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On soluble groups which admit the
dihedral group of order eight

fixed-point-freely

Alan R. Camina and F. Peter Lockett

If the finite soluble group G admits the dihedral group of

order eight as a fixed-point-free group of automorphisms then

the nilpotent length of G is at most three.

A theorem of Berger [2] has substantially enlarged the class of

nilpotent groups A for which the following statement holds.

(*) If the soluble group G admits the group A as a fixed-point-

free group of automorphisms and (\G\, \A\ ) = 1 , then the

nilpotent length of G is bounded by the number of primes,

including multiplicities, which divide \A \ .

The smallest group A not covered by Berge'-'s result is DQ , the dihedral

group of order 8 . It is our object here to establish (*) when A = DQ •

In [5] Gross shows that, in this case, h is a bound, and in this paper he

provides an important step in our argument.

F (G), F (G), . . . (or often just F , F2, ... when no confusion

arises) will denote the successive terms of the upper nilpotent series of

the soluble group G , and f.p.f. will be used to abbreviate both "fixed-

point-free" and "fixed-point-freely". <£(#) will denote the Frattini

subgroup of H . All groups considered will be finite.

THEOREM. If the soluble group G admits DQ as a fixed-point-free
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group of automorphisms then the nilpotent length of G is at most 3 .

Proof. Let G be a minimal counterexample to the theorem, so G has

ni lpotent length h and each iL-admissible proper section of G has

ni lpotent length 3 . Let Z?g = < T , n : T = i = T i , T r l = T~ > and put

p
a = T , the central involution. The hypothesis of f.p.f. action implies

that G has odd order.

We f i rs t apply Theorem 2.•U, Corollary 2.5 and Lemma 2.6 of Gross [6]

to achieve a major part of the reduction.

( l ) G = SRQP where S, R, Q and P are Dp-admissible subgroups

of G and:

(a) S is an s-group, R is an r-group, Q is a q-group and P

is a p-group;

(b) 8 , r , q and p a r e p r i m e s w i t h s + r + q t p ;

( c ) P normalizes Q, R and S ; Q normalizes R and S ; and R

normalizes S ;

(d) S £ FX(G) j R £ F2(G) , R $ FAG) , Q < F { G ) , Q $ FAG) ,

P i FAG) ;

( e ) [Q,P]=Q, [R,Q]=R and [S,R]=S.;

( f ) each proper Dp-admissible subgroup of P lies in F ; P/PnF

is elementary abelian and Dp-irreducible;

(g) for each proper PD^-admissible subgroup Q of Q ,

{Q,, P] £ Fp and Q/Qr)F is a special q-group with pDp-

irreducible Frattini quotient;

(h) for each proper QPDp-admissible subgroup R of R }

[)?., 0] £ F and R/RnF is a special r-group with QPDp-

irreducible Frattini quotient;

( i) R centralizes each proper RQPDp-admissible subgroup of S and

S is a special s-group with RQPDp-irreducible Frattini
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quotient.

(2) S = F (C) and is a faithful irreducible RQPDg-module.

If $(S) * 1 , G/$(S) has nilpotent length 3 by the minimality of

G . Now $(S) £ $(C) , so in this case ff/$(C) has nilpotent length 3 ,

from which it follows that G does too, a contradiction. Therefore by

(li), 5 is an elementary abeliah e-group irreducible under the action of

RQPDr. . Clearly the minimality of G implies that GDn has a unique

minimal normal 2 -subgroup, which must therefore be 5 . In particular

R n F= 1 . Certainly GDQ can have no normal 2-subgroup for otherwise

G would admit the four-group Do/ fo) f.p.f. contrary to a theorem of

Bauman HI, which states that such groups have nilpotent derived group. It

is now sufficient to prove that RQP complements S in G (for then GDn

is a primitive soluble group with self-centralizing unique minimal normal

subgroup S ) and this will hold if QnS = l = PnS. By(lc),

[QnS, R] 5 R n 5 = 1 but [S, R] = 5 by (le), so the irreducibility of S

forces Q n S = 1 . Similarly [PrS, R] < R n 5 = 1 implies P n S = 1 .

(3) 0" centralizes QP .

P/9(P) is a completely reducible Dg-module. If it were not Dg-

irreducible (if) would force P 5 ? 3 , against (id). So P/*(P) is DQ-

irreducible and therefore P n F' < $(P) . Since p 1- q , Q/t{Q) is a

completely reducible PDg-module. If it were not irreducible, say

QIHQ) = *,./•(«) + Q2/HQ) where Q * Q^ Q2 , then (le) and (if) would

imply Q = [Q^, P] = [Q^ Pj [«2» P] £ F2 , against (id). So Q/HQ) is

Pflg-irreducible and therefore { n ? < $(£) .

