten invariants reduce under virtual localization to the computation
of invariants of such moduli spaces. The interested reader can refer to [24, 34] for computations in
the rank-one case, involving nested Hilbert schemes. The deformation-obstruction theory and virtual
cycle for the components of the monopole branch in Vafa-Witten theory giving rise to flags of higher
rank sheaves were explicitly constructed in [48]. Nested Hilbert schemes on surfaces were interpreted in
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𝑟0 𝑟1 𝑟𝑁

𝑛0 𝑛1 · · · 𝑛𝑁

Figure 1. The nested instantons quiver. A vector space 𝑉𝑖 � C𝑛𝑖 (resp. 𝑊𝑖 � C𝑟𝑖 ) is intended to be
attached to each node labelled by 𝑛𝑖 (resp. by 𝑟𝑖).

terms of degeneracy loci in [20, 21], where they are also shown to be equipped with a perfect obstruction
theory. Similarly nested Hilbert schemes of points were also studied in [19], and a perfect obstruction
theory and virtual cycles are explicitly constructed. Their application to reduced Donaldson-Thomas
and Pandharipande-Thomas invariants are also discussed in [19, 18, 13].

Content of the Paper

In this paper, we concentrate on the study of representations of the nested instantons quiver with a single
framing; namely, we choose the dimension vector for the framing to be r = (𝑟, 0, . . . , 0), where r is the
dimension of the leftmost framing node in Figure 1. We also study its relation to flags of framed torsion-
free sheaves on P2 and nested Hilbert schemes, and we compute some relevant virtual invariants via
equivariant localization. In the following, we give a summary of the results we obtained in this paper.

In §1, we start our analysis by constructing the moduli space of stable representations of the nested
instantons quiver, which is characterized by the following.

Theorem (Theorem 1.8). The moduli space N (𝑟, n) of stable representation of the nested instantons
quiver of numerical type (𝑟, n) is a quasi-projective variety over C equipped with a perfect obstruction
theory.

We also prove that N (𝑟, n) embeds into a Nakajima quiver variety M(𝑟, n), which is a smooth
hyperkähler variety; see §1.3.

In §2, we construct the moduli space F (𝑟, 𝜸) of flags of framed torsion-free sheaves on P2 and prove
the existence of an isomorphism with N (𝑟, n). As a particular case, we have the following.

Theorem (Theorem 2.4). The moduli space of nested instantons N (1, n) is isomorphic to the nested
Hilbert scheme of points on C2; namely,

N (1, n) = X0//𝜒G � Hilbn̂(C2).

The moduli space of flags of sheaves is constructed by means of a functor F(𝑟 ,𝜸) : Schop
C

→ Sets
describing flags of torsion-free sheaves on P2 in the following.

Proposition (Proposition 2.7). The moduli functor F(𝑟 ,𝜸) is representable. The (quasi-projective) variety
representing F(𝑟 ,𝜸) is the moduli space of flags of framed (coherent) torsion-free sheaves on P2, denoted
by F (𝑟, 𝜸).

Its isomorphism with N (𝑟, n) is proved in the following theorem.

Theorem (Theorem 2.9). The moduli space of stable representations of the nested instantons quiver
is a fine moduli space isomorphic to the moduli space of flags of framed torsion-free sheaves on P2:
F (𝑟, 𝜸) � N (𝑟, n), as schemes, where 𝑛𝑖 = 𝛾𝑖 + · · · + 𝛾𝑁 .
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The ADHM construction of a particular class of flags of sheaves on P2 was given in [44], where their
connection to shuffle algebras on K-theory is also studied. Moreover, the construction of the functor
F(𝑟 ,𝜸) shows that the moduli space of nested instantons is isomorphic to a relative nested Quot-scheme.
Perfect obstruction theories on Quot-schemes and the description of their local model in terms of a
quiver are discussed in [2, 47], while nested quot schemes on curves appeared in [38], where their
cohomology was studied, and in [39], where their motivic invariants where computed. More in general,
the smoothness of nested quot schemes was studied in [40].

In §3, we proceed to the evaluation of the relevant virtual invariants via equivariant localization.
Indeed, we show how on N (𝑟, n) there is a natural action of an algebraic torus T = (C∗)2 × (C∗)𝑟 and
a T-equivariant lift of the perfect obstruction theory. The classification of the T-fixed locus of N (𝑟, n)
is presented in the following proposition.

Proposition (Proposition 3.4). The T-fixed locus of N (𝑟, n) is in bijection with (𝑁 + 1)-tuples of nested
coloured partitions 𝝁1 ⊆ · · · ⊆ 𝝁𝑁 ⊆ 𝝁0, with |𝝁0 | = 𝑛0 and |𝝁𝑖>0 | = 𝑛0 − 𝑛𝑖 .

In §3.2, we compute the generating function of the virtual Euler characteristics of N (1, n); see
Equation (3.2.4) for the explicit combinatorial formula. We conjecture that, by summing over the nested
partitions, this invariant is expressed in terms of polynomials:

Conjecture (Conjecture 3.6). The equivariant virtual Euler characteristic

𝜒vir (N (1, 𝑛0, . . . , 𝑛𝑁 );𝔮−1
1 ,𝔮−1

2 ) =
∑
𝜇0

𝑃𝜇0 (𝑞, 𝑡)/𝑁𝜇0 (𝑞, 𝑡)

is such that

𝑃𝜇0 (𝑞, 𝑡) =
𝑄𝜇0 (𝑞, 𝑡)
(1 − 𝑞𝑡)𝑁

,

with 𝑄𝜇0 (𝑞, 𝑡) ∈ Z[𝑞, 𝑡] and 𝑁𝜇0 (𝑞, 𝑡) as in (3.2.5).1

For specific profiles of the nesting, these polynomials are conjectured to be determined by modified
(or transformed) Macdonald polynomials, as defined in [25, Eq. 2.18]; cf. also (3.2.10).

Conjecture (Conjecture 3.8). When |𝜇0 | = |𝜇𝑁 | + 1 = |𝜇𝑁−1 | + 2 = · · · = |𝜇1 | + 𝑁 , we have

𝑄𝜇0 (𝑞, 𝑡) =
〈
ℎ𝜇0 (x), 𝐻𝜇0 (x; 𝑞, 𝑡)

〉
,

where ℎ𝜇 are the complete symmetric functions, the Hall pairing 〈−,−〉 is such that 〈ℎ𝜇, 𝑚𝜆〉 = 𝛿𝜇,𝜆
(cf. [37]) and 𝐻𝜇 (x; 𝑞, 𝑡) are the modified Macdonald polynomials.

In §3.3, we compute the generating function of the virtual 𝜒−𝑦-genus of N (1, n) (see Equation
(3.3.3)) and of N (𝑟, n) (see Equation (3.3.7)). We also conjecture, by specializing at 𝑦 = 1, that the
virtual Euler characteristic ofN (1, n) reproduces the generating function of nested partitions of arbitrary
length. These results are further generalized in §3.4, where we compute the generating function of the
virtual elliptic genus of N (1, n) (see Equation (3.4.1)) and of N (𝑟, n) (see Equation (3.4.2)).

Finally, in §4, we extend our results to P2 and P1 ×P1 in the case of 𝜒−𝑦-genera; see formulae (4.1.2)
and (4.2.1), respectively. Notice that the choice of computing 𝜒−𝑦-genera was due to the expected simple
polynomial dependence in y. Everything which was done in this context is, however, completely general
and holds for any complex genus.

1As explained in Rmk. 3.7, the rational function 𝑃𝜇0 (𝑞, 𝑡) and the polynomials 𝑄𝜇0 (𝑞, 𝑡) in Conj. 3.6 also depend on the
discrete nesting profile n. This dependence is suppressed to keep the notation more concise.

https://doi.org/10.1017/fms.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.43


4 G. Bonelli, N. Fasola and A. Tanzini
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Figure 2. The comet-shaped quiver. As in Figure 1, to each node labelled by 𝑛
( 𝑗)
𝑖 (resp. 𝑟

( 𝑗)
𝑖 ) is

associated a vector space 𝑉
( 𝑗)
𝑖 � C𝑛

( 𝑗)
𝑖 (resp. 𝑊 ( 𝑗)

𝑖 � C𝑟
( 𝑗)
𝑖 ).

Relation to String Theory

It is very well known that the interplay between string theory and geometry provided interesting results
for both the parts at play during the last decades. A prototypical example of this phenomenon is given
by the close relationship between BPS-bound states counting and enumerative geometry. On a threefold
X, for instance, the problem of counting BPS-bound states in the context of D0-D2-D6 brane systems is
translated in the computations of virtual invariants of Hilbert schemes of points and curves on X (i.e.,
the Donaldson-Thomas theory of X). The story goes in a quite similar way also in lower (and, up to
a certain point, also higher) dimensions. There, instanton counting on complex surfaces is still closely
related to the geometry and the distinguished algebraic structures of Hilbert schemes and moduli spaces
of sheaves; [43]. As it turns out, these correspondences between physical theories and geometrical
constructions can be generalized to different setups. For instance, one may want to study the geometry
of instanton moduli spaces in presence of surface defects. In [5], we introduce the moduli space of
nested instantons by studying surface defects in supersymmetric gauge theory on 𝑇2 × C𝑔,𝑘 , where 𝑇2

is a real two torus and C𝑔,𝑘 a genus g complex projective curve with k marked points.
The D-brane setup engineering the surface defect is described in [5], and its analysis naturally led to a

description in terms of representations of a quiver in the category of vector spaces – the D-branes being
the objects and the open strings being the morphisms. Let us briefly resume the D-brane geometry and its
relation with the relevant mathematical problems. One considers type IIB supersymmetric background
given by 𝑇2 × 𝑇∗C𝑔,𝑘 × C2, with r D7-branes located at points of the fiber of the cotangent bundle and
n D3-branes along 𝑇2 × C𝑔,𝑘 . The low energy effective theory of the D7-branes should correspond to
a generalization of equivariant higher rank Donaldson-Thomas theory [15] on the non-CY four-fold
𝑇2 ×C𝑔,𝑘 ×C2, while the low energy effective theory of the D3-branes is equivariant Vafa-Witten theory
on 𝑇2 × C𝑔,𝑘 ; [53]. In the chamber of small volume of C𝑔,𝑘 , the effective theory describing the surface
defect is encoded in the theory of maps from 𝑇2 to the moduli space of stable representations of the
comet-shaped quiver displayed in Figure 2. For 𝑘 = 1, this is described by the total space of a bundle
V𝑔 over the nested instanton moduli space, which, in turn, is the moduli space of stable representations
of the quiver displayed in Figure 1. Let us remark that virtual invariants of V𝑔 have a connection to the
cohomology of character varieties of punctured Riemann surfaces, and in particular to the conjecture
proposed in [26] whose physical interpretation was provided in [11]. The interested reader can find the
details in [5].
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1. The nested instantons quiver

1.1. Quiver representations and stability

In the following, we will mainly be interested in studying the following quiver, which will be called the
nested instantons quiver,

𝑉𝑁 · · · 𝑉1 𝑉0 𝑊

𝛼𝑁

𝛽𝑁

𝜙𝑁 𝜙2

𝛾𝑁

𝛼1

𝛽1

𝜙1

𝛾2 𝛾1

𝛼0

𝛽0

𝜂

𝜉
(1.1.1)

with relations

[𝛼0, 𝛽0] + 𝜉𝜂 = 0, [𝛼𝑖 , 𝛽𝑖] = 0, 𝛼𝑖−1𝜙𝑖 − 𝜙𝑖𝛼𝑖 = 0 = 𝛽𝑖−1𝜙𝑖 − 𝜙𝑖𝛽𝑖

𝛾𝑖𝛼𝑖−1 − 𝛼𝑖𝛾𝑖 = 0 = 𝛾𝑖𝛽𝑖−1 − 𝛽𝑖𝛾𝑖 , 𝜙𝑖𝛾𝑖 = 0, 𝜂𝜙1 = 0, 𝛾1𝜉 = 0.

Given a tuple of vector spaces (𝑊,𝑉0, . . . , 𝑉𝑁 ), one for each node of the quiver (1.1.1) and such that
dim𝑊 = 𝑟 , dim𝑉𝑖 = 𝑛𝑖 , letX(𝑟, n) be the linear space of representations of the quiver (1.1.1) with fixed
dimension vector (𝑟, n); namely,

X(𝑟, n) =End𝑉 ⊕2
0 ⊕ Hom(𝑊,𝑉0) ⊕ Hom(𝑉0,𝑊) ⊕ End(𝑉1)⊕2 ⊕ Hom(𝑉1, 𝑉0)

⊕ Hom(𝑉0, 𝑉1) ⊕ · · · ⊕ End(𝑉𝑁 )⊕2 ⊕ Hom(𝑉𝑁 , 𝑉𝑁−1) ⊕ Hom(𝑉𝑁−1, 𝑉𝑁 ).
(1.1.2)

A representation of numerical type (𝑟, n) of (1.1.1) with relations in the category of vector spaces will
be given by the datum of a pair 𝑋 = (W, ℎ), with W = (𝑊,𝑉0, . . . , 𝑉𝑁 ) such that dim𝑊 = 𝑟 and
dim𝑉𝑖 = 𝑛𝑖 , and

X0 (𝑟, n) 	 ℎ = (𝐵0
1, 𝐵

0
2, 𝐼, 𝐽, 𝐵

1
1, 𝐵

1
2, 𝐹

1, 𝐺1, . . . ),

where X0(𝑟, n) ⊂ X(𝑟, n) is the closed subspace of X(𝑟, n) whose morphisms satisfy the nested ADHM
equations (1.1.3)

[𝐵0
1, 𝐵

0
2] + 𝐼𝐽 = 0, [𝐵𝑖1, 𝐵

𝑖
2] = 0, 𝐵𝑖−1

1 𝐹𝑖 − 𝐹𝑖𝐵𝑖1 = 0 = 𝐵𝑖−1
2 𝐹𝑖 − 𝐹𝑖𝐵𝑖2

𝐺𝑖𝐵𝑖−1
1 − 𝐵𝑖1𝐺

𝑖 = 0 = 𝐺𝑖𝐵𝑖−1
2 − 𝐵𝑖2𝐺

𝑖 , 𝐹𝑖𝐺𝑖 = 0, 𝐽𝐹1 = 0, 𝐺1𝐼 = 0.
(1.1.3)

In the following, we need to address the problem of King stability for representations of the nested
instantons quiver. The definition of stability we will use follows from considering the moduli space
of representations of the framed nested instantons quiver with a moduli space of representations of an
auxiliary extended quiver with relations; [33, 12].

Definition 1.1. Let Θ = (𝜽 , 𝜃∞) ∈ Q𝑁+2 be such that Θ(𝑋) = n · 𝜽 + 𝑟𝜃∞ = 0. We will say that a framed
representation X of (1.1.1) is Θ-semistable if

◦ ∀0 ≠ �̃� ⊂ 𝑋 of numerical type (0, ñ), we have Θ( �̃�) = 𝜽 · ñ ≤ 0;
◦ ∀0 ≠ �̃� ⊂ 𝑋 of numerical type (𝑟, ñ), we have Θ( �̃�) = 𝜽 · ñ + 𝑟𝜃∞ ≤ 0.

If strict inequalities hold, X is said to be Θ-stable.

In [7, 54], the two node case (namely, 𝑁 = 1) was considered. We can here generalize their result to
the more general nested instantons quiver (1.1.1).

Proposition 1.2. Let X be a representation of numerical type (𝑟, n) ∈ N𝑁+2
>0 of the quiver (1.1.1) with

relations (1.1.3). Then choose 𝜃𝑖 > 0, ∀𝑖 > 0 and 𝜃0 s.t. 𝜃0 + 𝜃1 + · · · + 𝜃𝑁 < 0. The following are
equivalent:
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(i) X is Θ-stable;
(ii) X is Θ-semistable;

(iii) X satisfies the following conditions:
S1 𝐹𝑖 ∈ Hom(𝑉𝑖+1, 𝑉𝑖) is injective, ∀𝑖 ≥ 1;
S2 the ADHM datum A = (𝑊,𝑉0, 𝐵

0
1, 𝐵

0
2, 𝐼, 𝐽) is stable.

Proof. (𝒊) ⇒ (𝒊𝒊) This is obvious, as a Θ-stable representation is also Θ-semistable.
(𝒊𝒊) ⇒ (𝒊𝒊𝒊) Let us first take aΘ-semistable representation X having at least one of the 𝐹𝑖 not injective.

Without loss of generality, let 𝐹𝑘 be the only one to be such a map. Then 𝑣𝑘 ∈ ker 𝐹𝑘 ⇒ 𝐵𝑘2 𝑣𝑘 ∈ ker 𝐹𝑘 ,
due to the nested ADHM equations, and 𝐵𝑘2 (ker 𝐹𝑘 ) ⊂ ker 𝐹𝑘 (and similarly for 𝐵𝑘1 ). Now

�̃� = (0, . . . , 0, ker 𝐹𝑘 , 0, . . . , 0, 𝐵𝑘1 |ker𝐹 𝑘 , 𝐵𝑘2 |ker𝐹 𝑘 , 𝐹𝑘 , 0, . . . , 0)

is a subrepresentation of X of numerical type (0, . . . , 0, dim ker 𝐹𝑘 , 0, . . . , 0). Thus,

ñ · 𝜽 + 𝑟𝜃∞ = 𝜃𝑘 dim ker 𝐹𝑘 > 0,

which contradicts the hypothesis of X being Θ-semistable. Let then X be a Θ-semistable representation
satisfying S1. Let also 𝑆 ⊆ 𝑉0 be a 𝐵0

𝑖 -invariant subspace of𝑉0, 𝑖 = 1, 2, such that Im(𝐼) ⊆ 𝑆, and define
�̃�0 = 𝑆 and �̃�𝑖 = (𝐹1 ◦ · · · ◦ 𝐹𝑖)−1(𝑆). Then �̃� = (𝑊, �̃�0, �̃�1, . . . , �̃�𝑁 ), with the morphisms induced by
those of X, is a subrepresentation of X of numerical type (𝑟, dim 𝑆, dim �̃�1, . . . , dim �̃�𝑁 ). We have

dim �̃�𝑖 = dim(Im(𝐹1 ◦ · · · ◦ 𝐹𝑖) ∩ 𝑆) = 𝑛𝑖 + dim 𝑆 − dim(Im(𝐹1 ◦ · · · ◦ 𝐹𝑖) + 𝑆),

and by semistability,

n · 𝜽 = 𝑛0𝜃0 + · · · + 𝑛𝑁 𝜃𝑁 ≥ dim 𝑆𝜃0 +
𝑁∑
𝑘=1

(
𝑛𝑘 + dim 𝑆 − dim(Im(𝐹1 ◦ · · · ◦ 𝐹𝑘 ) + 𝑆)

)
𝜃𝑘 = ñ · 𝜽 ,

whence

𝑛0 (𝜃0 + · · · + 𝜃𝑁 ) ≥ 𝑛0𝜃0 +
𝑁∑
𝑘=1

dim(Im(𝐹1 ◦ · · · ◦ 𝐹𝑘 ) + 𝑆)𝜃𝑘 ≥ dim 𝑆(𝜃0 + · · · + 𝜃𝑁 ).

Since 𝜃0 + · · · + 𝜃𝑁 < 0, this implies 𝑛0 ≤ dim 𝑆; thus, 𝑆 = 𝑉0.
(𝒊𝒊𝒊) ⇒ (𝒊) If we take a proper subrepresentation �̃� of numerical type (𝑟, ñ), we just need to check

the cases 𝑟 = 0 and 𝑟 = 𝑟 .

◦ If 𝑟 = 𝑟 , then �̃� = 𝑊 , which, in turn, implies that 𝐼 ≠ 0; otherwise, the ADHM datum (𝐵0
1, 𝐵

0
2, 𝐼, 𝐽)

would not be stable. Since �̃� is proper, the following diagram commutes:

𝑊 𝑉0

𝑊 �̃�0

𝐼

1𝑊

𝐼

𝑖 ⇒ 𝑖 ◦ 𝐼 = 𝐼 ◦ 1𝑊 , (1.1.4)
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so that �̃�0 > 0; otherwise, we would have 𝐼 = 0. Moreover, the following diagram also commutes
(and so does the analogous one for 𝐵0

2):

𝑉0 𝑉0

�̃�0 �̃�0

𝐵0
1

𝑖

�̃�0
1

𝑖 ⇒ 𝑖 ◦ �̃�0
1 = 𝐵0

1 ◦ 𝑖 ⇒ 𝐵0
1 (�̃�0) ⊂ �̃�0, (1.1.5)

leading to a contradiction with the stability of (𝑊,𝑉0, 𝐵
0
1, 𝐵

0
2, 𝐼, 𝐽). Since we are interested in proper

subrepresentations of X, at least one �̃�𝑖>0 is not zero, and at least one of these nonzero �̃�𝑘 < 𝑛𝑘 , so
that 𝜽 · ñ + 𝜃∞𝑟 < 0, and X is stable.

◦ Let now 𝑟 = 0. Since we are interested in proper subrepresentations, we must choose �̃�0 > 0;
otherwise, �̃�𝑘>0 = 0 by virtue of the injectivity of 𝐹𝑘 . Similarly, one has �̃�𝑖 ≤ �̃�𝑖−1, so that

𝜽 · ñ =
𝑁∑
𝑘=0

𝜃𝑘 �̃�𝑘 ≤ �̃�0

𝑁∑
𝑘=0

𝜃𝑘 < 0,

and X is stable.

�

Corollary 1.3. If X is a stable representation of the nested instantons quiver (1.1.1) with relations
(1.1.3), 𝐺𝑘 = 0, ∀𝑘 .

Proof. By the previous proposition, due to the injectivity of 𝐹𝑘, 𝐹𝑘𝐺𝑘 = 0 ⇒ 𝐺𝑘 = 0. �

1.2. The nested instantons moduli space

We want now to discuss the construction of the moduli space of stable representations of the quiver
(1.1.1) and its connection to GIT theory and stability. First, recall that we defined the space X(𝑟, n) of
nested ADHM data as in Equation (1.1.2), and an element 𝑋 ∈ X(𝑟, n) is called a nested ADHM datum.
On X(𝑟, n), we have a natural action of G = GL(𝑉0) × · · · × GL(𝑉𝑁 ) defined by

Ψ : (𝑔0, 𝑔1, . . . , 𝑔𝑁 , 𝑋) ↦−→ (𝑔0𝐵
0
1𝑔

−1
0 , 𝑔0𝐵

0
2𝑔

−1
0 , 𝑔0𝐼, 𝐽𝑔

−1
0 ,

𝑔1𝐵
1
1𝑔

−1
1 , 𝑔1𝐵

1
2𝑔

−1
1 , 𝑔0𝐹

1𝑔−1
1 , 𝑔1𝐺

1𝑔−1
0 ,

. . .

𝑔𝑁 𝐵𝑁1 𝑔−1
𝑁 , 𝑔𝑁 𝐵𝑁2 𝑔−1

𝑁 , 𝑔𝑁−1𝐹
𝑁 𝑔−1

𝑁 , 𝑔𝑁𝐺𝑁 𝑔−1
𝑁−1).

(1.2.1)

Let now Xst (𝑟, n) be the open locus of Θ-stable representations in X(𝑟, n), where the stability chamber
is chosen as in Proposition 1.2. The G-action on X(𝑟, n) is free on the stable locus Xst (𝑟, n). Indeed, it
is known that the Θ-stable representations are exactly the simple objects in the category RepΘk (𝑄) of
k−linear Θ-semistable representations of a quiver Q, where we let k be an algebraically closed field.2
Then given a Θ-stable representation X, any 𝒈 ∈ G such that 𝒈 · 𝑋 = 𝑋 defines an endomorphism
in EndRepΘk (𝑄) (𝑋) of the simple object X. However, RepΘk (𝑄) is an abelian cateogry, and by Schur’s
lemma, EndRepΘk (𝑄) (𝑋) is a finite-dimensional division k-algebra for any simple object X. Hence,
EndRepΘk (𝑄) (𝑋) � k. Thus, we must have 𝒈 = 𝜆1G , for 𝜆 ∈ k, and the only such 𝒈 ∈ G fixing X
corresponds to 𝜆 = 1. Also, it is easy to prove that the G-action preserves the space X0(𝑟, n) of nested
ADHM data satisfying the relations (1.1.3).

2Strictly speaking, this is true for representations of an unframed quiver Q. However, the statement readily generalizes to the
framed case as well, thanks to [46, Prop. 3.3], for example.
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Now if 𝜒 : G → C∗ is an algebraic character for the algebraic reductive group G, we can produce
the moduli space of 𝜒-semistable orbits following a construction due to [33], N 𝑠𝑠

𝜒 (𝑟, n), which is a
quasi-projective scheme over C and is defined as

N 𝑠𝑠
𝜒 (𝑟, n) = X0 (𝑟, n)//𝜒G = Proj

(⊕
𝑛≥0

𝐴(X0 (𝑟, n))G,𝜒𝑛

)
with 𝐴(X0 (𝑟, n))G,𝜒𝑛 the space of polynomials in the coordinate ring 𝐴(X0 (𝑟, n)) satisfying

𝐴(X0 (𝑟, n))G,𝜒𝑛
= { 𝑓 ∈ 𝐴(X0 (𝑟, n)) | 𝑓 (𝒉 · 𝑋) = 𝜒(𝒉)𝑛 𝑓 (𝑋),∀𝒉 ∈ G}.

The scheme N 𝑠𝑠
𝜒 (𝑟, n) contains an open subscheme N 𝑠

𝜒 (𝑟, n) ⊂ N 𝑠𝑠
𝜒 (𝑟, n) encoding 𝜒-stable orbits.

As in [33], it turns out that the notions of 𝜒-stability and of Θ-stability are closely related.

Proposition 1.4. Let Θ = (𝜃0, 𝜃1, . . . , 𝜃𝑁 , 𝜃∞) ∈ Z𝑁+2 and define 𝜒Θ : G → C∗ the character

𝜒Θ(𝒉) = det(ℎ0)−𝜃0 · · · det(ℎ𝑁 )−𝜃𝑁 . (1.2.2)

A representation X of the nested ADHM quiver (1.1.1) is 𝜒Θ-(semi)stable iff it is Θ-(semi)stable.

Since the proof for Proposition 1.4 deeply relies on some known results about equivalent characteri-
zations of 𝜒-stability, we will first recall them. In full generality, let V be a vector space over C equipped
with the action of a connected subgroup G of 𝑈 (𝑉), whose complexification is denoted by 𝐺C. Then if
𝜒 : 𝐺 → 𝑈 (1) is a character of G, we can extend it to form its complexification 𝜒 : 𝐺C → C∗. We then
form the trivial line bundle 𝑉 × C, which carries an action of 𝐺C via 𝜒:

𝑔 · (𝑥, 𝑧) = (𝑔 · 𝑥, 𝜒(𝑔)−1𝑧), 𝑔 ∈ 𝐺, (𝑥, 𝑧) ∈ 𝑉 × C.

