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Abstract The main result of this paper is a construction of geometric Lorenz attractors
(as axiomatically denned by J Guckenheimer) by means of an fl-explosion The
unperturbed vector field on U3 is assumed to have a hyperbolic fixed point, whose
eigenvalues satisfy the inequalities A,>0, A2<0, A3<0 and |A2|> |A,|> |A3|
Moreover, the unstable manifold of the fixed point is supposed to form a double
loop Under some other natural assumptions a generic two-parameter family contain-
ing the unperturbed vector field contains geometric Lorenz attractors

A possible application of this result is a method of proving the existence of
geometric Lorenz attractors in concrete families of differential equations A detailed
discussion of the method is in preparation and will be published as Part II

0 Introduction
In this paper we attempt to establish rigorous methods for verifying the existence
of geometric Lorenz attractors in concrete examples of differential equations By a
geometric Lorenz attractor we mean an object satisfying the axioms of J Gucken-
heimer [4]

Our method is based on a particular type of fl-explosion We start with a vector
field in R3 with a hyperbolic fixed point The eigenvalues of the linearization at this
fixed point will be denoted by A,, A2 and A3 We assume that A2 and A3 are negative
and A, > 0 and that they satisfy the following inequality

|A2|>|A,|>|A3| (0 1)

Therefore the unstable manifold of our point has dimension 1 and the stable manifold
has dimension 2 The unstable manifold is assumed to be a part of the stable
manifold, and as a result it forms a double loop (figure 1) (The reader should
notice now that our vector fields are assumed to be symmetric with respect to the
reflection through the eigendirection corresponding to the eigenvalue A3) In the
unperturbed system the fl-set contains the double loop of the unstable manifold
It is a consequence of this assumption concerning the eigenvalues at the equilibrium
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FIGURE 1

that the double loop of the unstable manifold of the unperturbed system is stable
Suppose now that our vector field is embedded in a two-parameter family of vector
fields It proves that in a generic family there are perturbations of our initial flow
leading to a creation of a geometnc Lorenz attractor

Our idea is related to so called Sil'mkov bifurcation The inequality (0 1) distin-
guishes our assumptions from those of Sil'nikov He assumes that any positive
eigenvalue is larger than the absolute value of any negative eigenvalue Under his
assumptions concerning the eigenvalues one can obtain a suspension of the two-shift
as the il-set of the perturbed flow However, one cannot obtain an attractor In this
manner one obtains a system with transient chaos Almost every trajectory still can
converge to a stable equilibrium On the other hand, if a system has a strange
attractor then the trajectories from its basin of attraction are trapped in the vicinity
of the attractor and almost every orbit is bound to exhibit chaotic behavior

The analysis of the creation of geometnc Lorenz attractors through an ft-explosion
has two aspects geometric (how the attractors are created9) and analytic (what
computational tools allow one to verify the geometnc conditions9) In Part I (the
current paper) we explore the geometric aspects of the phenomenon described
above With little difficulty we obtain a genencity result for two-parameter families
with a Lorenz attractor (Theorem 1 2) In Part II (in preparation) we treat methods
of verifying that a given family of vector fields has a Lorenz attractor At present
Part II is more technically involved There is an analogy among diffeomorphisms
of two-dimensional manifolds which describes the relationship between these two
kinds of results Suppose that a diffeomorphism has a hyperbolic fixed point, whose
unstable manifold coincides with the stable one It is easy to verify that a genenc
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SiVmkov-type bifurcation Part I 795

perturbation of our diffeomorphism will have Smale's horseshoe But one has to
have a tool like Melnikov function which can be used to prove that a given
perturbation has a horseshoe Therefore we need to develop an analogue of
Melnikov's method for our situation

As the work on this paper progressed, we had to introduce a substantial number
of ideas from dynamical systems and differential equations As an offshoot we
present a concise proof of a generalization of Sternberg's linearization theorem [20],
which serves us to derive the class of smoothness needed to linearize a vector field
near a saddle point This work is based on an earlier paper of Roussane [14] and
should be considered as an exposition of Sternberg Theorem

The methods we developed do not allow us to prove that there is a Lorenz attractor
in Lorenz equations, which was our initial intention The reason is that there is no
parameter set known for these equations for which our conditions are satisfied
There is numerical evidence that such parameters should exist [18] Moreover, it
should be possible to prove it with the assistance of a computer The computations
needed would be confined to a small neighborhood of the unstable manifold This
locality property makes it a most realistic method to verify the existence of Lorenz
attractors in Lorenz equations for some values of parameters (r,o-,b)

