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On soluble groups which admit the
dihedral group of order eight
fixed=-point=freely

Alan R. Camina and F. Peter Lockett

If the finite soluble group G admits the dihedral group of
order eight as a fixed-point-free group of automorphisms then

the nilpotent length of G 1is at most three.

A theorem of Berger [2] has substantially enlarged the class of
nilpotent groups 4 for which the following statement holds.

(*) If the soluble group G admits the group A as a fized-point-
free group of automorphisms and (|G|, |A|) = 1, then the
nilpotent length of G <is bounded by the number of primes,
ineluding multiplicities, which divide |A| .

The smallest group A not covered by Berger's result is 08 » the dihedral
group of order 8 . It is our object here to establish (#*) when A = D8 .

In [5] Gross shows that, in this case, L4 is a bound, and in this paper he

provides an important step in our argument.

5 when no confusion

Fl(G), F2(G), ... [(or often just F), F
arises) will denote the successive terms of the upper nilpotent series of
the soluble group G , and f.p.f. will be used to abbreviate both "fixed-
point-free" and "fixed-point-freely". &(H) will denote the Frattini

subgroup of H . All groups considered will be finite.

THEOREM. If the soluble group G admits Dg as a fized-point-free
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group of automorphiems then the nilpotent length of G 1is at most 3 .

Proof. Let G be a minimal counterexample to the theorem, so G has

nilpotent length 4 and each De-admissible proper section of (G has

L 2 n

nilpotent length 3 . Let D8=<T,n :T =1=n,1 ='r_l) and put

o= T2 , the central involution. The hypothesis of f.p.f. action implies
that G has odd order.

We first apply Theorem 2.4, Corollary 2.5 and Lemma 2.6 >f Gross {6]

to achieve a major part of the reduction.

(1) G = SRQP where S, R, Q and P are Dg-admissible subgroups
of G avd:

(a) S <g an &-group, R is an r-group, @ is a q-group and P

i8 a p-group;
(b) 8, r,q and p are primes with s #r #q ¢ p ;

(¢) P normalizes Q, R and S ; § normalizes R and S ; and R

normalizes S ;
(a) s=F(6), RsF,6), RFF(G), Q= F3(G) s @FF,6),

P f F3(G) H

(e) (@, Pl=@, [R,Q1=R and [5,R]=5;
(£) each proper De—admissible subgroup of P lies in F3 H P/PnF3
18 elementary abelian and Ds-irreducible;

(g) for each proper PD8-admissine subgroup Ql of @,
[Ql, P] = F, and Q/QF  is a special q-group with FDg-
irreducible Frattini quotient;

(h) for each proper QPDa—admissine subgroup R, of R,
[Rl, Q] = Fl and R/Rnl"'l i8 a special r-group with QPDS-
irreducible Frattini quotient;

(i) R centralizes each proper RQPDB—aa’missine subgroup of S and

5 18 a special s-group with RQPDB-irreducine Frattint
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quotient.

(2) s = Fl(G) and is a faithful irreducible RQPDB-moduZe.

If ®(S) # 1, G/%(S) has nilpotent length 3 by the minimality of
G . Now ®(S) = ¢(G) , so in this case G/®(G) has nilpotent length 3 ,
from which it follows that & does too, a contradiction. Therefore by
(1i), S is an elementary abelian s&-group irreducible under the action of

RQPD8 . Clearly the minimality of G implies that GD8 has a unique
!
minimal normal 2°-subgroup, which must therefore be S . In particular

R n Fi =1 . Certainly GD8 can have no normal 2-subgroup for otherwise
G would admit the four-group D8/(0) f.p.f. contrary to a theorem of

Bauman [1], which states that such groups have nilpotent derived group. It
is now sufficient to prove that RQP complements S in G (for then GD8

is a8 primitive soluble group with self-centralizing unique minimal normal
subgroup S ) and this will hold if @ nS=1=Pn S . By (lc),

[@nS, R] =RnS =1 but [S, R] =8 by (le), so the irreducibility of S
forces @ NS =1 . Similarly [PnS, R] =R nS =1 implies PnS=1.

(3) o centralizes QP .