Definition 1.5. An element 𝑥 ∈ 𝑉 is

1. 𝜒-semistable if there exists a polynomial 𝑓 ∈ 𝐴(𝑉)𝐺C ,𝜒𝑛 , with 𝑛 ≥ 1 such that 𝑓 (𝑥) ≠ 0;
2. 𝜒-stable if it satisfies the previous condition and if

(a) dim(𝐺C · 𝑥) = dim(𝐺C/Δ), where Δ ⊆ 𝐺C is the subgroup of 𝐺C acting trivially on V;
(b) the action of 𝐺C on {𝑥 ∈ 𝑉 : 𝑓 (𝑥) ≠ 0} is closed.

Given the previous definition, the next lemma due to King [33] gives an alternative characterization
of 𝜒-(semi)stable points under the 𝐺C-action.

Lemma 1.6 (Lemma 2.2 and Proposition 2.5 in [33]). Given the character 𝜒 : 𝐺C → C∗ for the action
of 𝐺C on the vector space V, and the lift of this action to the trivial line bundle 𝑉 × C, a point 𝑥 ∈ 𝑉 is

1. 𝜒-semistable iff 𝐺C · (𝑥, 𝑧) ∩ (𝑉 × {0}) = ∅, for any 𝑧 ≠ 0;
2. 𝜒-stable iff 𝐺C · (𝑥, 𝑧) is closed and the stabilizer of (𝑥, 𝑧) contains Δ with finite index.

Equivalently, a point 𝑥 ∈ 𝑉 is

1. 𝜒-semistable iff 𝜒(Δ) = {1} and 𝜒(𝜆) ≥ 0 for any 1-parameter subgroup 𝜆(𝑡) ⊆ 𝐺C for which
lim𝑡→0 𝜆(𝑡) · 𝑥 exists;

2. 𝜒-stable iff the only 𝜆(𝑡) such that lim𝑡→0 𝜆(𝑡) · 𝑥 exists and 𝜒(𝜆) = 0 are in Δ .

With these notations, if 𝑉 ss (𝜒) denotes the set of 𝜒-semistable points of V, 𝑉//𝜒𝐺C can be identified
with 𝑉 ss (𝜒)/∼, where 𝑥 ∼ 𝑦 in 𝑉 ss (𝜒) iff 𝐺C · 𝑥 ∩ 𝐺C · 𝑦 ≠ ∅ in 𝑉 ss (𝜒).
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Proof of Prop. 1.4. Notice first that Δ = {1G}, as the G-action on the open dense Xst (𝑟, n) ⊂ X(𝑟, n) is
free; thus, the G-action on X(𝑟, n) is effective.

Take a 𝜃-semistable representation 𝑋 ∈ Xst (𝑟, n) and assume it does not satisfy 𝜒𝜃 -semistability. Then
there exists a 1-parameter subgroup 𝜆(𝑡) of G such that lim𝑡→0 𝜆(𝑡) · 𝑋 exists and 𝜒(𝜆) < 0. However,
each such 1-parameter subgroup 𝜆 determines a filtration · · · ⊇ 𝑋𝑛 ⊇ 𝑋𝑛+1 ⊇ · · · of subrepresentations
of X ([33]), and

𝜒𝜃 (𝜆) = −
∑
𝑛∈Z

𝜃 (𝑋𝑛) ≥ 0, (1.2.3)

thus proving one side of the proposition, as the part concerning stability is obvious from the fact that
trivial subrepresentations of X correspond to subgroups in Δ .

Conversely, if X is a 𝜒𝜃 -semistable representation, we want to show that it is also a 𝜃-semistable one.
We only need to consider two cases, corresponding to subrepresentations �̃� of X with 𝑟 = 𝑟 or 𝑟 = 0.
Each vector space in X, say 𝑉𝑖 , will have then a direct sum decomposition 𝑉𝑖 = 𝑉𝑖 ⊕ 𝑉𝑖 . We will then
take a 1-parameter subgroup 𝜆(𝑡) such that

𝜆𝑖 (𝑡) =
[
𝑡1𝑉𝑖

0
0 1𝑉𝑖

]
. (1.2.4)

Then one can easily compute

𝜒𝜃 (𝜆(𝑡)) · 𝑧 =
[
det(𝜆0(𝑡))−𝜃0 · · · det(𝜆𝑁 (𝑡))−𝜃𝑁

]−1 · 𝑧
= 𝑡ñ·𝜽𝑧.

(1.2.5)

It is then a matter of a simple computation to verify that if X was not 𝜃-semistable, then one would
have had lim𝑡→0 𝜆(𝑡) · 𝑋 ∈ X × {0}, thus contradicting the 𝜒𝜃 -semistability. A completely analogous
computation can be carried over when 𝑟 = 𝑟 , taking

𝜆0(𝑡) =
[
1𝑉0

0
0 𝑡−11𝑉0

]
, 𝜆𝑖 (𝑡) =

[
1𝑉𝑖

0
0 𝑡−11𝑉𝑖

]
, 𝑖 > 0, (1.2.6)

and since (ñ− n) · 𝜽 > 0 if X is supposed not to be 𝜃-semistable, this would still lead to a contradiction.
Finally, if X was to be 𝜒𝜃 -stable but not 𝜃-stable, the 1-parameter subgroups previously described

would have stabilized the pair (𝑋, 𝑧), 𝑧 ≠ 0, in the two different cases 𝑟 = 0 and 𝑟 = 𝑟 , respectively, thus
again giving rise to a contradiction. �

Corollary 1.7. Given a representation X of the nested instantons quiver (1.1.1) with relations (1.1.3)
of numerical type (𝑟, n), there exists a chamber in Q𝑁+2 	 (𝜽 , 𝜃∞) = Θ in which 𝜃𝑖>0 > 0 and
𝜃0 + 𝜃1 + · · · + 𝜃𝑁 < 0 such that the following are equivalent:

1. X is Θ-semistable;
2. X is Θ-stable;
3. X is 𝜒Θ-semistable;
4. X is 𝜒Θ-stable;
5. X satisfies S1 and S2 in Proposition 1.2.

Because of the previous corollary, in the stability chamber defined by Proposition 1.2, all notions of
stability are actually the same, so that a representation satisfying anyone of the conditions in Corollary
1.7 will be called stable, and the corresponding N 𝑠𝑠

𝜒Θ (𝑟, n) = N (𝑟, n) will be referred to as the moduli
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space of stable representations of quiver (1.1.1) with relations (1.1.3) or, equivalently, as the moduli
space of nested instantons. Altogether, the previous considerations prove the following theorem.3

Theorem 1.8. The moduli space N (𝑟, n) of stable representation of the nested instantons quiver of
numerical type (𝑟, n) is a quasi-projective variety equipped with a perfect obstruction theory, and it has
virtual dimension (2𝑛0 − 𝑛1)𝑟 .

Proof. We need to construct a perfect obstruction theory onN (𝑟, n). To this end, letY(𝑟, n) be the affine
space of representations of the quiver obtained from (1.1.1) by neglecting all the 𝐺𝑖 ∈ Hom(𝑉𝑖−1, 𝑉𝑖).
Consider Θ = (𝜽 , 𝜃∞) ∈ Q𝑁+2 as in Proposition 1.2, and let Yst (𝑟, n) ⊂ Y(𝑟, n) be the open locus of
Θ-stable points in Y(𝑟, n). Similarly to X(𝑟, n), on Y(𝑟, n), there is a natural G-action, which is free on
the stable locus Yst (𝑟, n). Thus, the GIT quotient Y(𝑟, n)//𝜒ΘG, with 𝜒Θ defined as in Proposition 1.4,
exists as a smooth quasi-projective variety, which we will denote by Y (𝑟, n). The moduli space of nested
instantons N (𝑟, n) is then the closed subscheme of Y (𝑟, n) cut by the nested ADHM equations (1.1.3),
neglecting 𝐺𝑖 . We claim that there exists a vector bundle E over a smooth subvariety A of Y (𝑟, n),
together with a section 𝜎 ∈ 𝐻0 (A, E), such that N (𝑟, n) is isomorphic to the zero scheme 𝑍 (𝜎):

E

N (𝑟, n) � 𝑍 (𝜎) A.

𝜎 (1.2.7)

This induces a perfect obstruction theory on N (𝑟, n) à la Behrend-Fantechi ([3]) – that is, a perfect
complex E ∈ D[−1,0] (𝑍 (𝜎)), together with a morphism in the derived category

E
[
E∗ |𝑍 (𝜎) ΩA |𝑍 (𝜎)

]
L𝑍 (𝜎)

[ (
I/I2) ΩA |𝑍 (𝜎)

]𝜙

=
(d𝜎)∗

= d

where L𝑍 (𝜎) is the truncation 𝜏≥−1𝐿•
𝑍 (𝜎) of Illusie’s cotangent complex 𝐿•

𝑍 (𝜎) ∈ D[−∞,0] (𝑍 (𝜎))
([32]), and I ⊂ OA is the ideal sheaf of the inclusion 𝑍 (𝜎) ↩→ A. In what follows, we will show how
such a vector bundle E −→ A is constructed.

On Y(𝑟, n), we introduce the vector bundles 𝐶𝑖 , 𝑖 = 0, . . . , 3, defined as

𝐶0 =
𝑁⊕
𝑖=0

End(𝑉𝑖),

𝐶1 = End(𝑉0)⊕2 ⊕ Hom(𝑊,𝑉0) ⊕ Hom(𝑉0,𝑊) ⊕
[
𝑁⊕
𝑖=1

(
End(𝑉𝑖)⊕2 ⊕ Hom(𝑉𝑖 , 𝑉𝑖−1

)]
� 𝑇Y(𝑟 ,n) ,

𝐶2 = End(𝑉0) ⊕ Hom(𝑉1,𝑊) ⊕
[
𝑁⊕
𝑖=1

(
Hom(𝑉𝑖 , 𝑉𝑖−1)⊕2 ⊕ End(𝑉𝑖)

)]
,

𝐶3 =
𝑁⊕
𝑖=1

Hom(𝑉𝑖 , 𝑉𝑖−1).

3We thank Valeriano Lanza for pointing out to us a correction to the original proof for the two-nodes quiver found in [54]. A
more refined analysis and a correct version of the original proof can be found in [55].
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Each vector bundle 𝐶𝑖 , 𝑖 = 0, . . . , 3 carries a natural equivariant structure under the G-action onY(𝑟, n),
so they restrict to the stable locus Yst (𝑟, n) and then descend to vector bundles C𝑖 on Y (𝑟, n) under the
quotient map Yst (𝑟, n) 𝜋−→ Y (𝑟, n).

On Y(𝑟, n), we also have vector bundle homomorphisms 𝑑𝑖 : 𝐶𝑖 → 𝐶𝑖+1, 𝑖 = 0, 1, 2, defined along
the fibres as

𝑑0
������
ℎ0
ℎ1
...

ℎ𝑁

������
=

��������������

[ℎ0, 𝐵
0
1]

[ℎ0, 𝐵
0
2]

ℎ0𝐼
−𝐽ℎ0

[ℎ1, 𝐵
1
1]

[ℎ1, 𝐵
1
2]

ℎ0𝐹
1 − 𝐹1ℎ1

...

��������������
, 𝑑1

��������������

𝑏0
1

𝑏0
2
𝑖
𝑗
𝑏1

1
𝑏1

2
𝑓 1

...

��������������
=

����������������

[𝑏0
1, 𝐵

0
2] + [𝐵0

1, 𝑏
0
2] + 𝑖𝐽 + 𝐼 𝑗

𝑗𝐹1 + 𝐽 𝑓 1

𝐵0
1 𝑓

1 + 𝑏0
1𝐹

1 − 𝐹1𝑏1
1 − 𝑓 1𝐵1

1
𝐵0

2 𝑓
1 + 𝑏0

2𝐹
1 − 𝐹1𝑏1

2 − 𝑓 1𝐵1
2

[𝑏1
1, 𝐵

1
2] + [𝐵1

1, 𝑏
1
2]

...
𝐵𝑁−1

1 𝑓 𝑁 + 𝑏𝑁−1
1 𝐹𝑁 − 𝐹𝑁 𝑏𝑁1 − 𝑓 𝑁 𝐵𝑁1

𝐵𝑁−1
2 𝑓 𝑁 + 𝑏𝑁−1

2 𝐹𝑁 − 𝐹𝑁 𝑏𝑁2 − 𝑓 𝑁 𝐵𝑁2
[𝑏𝑁1 , 𝐵𝑁2 ] + [𝐵𝑁1 , 𝑏𝑁2 ]

����������������
,

𝑑2

��������

𝑐1
𝑐2
𝑐3
...

𝑐3𝑁+2

��������
=

���������

𝑐1𝐹
1 + 𝐵0

2𝑐3 − 𝑐3𝐵
1
2 + 𝑐4𝐵

1
1 − 𝐵0

1𝑐4 − 𝐼𝑐2 − 𝐹1𝑐5
𝑐5𝐹

2 + 𝐵1
2𝑐6 − 𝑐6𝐵

2
2 + 𝑐7𝐵

2
1 − 𝐵1

1𝑐7 − 𝐹2𝑐8
...

𝑐3𝑖−1𝐹
𝑖 + 𝐵𝑖−1

2 𝑐3𝑖 − 𝑐3𝑖𝐵
𝑖
2 + 𝑐3𝑖+1𝐵

𝑖
1 − 𝐵𝑖−1

1 𝑐3𝑖+1 − 𝐹𝑖𝑐3𝑖+2
...

���������
.

Altogether, the datum of the vector bundles 𝐶𝑖 , 𝑖 = 0, . . . , 3, and of the bundle homomorphisms 𝑑 𝑗 ,
𝑗 = 0, 1, 2, descends to the datum of vector bundles C𝑖 , 𝑖 = 0, . . . , 3, and bundle homomorphisms
𝛿 𝑗 : C𝑖 → C𝑖+1, 𝑗 = 0, 1, 2 over Y (𝑟, n). Let us point out that when restricted to N (𝑟, n), the couple
(C•, 𝛿•) forms a complex of vector bundles over N (𝑟, n), which we claim to have vanishing cohomology
in degrees 0 and 3. Let C𝐴, C𝐵 and C𝐴,𝐵 be the following auxiliary complexes of vector bundles over
N (𝑟, n):4

C𝐴 :

End(𝑉0)⊕2

⊕
End(𝑉0) Hom(𝑊,𝑉0) End(𝑉0),

⊕
Hom(𝑉0,𝑊)

𝛿0
𝐴 𝛿1

𝐴

with

𝛿0
𝐴(ℎ0) =

�����
[ℎ0, 𝐵

0
1]

[ℎ0, 𝐵
0
2]

ℎ0𝐼
−𝐽ℎ0

�����, 𝛿1
𝐴

�����
𝑏0

1
𝑏0

2
𝑖
𝑗

����� = [𝑏0
1, 𝐵

0
2] + [𝐵0

1, 𝑏
0
2] + 𝐼 𝑗 + 𝑖𝐽;

C𝐵 :
⊕𝑁

𝑖=1 End(𝑉𝑖)
⊕𝑁

𝑖=1 End(𝑉𝑖)⊕2 ⊕𝑁
𝑖=1 End(𝑉𝑖),

𝛿0
𝐵 𝛿1

𝐵

4As for (C• , 𝛿•) , these complexes are introduced by defining bundles and maps over Y(𝑟 , n) , restricting to the stable locus,
descending to the quotient and finally restricting the moduli space.
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with

𝛿0
𝐵

����
ℎ1
...

ℎ𝑁

���� =
��������

[ℎ1, 𝐵
1
1]

[ℎ1, 𝐵
1
2]

...
[ℎ𝑁 , 𝐵𝑁1 ]
[ℎ𝑁 , 𝐵𝑁2 ]

��������
, 𝛿1

𝐵

��������

𝑏1
1

𝑏1
2
...

𝑏𝑁1
𝑏𝑁2

��������
=
����

[𝑏1
1, 𝐵

1
2] + [𝐵1

1, 𝑏
1
2]

...
[𝑏𝑁1 , 𝐵𝑁2 ] + [𝐵𝑁1 , 𝑏𝑁2 ]

����;

C𝐴,𝐵 :

⊕𝑁
𝑖=1 Hom(𝑉𝑖 , 𝑉𝑖−1)⊕2⊕𝑁

𝑖=1 Hom(𝑉𝑖 , 𝑉𝑖−1) ⊕
⊕𝑁

𝑖=1 Hom(𝑉𝑖 , 𝑉𝑖−1),
Hom(𝑉1,𝑊)

𝛿0
𝐴,𝐵 𝛿1

𝐴,𝐵

with

𝛿0
𝐴,𝐵

����
𝑓 1

...
𝑓 𝑁

���� =
����������

−𝐵0
1 𝑓 1 + 𝑓 1𝐵1

1
−𝐵0

2 𝑓 1 + 𝑓 1𝐵1
2

...
−𝐵𝑁−1

1 𝑓 𝑁 + 𝑓 𝑁 𝐵𝑁1
−𝐵𝑁−1

2 𝑓 𝑁 + 𝑓 𝑁 𝐵𝑁2
−𝐽 𝑓 1

����������
,

𝛿1
𝐴,𝐵

������
𝑐3
...

𝑐2𝑁+2
𝑐2

������
=

������
−𝐵0

2𝑐3 + 𝑐3𝐵
1
2 − 𝑐4𝐵

1
1 + 𝐵0

1𝑐4 + 𝐼𝑐2
−𝐵1

2𝑐5 + 𝑐5𝐵
2
2 − 𝑐6𝐵

2
1 + 𝐵1

1𝑐6
...

−𝐵𝑁−1
2 𝑐2𝑁+1 + 𝑐2𝑁+1𝐵

𝑁
2 − 𝑐2𝑁+2𝐵

𝑁
1 + 𝐵𝑁−1

1 𝑐2𝑁+2

������
.

It is then readily verified that there exists a distinguished triangle

C C𝐴 ⊕ C𝐵 C𝐴,𝐵
𝜌

, (1.2.8)

coming from the fact that C [1] is a cone for 𝜌 = (𝜌0, 𝜌1, 𝜌2), where

𝜌0
����
ℎ0
...

ℎ𝑁

���� =
����

−ℎ0𝐹
1 + 𝐹1ℎ1
...

−ℎ𝑁−1𝐹
𝑁 + 𝐹𝑁 ℎ𝑁

����, (1.2.9a)

𝜌1

������������

𝑏0
1

𝑏0
2
𝑖
𝑗
𝑏1

1
𝑏1

2
...

������������
=

����������

−𝑏0
1𝐹

1 + 𝐹1𝑏1
1

−𝑏0
2𝐹

1 + 𝐹1𝑏1
2

...
−𝑏𝑁−1

1 𝐹𝑁 + 𝐹𝑁 𝑏𝑁1
−𝑏𝑁−1

2 𝐹𝑁 + 𝐹𝑁 𝑏𝑁2
− 𝑗𝐹1

����������
, (1.2.9b)
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𝜌2

������
𝑐1

𝑐2𝑁+3
...

𝑐3𝑁+3

������
=
����

−𝑐1𝐹
1 + 𝐹1𝑐2𝑁+3

...
−𝑐3𝑁+2𝐹

𝑁 + 𝐹𝑁 𝑐3𝑁+3

����. (1.2.9c)

From the triangle (1.2.8), one gets a long exact sequence in cohomology

0 𝐻0(C) 𝐻0(C𝐴 ⊕ C𝐵) 𝐻0(C𝐴,𝐵)

𝐻1(C) 𝐻1(C𝐴 ⊕ C𝐵) 𝐻1(C𝐴,𝐵)

𝐻2(C) 𝐻2(C𝐴 ⊕ C𝐵) 𝐻2(C𝐴,𝐵) 𝐻3(C) 0,

𝐻 0 (𝜌)

𝐻 1 (𝜌)

𝐻 2 (𝜌)

and since C𝐴 is simply the deformation complex of the standard ADHM quiver, it is well known that
𝐻0 (C𝐴) = 𝐻2 (C𝐴) = 0, [43]. Then 𝐻0(C) = 0 by the injectivity of 𝐻0(𝜌) : 𝐻0(C𝐵) → 𝐻0(C𝐴,𝐵). In
fact, we have

𝐻0 (𝜌)
����
ℎ1
...

ℎ𝑁

���� = 0 ⇒
����
𝐹1ℎ1

...
𝐹𝑁 ℎ𝑁

���� = 0 ⇒
����
ℎ1
...

ℎ𝑁

���� = 0

since 𝐹𝑖 is injective. Moreover, the map 𝛿1
𝐴,𝐵 : C1

𝐴,𝐵 → C2
𝐴,𝐵 is surjective: this, in turn, means that

𝐻2 (C𝐴,𝐵) = 0, which implies 𝐻3 (C) = 0. Indeed, let us consider (𝛿1
𝐴,𝐵)

∨. One has

(𝛿1
𝐴,𝐵)

∨(𝝓) = (𝛿1
𝐴,𝐵)

∨����
𝜙1
...

𝜙𝑁

���� =
����������

𝐵1
2𝜙1 − 𝜙1𝐵

0
2

−𝐵1
1𝜙1 + 𝜙1𝐵

1
1

...
𝐵𝑁2 𝜙𝑁 − 𝜙𝑁 𝐵𝑁−1

2
−𝐵𝑁1 𝜙𝑁 + 𝜙𝑁 𝐵𝑁−1

1
𝜙1𝐼

����������
,

and if 𝝓 ∈ ker((𝛿1
𝐴,𝐵)

∨), then ker(𝜙1) would be a (𝐵0
1, 𝐵

0
2)-invariant subset of 𝑉0 containing Im(𝐼),

which contradicts the stability of X, by which we conclude that ker(𝜙1) = 𝑉0. Similar statements also
hold true for each other component of 𝝓, which we then conclude to be 𝝓 = 0.

Let now s be the section 𝑠 ∈ 𝐻0(Y(𝑟, n), 𝐶2) cutting via its zero locus 𝑍 (𝑠) ⊂ Y(𝑟, n) the solutions
to the nested ADHM equations (1.1.3) (neglecting 𝐺𝑖) in Y(𝑟, n) – that is,

𝑠(𝑋) =
(
[𝐵0

1, 𝐵
0
2] + 𝐼𝐽

)
⊕ 𝐽𝐹1 ⊕

𝑁⊕
𝑖=1

((
𝐹𝑖𝐵𝑖1 − 𝐵𝑖−1

1 𝐹𝑖
)
⊕
(
𝐹𝑖𝐵𝑖2 − 𝐵𝑖−1

2 𝐹𝑖
)
⊕ [𝐵𝑖1, 𝐵

𝑖
2]
)
.

As s is naturally G-equivariant, it also restricts to the stable locus and descends to a section 𝜎 ∈
𝐻0 (Y (𝑟, n), C2). It is easily checked that 𝑑2 ◦ 𝑠 = 0, so 𝑠(Y(𝑟, n)) ⊆ ker(𝐶2 𝑑2

−−→ 𝐶3). Let now
𝐴 ⊂ Yst (𝑟, n) be the open subscheme of Yst (𝑟, n) where 𝑑2 is surjective, and whose image under the

quotient map is A ⊆ Y (𝑟, n). Then ker(𝐶2 |𝐴
𝑑2

−−→ 𝐶3 |𝐴) is a G-equivariant vector bundle 𝐸 −→ 𝐴,
which descends to a vector bundle E −→ A. Also, 𝑠 |𝐴 ∈ 𝐻0 (𝐴, 𝐸) is a G-equivariant section, inducing
a section 𝜎 ∈ 𝐻0(A, E). The moduli space of nested instantons is then constructed as the zero scheme
𝑍 (𝜎) ⊂ A. Indeed, as 𝛿2 is surjective over N (𝑟, n), we have N (𝑟, n) ⊂ A. Moreover, as the section
𝜎 ∈ 𝐻0(A, C2) factors through a section of the subbundle E −→ A, then 𝑍 (𝑠) and N (𝑟, n) define the
same closed subscheme of A.
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Thus, we are precisely in the situation of diagram (1.2.7), and N (𝑟, n) � 𝑍 (𝜎) is naturally equipped
with a perfect obstruction theory of rank vd = rkE = (2𝑛0 − 𝑛1)𝑟 , whose virtual tangent complex is

E∨ =
[
𝑇A |N (𝑟 ,n)

d𝜎−−→ E |N (𝑟 ,n)

]
∈ D[−1,0] (N (𝑟, n)).

In particular, retracing all the steps we have discussed so far, we can see that the K-theory class of the
virtual tangent space over a point 𝑋 ∈ N (𝑟, n) attached to the perfect obstruction theory E is

𝑇vir
N (𝑟 ,n)

���
𝑋
= 𝐻1 (C• |𝑋 ) − 𝐻2(C• |𝑋 ) ∈ 𝐾0(pt).

�

Remark 1.9. With the notation introduced in the proof of Theorem 1.8, the moduli space of nested
instantons N (𝑟, n) is also equipped with another perfect obstruction theory, induced by the vector
bundle 𝐶2 −→ Y(𝑟, n), together with the section 𝑠 ∈ 𝐻0 (Y(𝑟, n), 𝐶2). Indeed, after restriction to the
stable locus, the couple (𝐶2, 𝑠) descends to a vector bundle and a section (C2, 𝜎) over Y (𝑟, n), and
N (𝑟, n) � 𝑍 (𝜎) ⊂ Y (𝑟, n). Then, N (𝑟, n) is equipped with a second perfect obstruction theory Ẽ,
whose tangent complex is Ẽ∨ = [𝑇Y (𝑟 ,n) |N (𝑟 ,n)

d𝜎−−→ C2 |N (𝑟 ,n) ]. However, the rank of Ẽ is

rk Ẽ = (2𝑛0 − 𝑛1)𝑟 −
𝑁∑
𝑖=1

𝑛𝑖𝑛𝑖−1,

which might become negative (e.g., this is the case for 𝑟 = 1, 𝑛0 ≥ 3, 𝑛1 = 𝑛0 − 1). This is due
to the relations (1.1.3) being overdetermined, as they are not independent. Thus, in Theorem 1.8,
we constructed a ‘reduced’ perfect obstruction theory, which automatically takes into account the
dependency of the equations cutting the moduli space of nested instantons by exploiting the fact that

𝑠(Y(𝑟, n)) ⊆ ker(𝐶2 𝑑2

−−→ 𝐶3).

For future reference, we want now to exhibit some morphisms between different nested instan-
tons moduli spaces and between them and usual moduli spaces of instantons, which are mod-
uli spaces of framed torsion-free sheaves on P2. We obviously have iterative forgetting projections
𝜂𝑖 : N (𝑟, 𝑛0, . . . , 𝑛𝑖) → N (𝑟, 𝑛0, . . . , 𝑛𝑖−1). Moreover, we also have other morphisms to underlying
moduli spaces of framed torsion-free sheaves on P2, which are summarized by the commutative diagram
in Figure 3.