1 The statement of the main results
The main object of interest in this paper is a class of vector fields on R3 invariant
under the involution

(x,,x2,x3)i-> ( - x , , - x 2 ) x 3 ) (11)

By Hr we denote the class of all such vector fields of class Cr The reader may
assume that r = oo most of the time, though in several results it is essential that r is
finite

Let us distinguish an open subset W0<^'Er of all vector fields X satisfying the
following set of conditions
(Al) X(0) = 0, the eigenvalues of the linearization DX(0) denoted by A,, A2 and

A, are real, distinct and satisfy the inequalities A,>0, A2<0, A3<0
(A2) The x3-axis is the eigendirection of DX(0) corresponding to the eigenvalue A3

(A3) The eigenvalues satisfy the following inequalities

|A3|<|A,|<|A2| (12)

The set of vector fields satisfying (Al) and (A2) only will be denoted by W'o

Remark 1 1 The x3-axis is the set of the fixed points of the involution (11) It is
easy to see that any X e H ' has to be tangent to this manifold Hence, the fact that
DX(0) has the x3-axis as an eigendirection follows from conditions (Al) and (A2)

With any vector field X e Wo we can associate a number of invariant objects
First, there are three invariant manifolds of class C

(0 the stable manifold Ws(0) of dimension 2,
(n) the unstable manifold W"(0) of dimension 1,
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(in) the super-stable manifold of dimension 1

>0 C"1 < ||<p,(x)|| e~A2'< C},

where (cp,j,ER is the flow generated by the vector field X

Remark 1 2 For simplicity we assume that X is defined globally and complete, I e
it generates a flow In most of the constructions we only need that X be well defined
near W(0) The family of diffeomorphisms <p, needs to be well defined just for
t > 0, what in terms of differential equations means that the solutions can be extended
indefinitely forward

We also have two invariant Cr~'-bundles of dimension 2, which will be denoted
by Is and 2" They will be defined as follows
(I) 2s is the tangent bundle of Ws(0)

(n) 2" is characterized by the property that it is an invariant (under the flow)
subbundle of TU3 restricted to W"(0) and such that

One can show that 2" with the above properties exists and is unique The proof
follows from the invariant manifold theory [7 or 6] We will give a more detailed
proof of this fact in Part II In Part I we will actually never use this bundle except
for illustration of the geometric ideas involved

We will consider a subset W, c W'o of vector fields X which satisfy
(Bl) W(0)c W\0),
(B2) W{0)* Wss(0),
(B3) X" = 2 ' restricted to the manifold W"(0)\0

We sometimes refer to the condition (Bl) by saying that W"(0) is doubly asymptotic
to 0

Remark 1 3 In Part II we are going to show that Wx is a Cr~'-submanifold of Wo

of codimension two We notice that Wo has a structure of a Cr-Banach manifold
Intuitively speaking, our statements are quite obvious We lose one dimension to
satisfy the condition (Bl) and another dimension to satisfy (B3)

We are going to study families of C'-vector fields XM on R3 The parameter ix is
from some open set U^U\ where s is an arbitrary integer We will assume the
following smoothness condition the mapping

(x)Ai)~XM(x)

i s a C map IR3 x U -»R3 In the language of the transversality theory [ 1 ] the mapping
lx>->Xli is a C"-representation This property implies that the flow of XM is a
Cr-representation, as well as the functions parameterizing Ws(0) and W"(0) These
properties follow from some proofs of the existence for differential equations and
invariant manifolds, for instance [7] We will use this fact freely

We will be mostly interested in families with the following properties
(Cl) VM€f/ X^eWo,
(C2) 3/xoe U Xnte °WX and the mapping (x, /*)>-»XM is transversal to Wx at fj,0
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SiVmkov-type bifurcation Part I 797

In the proof of our main result we will rely upon uniform lineanzabihty of XM

near 0 We state it as the following sequence of conditions depending on an integer

(Ln) There is a neighborhood VcR3 of 0 and a family of C-diffeomorphisms
gM V-»R3 and a neighborhood t / c U of fi0 such that

(I) gM commutes with the involution (1 1),
(n) (x,/i)'-»gM(x) is a C-map UxV^U3,
(in) there is a linear vector field

oy,

where A, is C" and for every /j.e U and y e V

(15)

We studied sufficient conditions for (Ln) to hold, based on work of Sternberg
[20] and Roussane [14] We give an account of their results in Appendix 1 tailored
to our needs From Appendix 1 we derive this condition of lineanzabihty

