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THE EXTRAORDINARY HIGHER TANGENT SPACES OF
CERTAIN QUADRIC INTERSECTIONS

by R. H. DYE

(Received 16th July 1990, revised 24th January 1991)

Let C, be the intersection of n — r quadrics with a common self-polar simplex S in projective n-space [n]. Let
Fr be a C, that can be taken in coordinate form as ^Uotix* =0, for j = Q, l , . . . ,n — r— 1. Every C, is a f,
and its points of hyperosculation have special properties: they are the points of intersection of C, with the
faces of S each counting (n— l)(n — 2)/2 times, and the osculating [s], for sgn— 1, has 2s-point contact. Here
we show that if r S 2 and n > 2r then every point of Pr has exceptional higher tangent spaces: the s-tangent
space at a point P of an r-dimensional variety V is the intersection of all primes that cut Kin a variety having
an (s+l)-fold point (at least) at P, and normally has dimension ('**) —\ if this is less than n. The s-tangent
space to F, at a point not in a face of S is an [rs] (provided rs < n). Usually it is the existence of lines on V
through P that cause a lower than expected s-tangent dimension. Not so on I",, since its lines form a
subvariety. If n ^ 5 not every C2 is a I~2. Take n S 5 . We show that C2 is F2 if and only if C2 contains a line.
Also C2 is a F 2 if and only if at some one point of C2 off the faces of S the second-tangent space is a [4].
Thus, unexpectedly, we have: if one point of C2 off the faces of S has a [4] for second-tangent space, then so
do all such points of C2. We obtain results for points of T, in the faces of S.

1980 Mathematics subject classification (1985 Revision). 14M10.

1. Introduction

We shall be concerned with the r-dimensional variety Cr that is the intersection of
n—r quadrics with a common self-polar simplex S in projective n-space [n]. We shall
always assume that the linear system of quadrics through Cr has no cone with vertex of
dimension more than n — r—2. This is the general case, and is (see Section 2.1) the
condition that Cr is nonsingular The harmonic inversions with respect to a vertex of S
and the opposite hyperface generate an Abelian group G of order 2" fixing each quadric
through Cr: if S is taken as the simplex of reference then each element of G corresponds
to changing the signs of some of the coordinates.

We shall denote by Fr the particular Cr given by

= 0, j = 0 , l , . . . , n - r - l . (1)

Summations will always run over 0,1,2,... ,« unless otherwise indicated. The condition
that no cone through Tr has vertex of dimension more than n — r —2 is that (see Section
2.1) ao,ai,...,an are distinct. With a slight abuse of language we shall say that "a Cr is
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438 R. H. DYE

a r r " if coordinates can be found so that the Cr in question is given by (1) for some
choice of (distinct) ao,ai,...,an.

Every Ct is a Tx [2, p. 334] and has, for n^4, exceptional osculating properties.
These were discovered in [2, p. 334, 335], [6, p. 43], [3, p. 304]: [2] and [3] deal, more
generally, with the intersection of n — 1 primnals of order m ̂  2 with a common self-
polar simplex. A nonsingular curve of order N and genus g in [«] has [1, p. 200], [9, p.
389], (n+ l){N + n(g — 1)} points of hyperosculation, i.e., points where the osculating
[n— 1] has more than its statutory minimum n-point contact (intersection). Usually
these points are distinct, and their osculating [s] for s<n— 1 have exactly (s+l)-point
contact. For F, [2, p. 336], [6, p. 42] we have N = 2n~l and g = 2"~2(n-3) + l, so there
are ( « - \)(n-2)(n+1)2""2 points of hyperosculation. These [2, p. 335] are the
(n+l)2"~1 points of intersection of r \ with the hyperfaces of S, each counted
(«— l)(n — 2)/2 times. This confluence produces exceptionally high order of contact for
the osculating spaces: at a point of hyperosculation the osculating [s] for
s = 0,1,2,...,n— 1 has 2s-point contact. The first part of this paper exhibits the even
more surprising tangent properties of Fr when r^2 : provided h>2r every point of Fr