In order to see that these maps do indeed exist, take a stable representation [𝑋] of the nested instantons
quiver. The fact that [𝑋] is stable implies that the morphisms 𝐹𝑖 are injective, so that we can construct
the stable ADHM datum (𝑊, �̃�𝑖 , �̃�

𝑖
1, �̃�

𝑖
2, 𝐼

𝑖 , 𝐽𝑖) as follows. Let �̃�𝑖 be 𝑉0/Im(𝐹1 · · · 𝐹𝑖) and choose a
basis of 𝑉𝑖 in such a way that

𝐹1 · · · 𝐹𝑖 =
(
1𝑉𝑖

0

)
, 𝐹1 ◦ 𝐹2 ◦ · · · ◦ 𝐹𝑖 : 𝑉𝑖 → 𝑉0, (1.2.10)

whence 𝑉0 = 𝑉𝑖 ⊕ �̃�𝑖 . Then define the projections 𝜋𝑖 = 𝑉0 → 𝑉𝑖 and �̃�𝑖 : 𝑉0 → �̃�𝑖 as 𝜋𝑖 (𝑣, �̃�) = 𝑣
and �̃�𝑖 (𝑣, �̃�) = �̃�, with 𝑣 ∈ 𝑉𝑖 , �̃� ∈ �̃�𝑖 . We can then show how �̃�𝑖 inherits an ADHM structure by its
embedding in 𝑉0. Indeed, if we define �̃�𝑖1 = 𝐵0

1 |�̃�𝑖
, �̃�𝑖2 = 𝐵0

2 |�̃�𝑖
, 𝐼 𝑖 = �̃�𝑖 ◦ 𝐼 and 𝐽𝑖 = 𝐽 |�̃�𝑖

, the datum
(𝑊, �̃�𝑖 , �̃�

𝑖
1, �̃�

𝑖
2, 𝐼

𝑖 , 𝐽𝑖) satisfies the ADHM Equation (1.2.11):

[�̃�𝑖1, �̃�
𝑖
2] + 𝐼 𝑖𝐽𝑖 = [𝐵0

1 |�̃�𝑖
, 𝐵0

2 |�̃�𝑖
] + �̃�𝑖 ◦ 𝐼 ◦ 𝐽 |�̃�𝑖

=

( [
𝐵0

1, 𝐵
0
2
]
+ 𝐼𝐽

)����
�̃�𝑖

= 0. (1.2.11)
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𝜂𝑁,𝑖
𝔭 (𝑁 )
𝑖

N (𝑟, 𝑛0, . . . , 𝑛𝑁 ) M(𝑟, 𝑛0 − 𝑛𝑁 )

N (𝑟, 𝑛0, . . . , 𝑛𝑁−1)N (𝑟, 𝑛0, . . . , 𝑛𝑁−1) M(𝑟, 𝑛0 − 𝑛𝑁−1)M(𝑟, 𝑛0 − 𝑛𝑁−1)

...
...

N (𝑟, 𝑛0, . . . , 𝑛𝑖) M(𝑟, 𝑛0 − 𝑛𝑖)

...
...

𝜂𝑁

𝔭 (𝑁 )
𝑁

𝔭 (𝑁 )
𝑁−1 �̃�𝑁−1

Figure 3. Morphisms between moduli spaces of sheaves.

This new ADHM datum is moreover stable, as if it would exist 0 ⊂ 𝑆𝑖 ⊂ �̃�𝑖 such that
�̃�𝑖1,2 (𝑆𝑖), 𝐼

𝑖 (𝑊) ⊂ 𝑆𝑖 it would imply that also the ADHM datum (𝑊,𝑉0, 𝐵
0
1, 𝐵

0
2, 𝐼, 𝐽) would not

be stable. In fact, in that case, we could take 0 ⊂ 𝑉𝑖 ⊕ 𝑆𝑖 ⊂ 𝑉0, and it would be such that
𝐵0

1 (𝑉𝑖⊕𝑆𝑖), 𝐵0
2 (𝑉𝑖⊕𝑆𝑖), 𝐼 (𝑊) ⊂ 𝑉𝑖⊕𝑆𝑖 . In fact, if we take any (𝑣, 𝑠) ∈ 𝑉𝑖⊕𝑆𝑖 , it happens that 𝐵0

1 (𝑣, 𝑠) =
(𝐵0

1 |𝑉𝑖 (𝑣), 𝐵0
1 |�̃�𝑖

𝑠) = (𝐵0
1 |𝑉𝑖 , �̃�

𝑖
1 (𝑠)) ∈ 𝑉𝑖 ⊕ 𝑆𝑖 , 𝐵0

2 (𝑣, 𝑠) = (𝐵0
2 |𝑉𝑖 (𝑣), 𝐵0

2 |�̃�𝑖
𝑠) = (𝐵0

2 |𝑉𝑖 , �̃�
𝑖
2(𝑠)) ∈ 𝑉𝑖 ⊕ 𝑆𝑖

and 𝐼 (𝑊) = 𝐼 (𝑊) ∩ 𝑉𝑖 ⊕ 𝐼 (𝑊) ∩ �̃�𝑖 = (𝜋𝑖 ◦ 𝐼) (𝑊) ⊕ (�̃�𝑖 ◦ 𝐼) (𝑊) ⊂ 𝑉𝑖 ⊕ 𝑆𝑖 . Thus, we constructed a
map 𝔭 (𝑁 )

𝑖 : N (𝑟, 𝑛0, . . . , 𝑛𝑁 ) → M(𝑟, 𝑛0 − 𝑛𝑖).

1.3. Nakajima quiver varieties

In this section, we exhibit an embedding of the moduli space of nested instantons into a Nakajima quiver
variety, which is a smooth hyperkähler variety; [41, 42, 22]. In the vector spaceX(𝑟, n) of representations
of quiver (1.1.1) of numerical type (𝑟, n), which, we recall, is defined as

X(𝑟, n) = End(𝑉0)⊕2 ⊕ Hom(𝑊,𝑉0) ⊕ Hom(𝑉0,𝑊) ⊕
𝑁⊕
𝑘=1

[
End(𝑉𝑘 )⊕2

⊕ Hom(𝑉𝑘−1, 𝑉𝑘 ) ⊕ Hom(𝑉𝑘 , 𝑉𝑘−1)],
(1.3.1)

we will introduce a family of relations:

[𝐵0
1, 𝐵

0
2] + 𝐼𝐽 + 𝐹1𝐺1 = 0, (1.3.2)

[𝐵𝑖1, 𝐵
𝑖
2] − 𝐺𝑖𝐹𝑖 + 𝐹𝑖+1𝐺𝑖+1 = 0, 𝑖 = 1, . . . , 𝑁. (1.3.3)

Then a point 𝑋 ∈ X(𝑟, n) is called stable if it satisfies conditions S1 and S2 in Proposition 1.2. With
these conventions, we will define M(𝑟, n) to be the space of stable elements of X(𝑟, n) satisfying the
relations (1.3.2)–(1.3.3):

M(𝑟, n) = {𝑋 ∈ X(𝑟, n) : 𝑋 is stable and satisfies (1.3.2), (1.3.3)}. (1.3.4)
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Exactly in the same way as we did before, we can easily see that there is a natural action of G =
GL(𝑉0) × · · · × GL(𝑉𝑁 ) which is free on M(𝑟, n) and preserves the equations 1.3.2–1.3.3: the same
is then true for the natural U -action on M(𝑟, n), with U = 𝑈 (𝑉0) × · · · × 𝑈 (𝑉𝑁 ). Thus, a moduli
space M(𝑟, n) of stable U -orbits in M(𝑟, n) can be defined by means of GIT theory, as was the case
for N (𝑟, n) in the previous sections. Moreover, any stable point of X satisfying the nested ADHM
equations automatically satisfies (1.3.2) and (1.3.3). Indeed, a stable representation of quiver (1.1.1)
satisfies, among other relations, the equations

[𝐵0
1, 𝐵

0
2] + 𝐼𝐽 = 0, [𝐵𝑖>0

1 , 𝐵𝑖>0
2 ] = 0,

while 𝐺𝑖 = 0, for 𝑖 = 1, . . . , 𝑁 , by Corollary 1.3. Thus, any stable representation of quiver (1.1.1) with
relations (1.1.3) also satisfies the relations (1.3.2)–(1.3.3) so that N (𝑟, n) ↩→ M(𝑟, n) via the natural
inclusion.

Next, let us point out that on each 𝑇 Hom(𝑉𝑖 , 𝑉𝑘 ), we can introduce a hermitean metric by defining

〈𝑋,𝑌〉 = 1
2

tr
(
𝑋 · 𝑌† + 𝑋† · 𝑌

)
, ∀𝑋,𝑌 ∈ Hom(𝑉𝑖 , 𝑉𝑘 ), (1.3.5)

which, in turn, can be linearly extended to a hermitean metric 〈−,−〉 : 𝑇M(𝑟, n) × 𝑇M(𝑟, n) → C.
Finally, we can introduce some complex structures on 𝑇M(𝑟, n): given 𝑋 ∈ 𝑇M(𝑟, n), these are defined
as the following 𝐼, 𝐽, 𝐾 ∈ End(𝑇M(𝑟, n))

𝐼 (𝑋) =
√
−1𝑋, (1.3.6)

𝐽 (𝑋) = (−𝑏0†
2 , 𝑏0†

1 ,− 𝑗†, 𝑖†, {−𝑏𝑖†2 , 𝑏𝑖†1 ,−𝑔𝑖†, 𝑓 𝑖†}), (1.3.7)

𝐾 (𝑋) = 𝐼 ◦ 𝐽 (𝑋), (1.3.8)

with 𝑋 = (𝑏0
1, 𝑏

0
2, 𝑖, 𝑗 , {𝑏

𝑖
1, 𝑏

𝑖
2, 𝑓

𝑖 , 𝑔𝑖}). These three complex structures make the datum of

(M(𝑟, n), 〈−,−〉, 𝐼, 𝐽, 𝐾)

a hyperkähler manifold, as one can readily verify. It is a standard fact that once we fix a particular
complex structure, say I, and its respective Kähler form, 𝜔𝐼 , the linear combination 𝜔C = 𝜔𝐽 +

√
−1𝜔𝐾

is a holomorphic symplectic form forM(𝑟, n). The thing we finally want to prove is that the hyperkähler
structure on M(𝑟, n) induces a hyperkähler structure on the GIT quotient M(𝑟, n), which will be
moreover proven to be smooth. This is made possible by the fact that the natural U -action on M(𝑟, n)
preserves the hermitean metric and the complex structures we introduced. Then, letting 𝔲 be the Lie
algebra of the group U , we need to construct a moment map

𝜇 : M(𝑟, n) → 𝔲∗ ⊗ R3,

satisfying

1. G-equivariance: 𝜇(𝑔 · 𝑋) = Ad∗
𝑔−1 𝜇(𝑋);

2. 〈d𝜇𝑖 (𝑋), 𝜉〉 = 𝜔𝑖 (𝜉∗, 𝑋), for any 𝑋 ∈ 𝑇M(𝑟, n) and 𝜉 ∈ 𝔲 generating the vector field 𝜉∗ ∈ 𝑇M(𝑟, n).

If then 𝜁 ∈ 𝔲∗ ⊗ R3 is such that Ad∗
𝑔 (𝜁𝑖) = 𝜁𝑖 for any 𝑔 ∈ U , 𝜇−1(𝜁) is U -invariant, and it makes sense

to consider the quotient space 𝜇−1(𝜁)/U . It is known ([30]) that if U acts freely on 𝜇−1 (𝜁)/U , the latter
is a smooth hyperkähler manifold, with complex structures and metric induced by those ofM(𝑟, n).
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Our task of finding a moment map 𝜇 : M(𝑟, n) → 𝔲∗ ⊗ R3 then translates into the following. Define
(𝜇0

1, . . . , 𝜇
𝑁
1 ) = 𝜇1 : M(𝑟, n) → 𝔲

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇0
1 (𝑋) =

√
−1
2

(
[𝐵0

1, 𝐵
0†
1 ] + [𝐵0

2, 𝐵
0†
2 ] + 𝐼 𝐼† − 𝐽†𝐽 + 𝐹1𝐹1† − 𝐺1†𝐺1

)
𝜇1

1 (𝑋) =
√
−1
2

(
[𝐵1

1, 𝐵
1†
1 ] + [𝐵1

2, 𝐵
1†
2 ] − 𝐹1†𝐹1 + 𝐺1𝐺1† + 𝐹2𝐹2† − 𝐺2†𝐺2

)
...

𝜇𝑁1 (𝑋) =
√
−1
2

(
[𝐵𝑁1 , 𝐵𝑁 †

1 ] + [𝐵𝑁2 , 𝐵𝑁 †
2 ] − 𝐹𝑁 †𝐹𝑁 + 𝐺𝑁𝐺𝑁 †

)
,

(1.3.9)

with 𝑋 = (𝐵0
1, 𝐵

0
2, 𝐼, 𝐽, {𝐵

𝑖
1, 𝐵

𝑖
2, 𝐹

𝑖 , 𝐺𝑖}) ∈ M(𝑟, n). In addition to 𝜇1, we also define a map 𝜇C :
M(𝑟, n) → 𝔤, with 𝔤 = 𝔤𝔩(𝑉0) × · · · × 𝔤𝔩(𝑉𝑁 ):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜇0
C
(𝑋) = [𝐵0

1, 𝐵
0
2] + 𝐼𝐽 + 𝐹1𝐺1

𝜇1
C(𝑋) = [𝐵1

1, 𝐵
1
2] − 𝐺1𝐹1 + 𝐹2𝐺2

...

𝜇𝑁
C
(𝑋) = [𝐵𝑁1 , 𝐵𝑁2 ] − 𝐺𝑁 𝐹𝑁 ,

(1.3.10)

by means of which we define 𝜇2,3 : M(𝑟, n) → 𝔲 as 𝜇C (𝑋) = (𝜇2 +
√
−1𝜇3) (𝑋). Notice that in absence

of 𝐵 𝑗
𝑖 and 𝐼, 𝐽 the complex moment map we defined would reduce to the Crawley-Boevey moment map

in [12]. We then claim that 𝜇 = (𝜇1, 𝜇2, 𝜇3) is a moment map for the U -action onM(𝑟, n). If this is true
and 𝜒 is the algebraic character we introduced in §1.2, the space

M̃(𝑟, n) =
𝜇−1

1 (
√
−1d𝜒) ∩ 𝜇−1

C
(0) ∩M(𝑟, n)

U =
𝜇−1(

√
−1d𝜒, 0, 0) ∩M(𝑟, n)

U (1.3.11)

is a smooth hyperkähler manifold which, by an analogue of Kempf-Ness theorem, is also isomorphic
to M(𝑟, n). In fact, it is known, due to a result of [33, 43] and the characterization of 𝜒-(semi)stable
points we gave in the previous sections, that there exists a bijection between 𝜇−1

1 (
√
−1d𝜒) and the set of

𝜒-(semi)stable points in 𝜇−1
C

(0). Then, in order to prove that 𝜇 is actually a moment map, we will first
compute the vector field 𝜉∗ generated by a generic 𝜉 ∈ 𝔲. Let then 𝑋 = (𝑏0

1, 𝑏
0
2, 𝑖, 𝑗 , {𝑏

𝑖
1, 𝑏

𝑖
2, 𝑓

𝑖 , 𝑔𝑖}) be
a vector in 𝑇M(𝑟, n) and Ψ𝑋 : U → M(𝑟, n) the action of U onto 𝑋 ∈ M(𝑟, n): the fundamental vector
field generated by 𝜉 ∈ 𝔲 is

𝜉∗ |𝑋 = dΨ𝑋 (1U ) (𝜉) =
d
d𝑡

(Ψ𝑋 ◦ 𝛾) |𝑡=0, (1.3.12)

where 𝛾 is a smooth curve 𝛾 : (−𝜖, 𝜖) → U such that 𝛾(0) = 1U and �𝛾(0) = 𝜉. Thus, we can compute

𝜉∗ |𝑋 =
(
[𝜉0, 𝑏

0
1], [𝜉0, 𝑏

0
2], 𝜉0𝑖,− 𝑗𝜉0, [𝜉1, 𝑏

1
1], [𝜉1, 𝑏

1
2], 𝜉0 𝑓

1 − 𝑓 1𝜉1, 𝜉1𝑔
1 − 𝑔1𝜉0, . . .

. . . , [𝜉𝑁 , 𝑏𝑁1 ], [𝜉𝑁 , 𝑏𝑁2 ], 𝜉𝑁−1 𝑓
𝑁 − 𝑓 𝑁 𝜉𝑁 , 𝜉𝑁 𝑔𝑁 − 𝑔𝑁 𝜉𝑁−1

)
.

(1.3.13)
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Then if 𝜋𝑖 : M(𝑟, n) → M(𝑟, n) denotes the projection on the i-th component of the direct sum
decomposition induced by (1.3.1) so that i runs over the index set I, by inspection, one can see that 𝜔1
is exact, and in particular, 𝜔1 = d𝜆1, with

𝜆1 =

√
−1
2

tr

(∑
𝑖∈I

𝜋𝑖 ∧ 𝜋†
𝑖∗

)
. (1.3.14)

This implies that

〈𝜇1 (𝑥), 𝜉〉 = 𝚤 𝜉 ∗𝜆1, (1.3.15)

and it is easy to verify that 𝜇1 : M(𝑟, n) → 𝔲∗ thus defined indeed matches with the definition (1.3.9).
Similarly, one can realize that

𝜆2 = �
[
tr

( ∑
𝑖∈2Z∩I

𝜋𝑖 ∧ 𝜋1+1∗

)]
, (1.3.16)

𝜆3 = −
√
−1�

[
tr

( ∑
𝑖∈2Z∩I

𝜋𝑖 ∧ 𝜋1+1∗

)]
, (1.3.17)

and the moment map components satisfying 〈𝜇𝑖 (𝑥), 𝜉〉 = 𝚤 𝜉 ∗𝜆𝑖 agree with the combination 𝜇2+
√
−1𝜇3 =

𝜇C we gave previously in Equation (1.3.10).

2. Flags of framed torsion-free sheaves on P2

We give in this paragraph the construction of the moduli space of flags of framed torsion-free sheaves of
rank r on the complex projective plane. We also show that there exists a natural isomorphism between
the moduli space of flags of framed torsion-free sheaves on P2 and the stable representations of the
nested instantons quiver. In the rank 𝑟 = 1 case, our definition reduces to the nested Hilbert scheme of
points on C2, as is to be expected. By this reason, we first want to carry out the analysis of the simpler
𝑟 = 1 case, which also has the advantage of providing us with a new characterization of punctual nested
Hilbert schemes on C2, analogous to that of [8].

2.1. Hilbn̂(C2) and N (1, n)

Before delving into the analysis of the relation between nested instantons moduli spaces and flags
of framed torsion-free sheaves on P2, we want to show a special simpler case. In particular, we will
prove the existence of an isomorphism between the nested Hilbert scheme of points in C2 and the
nested instantons moduli space N (1, 𝑛0, . . . , 𝑛𝑁 ). This effectively gives us the ADHM construction of
a general nested punctual nested Hilbert scheme on C2, which will also be the local model for more
general nested Hilbert schemes of points on, say, toric surfaces S. In order to see this, we first recall the
definition of a nested Hilbert scheme of points.

Definition 2.1. Let S be a complex (projective) surface and 𝑛1 ≥ 𝑛2 ≥ · · · ≥ 𝑛𝑘 a sequence of integers.
The nested Hilbert scheme of points on S is defined as

Hilb(𝑛1 ,...,𝑛𝑘 ) (𝑆) = 𝑆 [𝑛1 ,...,𝑛𝑘 ] = {𝐼1 ⊆ 𝐼2 ⊆ · · · ⊆ 𝐼𝑘 ⊆ O𝑆 : length(O𝑆/𝐼𝑖) = 𝑛𝑖}. (2.1.1)
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Alternatively, if X is a quasi-projective scheme over the complex numbers, we can equivalently define
the nested Hilbert scheme 𝑋 [𝑛1 ,...,𝑛𝑘 ] = Hilb(𝑛1 ,...,𝑛𝑘 ) (𝑋) as

Hilb(𝑛1 ,...,𝑛𝑘 ) (𝑋) =
{
(𝑍1, . . . , 𝑍𝑘 ) : 𝑍𝑖 ∈ Hilb𝑛𝑖 (𝑋), 𝑍𝑖 is a subscheme of 𝑍 𝑗 if 𝑖 < 𝑗

}
, (2.1.2)

with 𝑍𝑖 being a zero-dimensional scheme, for every 𝑖 = 1, . . . , 𝑘 .

Before actually exhibiting the isomorphism we are interested in, we want to prove an auxiliary result,
which gives an alternative definition for the nested Hilbert schemes over the affine plane, analogously
to the case of Hilbert schemes studied in [43].

Proposition 2.2. Letk be an algebraically closed field, and n a sequence of integers 𝑛0 ≥ 𝑛1 ≥ · · · ≥ 𝑛𝑘 .
Define n̂ to be the sequence of integers �̂�0 = 𝑛0 ≥ �̂�1 = 𝑛0 − 𝑛𝑘 ≥ · · · ≥ �̂�𝑘 = 𝑛0 − 𝑛1. Then there exists
an isomorphism

Hilbn̂ (A2) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(𝑏0

1, 𝑏
0
2, 𝑖, 𝑏

1
1, 𝑏

1
2, 𝑓1, . . . , 𝑏

𝑘
1 , 𝑏

𝑘
2 , 𝑓𝑘 )

�������������

(i) [𝑏𝑖1, 𝑏
𝑖
2] = 0

(ii) 𝑏𝑖−1
1,2 𝑓𝑖 − 𝑓𝑖𝑏

𝑖
1,2 = 0

(iii) �𝑆 ⊂ k𝑛0 : 𝑏0
1,2(𝑆) ⊂ 𝑆 and

Im(𝑖) ⊂ 𝑆

(iv) 𝑓𝑖 : k𝑛𝑖 → k𝑛𝑖−1 is injective

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
/
Gn, (2.1.3)

where Gn = GL𝑛0 (k) × · · · × GL𝑛𝑘 (k), 𝑏𝑖1,2 ∈ End(k𝑛𝑖 ), 𝑖 ∈ Hom(k,k𝑛0) and 𝑓𝑖 ∈ Hom(k𝑛𝑖 ,k𝑛𝑖−1).
The action of Gn is given by

𝒈 · (𝑏0
1, 𝑏

0
2, 𝑖, . . . , 𝑏

𝑘
1 , 𝑏

𝑘
2 , 𝑓𝑘 ) = (𝑔0𝑏

0
1𝑔

−1
0 , 𝑔0𝑏

0
2𝑔

−1
0 , 𝑔0𝑖, . . . , 𝑔𝑘𝑏

𝑘
1𝑔

−1
𝑘 , 𝑔𝑘𝑏

𝑘
2𝑔

−1
𝑘 , 𝑔𝑘−1 𝑓𝑘𝑔

−1
𝑘 ).

Proof. Suppose we have a sequence of ideals 𝐼0 ⊆ 𝐼1 ⊆ · · · 𝐼𝑘 ∈ Hilbn̂(A2). Let us first define
𝑉0 = k[𝑧1, 𝑧2]/𝐼0, 𝑏0

1,2 ∈ End(𝑉0) to be the multiplication by 𝑧1,2mod 𝐼0, and 𝑖 ∈ Hom(k, 𝑉0) by
𝑖(1) = 1mod 𝐼0. Then obviously [𝑏0

1, 𝑏
0
2] = 0 and condition (iii) holds since 1 multiplied by products of

𝑧1 and 𝑧2 spans the whole k[𝑧1, 𝑧2]. Then define �̃�𝑖 = k[𝑧1, 𝑧2]/𝐼𝑖 , 𝑖 > 0, so that dim �̃�𝑖 = 𝑛0 − 𝑛𝑘−𝑖+1.
By letting 𝑉𝑘−𝑖+1 = ker(𝑉0 � �̃�𝑖), we have 𝑉𝑖 ⊆ 𝑉𝑖−1, and dim𝑉𝑖 = 𝑛𝑖 . The restrictions of 𝑏0

1,2 to 𝑉𝑖
then yield homomorphisms 𝑏𝑖1,2 ∈ End(𝑉𝑖) naturally satisfying [𝑏𝑖1, 𝑏

𝑖
2] = 0, while the inclusion of the

ideals 𝐼0 ⊆ 𝐼1 ⊆ · · · ⊆ 𝐼𝑘 implies the existence of an embedding 𝑓𝑖 : 𝑉𝑖 ↩→ 𝑉𝑖−1 such that condition (ii)
holds by construction.

Conversely, let (𝑏0
1, 𝑏

0
2, 𝑖, . . . , 𝑏

𝑘
1 , 𝑏

𝑘
2 , 𝑓𝑘 ) be given as in the proposition. In the first place, one can

define a map 𝜙0 : k[𝑧1, 𝑧2] → k𝑛0 to be 𝜙0( 𝑓 ) = 𝑓 (𝑏0
1, 𝑏

0
2)𝑖(1). This map is surjective, so that

𝐼0 = ker 𝜙 is an ideal for k[𝑧1, 𝑧2] of length 𝑛0. Then, since 𝑓𝑖 ∈ Hom(k𝑛𝑖 ,k𝑛𝑖−1) is injective, we can
embed k𝑛𝑖 into k𝑛0 through 𝐹𝑖 = 𝑓1 ◦ · · · ◦ 𝑓𝑖−1 ◦ 𝑓𝑖 in such a way that 𝑏𝑖1,2 = 𝑏0

1,2 |k𝑛𝑖 ↩→k𝑛0 , which is a
simple consequence of condition (ii). Then we have the direct sum decomposition k𝑛0 = k𝑛0−𝑛𝑖 ⊕ k𝑛𝑖 ,
the restrictions �̃�𝑖1,2 = 𝑏0

1,2 |k𝑛0−𝑛𝑖 and the projection 𝚤𝑖 = 𝜋𝑖 ◦ 𝑖, with 𝜋𝑖 = k𝑛0 → k𝑛0−𝑛𝑖 , satisfying
[�̃�𝑖1, �̃�

𝑖
2] = 0 and a stability condition analogous to (iii). Thus, we define 𝜙𝑖 : k[𝑧1, 𝑧2] → k𝑛0−𝑛𝑖 by

𝜙𝑖 ( 𝑓 ) = 𝑓 (�̃�𝑖1, �̃�
𝑖
2)𝚤(1). This map is surjective, just like 𝜙0, so that 𝐼 𝑗 = ker(𝜙 𝑗 ) is an ideal for k(𝑧1, 𝑧2)

of length 𝑛0 − 𝑛𝑖 . Finally, due to the successive embeddings k𝑛𝑘 ↩→ k𝑛𝑘−1 ↩→ · · · ↩→ k𝑛0 , we have the
inclusion of the ideals 𝐼 𝑗 ⊂ 𝐼 𝑗−1. �

One can readily notice that the description given by the previous proposition of the nested Hilbert
scheme of points does not really coincide with the quiver we were studying throughout this section.
However, we can very easily overcome this problem by using the fact that if (𝑏0

1, 𝑏
0
2, 𝑖, 𝑗) is a stable

ADHM datum with 𝑟 = 1, then 𝑗 = 0; [43]. This proves the following proposition.
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Proposition 2.3. With the same notations of Proposition 2.2, we have that

Hilbn̂ (A2) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(𝑏0

1, 𝑏
0
2, 𝑖, 𝑗 , 𝑏

1
1, 𝑏

1
2, 𝑓1, . . . , 𝑏

𝑘
1 , 𝑏

𝑘
2 , 𝑓𝑘 )

������������������

(a) [𝑏0
1, 𝑏

0
2] + 𝑖 𝑗 = 0

(a′) [𝑏𝑖1, 𝑏
𝑖
2] = 0, 𝑖 > 0

(b) 𝑏𝑖−1
1,2 𝑓𝑖 − 𝑓𝑖𝑏

𝑖
1,2 = 0

(c) 𝑗 𝑓1 = 0
(d) �𝑆 ⊂ k𝑛0 : 𝑏0

1,2 (𝑆) ⊂ 𝑆 and
Im(𝑖) ⊂ 𝑆

(e) 𝑓𝑖 : k𝑛𝑖 → k𝑛𝑖−1 isinjective

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

/
Gn.