THEOREM 1 1 Suppose that k+ and fc_ are integers such that k+> r ( l + |A2|/|A,|) and
fc_>(l + |A1|/|A3|) (the eigenvalues are evaluated for /j. = fi0) Let fe = /c+ + fe_
Moreover, let us assume that for every / eZ+ such that 2 s | / |<A; — 1 where |/| =
h + l2+h and i = l, 2, 3

(Here k(fi) = (A,(/x), A2(/i), A3(/A)) and (/, A(/x0)) is the inner product) Then the
condition (V) is satisfied

The following theorem is the main result of this paper

THEOREM 1 2 Suppose that X^ is a family of vectcr fields satisfying (C1)-(C2) and
(V) There are values of the parameter fi arbitrarily close to /x0 such that the flow
associated with X^ has a geometric Lorenz attractor

It will be clear from the sequel that all crucial properties of geometric Lorenz
attractors introduced by Guckenheimer as axioms, like hyperbolicity and a structure
of the Poincare section implying reducibihty to a one-dimensional system, are
satisfied

There is a need to consider families for which the lineanzabihty condition
expressed in Theorem 1 1 is violated for /J. = /x0 It means that there are low-order
resonances between eigenvalues, I e there are /eZ+,2<|/ |<fc — 1, where k is given
by Theorem 1 1 and / 6 {1, 2, 3} such that

(U,(MO)) = A,(MO) (17)

The reason why this situation is interesting is the fact that integrable vector fields
usually have resonant eigenvalues The property of integrability is very helpful in
verifying all properties except lineanzabihty Therefore it seems to be reasonable
to carry out the following construction which allows us to verify all properties but
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(L") at fx0 and then it asserts that there is a point /x, close to fi0 for which (L")
holds The remaining conditions will be satisfied due to the openness of transversality

We consider the set JH0 = {IJL e L/|XM e Wx) Due to transversality, this is a sub-
manifold It contains /u.o by definition Suppose that the transformation A M0->U3

M^(A1(At),A2(M),A3(/i)) (18)

is transversal to the resonant planes at ju.o, 1 e for every / e Z +, 2 s | /| < fc — 1, i = 1,
2, 3 there is a vector h tangent to Ji0 at fi0 such that

(l,D\{fio)h)-d\Xno)h*0 (19)

Then it is easy to see that there is a point ^i{eM0 for which the assumptions of
Theorem 1 1 are satisfied and Theorem 2 2 applies to the family XM near /x,

Example 1 1 The main example where we can verify that a system of differential
equations leads to a semiflow which has a geometric Lorenz attractor is

x = y,

y = x-2x3 + ay + /3x2y+yxz, (110)

Z = -KZ + X2

This system is related to Lorenz equations In Appendix 2 we included a result
showing that Lorenz equations are essentially equivalent to (1 10) with /3=0 In
(1 10) we will consider a and /3 to be small parameters The number K IS another
parameter, but it is not small The reader should think about it as a fixed number
from (5,1)

One can easily verify that if a = (S = 0 then the corresponding vector field satisfies
conditions (Al), (A2) and (B1)-(B3) Indeed, the first two equations do not depend
on z They form a hamiltoman system with the hamiltonian H(x, y) = \y2 + \x* -\x2

The level set of 0 is shaped like digit '8' and it is the unstable manifold of 0 (see
figure 1) Combining this information with the simple form of the third equation,
one can easily show that the stable and unstable manifolds of (1 12) in the unper-
turbed case look like in figure 2 It is apparent, though, that (A3) is violated, since
A, = 1, A2 = —1 and A3 = — K

In Part II we will show that (C2) is satisfied The reader should also notice that
in § 3 (Lemma 3 1) we state a condition equivalent to (C2), but we defer the proof
of equivalence to Part II The reason why condition (C2) is not easy to verify is the
lack of a systematic development of higher order perturbation theory with emphasis
on the geometric properties of the system Some rudiments of such theory are in
[1] in the proof of Kupka-Smale Theorem In subsequent proofs useful perturbation
techniques seem to have been abandoned

It is a standard, two-dimensional exercise to show that by perturbing a and /}
(while holding y = 0) we can obtain a system which satisfies (A1)-(A3) and (Bl)-
(B3) (cf [2]) Hence, (Cl) and (C2) are satisfied for our family with those perturbed
parameters, and Theorem 1 2 applies