We may apply Theorem 1 of Gross [5] to the group RQPDQ , which by (2)

acts faithfully and irreducibly on S , to deduce that o centralizes

FJF^ • Since G is a 2'-group it follows immediately that a

centralizes G/F2 and hence that o centralizes P/PnF and Q/QnF .

But then, in view of the inclusions proved above, o centralizes P/Q(P)

and Q/HQ) yielding the statement (3).
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(k) R is a special group of exponent r , a inverts i?/$(i?) and

centralizes

By (2), R n F. = 1 , so (lh) says that R is a special group whose

Frattini quotient is isomorphic to a chief factor of GDg • If

fi. (i?) = (. x Z R : x = 1> were a proper subgroup of R then

[O^f?), Q] = 1 by (lh), therefore by 5-3.10 of [4], Q would centralize

R , contrary to (le). Thus if is a special group generated by elements of

order r , so it has exponent r . a does not centralize /?/$(/?) ,

otherwise the group RQP of nilpotent length 3 admits the four-group

DQ/(a > f.p.f. again contrary to Bauman's Theorem. How by (3), o is

central in QPDQ S O ^E/^(R)^a^ i s n o r m a l i z e < i ^ ^ ^ R ' S O t y t h e

irreducibility of i?/$(/f) this group is trivial. Thus a inverts each

element of i?/$(i?) . R has class 2 so if x, y d R then

[», 2/]° = [?0» #0] = U~ s-L» 2/~ 22 =[*",!/"] = [x, J/] (for some

3 , z £ $(i?) ) , that is, a centralizes R' = $(/?) .

(5) «P centralizes $(i?) .

By (3) and (k), [$(i?), «P] 5 (Cff(a)) ' . Now Cff(a) admits Dg/<a>

f.p.f. so Bauman's Theorem tells us that [$(f?), QP] S F, (ĉ (̂cr)) . Cs(a)

is non-trivial, for otherwise a would invert 5 and therefore commute

with the automorphisms of S induced by RQP , against (h). So Ca(o) is
o

non- t r iv ia l and l i e s , with [$(i?), QP] , in F [CG(o)) . Since r # s we

deduce that [*(i?), QP] centralizes CJa) . But [$(/?), §P] < i?QPZ)B so
o o

the irreducibility of S implies that [$(i?), $P] centralizes S ,

contrary to (2) unless [$(i?)5 £P] = 1 .

At this point it is convenient to pass to a finite splitting field F

for RQPDQ and its subgroups, of characteristic 8 ; and to a faithful

irreducible i?$Pi>g-submodule S* say, of 5 ®Gp/ \ P • The condition that

DQ act f.p.f. on S , namely that £ a be the zero transformation,
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remains invariant under these manoeuvres, so Do acts f.p.f. on S* .

(6) R is not elementary abelian.

Let W be an BJP-homogeneous component of S* and £L the

s tab i l i ze r of W in DQ . So W i s an irreducible RQPD,. -module and
o 1

W = W- + . . . + W where the W. are isomorphic irreducible i?QP-modules.1 n i

The number of isomorphism types of irreducible i?-submodules of W. i s

prime to 2 , so D. s tabi l izes an i?-homogeneous component V say, of

W . S* is a faithful i?-module, irreducible for RQPDQ , therefore R

acts f .p.f . on S* and so R acts non-t r ivia l ly on V .

If D = 1 , then for any non-tr ivial element w € W , £ Ua is a

non-t r iv ia l fixed-point of Do in S* , contrary to our i n i t i a l

assumption.

Now suppose a ^ D , so we may assume without loss of generality that

D. = < n > . Then a non-tr ivial fixed-point w € (/ of n would yield a

non- t r iv ia l fixed-point w + WT + wo + wax € S* of flg , so r\ must act

f .p.f . on W , therefore r| inverts W and hence centralizes

RQP/)s.er(RQP on W) . Therefore n centralizes $P/ker($P on W) , ' nT = no

centralizes QP/)aer(QP on WT) , n° = n centralizes QP/ker(QP on Wa) and

na T = no centralizes QP/ker(QP on WOT) . However, by (3) , 0

centralizes QP so n i t s e l f centralizes these quotients. Therefore n

centralizes QP (because S* = W + Wt + WO + WOT is a faithful QP-

module) and so QP admits DQ/<0, n> f.p.f. which i s impossible since

QP is not abelian.