All the previous observations, together with corollary 1.7, immediately prove the following theorem.

Theorem 2.4. The moduli space of nested instantonsN (𝑟, n) is isomorphic to the nested Hilbert scheme
of points on C2 when 𝑟 = 1.

N (1, n) = X0//𝜒G � Hilbn̂(C2).

Remark 2.5. The isomorphism given in Theorem 2.4 is only valid at the level of points. A version in
families of the proofs of Proposition 2.2 and Proposition 2.3 would suffice to get a scheme-theoretic
version of this isomorphism. We will not do that here, as the result of Theorem 2.9 already implies it as
a special case.

2.2. F (𝑟, 𝜸) and N (𝑟, n)

A more general result relates the moduli space of flags of framed torsion-free sheaves on P2 to the
moduli space of nested instantons. In the case of the two-step quiver, this result was proved in [54].
Here, we give a generalization of their theorem in the case of the moduli space N𝑟 , [𝑟1 ],𝑛,𝜇 represented
by a quiver with an arbitrary number of nodes.

Definition 2.6. Let ℓ∞ ⊂ P2 be a line and F a coherent sheaf on P2. A framing 𝜙 for F is then a
choice of an isomorphism 𝜙 : 𝐹 |ℓ∞

∼−→ O⊕𝑟
ℓ∞

, with 𝑟 = rk 𝐹. An (𝑁 + 2)-tuple (𝐸0, 𝐸1, . . . , 𝐸𝑁 , 𝜙) is a
framed flag of sheaves on P2 if 𝐸𝑁 is a torsion-free (coherent) sheaf on P2 framed at ℓ∞ by 𝜙, and 𝐸 𝑗 ,
𝑗 = 0, . . . , 𝑁 − 1, form a flag of subsheaves 𝐸0 ⊆ · · · ⊆ 𝐸𝑁 of 𝐸𝑁 s.t. the quotients 𝐸𝑖/𝐸 𝑗 , 𝑖 > 𝑗 , are
supported away from ℓ∞.

By the framing condition, we get that 𝑐1 (𝐸𝑁 ) = 0, while the quotient condition on the subsheaves
of 𝐸𝑁 naturally implies that the quotients 𝐸𝑖/𝐸 𝑗 are 0-dimensional sheaves and 𝑐1 (𝐸 𝑗 ) = 0, for all
𝑗 = 0, . . . , 𝑁 . Then a framed flag of sheaves on P2 is characterized by the set of integers (𝑟, 𝜸), where
𝑟 = rk 𝐸0 = · · · = rk 𝐸𝑁 , 𝑐2 (𝐸𝑁 ) = 𝛾𝑁 , ℎ0 (𝐸𝑁 /𝐸 𝑗 ) = 𝛾 𝑗 + · · · + 𝛾𝑁−1 so that 𝑐2 (𝐸 𝑗 ) = 𝛾 𝑗 + · · · + 𝛾𝑁 .

We now define the moduli functor

F(𝑟 ,𝜸) : Schop
C

→ Sets (2.2.1)

by assigning to a C-scheme S the set

F(𝑟 ,𝜸) (𝑆) = {isomorphism classes of (2𝑁 + 2) − tuples (𝐹𝑆 , 𝜑𝑆 , 𝑄0
𝑆 , 𝑔

0
𝑆 , . . . , 𝑄

𝑁−1
𝑆 , 𝑔𝑁−1

𝑆 }

with

◦ 𝐹𝑆 a coherent sheaf over P2 × 𝑆 flat over S and such that 𝐹𝑆 |P2×{𝑠} is a torsion-free sheaf for any
closed point 𝑠 ∈ 𝑆, rk 𝐹𝑆 = 𝑟 , 𝑐1 (𝐹𝑆) = 0 and 𝑐2 (𝐹𝑆) = 𝛾𝑁 ;

◦ 𝜑𝑆 : 𝐹𝑆 |ℓ∞×𝑆
∼−→ O⊕𝑟

ℓ∞×𝑆 is an isomorphism of Oℓ∞×𝑆-modules;
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◦ 𝑄𝑖
𝑆 is a coherent sheaf on P2×𝑆, flat over S and supported away from ℓ∞×𝑆, such that ℎ0 (𝑄𝑖

𝑆 |P2×{𝑠}) =
𝛾𝑖 + · · · + 𝛾𝑁−1, for any closed point 𝑠 ∈ 𝑆;

◦ 𝑔0
𝑆 : 𝐹𝑆 → 𝑄0

𝑆 and 𝑔𝑖𝑆 : 𝑄𝑖−1
𝑆 → 𝑄𝑖

𝑆 , 𝑖 = 1, . . . , 𝑁 − 1 are surjective morphisms of OP2×𝑆-modules.

Two tuples (𝐹𝑆 , 𝜑𝑆 , 𝑄1
𝑆 , 𝑔

1
𝑆 , . . . , 𝑄

𝑁
𝑆 , 𝑔𝑁𝑆 ) and (𝐹 ′

𝑆 , 𝜑
′
𝑆 , 𝑄

1,′
𝑆 , 𝑔1,′

𝑆 , . . . , 𝑄𝑁−1,′
𝑆 , 𝑔𝑁−1,′

𝑆 ) are said to be
isomorphic if there exist isomorphisms of OP2×𝑆-modules Θ𝑆 : 𝐹𝑆 → 𝐹 ′

𝑆 and Γ𝑖𝑆 : 𝑄𝑖
𝑆 → 𝑄𝑖′

𝑆 such that
the following diagrams commute:

𝐹𝑆 |ℓ∞×𝑆 O⊕𝑟
ℓ∞×𝑆

𝐹 ′
𝑆 |ℓ∞×𝑆

Θ𝑆 |ℓ∞×𝑆

𝜑𝑆

𝜑′
𝑆

𝐹𝑆 𝑄𝑁
𝑆

𝐹 ′
𝑆 𝑄0,′

𝑆

Θ𝑆

𝑔0
𝑆

Γ𝑁
𝑆

𝑔0,′
𝑆

𝑄𝑖−1
𝑆 𝑄𝑖

𝑆

𝑄𝑖−1,′
𝑆 𝑄𝑖′

𝑆 .

Γ𝑖−1
𝑆

𝑔𝑖𝑆

Γ𝑖
𝑆

𝑔𝑖′𝑆

If this functor is representable, the variety representing it will be called the moduli space of flags of
framed torsion-free sheaves on P2.

What we want to show next is that the moduli space of flags of torsion-free sheaves on P2 is a fine
moduli space, and that it is indeed isomorphic (as a scheme) to the moduli space of nested instantons
we defined previously. First of all, we will focus our attention on proving the following statement.

Proposition 2.7. The moduli functor F(𝑟 ,𝜸) is represented by a (quasi-projective) variety F (𝑟, 𝜸) iso-
morphic to a relative quot-scheme.

Proof. Our proof strongly relies on the use of (relative) nested Quot functors, so let us recall their
construction and basic properties. First of all, let N be a fixed positive integer and take the universal
framed sheaf (F , 𝜓) on P2 × M(𝑟, 𝛾𝑁 ), with 𝜓 : F |ℓ∞×M(𝑟 ,𝛾𝑁 )

∼−→ O⊕𝑟
ℓ∞×M(𝑟 ,𝛾𝑁 ) an isomorphism

of Oℓ∞×M(𝑟 ,𝛾𝑁 ) -modules. Let 𝜸 an N-tuple of integers (𝛾0, 𝛾1, . . . , 𝛾𝑁−1). We define the nested Quot
functor

Quot(F ,𝜸) : Schop
M(𝑟 ,𝛾𝑁 ) → Sets (2.2.2)

by

Quot(F ,𝜸) (𝑆) = {isomorphism classes of (𝑄0
𝑆 , 𝑞

0
𝑆 , . . . , 𝑄

𝑁−1
𝑆 , 𝑞𝑁−1

𝑆 )}, (2.2.3)

where

◦ Each 𝑄𝑖
𝑆 is a coherent sheaf on P2 × 𝑆, flat over S, supported away from ℓ∞ × 𝑆 and such that

ℎ0 (𝑄𝑖
𝑆 |ℓ∞×{𝑠}) = 𝛾𝑖 + · · · + 𝛾𝑁−1, for any closed point 𝑠 ∈ 𝑆;

◦ 𝑞𝑖𝑆 : 𝑄𝑖−1
𝑆 → 𝑄𝑖

𝑆 is a surjective morphism of OP2×𝑆-modules for 𝑖 = 1, . . . , 𝑁 − 1;
◦ 𝑞0

𝑆 : F𝑆 → 𝑄0
𝑆 is a surjective morphism of OP2×𝑆-modules, where F𝑆 is the pullback of F to P2 × 𝑆

via

(1P2 × 𝜋) : P2 × 𝑆 → P2 ×M(𝑟, 𝛾𝑁 ).

By an induction on N along the lines of [31, §2.A.1] one can prove the representability of the nested
Quot functor. Note that when 𝑁 = 1, the nested Quot functor reduces to an ordinary Quot functor,
which is representable by Grothendieck’s theory. In this case, representability of F(𝑟 ,𝛾0 ,𝛾1) has been
established in [54, Prop. 1]. In general, there is a natural forgetting map F(𝑟 ,𝜸) → Quot(F ,𝜸) , which
acts as (𝐹𝑆 , 𝜑𝑆 , 𝑄0

𝑆 , 𝑔
0
𝑆 , . . . , 𝑄

𝑁−1
𝑆 , 𝑔𝑁−1

𝑆 ) ↦→ (𝑄0
𝑆 , 𝑔

0
𝑆 , . . . , 𝑄

𝑁−1
𝑆 , 𝑔𝑁−1

𝑆 ). This map also has an inverse
given by setting 𝐹𝑆 to be the framed sheaf 𝐹𝑆 = ker(𝑔0

𝑆) with framing 𝜑𝑆 at ℓ∞ × 𝑆 induced by the
framing 𝜓 of F at ℓ∞ × M(𝑟, 𝛾𝑁 ). Thus, the functors F(𝑟 ,𝜸) and Quot(F ,𝜸) are naturally isomorphic,
and representability of the latter implies representability of the former. The moduli space of flags of
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framed torsion-free sheaves on P2, representing F(𝑟 ,𝜸) , is then the nested quot scheme Quot𝜸 (F) relative
to M(𝑟, 𝛾𝑁 ). �

Remark 2.8. The previous description of the moduli space of framed flags of sheaves on P2 suggests
we could also take a slightly different perspective on F (𝑟, 𝜸) and study its closed subscheme of the
moduli of sequences of quotients

𝑍0 ↩→ · · · ↩→ 𝑍𝑁 ↩→ 𝐹 � 𝑄0 � · · ·� 𝑄𝑁 ,

where F is the trivial vector bundle 𝐹 � O⊕𝑟
P2 . In this sense, F (𝑟, 𝜸) seems to be analogous to the

Filt-scheme studied by Mochizuki in [38] in the case of curves.

Now that we proved that the definition of moduli space of framed flags of sheaves on P2 is indeed a
good one, we are ready to tackle the problem of showing that there exists an isomorphism between this
moduli space and the space of stable representation of the nested instantons quiver we studied in the
previous sections. First of all, let us point out that our definition of flags of framed torsion-free sheaves
reduces in the rank 1 case to the nested Hilbert scheme of points on C2, and the isomorphism we are
interested in was shown to exist in Theorem 2.4 of §2.1. This is, in fact, compatible with the statement
of Theorem 2.9.

Theorem 2.9. The moduli space of stable representations of the nested ADHM quiver is a fine moduli
space isomorphic to the moduli space of flags of framed torsion-free sheaves on P2: F (𝑟, 𝜸) � N (𝑟, n),
as schemes, where 𝑛𝑖 = 𝛾0 + · · · + 𝛾𝑁−𝑖 .

Before diving into the proof of Theorem 2.9, we need to recall a few facts about the moduli space of
framed torsion-free sheaves on P2. Our main reference is [43, §2]. Recall then that with any (ordinary)
ADHM datum (𝑊,𝑉, 𝐵1, 𝐵2, 𝐼, 𝐽) is associated a complex of locally free sheaves on P2, which we call
the ADHM complex of X, of the form

𝐸•
𝑋 : 𝑉 ⊗ OP2 (−1) (𝑉 ⊕ 𝑉 ⊕𝑊) ⊗ OP2 𝑉 ⊗ OP2 (1),𝛼 𝛽 (2.2.4)

where [𝑥 : 𝑦 : 𝑧] are homogeneous coordinates on P2, ℓ∞ = {𝑧 = 0} is a line at infinity, and

𝛼 =
���
𝑧𝐵1 + 𝑥1𝑉
𝑧𝐵2 + 𝑦1𝑉

𝑧𝐽

���, 𝛽 =
(
−𝑧𝐵2 − 𝑦1𝑉 𝑧𝐵1 + 𝑥1𝑉 𝑧𝐼

)
.

As in [43, Lemma 2.1], 𝛼 is always injective if X satisfies the ADHM equation, while 𝛽 is surjective
if and only if X is stable. The cohomology sheaf 𝐸 � H0(𝐸•

𝑋 ) is a rank r torsion-free sheaf on P2,
with 𝑐2 (𝐸) = 𝑛, framed by the induced isomorphism 𝐸 |ℓ∞

∼−→ 𝑊 ⊗ Oℓ∞ . Conversely, given any framed
torsion-free sheaf E on P2, there is a stable ADHM datum X such that E is the cohomology of 𝐸•

𝑋 . This
realizes an isomorphism between the moduli space of framed torsion-free sheaves on P2 with rank r and
second Chern class n, and the moduli space M(𝑟, 𝑛) of stable representations of numerical type (𝑟, 𝑛)
of the ADHM quiver; cf. [43, §2]. Moreover, if we let Kom(P2) be the category of complexes of sheaves
on P2 and RepADHM be the category of representations of the ADHM quiver, we have that the functor

K : RepADHM → Kom(P2)

defined by K(𝑋) = 𝐸•
𝑋 , with the obvious definition for morphisms, is exact and fully faithful; cf. [54,

Prop. 20].

Proof of Theorem 2.9. We first want to show how, starting from an element ofN (𝑟, 𝑛0, . . . , 𝑛𝑁 ), one can
construct a flag of framed torsion-free sheaves on P2. As we showed previously, to each (𝑉𝑖 , 𝐵𝑖1, 𝐵

𝑖
2, 𝐹

𝑖)
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in the datum of 𝑋 ∈ N (𝑟, 𝑛0, . . . , 𝑛𝑁 ), we can associate a stable ADHM datum (𝑊,𝑉𝑖 , 𝐵
𝑖
1, 𝐵

𝑖
2, 𝐼

𝑖 , 𝐽𝑖),
fitting in the diagram (2.2.5)

𝑉1 𝑉0 𝑉1

{0} 𝑊 𝑊

𝑉2 𝑉0 𝑉2

{0} 𝑊 𝑊

...
...

...

{0} 𝑊 𝑊

𝑉𝑁 𝑉0 𝑉𝑁

{0} 𝑊 𝑊

𝐹1

𝐹2

𝐹3

𝐹𝑁

(2.2.5)

where we suppressed all of the endomorphisms 𝐵𝑖1,2, 𝐵 𝑗
1,2. We will then call Z𝑖 , S and Q𝑖 the representa-

tions of the ADHM data ({0}, 𝑉𝑖 , 𝐵𝑖1, 𝐵
𝑖
2), (𝑊,𝑉0, 𝐵

0
1, 𝐵

0
2, 𝐼, 𝐽) and (𝑊,𝑉𝑖 , 𝐵

𝑖
1, 𝐵

𝑖
2, 𝐼

𝑖 , 𝐽𝑖), respectively.
The the diagram (2.2.5) can be restated in the following form in RepADHM:

0 Z1 S Q1 0

0 Z2 S Q2 0

...
...

...
...

...

0 Z𝑁 S Q𝑁 0

(2.2.6)

Moreover, if 𝐸•
Z𝑖

, 𝐸•
S and 𝐸•

Q𝑖
denotes the ADHM complex corresponding to Z𝑖 , S and Q𝑖 , the diagram

(2.2.6) induces the following

0 𝐸•
Z1

𝐸•
S 𝐸•

Q1
0

0 𝐸•
Z2

𝐸•
S 𝐸•

Q2
0

...
...

...
...

...

0 𝐸•
Z𝑁

𝐸•
S 𝐸•

Q𝑁
0.

(2.2.7)
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Then, since S and Q𝑖 are stable, by [43, Lemma 2.6], one has that H𝑝 (𝐸•
S) = H𝑝 (𝐸•

Q𝑖
) = 0, for

𝑝 = −1, 1. Moreover, one can also show that H0(𝐸•
Z𝑖
) = 0. Indeed, we have

𝐸•
Z𝑖

: 𝑉𝑖 ⊗ OP2 (−1) (𝑉 ⊕ 𝑉) ⊗ OP2 𝑉 ⊗ OP2 (1).𝛼𝑖 𝛽𝑖

If we let [𝑥 : 𝑦 : 0] = 𝑝 ∈ ℓ∞ ⊂ P2, we have

𝛼𝑖, 𝑝 =

(
𝑥1𝑉
𝑦1𝑉

)
, 𝛽𝑖, 𝑝 =

(
−𝑦1𝑉 𝑥1𝑉

)
,

and ker 𝛽𝑖, 𝑝 = 0, for all 𝑝 ∈ ℓ∞. Thus, H0(𝐸•
Z𝑖
) is a zero-dimensional sheaf supported outside of ℓ∞. In

particular, 𝐻0 (H0(𝐸•
Z𝑖
)) = 𝐻0(H0 (𝐸•

Z𝑖
) (−1)), and the right-hand side vanishes. Indeed, consider the

following short exact sequences of sheaves:

𝑉𝑖 ⊗ OP2 (−1) ker 𝛽𝑖 H0(𝐸•
Z𝑖
),𝛼𝑖 (2.2.8a)

ker 𝛽𝑖 (𝑉𝑖 ⊕ 𝑉𝑖) ⊗ OP2 Im 𝛽𝑖 .
𝛽𝑖 (2.2.8b)

From Equation (2.2.8a), we get 𝐻0 (H0(𝐸•
Z𝑖
) (−1)) � 𝐻0(ker 𝛽𝑖 (−1)), while from Equation (2.2.8b),

we get 𝐻0 (ker 𝛽𝑖 (−1)) = 0. Thus, 𝐻0 (H0(𝐸•
Z𝑖
)) = 0, and for each line in (2.2.7), the long exact

sequence for the cohomology associated to it reduces to

0 −→ H0(𝐸•
S) −→ H0(𝐸•

Q𝑖
) −→ H1(𝐸•

Z𝑖
) −→ 0,

and by the ADHM construction, (H0(𝐸•
Q𝑖
), 𝜑) is a rank r framed torsion-free sheaf on P2, with framing

𝜑 : H0(𝐸•
Q𝑖
) |ℓ∞

�−→ 𝑊 ⊗ Oℓ∞ . Moreover, H0(𝐸•
S) is a subsheaf of H0(𝐸•

Q𝑖
), and H1(𝐸•

Z𝑖
) is a quotient

sheaf

H1(𝐸•
Z𝑖
) � H0(𝐸•

Q𝑖
)/H0(𝐸•

S),

which is 0-dimensional and supported away from ℓ∞ ⊂ P2. Finally, one can immediately see from
(2.2.7) that H0(𝐸•

Q𝑖
) is a subsheaf of H0(𝐸•

Q𝑖+1
). One can moreover check that the numerical invariants

classifying flags of sheaves do agree with the statement of the theorem.
Conversely, let (𝐸0, . . . , 𝐸𝑁 , 𝜑) be a flag of framed torsion-free sheaves on P2 such that rk 𝐸 𝑗 = 𝑟 ,

𝑐2 (𝐸𝑁 ) = 𝛾𝑁 , ℎ0 (𝐸𝑁 /𝐸 𝑗 ) = 𝛾 𝑗 + · · · + 𝛾𝑁−1. By definition, each (𝐸 𝑗 , 𝜑) defines a stable ADHM
datum Q 𝑗 = (𝑊 𝑗 , 𝑉 𝑗 , 𝐵

𝑗
1 , 𝐵

𝑗
2 , 𝐼

𝑗 , 𝐽 𝑗 ) (with the convention of calling S = Q0), since it can be identified
with a framed torsion-free sheaf on P2, with rk 𝐸 𝑗 = 𝑟 , 𝑐2 (𝐸 𝑗 ) = 𝛾0 + · · · + 𝛾 𝑗 . Moreover, we have the
inclusion 𝐸0 ↩→ 𝐸 𝑗 , which induces an epimorphism Ψ 𝑗 : S → Q 𝑗 . In fact, we can construct vector
spaces 𝑉0, 𝑉 𝑗 , W and 𝑊 𝑗 as in [43], so that

𝑉0 � 𝐻0(𝐸0 (−1)), 𝑉 𝑗 � 𝐻0(𝐸 𝑗 (−1)), 𝑊 � 𝐻0 (𝐸0 |ℓ∞
)
, 𝑊 𝑗 � 𝐻0 (𝐸 𝑗 |ℓ∞

)
,

and by the fact that the quotient sheaf 𝐸 𝑗/𝐸0 is 0-dimensional and supported away from ℓ∞, we can
construct an isomorphism

Ψ 𝑗 ,2 : 𝐻0 (𝐸0 |ℓ∞
) �−→ 𝐻0 (𝐸 𝑗 |ℓ∞

)
.

Finally, we have the exact sequence

0 −→ 𝐸0 −→ 𝐸 𝑗 −→ 𝐸 𝑗/𝐸0 −→ 0,
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which induces the following exact sequence of cohomology, thanks to the fact that 𝐻0(𝐸 𝑗 (−1)) = 0,
being that 𝐸 𝑗 is a framed torsion-free 𝜇-semistable sheaf with 𝑐1 (𝐸 𝑗 ) = 0 (due to the standard ADHM
construction), and 𝐻1(𝐸 𝑗/𝐸0(−1)) = 0, since the quotient sheaf 𝐸 𝑗/𝐸0 is 0-dimensional,

0 −→ 𝐻0 (𝐸 𝑗/𝐸0(−1)) −→ 𝐻1(𝐸0 (−1))
Ψ 𝑗,1−−−→ 𝐻1 (𝐸 𝑗 (−1)) −→ 0.

The morphism Ψ 𝑗 = (Ψ 𝑗 ,1,Ψ 𝑗 ,2) is then an epimorphism, since both Ψ 𝑗 ,1 and Ψ 𝑗 ,2 are surjective.
Taking into account the flag structure of the datum (𝐸0, . . . , 𝐸𝑁 , 𝜑), the sequences

0 kerΨ𝑁−1 S Q1 0

0 kerΨ𝑁−2 S Q2 0

...
...

...
...

...

0 kerΨ0 S Q𝑁 0

give us (𝑁 + 1) stable ADHM data fitting in the following diagram:

𝑉1 𝑉0 𝑉1

{0} 𝑊 𝑊

𝑉2 𝑉0 𝑉2

{0} 𝑊 𝑊

...
...

...

{0} 𝑊 𝑊

𝑉𝑁 𝑉0 𝑉𝑁

{0} 𝑊 𝑊

Ψ𝑁−1,1

Ψ𝑁−1,2

Ψ𝑁−2,1

Ψ𝑁−2,2

Ψ0,1

Ψ0,2

Finally, we need to show that there exists a scheme-theoretic isomorphism between the moduli space of
flags of sheaves F (𝑟, 𝜸) and the nested ADHM moduli space N (𝑟, n). Generalizing the proof of [54,
Thm. 18], one may first notice that the complex of sheaves on P2 in Equation (2.2.4) can be regarded as a
family of complexes parametrized by M(𝑟, 𝑛0) whose cohomology, by [43, §2] and the relative version
of Beilinson’s Theorem (cf. for instance, [7, §3.4]), yields a family of framed torsion-free sheaves on
P2 parametrized by M(𝑟, 𝑛0). Similarly, diagram (2.2.5) enables us to think of (2.2.7) as sequences of
complexes parameterized by N (𝑟, n) (i.e., complexes of sheaves on P2 × N (𝑟, n)). Thus, passing to
cohomology, we get a family of framed torsion-free sheaves also parameterized by N (𝑟, n), and the
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isomorphism we were just describing may be regarded as an element of F(𝑟 ,𝜸) (N (𝑟, n)), to which we
may associate a unique bijective morphism of schemes N (𝑟, n) → F (𝑟, 𝜸) by the representability of
F(𝑟 ,𝜸) . Conversely, suppose we are given coherent sheaves (𝐹𝑆 , 𝑄0

𝑆 , . . . , 𝑄
𝑁−1
𝑆 ) on P2 × 𝑆, flat over

S, defining a family of flags of framed torsion-free sheaves (𝐹𝑆 , 𝜑𝑆 , 𝑄0
𝑆 , 𝑔

0
𝑆 , . . . , 𝑄

𝑁−1
𝑆 , 𝑔𝑁−1

𝑆 ). We can
associate to this family of sheaves a family of representations of the nested ADHM quiver parameterized
by S (i.e., a morphism 𝑆 → N (𝑟, n)). Then, corresponding to the universal family, we get a morphism
F (𝑟, 𝜸) → N (𝑟, n). �

3. Virtual invariants

In this section, we study fixed points under the action of a torus T on the moduli space of framed stable
representations of fixed numerical type of the nested instantons quiver. By doing this, we can apply
virtual equivariant localization and compute certain relevant virtual invariants. More precisely, since
our moduli space N (𝑟, n) is quasi-projective, hence non-compact, we define invariants in (equivariant)
localized K-theory, using the localization theorem [52, Thm. 2.1] to push forward along the structure
morphism. Indeed, as we will see in §3.1, we have a natural action of a torus T = (C∗)2 × (C∗)𝑟 on
N (𝑟, n), and the perfect obstruction theory lifts to the equivariant setting. Moreover, the T-fixed locus
in N (𝑟, n) is compact, so we will define the general K-theoretic invariants via the composition

𝜒(N (𝑟, n),−) : 𝐾T0 (N (𝑟, n)) → 𝐾T0 (N (𝑟, n))loc � 𝐾T0

(
N (𝑟, n)T

)
loc

→ 𝐾T0 (pt)loc,

where the first map is a suitable localization in 𝐾T0 (N (𝑟, n)), the isomorphism follows from Thomason’s
abstract localization [52], and the last map is proper pushforward on the T-fixed locus. On the physics
side, this is equivalent to the computation of partition functions of some suitable quiver GLSM theory
by means of the SUSY localization technique.