It was observed in [21] that if the original Lorenz system has a geometric Lorenz
attractor then one can obtain it by a local bifurcation similar to ours
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W"(0)

FIGURE 2

2 Constructing the Poincare map
Suppose that X^ is a family verifying (Cl), (C2) and {L") of § 1

In order to avoid some subscripting we will introduce coordinates x, y, z instead
°f y\ •> yz a n d y-s from § 1 Hence, the family X^ in coordinates x, y, z is represented
by a linear flow If gM is the family of local diffeomorphisms as in condition (L")
then coordinates x,, x2, x3 and x, y, z are related by the following equations

x, = g' (x, y, z), (i = l ,2,3) (2 1)

The corresponding vector field is

d 3 3

Without a loss of generality we can assume that gM are well defined in a neighborhood
of the cube V, where / = [-1,1]

We will construct a succession mapping between subsets of d/3 First we construct
a succession map F from / x / x { l } to {-1, l } x / x / It is easy to see that in
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coordinates x, y, z, due to the linearity of the vector field, it is given by the formula

F{x,y,\) = (sgn{x),y\x\\\x\"), (2 3)

where the constants 77 and v have been derived from the eigenvalues

i» = |A2|/A,, V>h , x
(2 4)

«' = |A3|/A,
Both T) and v depend on p. This will not be reflected in our notation One can
eliminate some discrete variables and simply write

F(x,y) = (y\x\\\xn, (2 5)

which represents F, if one introduces coordinates x and y on 7 x / x { l } and y, z
on dlxlxl One has to remember, though, that F takes values in { ± l } x / x / ,
depending on the sign of x Also, F is not defined along {0} x I x{l}

We will assume that W(0) of XM intersects g M ( / x / x { l } ) transversally We do
not lose any generality, since from (B2) it follows that W(0) is tangent to the
x3-axis Therefore, by rescahng we can obtain this transversahty The tangency
follows from a normal form argument and can be derived from Appendix 1 A priori
we do not know whether W (0) intersects the top or the bottom of the cube I3

One can assume that it is the top, since we can change vanables x3>->-x3

The next step is to construct a succession mapping G+ from a neighborhood of
(0,0,1) in dl3 to 7 x / x { l } along the part of W"(0) outside of the set gM(/3) From
our assumptions it follows that G+ is a C-representation We do not know anything
else about that piece of the trajectory, but we still can write

y,z), (2 6)

where p is a C"-function of ft, q and r are C""1-functions of fi, and f^isa
C- function of y and z, but in general only C"1"1 in the parameter \x We also
require that

^ ( 0 , 0 ) = ^ ( 0 , 0 ) = 0 (27)
ay 9z

There will be a symmetric mapping G_ defined on a neighborhood of (-1,0,0)
with values in / x / x {-1}

G_(j ,z) = -p ( M ) + ;yq(M)-zr(M)- /M(->>z) (2 8)

Now we are able to define the Poincare map near {0}x I x{l}

\G+{F{x,y)), a s x > 0 ,
T{x,y) = \ „ , „ , , , ^ A (2 9)

[G-{F(x, y)), asx<0
After simple computations we obtain a result which plays an important role in

our study of Lorenz attractors
THEOREM 2 1 The Poincare map ofX^ near W"(0) can be written m the following form

(2 10)
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where pe C(RS,R2), q, re C^fR'.R2) andf^e C(R2,R2), /„ is a C"~l function
of the parameter /J. and it satisfies condition (2 7)

3 The structure of the Poincare map T
In this section we study the properties of the transformation given by Theorem 2 1

LEMMA 3 1 If X^eW,, p(n) = (pl(ti),p2(n)) and r(/n) = (r,(/i), r2(/t)) then

Proof From W(0)<=Ws(0) we get />,(/*) = 0 and from 2"= 2s follows
r,(0) = 0 •

LEMMA 3 2 A family XM is transversal to Wx at fi0 iff the transformation
2 (3 1)

has 0 as a regular value (l e dpi(/j.o) and drx{ii0) are two linearly independent
functions)

Again, intuitively clear, this lemma requires some facts from the transversahty
theory and we will comment on that in Part II The reader can consider Lemma 3 1
as a technical definition of the transversahty in Theorem 1 2

Let us define two sets of parameters depending on a constant ceU

> 0} (3 2)

We will call M±(c) scaling sets From now on we consider c fixed, but later on we
will add some conditions that c has to satisfy

For any /x e M±(c) we define an affine map <f>{x, y) = (x, y), where

x=pxx,
(3 3)