has exceptional higher tangent spaces.
First a reminder about the second, third,..., tangent spaces at a simple point P on an

irreducible r-dimensional variety Vr in [«]. The first, or ordinary, tangent space to Vr at
P is the [r] that is the intersection of all the [n— 1] through P which cut Vr in a variety
having a double-point (at least) at P. More generally, the s-tangent space to Vr at P is
the intersection of all [«— 1] that cut Vr in a variety having an (s+l)-fold point (at
least) at P: here we take an empty intersection of hyperplanes to be the whole space [n].
In general, the s-tangent space is [n] if (r+

s
s)^n + 1, and is an [ ( r * s ) - l ] if ( rss)<«+l-

However, the occurrence of lines or higher spaces on Vr and through P reduces the
dimension: if P is on a [/c] on Vr then the second tangent space has dimension at most
C J V C J 1 ) - ! - For more details see [9, pp. 402,403], [8, pp. 905, 906, 922, 923], [7,
pp. 20, 21]: Segre's (s+ l)-tangent space is our, and Room's, s-tangent space.

We show (Theorem 1) that at each point of Fr not in a hyperface of S the s-tangent
space is an \_rs] provided rs<n: if rs^n then it is [n] itself. This is a remarkably small
dimension for all but the smallest r and s. In fact, as an easy induction argument on r
shows, if s,r^2 and rs<n then the s-tangent space has smaller dimension than expected
from general theory. This phenomenon is not accounted for by linear subspaces on Fr: if
r ^ 2 and n^2r then the points of Fr that lie on lines on Fr form (Proposition 1) a
subvariety of dimension r— 1: some points of Fr not in hyperfaces of S are on this
subvariety but most are not, and all have the same type of nest of tangent spaces. Our
proof uses the explicit parameterisation of Fr, and allows (Theorem 1) the equations for
the tangent spaces to be given explicitly. It is possible to deal with the points of Fr in
one or more hyperfaces of S, but the algebra is much more involved, and the labour
needed to deal with all possibilities would be disproportionate to the rewards. We
content ourselves (Theorem 2) with the following: if P is a point on Fr in exactly t
hyperfaces of S, where 1 ^ t ̂  r, and P is not on a line on Fr then the second-tangent
space at P is a [2r] (provided 2r<n), but the third-tangent space is a [3r —t] (provided
3r-t<n). Thus if t = r, when P cannot be on a line on Fr, the second and third-tangent
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spaces are the same [2r]. If P is on a line on Fr then the second-tangent space can be a
[2r] but may be of lower dimension: if r = 2 we always have the second possibility and
the second and third tangent spaces are [3] and [4] respectively. Thus we have
complete results for F2.

The second part of the paper obtains some unexpected results for C2 and F2. When
n = 3 or 4 every C2 is a F2; we have respectively the ordinary quadric in [3] and the
general intersection of two quadrics in [4]. When n = 5 then F 2 is the nonsingular
model of the Kummer surface, and its second-tangent spaces were found in [4, pp. 210,
211] by methods very different to those of this paper. Using a criterion by M. Reiss for
6 points to lie on a conic, Edge proves [5, pp. 954, 955] that if the surface of
intersection of three linearly independent quadrics in [5] with a common self-polar
simplex has a line in general position (i.e., not meeting a plane face of the simplex), then
the surface is a F2 . Suppose now that n ^ 5 . We prove, by a direct general method,
(Theorem 3) that C2 is a F 2 if and only if C2 has a line. In fact F 2 has exactly 2" lines
forming a single orbit under G. More surprisingly we have (Theorem 4): C2 is a F2 if
and only if at some point of C2 not in a hyperface of S the second-tangent space is a
[4]. We deduce (Theorem 5) that C2 contains a line if and only if at some point of C2

not in a hyperface of S the second-tangent space is a [4], and also the unexpected result
(Theorem 6) that if one point of C2 not in a hyperface of S has a [4] for second-tangent
space, then so do all such points of C2.

F 2 has, if n ^ 4, only 2" lines. It is interesting to contrast our results with Segre's claim
[8, p. 906], quoting earlier references, and Room's assertion [7, p. 21] that if at all
points of a surface the second-tangent space is a [4], then the surface is ruled.