3.1. Equivariant torus action and localization

Given an algebraic torus T = (C∗)𝑛, any finite-dimensional T-representation V splits in a direct sum
of its weights, which are one-dimensional T-representations. Each of the weights appearing in the
decomposition of the T-representation V corresponds to a character 𝜇 ∈ T̂ = Hom(T,C∗) � Z𝑛,
and thus to a monomial 𝑡𝜇 = 𝑡

𝜇1
1 · · · 𝑡𝜇𝑛𝑛 in the coordinates (𝑡1, . . . , 𝑡𝑛) of T. We have then a map

tr : 𝐾T0 (pt) → Z[𝑡𝜇 : 𝜇 ∈ T̂] on the representation ring 𝐾T0 (pt) � 𝑅(T), sending a T-representation V to
its decomposition into weight spaces tr𝑉 =

∑
𝜇 𝑡𝜇. Since this map is an isomorphism, in what follows,

we will often identify (virtual) T-modules with their characters.
Consider the tori T1 = (C∗)2 and T2 = (C∗)𝑟 . Let 𝑇1, 𝑇2 and 𝑅1, . . . , 𝑅𝑟 be the generators of the

representation rings 𝑅(T1) � 𝐾0
T1
(pt) and 𝑅(T2) � 𝐾0

T2
(pt), respectively. On X(𝑟, n), there is an

action of the algebraic torus T = T1 × T2. Indeed, given 𝑋 ∈ X(𝑟, n), a torus element t = (𝑇1, 𝑇2, 𝑅),
𝑅 ∈ (C∗)𝑟 ⊂ GL𝑟 , acts on X as

t · 𝑋 = (𝑇1𝐵
0
1, 𝑇2𝐵

0
2, 𝐼𝑅

−1, 𝑅𝑇1𝑇2𝐽, . . . , 𝑇1𝐵
𝑁
1 , 𝑇2𝐵

𝑁
2 , 𝐹𝑁 ).

TheT-action we just described commutes with theG-action of §1.2, so it descends to an action on the GIT
quotient N (𝑟, n). Similarly, the vector bundle E in Theorem 1.8 is naturally equivariant; thus, the perfect
obstruction theoryE

𝜙
−→ N (𝑟, n) lifts to the derived category D[−1,0]

T
(N (𝑟, n)) ofT-equivariant coherent

sheaves on N (𝑟, n). Indeed, one can introduce a natural T-equivariant structure on the vector bundles
𝐶𝑖 and the bundle homomorphism 𝑑𝑖 : 𝐶𝑖 → 𝐶𝑖+1 in such a way that the section 𝑠 ∈ 𝐻0(Y(𝑟, n), 𝐶2) is
T-equivariant. These then restrict to the stable locus and descend to T-equivariant vector bundles C𝑖 and
bundle maps 𝛿𝑖 : C𝑖 → C𝑖+1 over Y (𝑟, n), together with a T-equivariant section 𝜎 ∈ 𝐻0(Y (𝑟, n), C2).
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In the following, we will denote by 𝑄 = 𝑇1 ·C⊕𝑇2 ·C ∈ 𝐾T1
0 (pt) the T1-representation corresponding

to C2, and by Λ2𝑄 = 𝑇1𝑇2 · C ∈ 𝐾T1
0 (pt) its top exterior power.

We begin the analysis of the fixed locus under the T-action on the moduli space of nested instantons
with a brief recall of the results obtained in [54] and show how they enable us to fully characterize the
T-fixed locus of the two-step nested instantons quiver. The main result we want to recall is the following
theorem.

Theorem 3.1 (von Flach-Jardim, [54]). The moduli space N (𝑟, 𝑛0, 𝑛1) � F (𝑟, 𝑛0 − 𝑛1, 𝑛1) of stable
representations of the nested ADHM quiver is a quasi-projective variety equipped with a perfect ob-
struction theory. Its T-equivariant deformation-obstruction complex is the following:

𝑄 ⊗ End(𝑉0)
⊕ Λ2𝑄 ⊗ End(𝑉0)

Hom(𝑊,𝑉0) ⊕
End(𝑉0) ⊕ 𝑄 ⊗ Hom(𝑉1, 𝑉0)

⊕ Λ2𝑄 ⊗ Hom(𝑉0,𝑊) ⊕ Λ2𝑄 ⊗ Hom(𝑉1, 𝑉0),
End(𝑉1) ⊕ Λ2𝑄 ⊗ Hom(𝑉1,𝑊)

𝑄 ⊗ End(𝑉1) ⊕
⊕ Λ2𝑄 ⊗ End(𝑉1)

Hom(𝑉1, 𝑉0)

𝑑0 𝑑1 𝑑2

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑0(ℎ0, ℎ1) =
(
[ℎ0, 𝐵

0
1], [ℎ0, 𝐵

0
2], ℎ0𝐼,−𝐽ℎ0, [ℎ1, 𝐵

1
1], [ℎ1, 𝐵

1
2], ℎ0𝐹 − 𝐹ℎ1

)
,

𝑑1(𝑏0
1, 𝑏

0
2, 𝑖, 𝑗 , 𝑏

1
1, 𝑏

1
2, 𝑓 ) =

(
[𝑏0

1, 𝐵
1
2] + [𝐵0

1, 𝑏
0
2] + 𝑖𝐽 + 𝐼 𝑗 , 𝐵0

1 𝑓 + 𝑏0
1𝐹 − 𝐹𝑏1

1 − 𝑓 𝐵1
1,

𝐵0
2 𝑓 + 𝑏0

2𝐹 − 𝐹𝑏1
2 − 𝑓 𝐵1

2, 𝑗𝐹 + 𝐽 𝑓 , [𝑏1
1, 𝐵

1
2] + [𝐵1

1, 𝑏
1
2]
)
,

𝑑2(𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) = 𝑐1𝐹 + 𝐵0
2𝑐2 − 𝑐2𝐵

1
2 + 𝑐3𝐵

0
1 − 𝐵1

1𝑐3 − 𝐼𝑐4 − 𝐹𝑐5.

Thus, the infinitesimal deformation space and the obstruction space at any X will be isomorphic to
𝐻1 [C (𝑋)] and 𝐻2 [C (𝑋)], respectively. N (𝑟, 𝑛1, 𝑛2) is smooth iff 𝑛1 = 1 ([10]).

Moreover, it turns out that there exists a surjective morphism 𝔮 : (𝐵0
1, 𝐵

0
2, 𝐼, 𝐽, 𝐵

1
1, 𝐵

1
2, 𝐹) ↦→

(𝐵′
1, 𝐵

′
2, 𝐼

′, 𝐽 ′) mapping the nested ADHM data of type (𝑟, 𝑛0, 𝑛1) to the ADHM data of numerical
type (𝑟, 𝑛0 − 𝑛1); [54]. Thus, we have two different maps sending the moduli space of stable repre-
sentations of the nested ADHM quiver to the moduli space of stable representations of ADHM data.
Moreover, from Theorem 2.9, one deduces that N (𝑟, 𝑛0, 𝑛1) can be identified as the incidence variety

N (𝑟, 𝑛0, 𝑛1) ↩→ M(𝑟, 𝑛0) ×M(𝑟, 𝑛0 − 𝑛1),

by means of which one can characterize T-fixed points of N (𝑟, 𝑛0, 𝑛1) in terms of the fixed points of
M(𝑟, 𝑛0) and M(𝑟, 𝑛0 − 𝑛1). For the sake of simplicity, let us first focus on the 𝑟 = 1 case. We can first
take the decomposition 𝑉0 = 𝑉 ⊕ 𝑉1, then decompose the vector spaces 𝑉0, V with respect to the action
of T: if 𝜆0 : T→ End(𝑉0) and 𝜆 : T→ End(𝑉) are morphisms for the toric action on 𝑉0, V, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑉 =
⊕
𝑘,𝑙

𝑉 (𝑘, 𝑙) =
⊕
𝑘,𝑙

{
𝑣 ∈ 𝑉 |𝜆(𝑡)𝑣 = 𝑡𝑘1 𝑡

𝑙
2𝑣
}

𝑉0 =
⊕
𝑘,𝑙

𝑉0(𝑘, 𝑙) =
⊕
𝑘,𝑙

{
𝑣0 ∈ 𝑉0 |𝜆0 (𝑡)𝑣0 = 𝑡𝑘1 𝑡

𝑙
2𝑣0

}
.
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Thus, if 𝑋 = (𝑊,𝑉, 𝐵′
1, 𝐵

′
2, 𝐼

′, 𝐽 ′), 𝑋0 = (𝑊,𝑉0, 𝐵
0
1, 𝐵

1
2, 𝐼, 𝐽) are T-fixed points, the very well-known

results about the classification of fixed points for ADHM data leads us to the following commutative
diagram:

𝑉 (𝑘 − 1, 𝑙) 𝑉 (𝑘 − 1, 𝑙 − 1)

𝑉0 (𝑘 − 1, 𝑙) 𝑉0(𝑘 − 1, 𝑙 − 1)

𝑉 (𝑘, 𝑙) 𝑉 (𝑘, 𝑙 − 1)

𝑉0 (𝑘, 𝑙) 𝑉0(𝑘, 𝑙 − 1)

𝐵′
2

𝐵′
1

𝐵0
1

𝑓

𝐵0
2

(3.1.1)

Proposition 3.2. Let 𝑋 ∈ X0 be a T-fixed point. The following statements hold:

1. If 𝑘 > 0 or 𝑙 > 0, then 𝑉0 (𝑘, 𝑙) = 0, 𝑉 (𝑘, 𝑙) = 0;
2. dim𝑉0(𝑘, 𝑙) ≤ 1, ∀𝑘, 𝑙 and dim𝑉 (𝑘, 𝑙) ≤ 1, ∀𝑘, 𝑙;
3. If 𝑘, 𝑙 ≤ 0, then dim𝑉0(𝑘, 𝑙) ≥ dim𝑉0(𝑘 − 1, 𝑙), dim𝑉0 (𝑘, 𝑙) ≥ dim𝑉0(𝑘, 𝑙 − 1), dim𝑉 (𝑘, 𝑙) ≥

dim𝑉 (𝑘 − 1, 𝑙, dim𝑉 (𝑘, 𝑙) ≥ dim𝑉 (𝑘, 𝑙 − 1) and dim𝑉0(𝑘, 𝑙) ≥ dim𝑉 (𝑘, 𝑙).

The previous propositions give us an easy way of visualizing fixed points of the T-action on the
nested ADHM data. If we suitably normalize each nonzero map to 1 by the action of

∏
𝑘,𝑙 GL(𝑉0 (𝑘, 𝑙))×∏

𝑘′,𝑙′ GL(𝑉 (𝑘 ′, 𝑙 ′)) each critical point point can be put into one-to-one correspondence with nested
Young diagrams 𝑌𝜇 ⊆ 𝑌𝜈 . Thus, the fixed points of the original nested ADHM data are classified
by couples (𝜈, 𝜈 \ 𝜇), where 𝜇 ⊂ 𝜈 and 𝜈 \ 𝜇 is the skew Young diagram constructed by taking the
complement of 𝜇 in 𝜈.

If we now take a fixed point 𝑍 = (𝜈, 𝜇) and define 𝜈𝑖 =
∑
𝑘 dim𝑉0(𝑘, 1 − 𝑖), 𝜈′𝑗 =

∑
𝑙 dim𝑉0(1 − 𝑗 , 𝑙)

and similarly 𝜇𝑖 =
∑
𝑘 dim𝑉 (𝑘, 1 − 𝑖), 𝜇′

𝑗 =
∑
𝑙 dim𝑉 (1 − 𝑗 , 𝑙), we can regard 𝑉0 and V as T-modules

and write them as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝑉0 =

⊕
𝑘,𝑙

𝑉0(𝑘, 𝑙) =
𝑀1∑
𝑖=1

𝜈′𝑖∑
𝑗=1

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2 =

𝑁1∑
𝑗=1

𝜈 𝑗∑
𝑗=1

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2

𝑉 =
⊕
𝑘,𝑙

𝑉 (𝑘, 𝑙) =
𝑀2∑
𝑖=1

𝜇′
𝑖∑

𝑗=1
𝑇−𝑖+1

1 𝑇
− 𝑗+1
2 =

𝑁2∑
𝑗=1

𝜇 𝑗∑
𝑗=1

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2

with 𝑀1 = 𝜈1, 𝑀2 = 𝜇1, 𝑁1 = 𝜈′1, 𝑁2 = 𝜇′
1. If we now take 𝑉0 = 𝑉 ⊕ 𝑉1, we have

𝑉1 =
∑

(𝑖, 𝑗) ∈𝜈\𝜇
𝑇−𝑖+1

1 𝑇
− 𝑗+1
2 =

𝑀1∑
𝑖=1

𝜈′𝑖−𝜇
′
𝑖∑

𝑗=1
𝑇−𝑖+1

1 𝑇
−𝜇′

𝑖− 𝑗+1
2 .

The virtual tangent space 𝑇vir
N (1,𝑛0 ,𝑛1) |𝑍 ∈ 𝐾T0 (pt) to N (1, 𝑛0, 𝑛1) at the T-fixed point Z can be

regarded as a T-module, so that
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𝑇vir
𝑍 N (1, 𝑛0, 𝑛1) = End(𝑉0) ⊗ (𝑄 − 1 − Λ2𝑄) + End(𝑉1) ⊗ (𝑄 − 1 − Λ2𝑄) + Hom(𝑊,𝑉0)

+ Hom(𝑉0,𝑊) ⊗ Λ2𝑄 − Hom(𝑉1,𝑊) ⊗ Λ2𝑄 + Hom(𝑉1, 𝑉0) (1 + Λ2𝑄 −𝑄)
= (𝑉1 ⊗ 𝑉∗

0 +𝑉1 ⊗ 𝑉∗
1 −𝑉∗

1 ⊗ 𝑉0) ⊗ (𝑄 − 1 − Λ2𝑄) +𝑉0 +𝑉∗
0 ⊗ Λ2𝑄

−𝑉∗
1 ⊗ Λ2𝑄.

In the first place, we might recognize the term 𝑉∗
0 ⊗𝑉0 ⊗ (𝑄 −Λ2𝑄 − 1) +𝑉0 +𝑉∗

0 ⊗ Λ2𝑄 in the sum as
being the tangent space at the moduli space of stable representation of the ADHM quiver 𝑇M(1,𝑛0) |�̃� ,
with �̃� = (𝜈). Thus, we have

𝑇vir
N (1,𝑛0 ,𝑛1) |𝑍 = 𝑇M(1,𝑛0) |�̃� + (𝑉1 ⊗ 𝑉∗

1 −𝑉∗
1 ⊗ 𝑉0) ⊗ (𝑄 − 1 − Λ2𝑄) −𝑉∗

1 ⊗ Λ2𝑄. (3.1.2)

Then

𝑉∗
1 ⊗ (𝑄 − 1 − Λ2𝑄) = (𝑇1 − 1) (1 − 𝑇2)

𝑀1∑
𝑖=1

𝜈′𝑖−𝜇
′
𝑖∑

𝑗=1
𝑇 𝑖−1

1 𝑇
𝜇′
𝑖+ 𝑗−1

2

= (𝑇1 − 1)
𝑀1∑
𝑖=1

𝑇 𝑖−1
1 𝑇

𝜇′
𝑖−1

2 (1 − 𝑇2)
𝜈′𝑖−𝜇

′
𝑖∑

𝑗=1
𝑇
𝑗

2

= (𝑇1 − 1)
𝑀1∑
𝑖=1

𝑇 𝑖−1
1 𝑇

𝜇′
𝑖−1

2 (1 − 𝑇2)
���

1 − 𝑇
𝜈′𝑖−𝜇

′
𝑖+1

2
1 − 𝑇2

− 1���
= (𝑇1 − 1)

𝑀1∑
𝑖=1

𝑇 𝑖−1
1 𝑇

𝜇′
𝑖−1

2 (1 − 𝑇2)
���
𝑇2 − 𝑇

𝜈′𝑖−𝜇
′
𝑖+1

2
1 − 𝑇2

���
= (𝑇1 − 1)

𝑀1∑
𝑖=1

𝑇 𝑖−1
1 (𝑇 𝜇′

𝑖

2 − 𝑇
𝜈′𝑖
2 ),

so that

𝑉∗
1 ⊗ 𝑉1 ⊗ (𝑄 − 1 − Λ2𝑄) = (𝑇1 − 1)

𝑁1∑
𝑗=1

𝜈 𝑗−𝜇 𝑗∑
𝑗′=1

𝑇
−𝜇 𝑗− 𝑗′+1
1 𝑇

− 𝑗+1
2

𝑀1∑
𝑖=1

𝑇 𝑖−1
1 (𝑇 𝜇′

𝑖

2 − 𝑇
𝜈′𝑖
2 )

=
𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

𝑇
𝑖−𝜇 𝑗

1 (𝑇− 𝑗+𝜇′
𝑖+1

2 − 𝑇
− 𝑗+𝜈′𝑖+1
2 ) (𝑇1 − 1)

𝜈 𝑗−𝜇 𝑗∑
𝑗′=1

𝑇
− 𝑗′
1

=
𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

𝑇
𝑖−𝜇 𝑗

1 (𝑇− 𝑗+𝜇′
𝑖+1

2 − 𝑇
− 𝑗+𝜈′𝑖+1
2 ) (𝑇1 − 1)

(
1 − 𝑇

−𝜈 𝑗+𝜇 𝑗−1
1

1 − 𝑇−1
1

− 1

)
=

𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

(𝑇 𝑖−𝜇 𝑗

1 − 𝑇
𝑖−𝜈 𝑗
1 ) (𝑇− 𝑗+𝜇′

𝑖+1
2 − 𝑇

− 𝑗+𝜈′𝑖+1
2 ),
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while we have

𝑉∗
1 ⊗ 𝑉0 ⊗ (𝑄 − 1 − Λ2𝑄) = (𝑇1 − 1)

𝑁1∑
𝑗=1

𝜈 𝑗∑
𝑗′=1

𝑇
− 𝑗′+1
1 𝑇

− 𝑗+1
2

𝑀1∑
𝑖=1

𝑇 𝑖−1
1 (𝑇 𝜇′

𝑖

2 − 𝑇
𝜈′𝑖
2 )

=
𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

𝑇 𝑖1 (𝑇
− 𝑗+𝜇′

𝑖+1
2 − 𝑇

− 𝑗+𝜈′𝑖+1
2 ) (𝑇1 − 1)

𝜈 𝑗∑
𝑗′=1

𝑇
− 𝑗′
1

=
𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

𝑇 𝑖1 (𝑇
− 𝑗+𝜇′

𝑖+1
2 − 𝑇

− 𝑗+𝜈′𝑖+1
2 ) (𝑇1 − 1)

(
1 − 𝑇

−𝜈 𝑗−1
1

1 − 𝑇−1
1

− 1

)
=

𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

(𝑇 𝑖1 − 𝑇
𝑖−𝜈 𝑗
1 ) (𝑇− 𝑗+𝜇′

𝑖+1
2 − 𝑇

− 𝑗+𝜈′𝑖+1
2 ),

and

𝑉∗
1 ⊗ Λ2𝑄 = 𝑇1𝑇2

𝑀1∑
𝑖=1

𝜈′𝑖−𝜇
′
𝑖∑

𝑗=1
𝑇 𝑖−1

1 𝑇
𝜇′
𝑖+ 𝑗−1

2

=
𝑀1∑
𝑖=1

𝜈′𝑖−𝜇
′
𝑖∑

𝑗=1
𝑇 𝑖1𝑇

𝜇′
𝑖+ 𝑗

2 .

Assembling everything together, we finally get that

𝑇vir
N (1,𝑛0 ,𝑛1) |𝑍 =𝑇M(1,𝑛0) |�̃� +

𝑀1∑
𝑖=1

𝑁1∑
𝑗=1

(𝑇 𝑖−𝜇 𝑗

1 − 𝑇 𝑖1) (𝑇
− 𝑗+𝜇′

𝑖+1
2 − 𝑇

− 𝑗+𝜈′𝑖+1
2 )

−
𝑀1∑
𝑖=1

𝜈′𝑖−𝜇
′
𝑖∑

𝑗=1
𝑇 𝑖1𝑇

𝑗+𝜇′
𝑖

2 .

(3.1.3)

As an immediate generalization of (3.1.3), we can easily see that the (T-equivariant) K-theory class of
the virtual tangent space to N (𝑟, 𝑛0, 𝑛1) at a fixed point Z is

𝑇vir
N (𝑟 ,𝑛0 ,𝑛1) |𝑍 = 𝑇M(𝑟 ,𝑛0) |�̃� +

𝑟∑
𝑎,𝑏=1

𝑀
(𝑎)

1∑
𝑖=1

𝑁
(𝑏)

1∑
𝑗=1

𝑅𝑏𝑅
−1
𝑎

(
𝑇
𝑖−𝜇 (𝑏)

𝑗

1 − 𝑇 𝑖1

)

×
(
𝑇
− 𝑗+𝜇 (𝑎)′

𝑖 +1
2 − 𝑇

− 𝑗+𝜈 (𝑎)′
𝑖 +1

2

)
−
𝑀

(𝑎)
1∑
𝑖=1

𝜈 (𝑎)′
𝑖 −𝜇 (𝑎)′

𝑖∑
𝑗=1

𝑇 𝑖1𝑇
𝑗+𝜇 (𝑎)′

𝑖

2 .

Remark 3.3. It turns out that the character representation of the virtual tangent 𝑇vir
N |𝑍 can be computed

by exploiting deformation theory techniques. These techniques may also be employed to compute the
virtual fundamental class and (T1-character of) the virtual tangent bundle at fixed points of nested
Hilbert schemes on surfaces, as it is done in [19].

If, in particular, one takes (C2) [𝑁0≥𝑁1 ] to be the nested Hilbert scheme of points on C2 =

Spec(C[𝑥0, 𝑥1]), by lifting the natural torus action on C2 to
(
C2) [𝑁0≥𝑁1 ] , it is proved in [19] that the

T1-fixed locus is isolated and given by the inclusion of monomial ideals 𝐼0 ⊆ 𝐼1, which is equivalent to
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the assignment of couples of nested partitions 𝜇 ⊆ 𝜈. Then the virtual tangent space at a fixed point is
given by

𝑇vir
𝐼0⊆𝐼1 = −𝜒(𝐼0, 𝐼0) − 𝜒(𝐼1, 𝐼1) + 𝜒(𝐼0, 𝐼1) + 𝜒(𝑅, 𝑅),

with 𝜒(−,−) =
∑2
𝑖=0(−1)𝑖 Ext𝑖𝑅 (−,−). Then the T1-representation of 𝑇vir

𝐼0⊆𝐼1 can be explicitly written in
terms of Laurent polynomials in the torus characters 𝑡1, 𝑡2 of T1. Then in terms of the characters Z0, Z1
of the T1-fixed 0-dimensional subschemes 𝑍1 ⊆ 𝑍0 ⊂ C2 corresponding to 𝐼0 ⊆ 𝐼1, one has (cf. [19,
Eq. (29)])

tr𝑇vir
𝐼0⊆𝐼1 = Z0 + Z1

𝑡1𝑡2
+
(
Z0Z1 − Z0Z0 − Z1Z1

) (1 − 𝑡1) (1 − 𝑡2)
𝑡1𝑡2

.

If we now make the necessary identifications 𝑡𝑖 = 𝑇−1
𝑖 , Z0 = 𝑉0 and Z1 = 𝑉 , we can see that Equation

(29) of [19] exactly agrees with our prescription for the character representation (3.1.2) of the virtual
tangent space 𝑇vir

N (1,𝑛0 ,𝑛1) |𝑍 , with 𝑛0 = 𝑁0 and 𝑛1 = 𝑁0 − 𝑁1.5

We now move on studying the fixed locus of the more general nested instantons moduli space
N (𝑟, 𝑛0, . . . , 𝑛𝑁 ). However, similarly to the previous case, we first want to show that the moduli space
of stable representations of the nested ADHM quiver is equivalently described by the datum of (𝑁 + 1)
moduli spaces of framed torsion-free sheaves on P2 – namely, M(𝑟, 𝑛0),M(𝑟, 𝑛0 − 𝑛1), . . . ,M(𝑟, 𝑛0 −
𝑛𝑁 ). To do this, we want to know if it is possible to recover the structure of the nested ADHM quiver
given a set of stable ADHM data. First of all, we can notice that as 𝐹𝑖 is injective ∀𝑖, we have the sum
decomposition 𝑉0 = 𝑉𝑖 ⊕ �̃�𝑖 , where suitable choices of bases of 𝑉𝑖 are made so that Equation (1.2.10)
holds. We also have, with analogous choices being made, 𝑉𝑖 = 𝑉𝑖+1 ⊕ �̂�𝑖+1, with �̂�𝑖+1 = 𝑉𝑖/Im 𝐹𝑖 , so that
𝑉0 = 𝑉𝑖 ⊕ �̂�𝑖 ⊕ �̃�𝑖−1, thus �̃�𝑖 = �̂�𝑖 ⊕ �̃�𝑖−1.

Let us first focus on the vector spaces 𝑉0 and 𝑉1. It can be shown as in [7, 54] that once we fix a stable
ADHM datum (𝑊, �̃�1, �̃�

1
1, �̃�

1
2, 𝐼

1, 𝐽1) and the endomorphisms 𝐵1
1, 𝐵

1
2 ∈ End𝑉1, it is always possible to

reconstruct the stable ADHM datum (𝑊,𝑉0, 𝐵
0
1, 𝐵

0
2, 𝐼, 𝐽) as

𝐵0
1 =

(
𝐵1

1 𝐵
′1
1

0 �̃�1
1

)
, 𝐵0

2 =

(
𝐵1

2 𝐵
′1
2

0 �̃�1
2

)
, 𝐼 =

(
𝐼
′1

𝐼1

)
, 𝐽 =

(
0 𝐽1) (3.1.4)

together with the morphism 𝐹1 = 1𝑉1 such that [𝐵1
1, 𝐵

1
2] = 0, 𝐵0

1𝐹
1 − 𝐹1𝐵1

1 = 𝐵0
2𝐹

1 − 𝐹1𝐵1
2 = 0 and

𝐽𝐹1 = 0. The same can obviously be done for any of the stable ADHM data (𝑊, �̃�𝑖 , �̃�
𝑖
1, �̃�

𝑖
2, 𝐼

𝑖 , 𝐽𝑖) we
constructed previously, and we would have

𝐵0
1 =

(
𝐵𝑖1 𝐵

′𝑖
1

0 �̃�𝑖1

)
, 𝐵0

2 =

(
𝐵𝑖2 𝐵

′𝑖
2

0 �̃�𝑖2

)
, 𝐼 =

(
𝐼
′𝑖

𝐼 𝑖

)
, 𝐽 =

(
0 𝐽𝑖

)
(3.1.5)

together with the morphism 𝑓 𝑖 = 1𝑉𝑖 such that [𝐵𝑖1, 𝐵
𝑖
2] = 0, 𝐵0

1 𝑓
𝑖 − 𝑓 𝑖𝐴𝑖 = 𝐵0

2 𝑓
𝑖 − 𝑓 𝑖𝐵𝑖2 = 0 and

𝐽 𝑓 𝑖 = 0. If we now fix

𝐹𝑖 =

(
1𝑉𝑖

0

)
, 𝐹𝑖 : 𝑉𝑖 → 𝑉𝑖−1, (3.1.6)

which is clearly injective, then obviously 𝑓 𝑖 = 𝐹1𝐹2 · · · 𝐹𝑖 , where 𝐹 𝑗 now stands for the linear extension
to𝑉0, and 𝐵0

1 𝑓
𝑖− 𝑓 𝑖𝐵𝑖1 = 0 (resp. 𝐵0

2 𝑓 𝑖− 𝑓 𝑖𝐵𝑖2 = 0) is equivalent to 𝐵0
1𝐹

1𝐹2 · · · 𝐹𝑖−1𝐹𝑖−𝐹1𝐹2 · · · 𝐹𝑖𝐵𝑖1 =
𝐵𝑖−1

1 𝐹𝑖 − 𝐹𝑖𝐵𝑖1 = 0 (resp. 𝐵𝑖−1
2 𝐹𝑖 − 𝐹𝑖𝐵𝑖2 = 0), and 𝐽 𝑓 𝑖 = 𝐽𝐹1𝐹2 · · · 𝐹𝑖 = 0. This construction makes it

5The identification 𝑇𝑖 = 𝑡−1
𝑖 is necessary due to the fact that [19] uses the opposite convention for the T1-action. In loc. cit., T1

acts on C2 as (𝑡1 , 𝑡2) · (𝑥1 , 𝑥2) = (𝑡1𝑥1, 𝑡2𝑥2) , and the action lifts to the nested Hilbert scheme. This translates in a T1-action on
quiver representations via (𝑡1 , 𝑡2) · 𝑋 = (𝑡−1

1 𝐵0
1 , 𝑡

−1
2 𝐵0

2 , 𝐼 , (𝑡1𝑡2)
−1𝐽 , 𝑡−1

1 𝐵1
1 , 𝑡

−1
2 𝐵1

2 , 𝐹
1) .
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possible to us to classify the T-fixed locus of N (𝑟, 𝑛0, . . . , 𝑛𝑁 ) in terms of the T-fixed loci of M(𝑟, 𝑛0)
and {M(𝑟, 𝑛0 − 𝑛𝑖)}𝑖>0. In particular, the T-fixed locus of M(𝑟, 𝑘) is into 1 − 1 correspondence with
coloured partitions 𝝁 = (𝜇1, . . . , 𝜇𝑟 ) ∈ P𝑟 such that |𝝁 | = |𝜇1 | + · · · + |𝜇𝑟 | = 𝑘 . This fact and the
inclusion relations between the vector spaces 𝑉𝑖 prove the following.