The map 4> will be called the scaling transformation

LEMMA 3 3 Let T0(x, >O = sgn (x)(p(/i) + |x|"r(/i)) Let us define fo= <j>~x ° To° (f>
Then

fo(x, y) = ±(sgn (x)(l - c\x\"), 0) (3 4)

Proof The map To maps the whole plane to the set {p+ tr\ t > 0}, I e a ray This ray
is a part of the line y = 0 in the new coordinate system, so it is sufficient to find an
expression for the first coordinate of f0 We obtain

f'0{x, y) = sgn (px) sgn (x)/>7Vi + r1|p1|"|x|1')

= ±sgn(x)(l-c|xT) (3 5)

This ends the proof •

The idea of the previous construction is that the change of coordinates performed
on the whole T leads to a small perturbation of To
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LEMMA 3 4 Let us assume that 2v> 1 and let

u{x,y) = y\x\nq{fj.) + sgn{x)fIIi(sgn{x)y\x\n, |x|") (3 6)

Then for any integers k, I a 0 such that k +1 s n we

I ^ ^ 7 1 < const |x|«-\ (3 7)

where a = mm (2v, TJ) > 1

Proof The bound for the term y|x|7Jq(/i) is clear Therefore, without a loss of
generality we may carry out our estimates under the assumption q(/x) = 0 It is
sufficient to show an analogous estimate for the function /M ° F, where /M is 1-flat
and F(x, y) = (sgn (x)jlxl77, |x|") It is easy to show that

II dk+'F || k—I—j(x, y) < const |x|" (3 8)
II dx dy II

Indeed, we have the following equalities

oX

^ 1 ( , y )
dx dy

dk+2F 3k+3Ft

d"F-

dx

We also have

f {x, y) = sgn (x)k\x\

\ay— i r i i a z — «*«™t(M + W) OiO)

From this we easily obtain

l l ^ ( F ( x , j))||<const |x|",

\\D%(F(x,y))\\< cons t , a s / > 2

We write down the composition formula (cf [1], p 3)

£>""(/„ » F) = I cnpD% o FD^'F D^'F (3 12)

The summation extends on 1 s i < m and all /? = (^,, , /3,)eZ'+ such that Xj = i j3j =
m It will be convenient to denote m = k +1 and write

(3 13)

where we used the following abbreviation

e,=(l,0), e2 = (0,1), efei = e, e, e2 e2 (3 14)

k times / times

For fixed sequence (/3,, , /?,), let p be such an integer e{l, , /Jthat^T,' Pj — k<
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For fixed sequence (/?!, , /3,), let/? be such an integere{l,
£*=i ft (if Zj=i Pj- m then p = i) As we evaluate the right-hand side of (3 13) using

(3 12), the derivatives of F are computed with the following arguments

^ f for; = 1,2, ,p-\,

^+ +^ef>+ +^~\ (3 15)

toTj=p+l,p + 2, ,i

Therefore we obtain the following estimates for two cases, i = 1 and i s 2

\\DUF{x,y))D"F(x,y)ekel
2\\^const |xr |x|-k ,

\\D%{F{x,y))D^F(x,y) D^F(x, y)ek
ie'2\\

<const |x|"-"' \x\"-p^'\x\"-(k-^:'^

<const \x\l"-k ( i s 2 ' ) (3 16)
Combining our inequalities with the composition formula (considering the term
with i = 1 separately1) we conclude the proof •

Let T = 4>~x o T ° (f> and let us write

f(x, y) = fo(x, y) + H(x, y) (3 17)

PROPOSITION 3 1 Let ̂  e M±(c) There is a constant O 0 such that for all integers
k, / > 0 such that

018)

Proof From (3 17) and the definition of To it follows that H = <£"' ° u° <f>, where 0
is the linear part of the affine map <j> Hence

||4^|Uu<ni 1 % ^ | 019)
lla^xa'yll "^ " II dkxd'y ||

The composition formula wntten for u ° <f> yields (m = k+1)

m times

In order to calculate the relevant partials we perform the following computation
(note p,/r, = |p,|/c)

Dm(u°<fi)(x,y)ekerk

= Dmu(<f>(x, y)){Plex ± c^r^erfe?-"

A(±c-lr2\Pin
k-Dmu(d,(x, y^eWr-^-' (3 21)

.=o

We notice that Lemma 3 4 implies that

\Dmu(<f>{x,y))e\el
2

n"\^const Ip.xl"- (3 22)