2. The tangent spaces of Fr

2.1. First a few remarks about Cr. Choosing S as the simplex of reference we may
take Cr to be given by

Xc!J)x,2=0, j = 0 , l , . . . , n - r - l . (2)
i

Since the vertex of any cone £,a,xf = 0 has dimension one less than the number of zero
a,-, we see that there is no cone through Cr with vertex of dimension more than n — r—2
if and only if no non-zero linear combination of the n — r quadratic forms of (2) has n—r
or more zero coefficients. This is equivalent to demanding that each (n — r) x (n — r)
submatrix of C = (c*J)) is nonsingular. It follows from (2) that no point of Cr has more
than r zero coordinates. Hence, if Z = (€o,£i,---,£n) ' s a point of Cr with say,
£io£i, •••£in-r^0 t n e n t n e coefficients of xhxh ...xin_r in the n — r hyperplanes

I«x,=0 (3)
i

form an (n — r)x(n — r) matrix whose determinant is £,•„£,•,.••&„-,. times the determinant
of an (n — r) x (n — r) submatrix of C, and so is non-zero. Hence the hyperplanes (3) are
linearly independent and meet in an [r]; £ is a simple point on Cr.

For Fr given by (1) the appropriate C is A=(a{). By considering its rows we see that
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an (n — r) x (n — r) submatrix of A is singular if and only if there is a non-zero
polynomial of degree at most n — r — 1 having n — r of the a, for roots: this can happen if
and only if two of the a, are equal. Hence if no two a, are equal then Tr is a Cr and is
nonsingular, as was claimed in Section 1.

2.2. Let

/(0) = (0-ao)(0- f l l ) (0-a2) . . . (0-an) . (4)

By standard partial fraction theory, if / < n + 1 then

e' _y a\
f(0) 7(0-1

Hence, on taking 0 = 0 for /= 1,2,..., n we obtain

Z - ^ r = 0 7 = <U, . . , n - l . (5)

Thus r+l solutions of (1), considered as linear equations in the xf are given by
xf = ak

ilf'(ai) for /c = 0,1,2,...,r. Since the a; are distinct these solutions are linearly
independent: no non-zero polynomial of degree at most r<n has n +1 distinct roots.
Adopting the convention that (y,) denotes the point {yo,yi,y2,---,yn),

 w e s e e t n a t if (£«)
is a point on Fr then there are po,pt,...,pr such that

(6)

where

p(0)=po+ple+---+Pre
r. (7)

Suppose, until further notice, that Po^O. Then (£?) and the (a*//'("••)) for k = l,2,...,r
are linearly independent solutions of (1) in xf. Hence, since our coordinates are
homogeneous, if (x,-) is any point on Tr near (£,-) then it can be taken as

for some (small) ui,u2,...,ur. Hence, if no <!;, is zero, then the analytic parametrisation of
Tr near (£,•) is given by

Xi = £i
p(ai)
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i.e., on expansion by the binomial series,

i V r.

where the K, are non-zero numerical constants. A hyperplane £jfij.yj = O meets Fr in a
variety with at least an s-fold point at (f,-) if and only if, with xt as in (9), £,- h,*,- has no
monomial terms in ul,u2,...,ur appearing with total degree s or less. From (9) we see
that this is the condition that the hyperplane contains all the points (ar^i/Cpfai)]') for
l^m^rl and l = s,s — 1,..., 1,0. These points thus span the s-tangent space Ts at (<!;,).
Writing A.i = £i/[p(ai)Y^Q, we see that TS is spanned by the points of the array

(flJA(),(flJ
+1A(),..., (a? A,)

Since po^0, we see from (7) that each point of the second row apart from the first is
linearly dependent on those of the first row, while the first point of the second row is
dependent on these and (a*"1!,). Similarly the points of the third row are dependent on
those of the higher placed rows and (af"2l,). And so on. Thus Ts is spanned by the
rs+1 points (^af/Wa,)]5) for fc = 0, l, . . . ,rs. Because the a, are distinct the n + l vectors
(af),(a?),...,(a") are linearly independent; and « + 1 ) , (a"+2)... are linearly dependent on
them. Hence the matrix with the spanning points for Ts for columns has r s+1 linearly
independent rows if rs<n and n +1 independent rows if rs^n. Hence Ts is an [rs] if
rs<n and the whole [n] if rs^.n.