Proposition 3.4. The T-fixed locus N (𝑟, 𝑛0, . . . , 𝑛𝑁 )T is in bijection with (𝑁 + 1)-tuples of nested
coloured partitions 𝝁1 ⊆ · · · ⊆ 𝝁𝑁 ⊆ 𝝁0, with |𝝁0 | = 𝑛0 and |𝝁𝑖>0 | = 𝑛0 − 𝑛𝑖 .

As we pointed out in Theorem 1.8, we can read the (T-equivariant) K-theory class of the virtual
tangent space to N (𝑟, n) at a fixed point 𝑍 ∈ N (𝑟, n)T off the following equivariant complex:⊕𝑁

𝑖=0 End(𝑉𝑖)

𝑄 ⊗ End(𝑉0) ⊕ Hom(𝑊,𝑉0) ⊕ Λ2𝑄 ⊗ Hom(𝑉0,𝑊) ⊕
[⊕𝑁

𝑖=1(𝑄 ⊗ End(𝑉𝑖) ⊕ Hom(𝑉𝑖 , 𝑉𝑖−1)
]

Λ2𝑄 ⊗ (End(𝑉0) ⊕ Hom(𝑉1,𝑊)) ⊕
[⊕𝑁

𝑖=1
(
𝑄 ⊗ Hom(𝑉𝑖 , 𝑉𝑖−1) ⊕ Λ2𝑄 ⊗ End(𝑉𝑖)

) ]
⊕𝑁

𝑖=1 Λ
2𝑄 ⊗ Hom(𝑉𝑖 , 𝑉𝑖−1),

𝑑0

𝑑1

𝑑2

giving us (3.1.7).

𝑇vir
N (1,n) |𝑍 = End(𝑉0) ⊗ (𝑄 − 1 − Λ2𝑄) + Hom(𝑊,𝑉0) + Hom(𝑉0,𝑊) ⊗ Λ2𝑄

+ End(𝑉1) ⊗ (𝑄 − 1 − Λ2𝑄) − Hom(𝑉1,𝑊) ⊗ Λ2𝑄

+ Hom(𝑉1, 𝑉0) ⊗ (1 + Λ2𝑄 −𝑄)
+ End(𝑉2) ⊗ (𝑄 − 1 − Λ2𝑄) + Hom(𝑉2, 𝑉1) ⊗ (1 + Λ2𝑄 −𝑄)+
· · ·
+ End(𝑉𝑁 ) ⊗ (𝑄 − 1 − Λ2𝑄) + Hom(𝑉𝑁 , 𝑉𝑁−1) ⊗ (1 + Λ2𝑄 −𝑄)

(3.1.7)

By decomposing the vector spaces𝑉𝑖 in terms of the T-characters, we can also rewrite the representation
of (3.1.7) in 𝑅(T) as

𝑇vir
N (𝑟 ,n) |𝑍 = 𝑇M(𝑟 ,𝑛0) |�̃� +

𝑟∑
𝑎,𝑏=1

𝑀
(𝑎)

0∑
𝑖=1

𝑁
(𝑏)

0∑
𝑗=1

𝑅𝑏𝑅
−1
𝑎

(
𝑇
𝑖−𝜇 (𝑏)

1, 𝑗
1 − 𝑇 𝑖1

) (
𝑇
− 𝑗+𝜇 (𝑎)′

1,𝑖 +1
2 − 𝑇

− 𝑗+𝜇 (𝑎)′
0,𝑖 +1

2

)

−
𝑀

(𝑎)
0∑
𝑖=1

𝜇 (𝑎)′
0,𝑖 −𝜇 (𝑎)′

1,𝑖∑
𝑗=1

𝑇 𝑖1𝑇
𝑗+𝜇 (𝑎)′

1,𝑖
2

+
𝑁∑
𝑘=2

⎡⎢⎢⎢⎢⎢⎣
𝑟∑

𝑎,𝑏=1

𝑀
(𝑎)

0∑
𝑖=1

𝑁
(𝑏)

0∑
𝑗=1

𝑅𝑏𝑅
−1
𝑎

(
𝑇
𝑖−𝜇 (𝑏)

𝑘, 𝑗

1 − 𝑇
𝑖−𝜇 (𝑏)

𝑘−1, 𝑗
1

) (
𝑇
− 𝑗+𝜇 (𝑎)′

𝑘,𝑖
+1

2 − 𝑇
− 𝑗+𝜇 (𝑎)′

0,𝑖 +1
2

)⎤⎥⎥⎥⎥⎥⎦ ,
where the fixed point Z is to be identified with a choice of a sequence of coloured nested partitions
𝝁1 ⊆ 𝝁2 ⊆ · · · ⊆ 𝝁𝑁 ⊆ 𝝁0 as in Proposition 3.4, �̃� ∈ M(𝑟, 𝑛0)T is the T-fixed point corresponding to
the coloured partition 𝝁0.
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Lemma 3.5. The virtual tangent space 𝑇vir
N (𝑟 ,n) |𝑍 at the fixed point 𝑍 ∈ N (𝑟, n)T contains no constant

terms (i.e., it is entirely T-movable).

Proof. Assuming the generators 𝑅𝑎, 𝑎 = 1, . . . , 𝑟 of the the representation ring 𝑅(T2) to be sufficiently
generic, we only need to show that 𝑇vir

N (1,n) |𝑍 is T-movable. It is moreover sufficient to prove the claim
in the case of flags of length 2, and the proof immediately generalizes. If 𝑛0 = 𝑛1, there is nothing to
show, so let 𝑛0 > 𝑛1 and 𝑍 ∈ N (1, 𝑛0, 𝑛1)T a fixed point associated with the nested partitions 𝜇0 ⊃ 𝜇1.
The K-theory class of the virtual tangent space at Z is

𝑇vir
N (1,𝑛0 ,𝑛1) |𝑍 = 𝑉0 ⊗ 𝑉∗

0 ⊗
(
𝑄 − 1 − Λ2𝑄

)
+𝑉0 +𝑉∗

0 ⊗ Λ2𝑄

+
(
𝑉1 ⊗ 𝑉∗

1 −𝑉0 ⊗ 𝑉∗
1
)
⊗
(
𝑄 − 1 − Λ2𝑄

)
−𝑉∗

1 ⊗ Λ2𝑄

= 𝑉0 ⊗ 𝑉∗
0 ⊗

(
𝑄 − 1 − Λ2𝑄

)
+𝑉0 +𝑉∗

0 ⊗ Λ2𝑄

−𝑉 ⊗ 𝑉∗
1 ⊗

(
𝑄 − 1 − Λ2𝑄

)
−𝑉∗

1 ⊗ Λ2𝑄,

where

𝑉0 =
∑

(𝑖, 𝑗) ∈𝑌𝜇0

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2 , 𝑉1 =

∑
(𝑖, 𝑗) ∈𝑌𝜇0\𝜇1

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2 , 𝑉 =

∑
(𝑖, 𝑗) ∈𝑌𝜇1

𝑇−𝑖+1
1 𝑇

− 𝑗+1
2 ,

and 𝑌𝜇𝑖 denotes the Young diagram associated with 𝜇𝑖 . By construction, if 𝜇0 ⊃ 𝜇1, one has 𝑖′ > 𝑖 or
𝑗 ′ > 𝑗 , or both, for all (𝑖, 𝑗) ∈ 𝑌𝜇1 , (𝑖′, 𝑗 ′) ∈ 𝑌𝜇0\𝜇1 . We also have that

𝑇M(1,𝑛0) |𝑍0 = 𝑉0 ⊗ 𝑉∗
0 ⊗

(
𝑄 − 1 − Λ2𝑄

)
+𝑉0 +𝑉∗

0 ⊗ Λ2𝑄

contains no constant term, being the tangent space to M(1, 𝑛0) at the fixed point 𝑍0 associated with
the partition 𝜇0. Similarly, 𝑉∗

1 ⊗ Λ2𝑄 is manifestly T-movable. Consider then the remaining term
𝑉 ⊗ 𝑉∗

1 ⊗
(
𝑄 − 1 − Λ2𝑄

)
in 𝑇vir

N (1,𝑛0 ,𝑛1) |𝑍 . The contribution corresponding to 𝑉 ⊗ 𝑉∗
1 consists of a sum

of monomials of the form 𝑇−𝑖+𝑖′
1 𝑇

− 𝑗+ 𝑗′
2 , where (𝑖, 𝑗) ∈ 𝑌𝜇1 and (𝑖′, 𝑗 ′) ∈ 𝑌𝜇0\𝜇1 . The only possibility for

a constant term to arise is if 𝑖 = 𝑖′, 𝑗 = 𝑗 ′, for some (𝑖, 𝑗) ∈ 𝑌𝜇1 and (𝑖′, 𝑗 ′) ∈ 𝑌𝜇0\𝜇1 . This is, however,
not possible if 𝜇0 ⊃ 𝜇1. In a completely analogous way, one can show that no constant term can arise
from either 𝑉 ⊗ 𝑉∗

1 ⊗ 𝑄 or 𝑉 ⊗ 𝑉∗
1 ⊗ Λ2𝑄. �

3.2. Virtual equivariant holomorphic Euler characteristic

The first virtual invariant we are going to study is the holomorphic virtual equivariant Euler characteristic
of the moduli space of nested instantons. The fact that we can decompose the virtual tangent bundle as a
direct sum of equivariant line bundles under the torus action we previously described greatly simplifies
the computations.

In particular, given a scheme X with a 1-perfect obstruction theory E, one can define a virtual
structure sheaf Ovir

𝑋 . Moreover, one can choose an explicit resolution of E as [𝐸−1 → 𝐸0] a complex
of vector bundles. If [𝐸0 → 𝐸1] denotes the dual complex, then one can also define the virtual tangent
bundle 𝑇vir

𝑋 ∈ 𝐾0(𝑋) as the class 𝑇vir
𝑋 = [𝐸0] − [𝐸1]. With these definitions, the virtual Todd genus of

X is defined as tdvir (𝑋) = td(𝑇vir
𝑋 ), and if X is proper, given any 𝑉 ∈ 𝐾0(𝑋), one defines the virtual

holomorphic Euler characteristic as

𝜒vir (𝑋,𝑉) = 𝜒(𝑋,𝑉 ⊗ 𝑂vir
𝑋 ),

https://doi.org/10.1017/fms.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.43


34 G. Bonelli, N. Fasola and A. Tanzini

and as a consequence of the virtual Riemann-Roch theorem [17], if X is proper and 𝑉 ∈ 𝐾0(𝑋), the
virtual holomorphic Euler characteristic admits an equivalent definition as

𝜒vir (𝑋,𝑉) =
∫
[𝑋 ]vir

ch(𝑉) · td(𝑇vir
𝑋 ), (3.2.1)

where [𝑋]vir is the virtual fundamental class of X, [𝑋]vir ∈ 𝐴vd (𝑋) and vd denotes the virtual dimension
of X, vd = rk 𝐸0 − rk 𝐸1. Clearly, if we are interested in 𝜒vir (𝑋), then the previous formula reduces to

𝜒vir (𝑋) =
∫
[𝑋 ]vir

td(𝑇vir
𝑋 ) (3.2.2)

whenever X is proper.
Equations (3.2.1) and (3.2.2) can be made even more explicit. In fact, if we take 𝑛 = rk 𝐸0, 𝑚 = rk 𝐸1,

so that vd = 𝑛 − 𝑚, and define 𝑥1, . . . , 𝑥𝑛 and 𝑢1, . . . , 𝑢𝑚 to be respectively the Chern roots of 𝐸0 and
𝐸1, then (3.2.2) becomes

𝜒vir (𝑋) =
∫
[𝑋 ]vir

𝑛∏
𝑖=1

𝑥𝑖
1 − e−𝑥1

𝑚∏
𝑗=1

1 − e−𝑢 𝑗

𝑢 𝑗
,

while for (3.2.1), we have

𝜒vir (𝑋,𝑉) =
∫
[𝑋 ]vir

(
𝑟∑
𝑘=1

e𝑣𝑘
)

𝑛∏
𝑖=1

𝑥𝑖
1 − e−𝑥1

𝑚∏
𝑗=1

1 − e−𝑢 𝑗

𝑢 𝑗

since we can consider 𝑉 ∈ 𝐾0(𝑋) to be a vector bundle on X with Chern roots 𝑣1, . . . , 𝑣𝑟 .
Now, if we have a proper scheme X equipped with an action of a torus (C∗)𝑁 and an equivariant

1-perfect obstruction theory, we can apply virtual equivariant localization in order to compute virtual
invariants of X. We will now briefly recall how virtual localization works. First of all, for any equivariant
vector bundle B over a proper scheme Z with a 1-perfect obstruction theory, which is moreover equipped
with a trivial action of (C∗)𝑁 , we have the decomposition

𝐵 =
⊕
k∈Z𝑁

𝐵k,

where 𝐵k denotes the (C∗)𝑁 -eigenbundles on which the torus acts by 𝑡𝑘1
1 · · · 𝑡𝑘𝑁𝑁 . If we now give a set of

variables 𝜀1, . . . , 𝜀𝑁 , we identify B with 𝐵 =
∑

k 𝐵ke𝑘1 𝜀1 · · · e𝑘𝑁 𝜀𝑁 ∈ 𝐾0(𝑍) [[𝜀1, . . . , 𝜀𝑁 ]]. One then
defines 𝐵fix = 𝐵0 and 𝐵mov = ⊕k≠0𝐵

k. Then the Chern character ch : 𝐾0(𝑍) → 𝐴∗(𝑍) can be extended
by Q((𝜀1, . . . , 𝜀𝑁 ))-linearity to

ch : 𝐾0(𝑍) ((𝜀1, . . . , 𝜀𝑁 )) → 𝐴∗(𝑍) ((𝜀1, . . . , 𝜀𝑁 )).

Since the Grothendieck group of equivariant vector bundles 𝐾0
(C∗)𝑁 (𝑍) is a subring of

𝐾0(𝑍) [[𝜀1, . . . , 𝜀𝑁 ]], the restriction of the extension of ch to 𝐾0
(C∗)𝑁 (𝑍) is naturally identified with

the equivariant Chern character. Finally, if one denotes by 𝑝vir
∗ the Q((𝜀1, . . . , 𝜀𝑁 ))-linear extension of

𝜒vir (𝑍,−) : 𝐾0(𝑍) → Z, and 𝑝∗ is the equivariant pushforward to a point, one can prove as in [17] that

𝑝vir
∗ (𝑉) = 𝑝∗

(
ch(𝑉) td(𝑇vir

𝑍 ) ∩ [𝑍]vir
)
, 𝑉 ∈ 𝐾0(𝑍) ((𝜀1, . . . , 𝜀𝑁 )).

Then, following [23], if we have a global equivariant embedding of a scheme X into a nonsingular scheme
Y with (C∗)𝑁 action, we can identify the maximal (C∗)𝑁 -fixed closed subscheme 𝑋 𝑓 of X with the
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scheme-theoretic intersection 𝑋 𝑓 = 𝑋∩𝑌 𝑓 , where𝑌 𝑓 is the nonsingular set-theoretic fixed point locus.
By decomposing 𝑌 𝑓 into irreducible components 𝑌 𝑓 =

⋃
𝑖 𝑌𝑖 , one can also define 𝑋𝑖 = 𝑋 ∩ 𝑌𝑖 , which

carry a perfect obstruction theory with virtual fundamental class [𝑋𝑖]vir. In this way, if �̃� ∈ 𝐾0
(C∗)𝑁 (𝑋)

is an equivariant lift of the vector bundle V, �̃�𝑖 is its restriction to 𝑋𝑖 and 𝑝𝑖 : 𝑋𝑖 → pt is the projection,
one has that

𝜒vir (𝑋, �̃� ; 𝜀1, . . . , 𝜀𝑁 ) =
∑
𝑖

𝑝vir
𝑖∗

(
�̃�𝑖/Λ−1(𝑁vir

𝑖 )∨
)
=
∑
𝑖

𝑝vir
𝑖∗

(
�̃�𝑖/Λ−1 (𝑇vir

𝑋 |mov
𝑋𝑖

)∨
)

(3.2.3)

belongs to Q[[𝜀1, . . . , 𝜀𝑁 ]] and the virtual holomorphic Euler characteristic is 𝜒vir (𝑋,𝑉) =
𝜒vir (𝑋, �̃� ; 0).

As pointed out at the beginning of §3, we will define invariants in localization, as the T-fixed
locus of N (𝑟, n) is proper, while N (𝑟, n) is only quasi-projective, so the pushforward in the right-
hand side of Equation 3.2.3 is well defined. Computations are now made very easy by the fact that we
represented the virtual tangent space to the T-fixed points to the moduli space of nested instantons in
the representation ring 𝑅(T). In this way, 𝑇vir

𝑋𝑖
is decomposed as a direct sum of line bundles which are

moreover eigenbundles of the torus action. Then we can use the properties

ch(𝐸 ⊕ 𝐹) = ch 𝐸 + ch 𝐹, Λ𝑡 (𝐸 ⊕ 𝐹) = Λ𝑡 (𝐸) · Λ𝑡 (𝐹), 𝑆𝑡 (𝐸 ⊕ 𝐹) = 𝑆𝑡 (𝐸) · 𝑆𝑡 (𝐹)

and Equation (3.2.3) to compute the equivariant holomorphic Euler characteristic of the moduli space of
nested instantons in terms of the fundamental characters 𝔮1,2 of the torus T1. These will be related to the
equivariant parameters by𝔮𝑖 = e𝛽𝜀𝑖 , with 𝛽 being a parameter having a very clear meaning in the physical
framework modelling the moduli space of nested instantons as a low energy effective theory. In this
framework, it is very easy to explicitly compute the virtual equivariant holomorphic Euler characteristic
of the moduli space of nested instantons, as we already described the T-fixed locus of N (𝑟, 𝑛0, . . . , 𝑛𝑁 )
as being zero-dimensional and reduced.6 As we saw in §3.1, the fixed points of N (𝑟, 𝑛0, . . . , 𝑛𝑁 ) are
completely described by r-tuples of nested coloured partitions 𝝁1 ⊆ · · · ⊆ 𝝁𝑁 ⊆ 𝝁0, with 𝝁 𝑗 ∈ P𝑟 , in
such a way that |𝝁0 | =

∑
𝑗 |𝝁

𝑗
0 | = 𝑛0 and |𝝁0 \ 𝝁𝑖>0 | = 𝑛𝑖>0. In the simplest case of 𝑟 = 1, we get

𝜒vir (N (1, n), �̃� ;𝔮1,𝔮2) =
∑

𝜇1⊆···⊆𝜇0
|𝜇0\𝜇 𝑗 |=𝑛 𝑗

𝑇𝜇0 ,𝜇1 (𝔮1,𝔮2)𝑊𝜇0 ,...,𝜇𝑁 (𝔮1,𝔮2)
𝑁𝜇0 (𝔮1,𝔮2)

[
�̃�
] ��
𝜇0 ,...,𝜇𝑁

, (3.2.4)

where we defined

𝑁𝜇0 (𝔮1,𝔮2) =
∏
𝑠∈𝑌𝜇0

(
1 − 𝔮−𝑙 (𝑠)−1

1 𝔮𝑎 (𝑠)2

) (
1 − 𝔮𝑙 (𝑠)1 𝔮−𝑎 (𝑠)−1

2

)
, (3.2.5)

𝑇𝜇0 ,𝜇1 (𝔮1,𝔮2) =
𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

(
1 − 𝔮−𝑖1 𝔮

− 𝑗−𝜇′
1,𝑖

2

)
, (3.2.6)

𝑊𝜇0 ,...,𝜇𝑁 (𝔮1,𝔮2) =
𝑁∏
𝑘=1

𝑀0∏
𝑖=1

𝑁0∏
𝑗=1

(
1 − 𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

) (
1 − 𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
𝑘,𝑖−1

2

)
(
1 − 𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
𝑘,𝑖−1

2

) (
1 − 𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

) , (3.2.7)

6The fact that the fixed points are reduced follows from the fact that N (𝑟 , n) is a closed subscheme N (𝑟 , n) ↩→ M(𝑟 , 𝑛0) ×
M(𝑟 , 𝑛0 − 𝑛1) × · · · × M(𝑟 , 𝑛0 − 𝑛𝑁 ) . Considering the T-fixed locus, one has N (𝑟 , n)T ↩→ M(𝑟 , 𝑛0)T × M(𝑟 , 𝑛0 −
𝑛1)T × · · · × M(𝑟 , 𝑛0 − 𝑛𝑁 )T, where the right-hand side is the disjoint union of finitely-many reduced points, each of them
corresponding to sums of monomial ideals; cf. [4, 43].
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with 𝑎(𝑠) and 𝑙 (𝑠) the arm length and the leg length of the box s in the Young diagram 𝑌𝜇 associated to
𝜇, respectively. A very interesting and surprising fact can be observed if we rearrange the expression of
the holomorphic virtual Euler characteristic of N (1, n). In fact, if we perform the summation over the
smaller partitions 𝜇1 ⊆ · · · ⊆ 𝜇𝑁 and redefine 𝑞 = 𝔮−1

1 , 𝑡 = 𝔮−1
2 , we get

𝜒vir (N (1, n);𝔮1,𝔮2) =
∑
𝜇0

𝑃𝜇0 (𝑞, 𝑡)
𝑁𝜇0 (𝑞, 𝑡)

, (3.2.8)

and the unexpected fact is that we think 𝑃𝜇0 (𝑞, 𝑡) to be a polynomial in 𝑞, 𝑡 except for a factor (1−𝑞𝑡)−𝑁 .

Conjecture 3.6. 𝑃𝜇0 (𝑞, 𝑡) in Equation (3.2.8) is a function of the form

𝑃𝜇0 (𝑞, 𝑡) =
𝑄𝜇0 (𝑞, 𝑡)
(1 − 𝑞𝑡)𝑁

, (3.2.9)

with 𝑄𝜇0 (𝑞, 𝑡) ∈ Z[𝑞, 𝑡] a polynomial in the (𝑞, 𝑡)-variables.

Remark 3.7. The rational function 𝑃𝜇0 (𝑞, 𝑡) and the polynomials 𝑄𝜇0 (𝑞, 𝑡) in Equation (3.2.8) and
Equation (3.2.9) also depend on the discrete nesting profile n. The dependence on n is suppressed in
the notation to avoid cluttering.

Sometimes the polynomials in (3.2.9) can be given an interpretation in terms of some known
symmetric polynomials. Consider the ring Λ(x) of symmetric functions in the infinite set of variables
{𝑥1, 𝑥2, . . . }. It is convenient to sometimes denote by the same symbol X both the formal sum 𝑋 =
𝑥1 + 𝑥2 + · · · and the alphabet x = {𝑥1, 𝑥2, . . . }. If 𝜆 is an integer partition, we can define the monomial
functions

𝑚𝜆 =
∑
𝛼

𝑥𝛼1
1 𝑥𝛼2

2 · · · ,

where the sum runs over all the permutations of 𝜆. The ring of symmetric functions Λ(x) will then
be the free Z-module generated by the monomial functions 𝑚𝜆, for all partitions 𝜆. Two other sets of
symmetric functions in Λ(x) are the complete homogeneous symmetric functions ℎ𝜆 and the power
functions 𝑝𝜆, defined as

ℎ𝜆 = ℎ𝜆1ℎ𝜆2 · · · , ℎ𝑘 =
∑
𝜆 𝑘

𝑚𝜆

𝑝𝜆 = 𝑝𝜆1 𝑝𝜆2 · · · , 𝑝𝑘 =
∑
𝑗>0

𝑥𝑘𝑗 .

The symmetric functions ℎ𝜆 and 𝑝𝜆 form other Q-bases of Λ(x) indexed by integer partitions, and we
can moreover introduce a symmetric positive-definite bilinear form, the Hall pairing 〈−,−〉, such that
the two Q-bases 𝑚𝜆 and ℎ𝜆 are dual to each other (i.e., 〈ℎ𝜆, 𝑚𝜇〉 = 𝛿𝜆𝜇, for any choice of partitions
𝜆, 𝜇). Consider then the function

Ω[𝑋] = exp

(∑
𝑘≥1

𝑝𝑘 [𝑋]
𝑘

)
,

where the plethystic notation 𝑃[𝑋] = 𝑃(𝑥1, 𝑥2, . . . ) is used, for any 𝑃 ∈ Λ(x) and 𝑋 = 𝑥1 + 𝑥2 + · · · , as
before. On the ring Λ(x) ⊗Z Q(𝑞, 𝑡), we can introduce the operator

Δ 𝑓 = Coeff𝑧0 ( 𝑓 [𝑋 + (1 − 𝑞) (1 − 𝑡)/𝑧]Ω[−𝑧𝑋]), 𝑓 ∈ Λ(x) ⊗Z Q(𝑞, 𝑡),
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and a set of eigenfunctions for Δ is given by the modified (or transformed) Macdonald polynomials
𝐻𝜆 (x; 𝑞, 𝑡). They form a basis for Λ(x) ⊗Z Q(𝑞, 𝑡) and are defined as

𝐻𝜆 [𝑋; 𝑞, 𝑡] =
∑
𝜇 |𝜆 |

𝐾𝜇𝜆(𝑞, 𝑡)𝑠𝜇 [𝑋], (3.2.10)

where 𝑠𝜆 are the Schur symmetric functions and �̃�𝜇,𝜆(𝑞, 𝑡) ∈ N[𝑞, 𝑡] are the modified 𝑞, 𝑡-Kostka
functions, introduced by Macdonald in [36].