Therefore, the ith summand of (3 21) is not greater than
const |p1x|a-'|p,r|/>ir

('<-1)<const |p,|o+1'<*-1)|jcr-1 (3 23)
This concludes the proof, since ||^<-1)|| <const \p^\ •
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COROLLARY 3 1 For every e > 0 there is S > 0 such that if \Pi(fi)\ < S and /A € M±(c)
then for all (x,y)e(-l, I)2 and k, / eZ + such that fc+/< n we have

(We will show that this inequality implies that H extends to a C-function on (-1,1)2

with norm < const e, cf Lemma 4 2)

4 The existence of a hyperbolic attractor for T
This section of the paper deals with the problem of finding a strange attractor for
T The structure of this attractor is analogous to the structure postulated in the
paper of Guckenheimer [4]

Throughout this section we will use the assumption that n > 2 and at the end we
will even assume that n > 3 Let us reiterate the assumptions about T that will be
used in this section

Let<? = (-1,I)2 and <?* = {(*, y)eQ x#0} Let T (?*->R2 be a map of the form
T(x,y)=T0(x,y) + H(x,y), (4 1)

where
T0(x, y) = ±(sgn (x)(l - c\x\"), 0), (4 2)

and H is a perturbation of class C" on Q* and such that for all (x, y) e Q* and k,
leZ+, fe + / < « we have

| | ^ ^ ( x , J | < e | x r ' < , (4 3)
II x dy ||

where a € (1,2) and e > 0 is sufficiently small (For simplicity of notation we omitted
all tildes used m § 3 ) We will make the following assumptions on these parameters

ce(l ,2) , vc>\ (4 4)
We observe that from the point of view of dynamics To can be considered a mapping
of the interval [-1,1] into itself, since in the first iteration the whole plane collapses
to the x-axis and then To acts like *i-»±sgn (x)(l - c\x\") The behavior of this map
outside [-1,1] is rather uninteresting If n = 2, it follows from our assumptions that
T has an invariant foliation whose leaves of class C1+y, y>0, are almost vertical
and are being contracted by T We are going to show in this section that if n = 3
then one obtains a foliation of class C1+y, y>0 (I e a genuine smooth foliation,
not just one whose leaves are smooth) The proof of this fact is based on an earlier
work of Robinson (cf [12,13]) The smoothness of the foliation is crucial in the
development of the ergodic theory of these attractors

The first step is to find an invanant subbundle £*<= TU2\Q, for every (x,y)e Q
we require that dim Es(x, y) = 1 and Es(x, y) is almost vertical It is natural to
parameterize a bundle with the above properties by a function u Q-*U such that
for any (x, y)eQ the vector (w(x, y), 1) e Es(x, y) Let us define functions a, b, c,
d, so that for x / O w e have

(4 5)

We apply the graph transform method, following Robinson The operation of taking
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a preimage of a bundle leads to the following nonlinear operator on the space of
functions u

a — bu o T

Indeed, this follows from the following equation

(4 6)

[a cirr(«)"| rar(w) + c]
[b d][ 1 J lbT(u) + d]

1

bT(u) + d
bY(u)d

1

r -.
(4 7)

Hence aF(u) + c = u{bY{u) + d), and (4 6) follows
It will be convenient to introduce functions b = a~lb, c = a~lc and d = a~ld and

rewnte the operator F in terms of these functions

We notice that

a(x, y) = ±cv\x

- bu ° T

ft hf
1 +—-

( 4 8 )

dx

b{x,y) = dH2/dx,

c(x,y) = dHl/dy,

d(x,y) = dH2/dy

As a consequence of our assumptions we obtain
cv\x\""' + e > \a(x, y)\ > cv\x\""' - e,

(4 9)

>-.i*r\
c(x,y)<e\x\a,

d(x,y)^e\x\a

These inequalities imply that functions b, c, d admit continuous extensions to Q

LEMMA 4 1 / / e < 1 then T(Q*) c Q

Proof We have the following estimates for the coordinates of T

ir,(x,>>)i<i-c|xr+e|xr<i-(c-e)ixr<i,
(4 11)

\T2(x,y)\^e\x\a<l
This concludes the proof •
LEMMA 4 2 Suppose that <p € C\Q*, E), where E is a Banach space, and that for
some y > 0 we have

Then <p admits a C-extension to Q and || <p || CT < const TJ
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Proof Suppose that (x, y), (x1, y') € Q* and they are on the same side of the y-axis
Then

\\<p(x,y)-<p(x',y')\\ < \\<p(x, y)-<p(x',y)\\ + \\<p(x',y)-<p(x', y')\\ (4 13)