P/®(P) is a completely reducible Ds—module. If it were not DB-
irreducible (1f) would force P = F3 , against (1d). So P/®(P) is Dg-
irreducible and therefore P n Fj = ®(P) . Since p#q , Q@/%Q) is a
completely reducible PDs—module. If it were not irreducible, say
Q/0(Q) = @,/0(Q) + @,/®(Q) where @ # @, @, , then (le) and (1f) would

imply @ = [Qle’ P] = [Ql, P] [Qa, P] = F, , against (1d). So @/2(Q) is

A

PDB—irreducible and therefore & n F, = o(Q) .

We may apply Theorem 1 of Gross [5] to the group RQPD8 , which by (2)

acts faithfully and irreducibly on S , to deduce that O centralizes

F3/F2 . Since G is a 2'-group it follows immediately that ¢

centralizes G/F2 and hence that o centralizes P/PnF. and Q/QnF2 .

3
But then, in view of the inclusions proved above, O centralizes P/®(P)
and @/®(Q) yielding the statement (3).
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(4) R <s a special group of exponent r , O imverts R/¥(R) and

centralizes ®(R) .
By (2), R n Fl =1, so (1h) says that R is a special group whose

Frattini quotient is isomorphic to a chief factor of GD8 . If

Ql(R) =(z €R: 2" =1) were a proper subgroup of R then
[Ql(R), Q] =1 by (1h), therefore by 5.3.10 of [4], @ would centralize

R , contrary to (le). Thus R is a special group generated by elements of
order r , so it has exponent »r . O does not centralize R/®(R) ,
otherwise the group .RYP of nilpotent length 3 admits the four-group
Da/(o) f.p.f. again contrary to Bauman's Theorem. Now by (3), 0 is

central in QPD8 so CR/(I)(R)(G) is normalized by QPD8 , S0 by the

irreducibility of R/®(R) +this group is trivial. Thus O inverts each
element of R/%(R) . R has class 2 so if x, y € R then

[z, y]c = [-’L‘O, yo] = I:—lzl’ y-lzg] = [x_l, y-l] = [z, y] (for some

10 % € ¥(R) ), that is, O centralizes R' = ®(R) .

z
(5) @P centralizes &(R) .
By (3) and (4), [®(R), @P] = [CG(O))' . Now CG(O) admits DB/<G)
f.p.f. so Bauman's Theorem tells us that [®(R), QP] = Fl(CG(O)) . Cglo)

is non-trivial, for otherwise ¢ would invert § and therefore commute

with the asutomorphisms of S induced by RQP , against (4). So CS(O) is
non-trivial and lies, with [®(R), @P] , in Fl(CG(O)) . Since r #s we

deduce that [®(R), QP] centralizes CS

the irreducibility of S implies that [®(R), ¢P] centralizes § ,
contrary to (2) unless [®(R), @P] =1 .

(¢) . But [®(R), g@P] « RQPD8 so

At this point it is convenient to pass to a finite splitting field F

for 1‘?QPD8 and its subgroups, of characteristic s ; and to a faithful
irreducible RQPDe-submodule S* say, of § ®GF(S) F . The condition that

D8 act f.p.f. on S , namely that Z a be the zero transformation,
afDa
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remains invariant under these manoeuvres, so D8 acts f.p.f. on S* .

(6) R 1is not elementary abelian.

Let W be an RQP-homogeneous component of S* and Dl the

stabilizer of ¥ in 08 . So W 1is an irreducible RQPDl-module and

W= Wl + ... 0+ Wn where the Wi are isomorphic irreducible R@P-modules.

The number of isomorphism types of irreducible R-submodules of Wi is

prime to 2 , so D stabilizes an R-homogeneous component V say, of

1

W . S* is a faithful R-module, irreducible for RQPD therefore R

8 »
acts f.p.f. on S* and so R acts non-trivially on V .

If Dl =1 , then for any non-trivial element w ¢ W , z wy 1is a
a€Dg

non-trivial fixed-point of 08 in S%* , contrary to our initial
assumption.

Now sdppose o { Dl , S0 Wwe may assume without loss of generality that
Dl ={(n) . Then a non-trivial fixed-point w ¢ ¥ of n would yield a

non-trivial fixed-point w + wT + WO + WOT € S* of D8 , SO0 n must act

f.p.f. on W , therefore n inverts W and hence centralizes

T

R@P/ker(RQP on W) . Therefore n centralizes @P/ker(QPon W) , n =nog
centralizes @QP/ker(QP on WT) , n’ = n centralizes QP/ker(QP on Wo) and
nOT = nO centralizes §P/ker(QP on Wot) . However, by (3), ©

centralizes @P so 1N itself centralizes these quotients. Therefore N
centralizes QP (because 5* =W + WT + WO + WOT is a faithful QP-
module) and so QP admits DS/(G, n? f.p.f. which is impossible since

&P 1is not abelian.