If rs<n then, by (6), Ts is spanned by the points (^ / [ / ' (a , - ) ]^? 5 ) for fe = 0, l, . . . ,rs.
The value ot^tal\J'(ai)']'~lif'~lx, at the (fc+l)th point is I , [ a / + V / ' ( a , ) ] , which, by
(5), is zero provided O^j + k^n—l. Hence T. is in each of the n — rs hyperplanes

t)] '"1«f"1x« = 0, 7 = 0,1,. . . . n - r s - l . (10)

Again, the a, being distinct means these hyperplanes are independent. Thus Ts is given
by (10).

23. Suppose now that no £, is zero, but po = 0 in (7). If, for any a, we let bi = ai + a.
then, from (1), F r can be taken as
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£ # x ? = 0 , 7 = 0 , 1 , . . . . n - r - l .
I

Further, the 6, are distinct, and if g(6) has the bt for roots then

Also p(a,) is a polynomial p(fe,) in bt whose constant term is p( — a). We may choose a so
that p ( -a )#0 . Then, writing (6) as

fl(al)Zf=g'(bl)tf=p(bl)

the argument of Section 2.2. shows that if rs<n then the s-tangent space at (£() is an
[rs] given by

This is just the \_rs~} given by (10). We have proved

Theorem 1. Let (£,) be a point ofTT of [n] that is not in any hyperface of the common
self-polar simplex S. Ifrs<n then the s-tangent space to Fr at (£,) is the [rs'] given by

Ifrs^n then the s-tangent space is the whole [n].

2.4. To show that the low dimension of the tangent spaces at (£,) is not due to the
occurrence of line's or higher spaces through (£,-) and on Fr, and for latter use, we
quickly prove:

Proposition 1. If 4^2r^n then the points of Tr that lie on lines on Fr form a
subvariety of dimension r—\.

Proof. Let (<J;) be on a line of Tr and be given by (6). If (//,) is another point on the
line then, by (6), (7)

f'(ai)rif=q(ai) (11)

where q(6) is a polynomial of degree at most r. Since (£;) has an orbit of size at most 2"
under G we may assume that (̂ ,) is not in this orbit and thus that q(6) is not a constant
multiple of p(6). The line (&)(»/() is on T, if and only if, from (1)
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Consequently

(12)

where 1(9) has degree at most r. From (6), (11) and (12) p(9)q(6)-[J(0)]2 has every a, for
a root, and degree at most 2r. Hence it is the zero polynomial. If 0—/? is a linear factor
of p(9) and not q(6) it must occur to even power in p{6), i.e.

P(e)=(6-p)2d(d) (14)

for some polynomial d(9) of degree at most r—2. The (£,•) given by (6) with p(6) as in
(14) form a subvariety of dimension r —1 on r r . Notice that such a (£,) lies on one of
the lines given by letting A vary in

(ai) (15)

and extracting various combinations of square roots.

2.5. We now consider the case when (^f) is in precisely t hyperfaces of S, where
l g t ^ r (Section 2.1). We may deal with the case £0 = £1 = ---- = £t_1 = 0. Then (£,) is
given by (6) where

p(9)=(9-ao)(9-a1)...(9-at_l)q(9) (16)

and q{9) is an (r-t) — ic. We shall assume that Po^O, leaving the reader to apply the
technique of Section 2.3 to the case p o =0 . Thus, by (16), no a, for l<t is zero. Then, if
(x,-) is a point on Fr near (<!;,) it can be taken as in (8). If

then, by considering partial fractions,

Then, by (8) we have

• XI = K,WI / = 0 , l , . . . , t - l , (17)

where

l\(ai-ai) (18)
1 = 0
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and

„ - > ! . U\ U; T VTU: 1 ri/.-i"/ v-i «.»"
^ • 1 ^ ? 4 ifî . (19)