We also have

I [ ^E((l-t)x+tx',y)dt(x-x')\\
o °x II

TJ|(1 - t)x+ tx'\y~l dt\x-x'
Jo

<-||x|r-|x'|y|<-|x-x (4 14)
y y

Also,

\\<p(x', y) - <p(x', y')\\ < 1,1^-/1 < 2l^v\y-yV (4 15)

Hence,

If (x, y) e Q\Q* = {0} x (-1,1) then the last inequality remains true If (x, y), (*', y')
are on different sides of the y-axis then we split the segment [(x, y), (x', y')~\ with
a point on the j>-axis and apply the last inequality to both subsegments As a result,

||(x-x',>'-/)|r •

LEMMA 4 3 Suppose that for some meZ+ and function <peCm+\Q*, E) and for

some ye(0,1), rj>0 and all k, /eZ+ such that fc + /<m + l

s?^<*HH*r""k (416)

Then setting <p = 0 on the y-axis extends <p to a function of class Cm+y on Q Moreover,
||(p||c™+r<COnSt T)

Proof We use induction For m = 0 this is Lemma 4 2 If m > 0 then we set i/» = Lty
Obviously,

(4 17)

Therefore, by induction hypothesis, if/ is of class c(m~x)+y on Q It suffices to show
that 1/* = Dip, even on the >>-axis, or that Dtp = 0 on the j-axis Suppose ze Q\Q*
and z+h e <?* Then for any $ > 0

-i: (418)

https://doi.org/10.1017/S0143385700005915 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005915


SiV mkov-type bifurcation Part I 807

since the whole relevant segment is disjoint with the y-axis Hence

II Jo
+1' (4 19)

As 0^0 , we obtain \\<p(z + h)-(p{z)\\<rt\\h\\m+y In particular, D<p(z) = 0 = i/Kz)
D

LEMMA 4 4 For every k < n -1 there is a constant C(k) such that

\\Dk(a-*)\\^C(k)\x\{1-v)-k (4 20)

Proof Let F(x) = 1/x By the composition formula applied to F ° a we obtain

D(t(fiT1) = D ' [ (F°a) = XcM3D'FoaD'3' D^a (4 21)

As usual, £ ] = 1 Pj = fc Also, it is obvious that D'F{x) = (-l) ' i ' /x '+ 1 Hence, in view
of the inequality |a~' |< const |x|'~" (cf (4 10)),

< I const |x|( l+1)(—'Vr'3l~1
 IJCI'-"--1

<const \x\(X~v)~k. (4 22)

This concludes the proof D

LEMMA 4 5 Let y = a — v For every fc< n -1 there is a constant C(k) such that

\\Dk(c)\\,\\Dk(d)\\^C(k)e\x\^-k

||D'tb||<C(fc)e|x|1'-'c (4 23)

Proof By Leibnitz formula

Dk{a~ld)= £ (k)l>(a~l)Dk-Jd (4 24)

Hence,

' 1 ( I ) ( * ) \x\y+il~k) (4 25)

The proofs of the remaining inequalities are identical •

LEMMA 4 6 Suppose that u, <p&Cy(Q,U) and <p\{y-axis} = 0 Then the function
i{i = u o Tip is in Cy{Q) and

||./»|| c ^ const NIcHMIc- (4 26)

Proof Suppose that z = (x, y) and z' = (x1, y') are two points in Q* on the same side
of the y-axis and that z is closer to the _y-axis than z' We can write {Holy(<p) denotes
the Holder constant of <p corresponding to the exponent y)

\w nz)<p(z)-u<> T(z'Mz')<\uo T(z)-u» T(

(4 27)
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We also have

| |r(Z)-r(z ')NDT(z") | | | |z-z ' | | , (4 28)

where z" is some point on the segment [z, z'] Therefore ||Dr(z")|| =£ const |x"|"~' <
const I*!""1 Hence,

\u°T(z)<p(z)-u°T(z')(p(z')\<Holy(u) const (xl*""1' Holy(<p)|x|r||z-z'||r

+ | |«| |coHolr(?)| |z-z'p (4 29)

We notice that y+-)'(»'-l)>0, so the last inequality implies the lemma •
By S8(p) we will denote a ball of radius p about the origin in a Banach space

LEMMA 4 7 There is a constant p>0 such that the operator T is a continuously
differentiate operator from 36{p)<^Cy to Cy and for every ueSft(p) we have
||DF(u)||< const e