We have thus shown that O ¢ Dl .. Suppose R 1is elementary abelian.

V is a homogeneous R-module , non-triviel for R , so 1 # R/ker(R on V)
is cyclic and represented by scalar transformations. Therefore O

centralizes this quotient (whether O is trivial on V or not) against

(4).
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(7) T centralizes” ®(R) and R is extraspecial.

Our aim is to show that n and nT act f.p.f. on &(R) , from which
(7) follows readily. By (4), CQ(R)'(H) = cq,(R)((n, o)) 4 R, so by (5),
CQ(R)((n’ a)) < RQPDg . If the four-group (n, o) acts f.p.f. on 5*
then it acts f.p.f. on an RQP{(n, o)-homogeneous component, U say, of

S* . Nov we may apply Theorem 4.1 of Shult [7] to deduce that some
element, w say, of (n, o) centralizes R@P/ker(RQP on U) . If w =0

then 0 = 0' also centralizes RQP/xer(RQP on Ut) , so O eentralizes
RQP (because S* = U + Ut is a faithful RQP-module) against (L). If
wW=7n or no then an argument like that used in the proof of (6) yields a

contradiction. Thus Cg,((n, o)) is non-trivial.

Now CS*RQP((H’ o)) admits 08/<n, g) f.p.f. so it is abelian.
Therefore CQ(R)“”’ o)) centralizes Cs*((n, o)) . 1In view of the
normality ch(R)((n, g)) < RQP08 and the irreducibility of S* , we must
have C<I>(R)((n’ 0’y =1, s0 n acts f.p.f. on ®(R) . Thus n inverts

each element of ®(R) . But by the same argument so does nNT , therefore

T centralizes ®¢(R) as we require. This means that Dg inverts ®(R)

so, in view of (4) and (5), it follows that each subgroup of ¢(R) is
normal in RQPD8 . Therefore each element of ®(R) acts f.p.f. on S5*%*,

that is, ®(R) acts regularly on S* . (L) and (6) establish that R is
a non-abelian special group, so by 5.3.14 of [4], ®(R) is cyeclic of order

r

(8) S* is the swn of 2 homogeneous components, Si‘ and Sé‘ say,

under ©(R) and 1 acts f.p.f. on S*.

Since, by (4), (5) and (7), RQP{T1) centralizes ®(R) , S* is
either a homogeneous ®(R)-module or is the sum of 2 homogeneous
components. In the first case ¢(R) acts as scalar transformations of
S5* | so the transformations representing ¢(R) commute with those

representing Dg , that is, Dy centralizes ®(R) , contradicting the

f.p.f. action of 08 on G . Therefore S* = Si + 5’2* say, the
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®(R)-homogeneous components Si and Sé stabilized by and irreducible

under REQP{T) , and interchanged by n . If v 1is a non-trivial element

of SI centralized by T then v + vn is a non-trivial element of S*
centralized by DB again contrary to assumption. Similarly T acts

f.p.f. on 54 and so (8) is established.
Our final contradiction follows from

(9) R has order 3° .
Let 56 be an irreducible R{T)-submodule of S{ . Since S* is an
irreducible RQPDg-module, ®(R) acts f.p.f. on S* , so Sé is a

faithful R-module and hence, by (L), also faithful for R{T) . Because
56 is homogeneous for &(R) and R is extraspecial, it follows that

56 is a homogeneous R-module. (The r = 1 faithful irreducible

representations of R are characterized by the actions of &(R) .) Since
an irreducible projective representation of a cyclic group is
1-dimensional, the analogue of Theorem 51.7 of [3] in characteristic &
shows that §} is actually an irreducible R-module. By (4), T acts

regularly on the non-trivial elements of R/®(R) and by (8), T acts
f.p.f. on Sa . These last three facts enable us to use the Hall-Higman

type argument of Shul+ [7] in his proof of Theorem 3.1 to deduce that R
3

has order 3

Now by (9) the chief factor R/®(R) of GDg has order 32 and must

therefore be centralized by @ , against (le). This final contradiction
establishes the theorem.
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