Let us then define the generating function

𝑍𝑀𝐷 (𝑞, 𝑡; 𝑥0, . . . , 𝑥𝑁 ) =
∑

𝑛0≥···≥𝑛𝑁
𝜒vir (N (1, ñ); 𝑞, 𝑡)

𝑁∏
𝑖=0

𝑥𝑚𝑖

𝑖 ,

where 𝑚𝑖 = 𝑛𝑖 − 𝑛𝑖+1 and the integers �̃�𝑖 form a sequence obtained by permuting 𝑛𝑖 in such a way that
the sequence defined �̃�𝑖 − �̃�𝑖+1 is ordered. By construction, 𝑍𝑀𝐷 (𝑞, 𝑡; 𝑥0, . . . , 𝑥𝑁 ) ∈ Q(𝑞, 𝑡) ⊗Z Λ(x).
As a consequence of conjecture 3.6, we have

𝑍𝑀𝐷 (𝑞, 𝑡; 𝑥0, . . . , 𝑥𝑁 ) =
∑

𝑛0≥···≥𝑛𝑁

∑
𝜇0∈P (𝑛0)

𝑄 (ñ)
𝜇0 (𝑞, 𝑡)

(1 − 𝑞𝑡)𝑁𝑁𝜇0 (𝑞, 𝑡)

𝑁∏
𝑖=0

𝑥𝑚𝑖

𝑖 ,

where, as in Remark 3.7, we emphasized the dependence of 𝑄𝜇0 (𝑞, 𝑡) on the discrete profile ñ.

Conjecture 3.8. When |𝜇0 | = |𝜇𝑁 | + 1 = |𝜇𝑁−1 | + 2 = · · · = |𝜇1 | + 𝑁 , we have

𝑄𝜇0 (𝑞, 𝑡) =
〈
ℎ𝜇0 (x), 𝐻𝜇0 (x; 𝑞, 𝑡)

〉
. (3.2.11)

The Schur functions 𝑠𝜇 can be expressed in terms of the monomial functions as

𝑠𝜇 [𝑋] =
∑
𝜈 |𝜇 |

𝐾𝜇𝜈𝑚𝜈 [𝑋],

where the Kostka coefficients 𝐾𝜇𝜈 count the number of semi-standard Young tableaux of shape 𝜇 and
weight 𝜈, so that 𝐾𝜇𝜇 = 1. Thus, using (3.2.10), we can rewrite (3.2.11) as

𝑄𝜇0 (𝑞, 𝑡) =
〈
ℎ𝜇0 (x),

∑
𝜆,𝜈∈P (𝑛0)

𝐾𝜆,𝜇0 (𝑞, 𝑡)𝐾𝜇0 ,𝜈𝑚𝜈 (x)
〉

=
∑

𝜆∈P (𝑛0)
𝑚𝜆 (x)≠0

𝐾𝜆,𝜇0 (𝑞, 𝑡).

In particular, within the assumptions of Conjecture 3.8, we have 𝑄𝜇0 (𝑞, 𝑡) ∈ N[𝑞, 𝑡]. We checked the
previous conjectures up to 𝑛0 = 10.

If instead 𝑟 > 1, we get a more complicated result, even though its structure is the same as we had
previously:

𝜒vir (N (𝑟, n), �̃� ;𝔮1,𝔮2, {𝔱𝑖}) =
∑

𝝁1⊆···⊆𝝁0
|𝝁0\𝝁 𝑗 |=𝑛 𝑗

𝑇 (𝑟 )
𝝁0 ,𝝁1

(𝔮1,𝔮2)𝑊 (𝑟 )
𝝁0 ,...,𝝁𝑁

(𝔮1,𝔮2)

𝑁 (𝑟 )
𝝁0

(𝔮1,𝔮2)

[
�̃�
] ��
𝝁0 ,...,𝝁𝑁

, (3.2.12)
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with

𝑁 (𝑟 )
𝝁0

(𝔮1,𝔮2) =
𝑟∏

𝑎,𝑏=1

∏
𝑠∈𝑌

𝜇
(𝑎)
0

(
1 − 𝔱𝑎𝑏𝔮

−𝑙𝑎 (𝑠)−1
1 𝔮𝑎𝑏 (𝑠)2

) (
1 − 𝔮𝑙𝑎 (𝑠)1 𝔮−𝑎𝑏 (𝑠)−1

2

)
,

𝑇 (𝑟 )
𝝁0 ,𝝁1

(𝔮1,𝔮2) =
𝑟∏
𝑎,𝑏

𝑀
(𝑎)

0∏
𝑖=1

𝜇 (𝑎)′
0,𝑖 −𝜇 (𝑎)′

1,𝑖∏
𝑗=1

(
1 − 𝔱𝑎𝑏𝔮

−𝑖
1 𝔮

− 𝑗−𝜇 (𝑎)′
1,𝑖

2

)
,

𝑊 (𝑟 )
𝝁0 ,...,𝝁𝑁

(𝔮1,𝔮2) =
𝑁∏
𝑘=1

𝑟∏
𝑎,𝑏

𝑀
(𝑎)

0∏
𝑖=1

𝑁
(𝑏)

0∏
𝑗=1

(
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑗−𝜇 (𝑎)′
0,𝑖 −1

2

) (
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

𝑘,𝑖
−1

2

)
(
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑗−𝜇 (𝑎)′
𝑘,𝑖

−1
2

) (
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

0,𝑖 −1
2

) ,
where now 𝔱𝑎𝑏 = 𝔱𝑎𝔱−1

𝑏 , and {𝔱𝑖} are the fundamental characters of T2 in T, and 𝑎𝑏 (𝑠) denotes the arm
length of the box s with respect to the Young diagram 𝑌𝜇 (𝑏) associated to the partition 𝜇 (𝑏) of 𝝁 (with
an analogous definition for the leg length).

3.3. Virtual equivariant 𝜒−𝑦-genus

The first refinement of the equivariant holomorphic Euler characteristic we are going to study is the
virtual equivariant 𝜒−𝑦-genus, as defined in [17]. In order to exhibit the definition of virtual 𝜒−𝑦-genus,
let us first recall that if E is a rank r vector bundle on r, one can define the antisymmetric product Λ𝑡𝐸
and the symmetric one 𝑆𝑡𝐸 as

Λ𝑡𝐸 =
𝑟∑
𝑖=0

[Λ𝑖𝐸]𝑡𝑖 ∈ 𝐾0(𝑋) [𝑡], 𝑆𝑡𝐸 =
∑
𝑖≥0

[𝑆𝑖𝐸]𝑡𝑖 ∈ 𝐾0(𝑋) [[𝑡]],

so that 1/Λ𝑡𝐸 = 𝑆−𝑡𝐸 in 𝐾0(𝑋) [[𝑡]]. We can then define the virtual cotangent bundle Ωvir
𝑋 = (𝑇vir

𝑋 )∨

and the bundle of virtual n-forms Ω𝑛,vir
𝑋 = Λ𝑛Ωvir

𝑋 . If then X is a proper scheme equipped with a perfect
obstruction theory of virtual dimension d, the virtual 𝜒−𝑦-genus of X is defined by

𝜒vir
−𝑦 (𝑋) = 𝜒vir (𝑋,Λ−𝑦Ω

vir
𝑋 ) =

∑
𝑖≥0

(−𝑦)𝑖𝜒vir (𝑋,Ω𝑖,vir
𝑋 ), (3.3.1)

while if 𝑉 ∈ 𝐾0(𝑋), the virtual 𝜒−𝑦-genus of X with values in V is

𝜒vir
−𝑦 (𝑋,𝑉) = 𝜒vir (𝑋,𝑉 ⊗ Λ−𝑦Ω

vir
𝑋 ) =

∑
𝑖≥0

(−𝑦)𝑖𝜒vir (𝑋,𝑉 ⊗ Ω𝑖,vir
𝑋 ).

Though in principle one would expect 𝜒vir
−𝑦 (𝑋,𝑉) to be an element of Z[[𝑦]], it is, in fact, true that

𝜒vir
−𝑦 (𝑋,𝑉) ∈ Z[𝑦], [17].

By the form (3.2.2) and (3.2.1) of the holomorphic Euler characteristic, it is easy to see that

𝜒vir
−𝑦 (𝑋) =

∫
[𝑋 ]vir

ch(Λ−𝑦𝑇
vir
𝑋 ) · td(𝑇vir

𝑋 ) =
∫
[𝑋 ]vir

X−𝑦 (𝑋),

𝜒vir
−𝑦 (𝑋,𝑉) =

∫
[𝑋 ]vir

ch(Λ−𝑦𝑇
vir
𝑋 ) · ch(𝑉) · td(𝑇vir

𝑋 ) =
∫
[𝑋 ]vir

X−𝑦 (𝑋) · ch(𝑉),
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which, in terms of the Chern roots of 𝐸0, 𝐸1 and V become

𝜒vir
−𝑦 (𝑋) =

∫
[𝑋 ]vir

𝑛∏
𝑖=1

𝑥𝑖
1 − 𝑦e−𝑥𝑖
1 − e−𝑥𝑖

𝑚∏
𝑗=1

1
𝑢 𝑗

1 − e−𝑢 𝑗

1 − 𝑦e−𝑢 𝑗
,

𝜒vir
−𝑦 (𝑋,𝑉) =

∫
[𝑋 ]vir

(
𝑟∑
𝑘=1

e𝑣𝑘
)

𝑛∏
𝑖=1

𝑥𝑖
1 − 𝑦e−𝑥𝑖
1 − e−𝑥𝑖

𝑚∏
𝑗=1

1
𝑢 𝑗

1 − e−𝑢 𝑗

1 − 𝑦e−𝑢 𝑗
.

Finally, one can define the virtual Euler number 𝑒vir (𝑋) and the virtual signature 𝜎vir (𝑋) of X as
𝑒vir (𝑋) = 𝜒vir

−1 (𝑋) and 𝜎vir (𝑋) = 𝜒vir
1 (𝑋). Whenever 𝑦 = 0, one recovers the holomorphic virtual Euler

characteristic instead.
By extending the definition of 𝜒−𝑦-genus to the equivariant case in the obvious way and by equivariant

virtual localization, one gets

𝜒vir
−𝑦 (𝑋, �̃� ; 𝜀1, . . . , 𝜀𝑁 ) =

∑
𝑖

𝑝vir
𝑖∗

(
�̃�𝑖 ⊗ Λ−𝑦 (Ωvir

𝑋 |𝑋𝑖 )/Λ−1(𝑁vir
𝑖 )∨

)
, (3.3.2)

whence 𝜒vir
−𝑦 (𝑋,𝑉) = 𝜒vir

−𝑦 (𝑋, �̃� ; 0, . . . , 0).
A simple computation in equivariant localization gives us the following result:

𝜒vir
−𝑦 (N (1, n), �̃� ;𝔮1,𝔮2) =

∑
𝜇1⊆···⊆𝜇0
|𝜇0\𝜇 𝑗 |=𝑛 𝑗

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1,𝔮2)𝑊−𝑦

𝜇0 ,...,𝜇𝑁
(𝔮1,𝔮2)

𝑁
−𝑦
𝜇0 (𝔮1,𝔮2)

[
�̃�
] ��
𝜇0 ,...,𝜇𝑁

, (3.3.3)

with

𝑁
−𝑦
𝜇0 (𝔮1,𝔮2) =

∏
𝑠∈𝑌𝜇0

(
1 − 𝔮−𝑙 (𝑠)−1

1 𝔮𝑎 (𝑠)2

) (
1 − 𝔮𝑙 (𝑠)1 𝔮−𝑎 (𝑠)−1

2

)
(
1 − 𝑦𝔮−𝑙 (𝑠)−1

1 𝔮𝑎 (𝑠)2

) (
1 − 𝑦𝔮𝑙 (𝑠)1 𝔮−𝑎 (𝑠)−1

2

) , (3.3.4)

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1,𝔮2) =

𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

(
1 − 𝔮−𝑖1 𝔮

− 𝑗−𝜇′
1,𝑖

2

)
(
1 − 𝑦𝔮−𝑖1 𝔮

− 𝑗−𝜇′
1,𝑖

2

) , (3.3.5)

𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1,𝔮2) =
𝑁∏
𝑘=1

𝑀0∏
𝑖=1

𝑁0∏
𝑗=1

(
1 − 𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

) (
1 − 𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
𝑘,𝑖−1

2

)
(
1 − 𝑦𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

) (
1 − 𝑦𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
𝑘,𝑖−1

2

) ·
·

(
1 − 𝑦𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑘−𝜇′
𝑘,𝑖−1

2

) (
1 − 𝑦𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

)
(
1 − 𝔮

𝜇𝑘, 𝑗−𝑖
1 𝔮

𝑘−𝜇′
𝑘,𝑖−1

2

) (
1 − 𝔮

𝜇𝑘−1, 𝑗−𝑖
1 𝔮

𝑗−𝜇′
0,𝑖−1

2

) . (3.3.6)

The limit 𝑦 → 0 manifestly reverts to the case of the equivariant holomorphic Euler characteristic of
the moduli space of nested instantons.

A similar result holds also for the general case 𝑟 > 1:

𝜒vir
−𝑦 (N (𝑟, n), �̃� ;𝔮1,𝔮2, {𝔱𝑖}) =

∑
𝝁1⊆···⊆𝝁0
|𝝁0\𝝁 𝑗 |=𝑛 𝑗

𝑇
(𝑟 ) ,𝑦
𝝁0 ,𝝁1

(𝔮1,𝔮2)𝑊 (𝑟 ) ,𝑦
𝝁0 ,...,𝝁𝑁

(𝔮1,𝔮2)

𝑁
(𝑟 ) ,𝑦
𝝁0

(𝔮1,𝔮2)

[
�̃�
] ��
𝝁0 ,...,𝝁𝑁

, (3.3.7)
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with

𝑁
(𝑟 ) ,𝑦
𝝁0

(𝔮1,𝔮2) =
𝑟∏

𝑎,𝑏=1

∏
𝑠∈𝑌

𝜇
(𝑎)
0

(
1 − 𝔱𝑎𝑏𝔮

−𝑙𝑎 (𝑠)−1
1 𝔮𝑎𝑏 (𝑠)2

) (
1 − 𝔱𝑎𝑏𝔮

𝑙𝑎 (𝑠)
1 𝔮−𝑎𝑏 (𝑠)−1

2

)
(
1 − 𝑦𝔱𝑎𝑏𝔮

−𝑙𝑎 (𝑠)−1
1 𝔮𝑎𝑏 (𝑠)2

) (
1 − 𝑦𝔱𝑎𝑏𝔮

𝑙𝑎 (𝑠)
1 𝔮−𝑎𝑏 (𝑠)−1

2

) ,
𝑇

(𝑟 ) ,𝑦
𝝁0 ,𝝁1

(𝔮1,𝔮2) =
𝑟∏
𝑎,𝑏

𝑀
(𝑎)

0∏
𝑖=1

𝜇
(𝑎)′
0,𝑖 −𝜇 (𝑎)′

1,𝑖∏
𝑗=1

(
1 − 𝔱𝑎𝑏𝔮

−𝑖
1 𝔮

− 𝑗−𝜇 (𝑎)′
1,𝑖

2

)
(
1 − 𝑦𝔱𝑎𝑏𝔮

−𝑖
1 𝔮

− 𝑗−𝜇 (𝑎)′
1,𝑖

2

) ,

𝑊
(𝑟 ) ,𝑦
𝝁0 ,...,𝝁𝑁

(𝔮1,𝔮2) =
𝑁∏
𝑘=1

𝑟∏
𝑎,𝑏

𝑀 (𝑎)
0∏
𝑖=1

𝑁 (𝑏)
0∏
𝑗=1

(
1 − 𝔱𝑎𝑏𝔮

𝜇 (𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑗−𝜇 (𝑎)′
0,𝑖 −1

2

) (
1 − 𝔱𝑎𝑏𝔮

𝜇 (𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

𝑘,𝑖
−1

2

)
(
1 − 𝑦𝔱𝑎𝑏𝔮

𝜇 (𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑗−𝜇 (𝑎)′
0,𝑖 −1

2

) (
1 − 𝑦𝔱𝑎𝑏𝔮

𝜇 (𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

𝑘,𝑖
−1

2

) ·

·

(
1 − 𝑦𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑘−𝜇 (𝑎)′
𝑘,𝑖

−1
2

) (
1 − 𝑦𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

0,𝑖 −1
2

)
(
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘, 𝑗

−𝑖
1 𝔮

𝑘−𝜇 (𝑎)′
𝑘,𝑖

−1
2

) (
1 − 𝔱𝑎𝑏𝔮

𝜇
(𝑏)
𝑘−1, 𝑗−𝑖

1 𝔮
𝑗−𝜇 (𝑎)′

0,𝑖 −1
2

) ,

with the same notations of the previous section.

Virtual Euler number

Recall that the virtual Euler characteristic 𝑒vir (𝑋) and the virtual signature 𝜎vir (𝑋) of a scheme X
endowed with a perfect obstruction theory are defined as 𝜒vir

−1 (𝑋) and 𝜒vir
1 (𝑋), respectively (cf. [17,

§5]). Here, we are interested in virtual Euler characteristics, for which we use an analogous definition
in the equivariant context. In general, these are highly nontrivial to compute explicitly, even when the
T-fixed locus is isolated reduced. An interesting feature in this case is that the computation of virtual
Euler characteristics of nested Hilbert schemes of points seems to reduce to just the enumeration of
T-fixed points.

Conjecture 3.9. Let 𝑍 (𝑞0, 𝑞1, . . . ) be the generating function of virtual Euler characteristics of nested
Hilbert schemes, that is

𝑍 (𝑞0, 𝑞1, . . . ) �
∞∑
𝑗=0

∑
𝑛0 ,...,𝑛 𝑗

𝑒vir (N (1, 𝑛0, . . . , 𝑛 𝑗 ))𝑞𝑛0
0 · · · 𝑞𝑛 𝑗

𝑗 .

There is an identity

𝑍 (𝑞0, 𝑞1, . . . ) =
∞∑
𝑗=0

∑
𝑛0 ,...,𝑛 𝑗

#
{
𝜇1 ⊆ · · · ⊆ 𝜇 𝑗 ⊆ 𝜇0

}
𝑞𝑛0

0 · · · 𝑞𝑛 𝑗

𝑗 .

Unfortunately, we are not able to provide a complete proof of the previous conjecture as of yet. We
checked its validity numerically up to 𝑛0 = 10. However, assuming the validity of Conjecture 3.9, we are
able to express the generating function of virtual Euler characteristic in closed form for specific nesting
profiles n.
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Proposition 3.10. Assuming Conjecture 3.9 holds, we have the following identities:∑
𝑛≥0

𝑒vir (N (1, 𝑛))𝑞𝑛 =
∞∏
𝑘=1

(
1

1 − 𝑞𝑘

)
(3.3.8a)

∑
𝑛≥1

𝑒vir (N (1, 𝑛, 𝑛 − 1))𝑞𝑛 = −1 +
∑
𝑛≥0

𝑒vir (N (1, 𝑛))𝑞𝑛 (3.3.8b)

∑
𝑛≥1

𝑒vir (N (1, 𝑛, 1))𝑞𝑛 =
𝑞

1 − 𝑞

∞∏
𝑘=1

(
1

1 − 𝑞𝑘

)
. (3.3.8c)

Proof. Equation (3.3.8a) follows from the isomorphism N (1, 𝑛) �M(1, 𝑛). Fixed points are in bijec-
tion with integer partitions, whose partition function is precisely given by Equation (3.3.8a). Similarly,
fixed points in N (1, 𝑛, 𝑛 − 1) are in bijection with collections of nested partitions 𝜇1 ⊂ 𝜇0, such that
|𝜇0 | = 𝑛, |𝜇1 | = 1. Given 𝜇0, there is just one possible choice for 𝜇1 ⊂ 𝜇0. Thus, assuming Conjecture
3.9 holds, 𝑒vir (N (1, 𝑛, 𝑛 − 1)) counts partitions of size at least one, which immediately implies Equa-
tion 3.3.8b. Finally, the fixed locus in N (1, 𝑛, 1) is in bijection with nested partitions 𝜇1 ⊂ 𝜇0, such that
|𝜇0 | = 𝑛, |𝜇1 | = 𝑛 − 1. Given 𝜇0 with |𝜇0 | = 𝑛, the possible choices for 𝜇1 ⊂ 𝜇0 are determined by the
boxes 𝑠 ∈ 𝑌𝜇0 in the Young diagram 𝑌𝜇0 associated to 𝜇0 such that 𝑎𝜇0 (𝑠) + 𝑙𝜇0 (𝑠) = 0. If we let 𝑃(𝑛)
be the number of all such boxes in all integer partitions of n, one has (cf., for example, [49, Ex. 1.80])∑

𝑛≥1
𝑃(𝑛)𝑞𝑛 =

∑
𝑛≥1

𝑛−1∑
𝑘=0

𝑝(𝑘)𝑞𝑛,

where 𝑝(𝑘) denotes the number of integer partitions of k. Then

Coeff𝑞𝑛

(
𝑞

1 − 𝑞

∞∏
𝑘=1

1
1 − 𝑞𝑘

)
=
𝑛−1∑
𝑘=0

Coeff𝑞𝑘

( ∞∏
𝑘=1

1
1 − 𝑞𝑘

)
=
𝑛−1∑
𝑘=0

𝑝(𝑘),

whence we get Equation (3.3.8c). �

Proposition 3.11. Assuming Conjecture 3.9 holds, by setting |n| = 𝑛0 + · · · + 𝑛𝑁 there is an identity of
generating functions

𝑍 (𝑞) =
∑
𝑛≥0

∑
|n |=𝑛

𝑒vir (N (1, n))𝑞𝑛 = 𝑀 (𝑞),

where 𝑀 (𝑞) is the MacMahon function

𝑀 (𝑞) �
∞∏
𝑘=1

1
(1 − 𝑞𝑘 )𝑘

.

Proof. Assuming Conjecture 3.9 holds, 𝑍 (𝑞) counts the number of all unrestricted nested partitions.
A fixed point 𝜇1 ⊆ · · · ⊆ 𝜇𝑁 ⊆ 𝜇0 in N (1, n) determines a plane partition 𝜋 of size |𝜋 | = (𝑁 + 1)𝑛0 −
𝑛1 − · · · − 𝑛𝑁 as follows:

𝜋𝑖 𝑗 = #{partitions 𝜇 in 𝜇0 ⊇ 𝜇𝑁 ⊇ · · · ⊇ 𝜇1 s.t. (𝜇)𝑖 ≥ 𝑗}.

Conversely, any plane partition 𝜋 determines a nested partition 𝜇0 ⊇ · · · ⊇ 𝜇𝜋11 as

(𝜇𝑘 )𝑖 = #
{
𝜋𝑖 𝑗 in 𝜋 s.t. 𝜋𝑖 𝑗 ≥ 𝑘

}
.
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We conclude that 𝑍 (𝑞) is nothing but the generating function of plane partitions (i.e., the MacMahon
function). �

Proposition 3.12. Considering the generating function of (non-virtual) Euler characteristics, there is
an identity ∑

𝑛≥0

∑
|n |=𝑛

𝑒(N (1, n))𝑞𝑛 = 𝑀 (𝑞).

Proof. The Euler characteristic of a scheme coincides with the one of its T-fixed locus. The result
then follows immediately from the fact that the N (1, n)T is reduced and zero-dimensional, so the Euler
characteristic is just counting the number of nested partitions. �

3.4. Virtual equivariant elliptic genus

A further refinement of the virtual 𝜒−𝑦-genus is finally given by the virtual elliptic genus. In this case,
if F is any vector bundle over X, we define

E (𝐹) =
⊗
𝑛≥1

(
Λ−𝑦𝑞𝑛𝐹∨ ⊗ Λ−𝑦−1𝑞𝑛𝐹 ⊗ 𝑆𝑞𝑛 (𝐹 ⊕ 𝐹∨)

)
∈ 1 + 𝑞 · 𝐾0(𝑋) [𝑦, 𝑦−1] [[𝑞]],

so that the virtual elliptic genus Ellvir (𝑋; 𝑦, 𝑞) of X is defined by

Ellvir (𝑋; 𝑦, 𝑞) = 𝑦−𝑑/2𝜒vir
−𝑦 (𝑋, E (𝑇vir

𝑋 )) ∈ Q((𝑦1/2)) [[𝑞]],

and also

Ellvir (𝑋,𝑉 ; 𝑦, 𝑞) = 𝑦−𝑑/2𝜒vir
−𝑦 (𝑋, E (𝑇vir

𝑋 ) ⊗ 𝑉).

By using virtual Riemann-Roch again, one can see that Ellvir (𝑋; 𝑦, 𝑞) admits an integral form

Ellvir (𝑋; 𝑦, 𝑞) =
∫
[𝑋 ]vir

Eℓℓ(𝑇vir
𝑋 ; 𝑦, 𝑞),

Ellvir (𝑋,𝑉 ; 𝑦, 𝑞) =
∫
[𝑋 ]vir

Eℓℓ(𝑇vir
𝑋 ; 𝑦, 𝑞) · ch(𝑉),

with

Eℓℓ(𝐹; 𝑦, 𝑞) = 𝑦− rk𝐹/2 ch(Λ−𝑦𝐹
∨) · ch(E (𝐹)) · td(𝐹) ∈ 𝐴∗(𝑋) [𝑦−1/2, 𝑦1/2] [[𝑞]] .

It is also interesting to study how the virtual elliptic genus is described in terms of the usual Chern roots
𝑥𝑖 , 𝑢 𝑗 , 𝑣𝑘 , as its formula involves the Jacobi theta function 𝜃 (𝑧, 𝜏) defined as

𝜃 (𝑧, 𝜏) = 𝑞1/8 𝑦
1/2 − 𝑦−1/2

i

∞∏
𝑙=1

(1 − 𝑞𝑙) (1 − 𝑞𝑙𝑦) (1 − 𝑞𝑙𝑦−1),

where 𝑞 = e2𝜋i𝜏 and 𝑦 = e2𝜋i𝑧 . In fact, if F is any vector bundle over X with Chern roots { 𝑓𝑖}, one can
prove [6] that

Eℓℓ(𝐹; 𝑧, 𝜏) =
rk𝐹∏
𝑖=1

𝑓𝑖
𝜃 ( 𝑓𝑖/2𝜋i − 𝑧, 𝜏)
𝜃 ( 𝑓𝑖/2𝜋i, 𝜏) ,
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so that

Ellvir (𝑋; 𝑦, 𝑞) =
∫
[𝑋 ]vir

𝑛∏
𝑖=1

𝑥𝑖
𝜃 (𝑥𝑖/2𝜋i − 𝑧, 𝜏)
𝜃 (𝑥𝑖/2𝜋i, 𝜏)

𝑚∏
𝑗=1

1
𝑢 𝑗

𝜃 (𝑢 𝑗/2𝜋i, 𝜏)
𝜃 (𝑢 𝑗/2𝜋i − 𝑧, 𝜏) ,

Ellvir (𝑋,𝑉 ; 𝑦, 𝑞) =
∫
[𝑋 ]vir

(
𝑟∑
𝑘=1

e𝑣𝑘
)

𝑛∏
𝑖=1

𝑥𝑖
𝜃 (𝑥𝑖/2𝜋i − 𝑧, 𝜏)
𝜃 (𝑥𝑖/2𝜋i, 𝜏)

𝑚∏
𝑗=1

1
𝑢 𝑗

𝜃 (𝑢 𝑗/2𝜋i, 𝜏)
𝜃 (𝑢 𝑗/2𝜋i − 𝑧, 𝜏) .