No K, is zero so the s-tangent space Ts at (£,) contains the "first" t vertices of S. Call
this set of vertices Sr If we extract square roots of (19) by the binomial theorem and
apply the arguments of Section 2.3 to the monomial terms involving no wh we see that
T2 is spanned by S,, the (^af/Wa,)]2) for k = 0.\,...,2(r-t), and the points
(£,iai/(ai — al)q(a,))* for / = 0, l , . . . , t — 1 : the asterisk means that the coordinate represen-
tative is shown for i^t; it is zero when i<t. Since 9q(9) has degree at most r — t+l and
leaves remainder a,q(ai) on division by 8—a, we see that (£,a,/(a; — a,)^(a,))* is a linear
combination of the points (^.-af/C^a,-)]2) and (^,a/9(a,)/(a, —a,)[^(a,)]2)*. If 2 r<n then
the former set of 2(r—t) + l points together with the t points (^,(a, — aj)~V[<z(ai)]2)* are
independent points in xo = x1=--- = xt-l=0, since no polynomial of degree at most
2(r — t) + l+t = 2r — t+l<(n + l) — t can have each of a,,at+1,...,an as a root. Hence,
provided, g (a , ) /0 for Z = 0,...,t— 1, T2 is spanned by these points and the points of 5,:
thus T2 is a [2r].

Notice that if q(ao) = 0, then by (16), ( 0 - a o ) 2 i s a factor of p(0) and so, by Section 2.4
and (14), (£,•) is on a line on r r . If r = 2, r= 1 and (£,) with £0=0 is on a line of I \ then,
by (14), (9—a0)

2 must be a factor of p(6) so fl(ao) = 0. Then T2 is spanned by the first
vertex of S and the points (^af/[q(fl,)]2): T2 is a [3]. If r > 2 , t = 1, and (£,) with £0 = 0 is
on a line on Fr then, by (14), (9 — a0)

2 need not be a factor of p(9), though it could be:
different dimensions for T2 can occur.

A similar discussion with the cubic terms in the expansion form (19) shows that T3 is
spanned, if no q(at) is 0 and 3r—t<n, by the t independent points, St, the (^af/Ma,-)]3)
for fc = 0 , l , . . . , 3 ( r - r ) and the ( W a j - a , ) " 1 / ^ ^ ) ] 3 ) * : thus T3 is a [ 3 r - t ] . If r = 2, ( = 1
and q(ao) = 0 then no asterisked point occurs and T3 is a [4]. We have:

Theorem 2. Suppose that (<̂ ,) ;s a point on Tr r'n exactly t hyperfaces of the common
self-polar simplex. Then:

(0 ' / di) IS not on a lme on Tr its second-tangent space is a [2r] (provided 2r<ri) and
its third-tangent space is a [3r —t] (provided 3r — t<ri);

(ii) if r = 2, ( = 1 , and (£,•) is on a line on T2 then its second-tangent space is a [3]
(provided n > 3) and its third-tangent space is a [4] (provided n > 4).

3. C2, r 2 Lines and osculating [4]

3.1. We first prove:

Theorem 3. / / n ̂  5 t/ien C2 is a T2 if and only if it contains a line.
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Proof. By Section 2.4 F 2 contains 2" lines given by (15) with d(6) = 1. Thus we need
only prove that if C2, given by (2) with r = 2, contains a line L then C2 is a F2 . The
matrix condition of Section 2.1 on (c|J)) shows that C2 meets any hyperface x, = 0 of S in
a Ci which is, by Section 1, an irreducible curve Fj of order 2"~l. Hence L cannot lie in
a hyperface of S. Let (£,), with no £,- zero, be one point of L, and let (>/,-) be another
point of L not in the (finite) orbit of (£,) under G. Thus O7?) is not a scalar multiple of

(tf).
If (£?), (̂ ;>7i) and (>/?) were linearly dependent we should have constants X, fi, v, not

all zero such that, if at = riJ^i then

Xaf+fiat + v = 0 for i = 0, l,...,n.