We have thus shown that K ( j . Suppose R i s elementary abelian.

V is a homogeneous .R-module , non-tr ivial for R , so 1 ^ i?/ker(i? on V)

is cyclic and represented by scalar transformations. Therefore o

centralizes th i s quotient (whether O i s t r i v i a l on V or not) against
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(7) T centralizes $(R) and R is extraspecial.

Our aim i s to show tha t n and nx act f .p . f . on $(fl) , from which

(7) follows r e a d i l y . By (h), C^Ry(r\) = C$ ( i ? ) (<n, a>) <* R , so by (5 ) ,

C*(i?)^< r 1 ' a > ^ * ^ P Z 7 8 ' I f t h e f o u r - S r o u P <rl> a > a c t s f-P-f- on 5*

then i t acts f .p . f . on an RQPir), a)-homogeneous component, U say, of

5* . Now we may apply Theorem k.l of Shu I t [7] to deduce tha t some

element, w say, of <n, o> centra l izes i?$P/ker(i?$P on U) . If to = a

then a = O a lso cen t ra l i zes RQP/ker(RQP on !/T) , so o cent ra l izes

RQP (because 5* = V + Ui i s a fa i th fu l i?£P-module) against (!*). I f

0) = n or no then an argument l ike tha t used in the proof of (6) y ie lds a

con t rad ic t ion . Thus CS^(<T], a)) i s n o n - t r i v i a l .

Now ^s*R0P^ * ̂  • a ^ admits Dg/<n, a> f .p . f . so i t i s abel ian.

Therefore £*(#)( <rl> o > ) cent ra l izes C5^(<n» O> ) . In view of" the

normality £$( D ) ^ 1 " ! ' a ^ ) 4 RQPDQ and the i r r e d u c i b i l i t y of 5* , we must

have ^aiB)^^' "^) = 1 , so r\ acts f .p . f . on $(i?) . Thus r\ inver t s

each element of $(i?) . But by the same argument so doe.5 n,T , therefore

T cen t ra l i zes $(if) as we require . This means tha t DQ inver ts $(i?)

s o , in view of (k) and ( 5 ) , i t follows tha t each subgroup of $(/?) i s

normal in RQPDQ . Therefore each element of 0(i?) acts f .p . f . on S* ,

t h a t i s , $(i?) acts regular ly on S* . (k) and (6) es tab l i sh tha t R i s

a non-abelian spec ia l group, so by 5.3.lU of [ 4 ] , $(i?) i s cyclic of order

r .

(8) S* is the sum of 2 homogeneous components, S* and S* say,

under $(i?) and T acts f.p.f. on S* .

Since, by (k), (5) and (7), RQP(i) centralizes $(i?) , 5* is

either a homogeneous $(i?)-module or is the sum of 2 homogeneous

components. In the f i rs t case $(i?) acts as scalar transformations of

S* , so the transformations representing <&(i?) commute with those

representing DQ , that i s , Do centralizes $(i?) , contradicting the

f.p.f. action of Do on G . Therefore S* = S* + S* say, the
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$(i?)-homogeneous components 5* and S* stabilized by and irreducible

under RQPil > , and interchanged by n • If U is a non-trivial element

of 5* centralized by T then v + vr\ is a non-trivial element of S*

centralized by Do again contrary to assumption. Similarly T acts

f.p.f. on S* and so (8) is established.

Our final contradiction follows from

(9) R has order 3 3 .

Let S* be an irreducible i?<T>-submodule of 5* . Since S* i s an

irreducible fl^POn-module, *(i?) acts f .p.f. on S* , so S* i s a

fai thful i?-module and hence, by (h), also faithful for i?<x> . Because

S* is homogeneous for $(i?) and R i s extraspecial , i t follows that

5* i s a homogeneous i?-module. (The r - 1 faithful irreducible

representations of if are characterized by the actions of $(i?) .) Since

an irreducible projective representation of a cyclic group i s

1-dimensional, the analogue of Theorem 51-7 of [3] in character is t ic s

shows that 5* i s actually an irreducible fl-module. By (k), T acts

regularly on the non-tr ivial elements of i?/4>(i?) and by (8) , T acts

f.p.f. on S* . These l as t three facts enable us to use the Hall-Higman

type argument of Shult [7] in his proof of Theorem 3-1 to deduce that R

has order 3 .

Now by (9) the chief factor /?/$(i?) of GDn has order 3 and must

therefore be centralized by Q , against ( l e ) . This f inal contradiction

establishes the theorem.
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