Finally, by taking the same steps as in the previous paragraphs, we can equivariantly extend the
definition of the virtual elliptic genus, and by virtual localization, we find that

Ellvir (𝑋, �̃�, 𝑧, 𝜏; 𝜀1, . . . , 𝜀𝑁 ) = 𝑦− vd/2
∑
𝑖

𝑝vir
𝑖∗

(
�̃�𝑖 ⊗ E (𝑇vir

𝑋 ⊗ Λ−𝑦 (Ωvir
𝑋 |𝑋𝑖 )/Λ−1(𝑁vir

𝑖 )∨
)

and Ellvir (𝑋,𝑉) = Ellvir (𝑋, �̃� ; 0, . . . , 0). In particular, we get in rank 1

Ellvir (N (1, n), �̃� ; 𝜀, 𝜀2) =
∑

𝜇1⊆···⊆𝜇0
|𝜇0\𝜇 𝑗 |=𝑛 𝑗

T 𝑧,𝜏
𝜇0 ,𝜇1 (𝜀1, 𝜀2)W 𝑧,𝜏

𝜇0 ,...,𝜇𝑁
(𝜀1, 𝜀2)

N 𝑧,𝜏
𝜇0 (𝜀1, 𝜀2)

)
[
�̃�
] ��
𝜇0 ,...,𝜇𝑁

, (3.4.1)

with

N 𝑧,𝜏
𝜇0 (𝜀1, 𝜀2) =

∏
𝑠∈𝑌𝜇0

[
𝜃 (𝜖1 (𝑙 (𝑠) + 1) − 𝜖2𝑎(𝑠), 𝜏)

𝜃 (𝜖1 (𝑙 (𝑠) + 1) − 𝜖2𝑎(𝑠) − 𝑧, 𝜏) ·

· 𝜃 (−𝜖1𝑙 (𝑠) + 𝜖2 (𝑎(𝑠) + 1), 𝜏)
𝜃 (−𝜖1𝑙 (𝑠) + 𝜖2 (𝑙 (𝑠) + 1) − 𝑧, 𝜏)

]
,

T 𝑧,𝜏
𝜇0 ,𝜇1 (𝜀1, 𝜀2) =

𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

𝜃 (𝜖1𝑖 + 𝜖2 ( 𝑗 + 𝜇′
1,𝑖) − 𝑧, 𝜏)

𝜃 (𝜖1𝑖 + 𝜖2 ( 𝑗 + 𝜇′
1,𝑖), 𝜏)

,

W 𝑧,𝜏
𝜇0 ,...,𝜇𝑁

(𝜀1, 𝜀2) =
𝑁∏
𝑘=1

𝑀0∏
𝑖=1

𝑁0∏
𝑗=1

[
𝜃 (𝜖1 (𝑖 − 𝜇𝑘, 𝑗 ) + 𝜖2(1 + 𝜇′

0,𝑖 − 𝑗), 𝜏)
𝜃 (𝜖1 (𝑖 − 𝜇𝑘, 𝑗 ) + 𝜖2 (1 + 𝜇′

0,𝑖 − 𝑗) − 𝑧, 𝜏) ·

·
𝜃 (𝜖1 (𝑖 − 𝜇𝑘−1, 𝑗 ) + 𝜖2(1 + 𝜇′

𝑘,𝑖 − 𝑗), 𝜏)
𝜃 (𝜖1 (𝑖 − 𝜇𝑘−1, 𝑗 ) + 𝜖2 (1 + 𝜇′

𝑘,𝑖 − 𝑗) − 𝑧, 𝜏)

·
𝜃 (𝜖1 (𝑖 − 𝜇𝑘, 𝑗 ) + 𝜖2 (1 + 𝜇′

𝑘,𝑖 − 𝑗) − 𝑧, 𝜏)
𝜃 (𝜖1 (𝑖 − 𝜇𝑘, 𝑗 ) + 𝜖2(1 + 𝜇′

𝑘,𝑖 − 𝑗), 𝜏)

·
𝜃 (𝜖1 (𝑖 − 𝜇𝑘−1, 𝑗 ) + 𝜖2 (1 + 𝜇′

0,𝑖 − 𝑗) − 𝑧, 𝜏)
𝜃 (𝜖1 (𝑖 − 𝜇𝑘−1, 𝑗 ) + 𝜖2 (1 + 𝜇′

0,𝑖 − 𝑗), 𝜏)

]
,

with 𝜖𝑖 = 𝜀𝑖/2𝜋i. One can easily see that the virtual elliptic genus we just computed is indeed a Jacobi
form and that its limit 𝜏 → i∞ reproduces the 𝜒−𝑦-genus. Moreover, by taking the limit 𝑦 → 0 in the
𝜒−𝑦-genus, one can recover the virtual equivariant holomorphic Euler characteristic.
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Finally, if we study the virtual equivariant elliptic genus in the more general case of rank 𝑟 ≥ 1, we get

Ellvir (N (𝑟, n), �̃� ; 𝜀, 𝜀2, {𝑎𝑖}) =
∑

𝝁1⊆···⊆𝝁0
|𝝁0\𝝁 𝑗 |=𝑛 𝑗

T 𝑧,𝜏
𝝁0 ,𝝁1

(𝜀1, 𝜀2)W 𝑧,𝜏
𝝁0 ,...,𝝁𝑁

(𝜀1, 𝜀2)
N 𝑧,𝜏

𝝁0
(𝜀1, 𝜀2)

)
[
�̃�
] ��
𝝁0 ,...,𝝁𝑁

, (3.4.2)

with

N 𝑧,𝜏
𝝁0

(𝜀1, 𝜀2) =
𝑟∏

𝑎,𝑏=1

∏
𝑠∈𝑌𝜇0

[
𝜃 (𝑎𝑎𝑏 + 𝜖1 (𝑙 (𝑠) + 1) − 𝜖2𝑎(𝑠), 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1 (𝑙 (𝑠) + 1) − 𝜖2𝑎(𝑠) − 𝑧, 𝜏) ·

· 𝜃 (𝑎𝑎𝑏 + −𝜖1𝑙 (𝑠) + 𝜖2 (𝑎(𝑠) + 1), 𝜏)
𝜃 (𝑎𝑎𝑏 + −𝜖1𝑙 (𝑠) + 𝜖2(𝑙 (𝑠) + 1) − 𝑧, 𝜏)

]
,

T 𝑧,𝜏
𝝁0 ,𝝁1

(𝜀1, 𝜀2) =
𝑟∏

𝑎,𝑏=1

𝑀 (𝑎)
0∏
𝑖=1

𝜇
(𝑎)′
0,𝑖 −𝜇 (𝑎)′

1,𝑖∏
𝑗=1

𝜃 (𝑎𝑎𝑏 + 𝜖1𝑖 + 𝜖2( 𝑗 + 𝜇 (𝑎) ′
1,𝑖 ), 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1𝑖 + 𝜖2( 𝑗 + 𝜇 (𝑎) ′
1,𝑖 ) − 𝑧, 𝜏)

,

W 𝑧,𝜏
𝝁0 ,...,𝝁𝑁

(𝜀1, 𝜀2) =
𝑁∏
𝑘=1

𝑟∏
𝑎,𝑏=1

𝑀
(𝑎)

0∏
𝑖=1

𝑁
(𝑏)

0∏
𝑗=1

⎡⎢⎢⎢⎢⎣
𝜃 (𝑎𝑎𝑏 + 𝜖1(𝑖 − 𝜇 (𝑏)

𝑘, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′
0,𝑖 − 𝑗), 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1 (𝑖 − 𝜇 (𝑏)
𝑘, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′

0,𝑖 − 𝑗) − 𝑧, 𝜏)
·

·
𝜃 (𝑎𝑎𝑏 + 𝜖1 (𝑖 − 𝜇 (𝑏)

𝑘−1, 𝑗 ) + 𝜖2(1 + 𝜇𝑘,𝑖 − 𝑗) (𝑎) ′, 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1(𝑖 − 𝜇 (𝑏)
𝑘−1, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′

𝑘,𝑖 − 𝑗) − 𝑧, 𝜏)
·

·
𝜃 (𝑎𝑎𝑏 + 𝜖1(𝑖 − 𝜇 (𝑏)

𝑘, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′
𝑘,𝑖 − 𝑗) − 𝑧, 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1 (𝑖 − 𝜇 (𝑏)
𝑘, 𝑗 ) + 𝜖2 (1 + 𝜇 (𝑎) ′

𝑘,𝑖 − 𝑗), 𝜏)
·

·
𝜃 (𝑎𝑎𝑏 + 𝜖1(𝑖 − 𝜇 (𝑏)

𝑘−1, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′
0,𝑖 − 𝑗) − 𝑧, 𝜏)

𝜃 (𝑎𝑎𝑏 + 𝜖1(𝑖 − 𝜇 (𝑏)
𝑘−1, 𝑗 ) + 𝜖2(1 + 𝜇 (𝑎) ′

0,𝑖 − 𝑗), 𝜏)

⎤⎥⎥⎥⎥⎦ .
Notice that by knowing the equivariant virtual elliptic genus one is able to recover both the virtual

equivariant holomorphic Euler characteristic and 𝜒−𝑦- genus. In fact, the limit 𝜏 → i∞ of (3.4.2)
recovers exactly the 𝜒−𝑦-genus found in (3.3.7), and a successive limit 𝑦 → 0 gives us back the virtual
equivariant holomorphic Euler characteristic (3.2.12).

4. Toric surfaces

In this section, we will generalize the results we got in the previous ones to the case of nested Hilbert
schemes on toric surfaces, and in particular, we will be interested in P2 and P1 ×P1. This is because one
might expect any complex genus of Hilb(n) (𝑆) to depend only on the cobordism class of S, as it was the
case for Hilb𝑛 (𝑆) ([16]), and the complex cobordism ring Ω = Ω𝑈 ⊗ Q with rational coefficients was
showed by Milnor to be a polynomial algebra freely generated by the cobordism classes [P𝑛], 𝑛 > 0.
Then in the case of complex projective surfaces, any case can be reduced to P2 and P1 × P1 by the fact
that [𝑆] = 𝑎[P2] +𝑏[P1×P1]. The advantage given by having an ADHM-like construction for the nested
punctual Hilbert scheme on the affine plane is that it provides us with the local model of the more general
case of smooth projective surfaces. In particular, whenever S is toric, one can construct it starting from
its toric fan by appropriately glueing the affine patches (e.g., Figure 4a for P2 and 4b for P1 × P1), and
computation of topological invariants can still be easily carried out by means of equivariant (virtual)
localization.

In general, given the toric fan describing the patches which glued together make up a toric surface S,
each patch 𝑈𝑖 will be 𝑈𝑖 � C2, with a natural action of T1 = (C∗)2. Moreover, if 𝑆 = P2 or 𝑆 = P1 × P1
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𝑒1

𝑒2

−𝑒
2
− 𝑒

1

(a) P2

𝑒1−𝑒1

𝑒2

−𝑒2

(b) P1 × P1

Figure 4. Toric fans for P2 and P1 × P1.

and 𝑍 ∈ Hilb(n) (𝑆) is a fixed point of the T1-action, its support must be contained in {𝑃0, . . . , 𝑃𝜒 (𝑆)−1}
(as a consequence of [9]) with 𝑃𝑖 corresponding to the vertices of the polytope associated to the fan,
so that one can write in general that 𝑍 = 𝑍0 ∪ · · · ∪ 𝑍𝜒 (𝑆)−1, with 𝑍𝑖 being supported in 𝑃𝑖 . This also
induces a decomposition of the representation in 𝑅(T1) of the virtual tangent space at the fixed points:

𝑇vir
𝑍

(
Hilb(n) (𝑆)

)
=
𝜒 (𝑆)−1⊕
ℓ=0

𝑇vir
𝑍ℓ

(
Hilb(nℓ ) (𝑈ℓ )

)
. (4.0.1)

Let then 𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ) be the T1-equivariant virtual 𝜒−𝑦-genus

𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ) � 𝜒vir

−𝑦

(
N
(
1, 𝑛(ℓ)

0 , . . . , 𝑛(ℓ)
𝑁

)
;𝔮1, (ℓ)𝔮2, (ℓ)

)
(4.0.2)

corresponding to the affine patch 𝑈ℓ of S. We will be able to compute the non-equivariant 𝜒−𝑦-genera
𝜒vir
−𝑦 (Hilb(n) (P2)) and 𝜒vir

−𝑦 (Hilb(n) (P1 × P1)) in terms of 𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ), thanks to Lemma 4.1.

Lemma 4.1. Let S be either P2 or P1 × P1. The T1−equivariant virtual 𝜒−𝑦-genus 𝜒T1 ,vir
−𝑦 (Hilb(n) (𝑆)) ∈

Z[[𝔮1,𝔮2]] [𝑦] is independent of the equivariant parameters 𝔮1,𝔮2, and

𝜒T1 ,vir
−𝑦 (Hilb(n) (𝑆)) = 𝜒vir

−𝑦 (Hilb(n) (𝑆)) ∈ 𝐾0(pt) [𝑦] � Z[𝑦] .

Proof. Whenever S is a projective surface, the nested Hilbert scheme Hilb(n) (𝑆) is projective. Then we
have that 𝜒T1 ,vir

−𝑦 (Hilb(n) (𝑆)) is well defined as an element of 𝐾T1
0 (pt) [𝑦] and, in particular, it has no

poles of the form 𝑦𝑎𝔮𝑏1𝔮
𝑐
2 = 1, for 𝑎, 𝑏, 𝑐 ∈ Z. However, if S is either P2 or P1 × P1, we can also compute

𝜒T1 ,vir
−𝑦 (Hilb(n) (𝑆)) by applying the K-theoretic virtual localization theorem; cf. [45, Thm. 3.3], and

using (4.0.1), we get

𝜒T1 ,vir
−𝑦 (Hilb(n) (𝑆)) =

∑
n0+···+n𝜒 (𝑆)−1=n

𝜒 (𝑆)−1∏
ℓ=0

(
𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ)

)
, (4.0.3)

where 𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ) is defined as in (4.0.2). Then, each one of the terms appearing in the right-hand

side of (4.0.3) is a homogeneous rational expression of total degree 0 with respect to the variables 𝔮1,𝔮2,
whose only poles can arise from terms of the form (1− 𝑦𝑎𝔮𝑏1𝔮

𝑐
2 )

−1; cf. Equations (3.3.3)–(3.3.6). Since,
by the previous arguments, there is no such pole, 𝜒T1 ,vir

−𝑦 (Hilb(n) (𝑆)) is a constant in 𝔮1,𝔮2. �
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4.1. Case 1: 𝑺 = P2

We will be interested in the generating function

∑
n≥0

𝜒T1 ,vir
−𝑦

(
Hilb(n̂) (P2)

)
qn =

2∏
ℓ=0

(∑
nℓ ≥0

𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ)qnℓ

)
, (4.1.1)

with n̂ defined as in §2.1, and since the left-hand side does not depend on 𝔮1,2, we can perform the
computation of the non-equivariant virtual 𝜒−𝑦-genus by first computing the right-hand side of Equation
(4.0.3) in any limit of the equivariant parameters 𝔮1,𝔮2. The iterated limit 𝔮1 → +∞, 𝔮2 → +∞ appears
to be a particularly good choice, as it is well defined for each term contributing to the rhs of Equation
4.0.3, and the computation can be performed term-by-term. In each one of the three affine patches, the
weights of the torus action will be

𝔮1, (0) = 𝔮1

𝔮1, (1) = 1/𝔮1

𝔮1, (2) = 1/𝔮2

𝔮2, (0) = 𝔮2

𝔮2, (1) = 𝔮2/𝔮1

𝔮2, (2) = 𝔮1/𝔮2.

We will study separately the three patches ℓ = 0, 1, 2. First of all, we notice that since the 𝜒−𝑦-genus
is multiplicative, the first contribution coming from 𝑁

𝑦
𝜇0 (𝔮1,𝔮2) coincides with the same contribution

arising in the context of standard Hilbert schemes. It was shown in [35] that

lim
𝔮2→+∞

lim
𝔮1→+∞

1
𝑁

−𝑦
𝜇0 ,𝜇1 (𝔮1, (0) ,𝔮2, (0) )

= 𝑦 |𝜇0 |−𝑀0 ,

lim
𝔮2→+∞

lim
𝔮1→+∞

1
𝑁

−𝑦
𝜇0 ,𝜇1 (𝔮1, (1) ,𝔮2, (1) )

= 𝑦 |𝜇0 | ,

lim
𝔮2→+∞

lim
𝔮1→+∞

1
𝑁

−𝑦
𝜇0 ,𝜇1 (𝔮1, (2) ,𝔮2, (2) )

= 𝑦 |𝜇0 |+𝑠 (𝜇0) , 𝑠(𝜇0) = #{𝑠 ∈ 𝑌𝜇′
0

: 𝑎(𝑠) ≤ 𝑙 (𝑠) ≤ 𝑎(𝑠) + 1},

so that we just need to evaluate the other contributions. Starting from 𝑇
−𝑦
𝜇0 ,𝜇1 , we get

lim
𝔮2→+∞

lim
𝔮1→+∞

⎡⎢⎢⎢⎢⎢⎣
𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

(
1 − 𝔮−𝑖1, (0)𝔮

− 𝑗−𝜇′
1,𝑖

2, (0)

)
(
1 − 𝑦𝔮−𝑖1, (0)𝔮

− 𝑗−𝜇′
1,𝑖

2, (0)

) ⎤⎥⎥⎥⎥⎥⎦ = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

⎡⎢⎢⎢⎢⎢⎣
𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

(
1 − 𝔮−𝑖1, (1)𝔮

− 𝑗−𝜇′
1,𝑖

2, (1)

)
(
1 − 𝑦𝔮−𝑖1, (1)𝔮

− 𝑗−𝜇′
1,𝑖

2, (1)

) ⎤⎥⎥⎥⎥⎥⎦ = 𝑦−1,

lim
𝔮2→+∞

lim
𝔮1→+∞

⎡⎢⎢⎢⎢⎢⎣
𝑀0∏
𝑖=1

𝜇′
0,𝑖−𝜇

′
1,𝑖∏

𝑗=1

(
1 − 𝔮−𝑖1, (2)𝔮

− 𝑗−𝜇′
1,𝑖

2, (2)

)
(
1 − 𝑦𝔮−𝑖1, (2)𝔮

− 𝑗−𝜇′
1,𝑖

2, (2)

) ⎤⎥⎥⎥⎥⎥⎦ = 1,

whence

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (0) ,𝔮2, (0) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (1) ,𝔮2, (1) ) = 𝑦−|𝜇0\𝜇1 | ,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (2) ,𝔮2, (2) ) = 1.
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Finally, we need to take care of the limit involving 𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1,𝔮2), and in order to tackle, let us first
point out that we can rewrite 𝑊

−𝑦
𝜇0 ,...,𝜇𝑁

in the following simpler form

𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1,𝔮2) =
𝑁∏
𝑘=1

∏
𝑠∈𝑌𝜇rec

0

(
1 − 𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎0 (𝑠)−1

2

) (
1 − 𝔮𝑙𝑘−1 (𝑠)

1 𝔮−𝑎𝑘 (𝑠)−1
2

)
(
1 − 𝑦𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎0 (𝑠)−1

2

) (
1 − 𝑦𝔮𝑙𝑘−1 (𝑠)

1 𝔮−𝑎𝑘 (𝑠)−1
2

) ·
·

(
1 − 𝑦𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎𝑘 (𝑠)−1

2

) (
1 − 𝑦𝔮𝑙𝑘−1 (𝑠)

1 𝔮−𝑎0 (𝑠)−1
2

)
(
1 − 𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎𝑘 (𝑠)−1

2

) (
1 − 𝔮𝑙𝑘−1 (𝑠)

1 𝔮−𝑎0 (𝑠)−1
2

) ,

where 𝜇rec
0 is the smallest rectangular partition containing 𝜇0 and 𝑎𝑘 (𝑠) (resp. 𝑙𝑘 (𝑠)) denotes the arm

length (resp. leg length) of the box s with respect to 𝑌𝜇𝑘 . Then, by recalling that the partitions labelling
the T-fixed points are included one into the other as 𝜇1 ⊆ · · · ⊆ 𝜇𝑁 ⊆ 𝜇0 ⊆ 𝜇rec

0 , it is easy to realize
that, in the case ℓ = 0, one gets

lim
𝔮2→+∞

lim
𝔮1→+∞

1 − 𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎0 (𝑠)−1
2

1 − 𝑦𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎0 (𝑠)−1
2

=

{
1 for 𝑙𝑘 (𝑠) ≤ 0
𝑦−1 for 𝑙𝑘 (𝑠) > 0

,

and similarly in every other case,

lim
𝔮2→+∞

lim
𝔮1→+∞

1 − 𝔮𝑙𝑘−1 (𝑠)
1 𝔮−𝑎𝑘 (𝑠)−1

2

1 − 𝑦𝔮𝑙𝑘−1 (𝑠)
1 𝔮−𝑎𝑘 (𝑠)−1

2

=

{
1 for 𝑙𝑘−1(𝑠) ≤ 0
𝑦−1 for 𝑙𝑘−1(𝑠) > 0

,

lim
𝔮2→+∞

lim
𝔮1→+∞

1 − 𝑦𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎𝑘 (𝑠)−1
2

1 − 𝔮𝑙𝑘 (𝑠)1 𝔮−𝑎𝑘 (𝑠)−1
2

=

{
1 for 𝑙𝑘 (𝑠) ≤ 0
𝑦 for 𝑙𝑘 (𝑠) > 0

,

lim
𝔮2→+∞

lim
𝔮1→+∞

1 − 𝑦𝔮𝑙𝑘−1 (𝑠)
1 𝔮−𝑎0 (𝑠)−1

2

1 − 𝔮𝑙𝑘−1 (𝑠)
1 𝔮−𝑎0 (𝑠)−1

2

=

{
1 for 𝑙𝑘−1(𝑠) ≤ 0
𝑦 for 𝑙𝑘−1(𝑠) > 0

,

so that finally

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1, (0) ,𝔮2, (0) ) = 1.

It is easy to see that the same holds true also for ℓ = 2:

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1, (2) ,𝔮2, (2) ) = 1,

while the case ℓ = 1 is more difficult, even though the analysis of the different cases can be carried out
exactly in the same way. We then introduce the following notation:

𝑠(𝜇𝑖1 , 𝜇𝑖2) = #
{
𝑠 ∈ 𝑌𝜇rec

0
: 𝑙𝑖1 (𝑠) > 𝑎𝑖2 (𝑠) + 1 ∨ 𝑙𝑖1 (𝑠) = 𝑎𝑖2 (𝑠) + 1, 𝑎𝑖2 (𝑠) < −1

}
,

and we get

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,...,𝜇𝑁

(𝔮1, (1) ,𝔮2, (1) ) =
𝑁∏
𝑘=1

𝑦𝑠 (𝜇𝑘 ,𝜇𝑘 )+𝑠 (𝜇𝑘−1 ,𝜇0)−𝑠 (𝜇𝑘 ,𝜇0)−𝑠 (𝜇𝑘−1 ,𝜇𝑘 ) .
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Finally, by putting everything together, we have an explicit expression for (4.1.1):

∑
n

𝜒vir
−𝑦

(
Hilb(n̂) (P2)

)
qn =

���
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |+𝑀0������
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |− |𝜇0\𝜇1 |

𝑁∏
𝑘=1

𝑦𝑠 (𝜇𝑘 ,𝜇𝑘 )+𝑠 (𝜇𝑘−1 ,𝜇0) 𝑦−𝑠 (𝜇𝑘 ,𝜇0)−𝑠 (𝜇𝑘−1 ,𝜇𝑘 )

)���
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |−𝑠 (𝜇0)���
(4.1.2)

4.2. Case 2: 𝑆 = P1 × P1

Similarly to the previous case, we are interested in studying the following generating function:∑
n≥0

𝜒T1 ,vir
−𝑦

(
Hilb(n̂) (P1 × P1)

)
qn =

3∏
ℓ=0

(∑
nℓ ≥0

𝜒T1 ,vir
−𝑦 (𝑃ℓ , nℓ)qnℓ

)
,

and we can perform the computation by taking the successive limits 𝔮1 → +∞, 𝔮2 → +∞, as in §4.1. The
four patches are now indexed by ℓ = (00), (01), (10), (11), and the characters 𝔮𝑖, (ℓ) can be identified to
be in this case

𝔮1, (00) = 𝔮1

𝔮1, (01) = 𝔮1

𝔮1, (10) = 1/𝔮1

𝔮1, (11) = 1/𝔮1

𝔮2, (00) = 𝔮2

𝔮2, (01) = 1/𝔮2

𝔮2, (10) = 𝔮2

𝔮2, (11) = 1/𝔮2.

An analysis similar to the one carried out in the previous section enables then us to conclude the
following:

lim
𝔮2→+∞

lim
𝔮1→+∞

1/𝑁−𝑦
𝜇0 (𝔮1, (00) ,𝔮2, (00) ) = 𝑦 |𝜇0 |−𝑀0 ,

lim
𝔮2→+∞

lim
𝔮1→+∞

1/𝑁−𝑦
𝜇0 (𝔮1, (00) ,𝔮2, (01) ) = 𝑦 |𝜇0 | ,

lim
𝔮2→+∞

lim
𝔮1→+∞

1/𝑁−𝑦
𝜇0 (𝔮1, (00) ,𝔮2, (10) ) = 𝑦 |𝜇0 | ,

lim
𝔮2→+∞

lim
𝔮1→+∞

1/𝑁−𝑦
𝜇0 (𝔮1, (00) ,𝔮2, (11) ) = 𝑦 |𝜇0 |+𝑀0 ,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (00) ,𝔮2, (00) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (00) ,𝔮2, (01) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (00) ,𝔮2, (10) ) = 𝑦−|𝜇0\𝜇1 | ,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑇
−𝑦
𝜇0 ,𝜇1 (𝔮1, (00) ,𝔮2, (11) ) = 𝑦−|𝜇0\𝜇1 | ,

and

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,𝜇1 ,...,𝜇𝑁

(𝔮1, (00) ,𝔮2, (00) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,𝜇1 ,...,𝜇𝑁

(𝔮1, (00) ,𝔮2, (01) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,𝜇1 ,...,𝜇𝑁

(𝔮1, (00) ,𝔮2, (10) ) = 1,

lim
𝔮2→+∞

lim
𝔮1→+∞

𝑊
−𝑦
𝜇0 ,𝜇1 ,...,𝜇𝑁

(𝔮1, (00) ,𝔮2, (11) ) = 1,

https://doi.org/10.1017/fms.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.43


Forum of Mathematics, Sigma 49

so that, by putting everything together, we have

∑
n

𝜒vir
−𝑦

(
Hilb(n̂) (P1 × P1)

)
qn =

���
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |−𝑀0������
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |������
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |− |𝜇0\𝜇1 |������
∑

n
qn

∑
{𝜇𝑖 }

𝑦 |𝜇0 |− |𝜇0\𝜇1 |+𝑀0���.
(4.2.1)
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