Hence each a; must take one of two possible values. Since n 4-1 ̂  6 there is a set of three
a,- with the same value, say K. Not all the a{ can equal K since the points (£,) and (»/,) are
distinct. Hence the point (f/; — K< (̂) is on L and C2, and has at least three zero
coordinates: contradicting Section 2.1. Since L is on each quadric of (2) it follows that
(if)> ( ^ i ) and (t]f) span the solution space of the equations (2) regarded as linear in the
xf. Hence the points of C2 are given, as p, q, r, vary, by

Taking new coordinates (yt) with yt = xj^, C2 is given by

Were two at to be equal, say ao = al, then C2 would lie in the cone (plane-pair)
y% — y\ = Q> whose vertex has dimension n — 2, which is greater than the permitted
minimum (Section 1) of n—4. Hence if f(6) is defined by (4) no / '(a,) is zero. So if new
coordinates (zf) are taken with zi = [f'(ai)~]il2yh for some choice of square roots, then
C2 is given by

f'(a,)zf = p + qai + raf. (20)

Thus, by (6) with r — 2, we see that, in this coordinate system, C2 is F2, and we are
done.

3.2. A much more remarkable result is:

Theorem 4. If n^.5 and if at one point of C2 not in a hyperface of S the
second-tangent space is a [4], then C2 is a F2.

Proof. Suppose that the second-tangent space T2 at (£,-) on C2, with no £, zero, is a
[4]. Let (nf) and (£?), together with (<!;?) span the solution space of (2). Then the
parametrisation of C2 near (<!;,•) is given by
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Writing b^nf/^f and <:,- = (?/<!;? we see that this is

x, = £,[1 + ub, + vc,-]1/2 = i,{ 1 + Kfau + c,i>) + K2(*,« + c,v)2 + . . . } ,

where K1, K2 are non-zero constants. Hence T2 is spanned by the six points (£,•), (^,b,),
(̂ ,-c,-), (£,-b?), (ZibiCj), (£icf). Since T2 is a [4] these points are linearly dependent, i.e.
there are constants A, B, C, D, E, F, not all zero, such that

i + Cct + Dbf + Ebfii + Fcf = 0, for i = 0 , 1 , . . . , n.

Hence the points (l,b;,c,) all lie on a conic <€. No 3 of these points are linearly
dependent. For if, say, (l,bo,co) (\,bx,Ci) (I,b2,c2) where dependent then there are
constants a, /?, y, not all zero such that

Hence the points of C2 given by

x? =<xtf+Pnf+ yC? = if (a + pb, + yc,)

would have 3, at least, zero coordinates, contradicting Section 2.1. Hence the n+\
points (l.fcj.Cj) are distinct and <€ is a nonsingular conic. <8 may, in some coordinate
system, be taken as (l,t,t2). Hence, using primes to denote transposes, there is a
nonsingular 3 x 3 matrix B, and distinct values ao,al,...,an such that

(l,6,,c,)' = B(l,a,,af)', i = 0 , . . . , n + l . (21)

Any point (xt) on C2 is given by

xf=PZf+qri?+K?

for some p, q, f. Using (21) we see that in the new coordinate system (y,) given by
yi = xi/^i C2 is given by

where (p,q,r) = (p,q,f)B. Now taking z, = N/ / ' (a I ) yh with f(9) given by (4) shows us
that C2 is given by (20), and thus is F 2 .

3.3. From Theorems 1, 3 we deduce:

Theorem 5. If n^.5 then C2 contains a line if and only if at some point of C2 not in a
hyperface of S the second-tangent space is a [4].
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From Theorems 1, 4 we deduce the unexpected:

Theorem 6. If n^.5 and at one point of C2 off the hyperfaces of S the second-tangent
space is a [4], then this is so at all such points of C2.

3.4. We conclude by mentioning that some of the theorems can be generalised
immediately to the varieties given by (1) with xf replaced by xf(m^2) for all i. We
mention also that (6) and (7) imply that there is a finite morphism from r r to [T]. A
description of the degree ramification etc. of this map has been given by Terasoma [10].
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