Proof Formal differentiation yields

f d du° T — c 1 ~
DT(u)v= I - - - \bv°T (4 30)

\_\-bu°T (l-bu°T)J

We apply Lemma 4 6 to obtain that bu° T and u°T are in Cy(Q) and have norms
< const e Subsequently, for sufficiently small e the factor in the square bracket is
in Cy(Q) and it vanishes on the _y-axis Applying Lemma 4 6 again, we obtain that
DT(u) is a bounded operator on Cy(Q, R) and the inequality ||Dr(u)||<const e
is satisfied It is easy to see that DF is the derivative of F Indeed, the formula

r(«)-r(ii')= [
Jo

can be checked by differentiation of F((l - t)u + tu') over / D

PROPOSITION 4 1 There is a constant K such that for sufficiently small e the operator
F is a contraction ofSft(Ke)<= Cy(Q,U) Hence, F has a fixed point u satisfying the
inequality ||M||cvsXe
Proof We notice that T(0) = c, so ||r(0)|| < const e Therefore, for « e 0&(Ke) we have

< const e KE + const e<Ke, (4 31)

if K is big enough and Ke <p Hence F(^(/Ce))c g&(Ke) and F is a differentiate
contraction D

COROLLARY 4 1 There is a Holder-continuous, T-invariant bundle Es, whose fibers
are almost vertical It is not difficult to see that the derivative of T contracts the fibers
Indeed, from formula (4 7) it follows that the fibers are contracted at the rate

LEMMA 4 8 (a) Ifn > 2 then functions cDb, dDb, Dc, Dd are continuous and vanish
on the y- axis
(b) Functions dDT, cDTare in Cy and their norms are § const e
(c) If additionally «>3 then functions cDb, dDb are Holder with exponent 2-y and
their norms are < const e and functions Dc, Dd are Holder with exponent y and their
norms are < const e
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Proof (a) We have the following inequality near the _y-axis

|cDb|s const e|x|1+r e\x\y~1^const e2\x\2y (4 32)

(b) Function

a~lDT=\c - | (4 33)

is in Cy(Q, U) (cf Lemma 4 4 and 4 5) and cDT = c(a~1DT) is in the same space
A similar argument applies to dDT
(c) We have

\\D(cDb)\\ < \\Dc\\ \\Db\\ + \\c\\ \\D2b\\

s const e2\x\2y'1 (4 34)

In view of Lemma 4 3 the function cDb is of class C2y In a similar way we prove
the remaining claims •

At this point standard techniques allow one to show that there is an invariant
foliation tangent to Es, whose leaves are of class Cl+y, y>0 , using n > 2 + y We
leave this as an exercise to the reader and set out to show that for n = 3 our foliation
is actually C1+y, y> 0 (l e a genuinely smooth foliation, not just one whose leaves
are smooth) We will achieve the goal by showing that the function u which is the
fixed point of the transformation F is actually of class Cx+y

Following Robinson [12], we wnte down the mapping on trial derivatives of u,
which we will denote by v (hence, v Q->(R2)*, where (R2)* denotes the space of
functionals on U2) For any fixed u this is the transformation

¥„(«) = (l-£u° TY\du° T-c)(-bv° Tdt-Dbw T)

+ (l-bu° T)~\Dv° Tdt + uo TDd-c) (4 35)

This transformation is obtained from F by differentiation and subsequent replace-
ment of Du with v

LEMMA 4 9 For sufficiently small e and u e S8(Xe) the maps ^ u are uniform contrac-
tions on the space Cy {of Holder continuous functions)

Proof The operator ^ u is an affine operator, and can be decomposed into a sum
of a linear operator and a constant

where $„ is given by the formula

Vu(v) = v o T[-( l - bu ° T)~2{du o T- c)b + (1 - bu ° T)~ld]DT (4 36)

and

Zu = (I - bu ° T)-2(du ° T-c)u° TDb + {l-bu° T)~l(u° TDd-Dc) (4 37)

By a matnx version of Lemma 4 5 (which has an identical proof) and Lemma 4 8(c)
we show that S u e C T Indeed, we consider the expressions c"Dbu° T, dDbu2° T
(note u2 is Holder, since u is Holder) and u ° TDd
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It is easy to show that $ u is a contraction, since in formula (4 36) the expression
in the square bracket multiplied by DT has norm s const e in CMopology (Lemma
4 8(b)) It also vanishes for x = 0 Applying (the matrix version of) Lemma 4 5 again,
we show that the linear operator Yu has norm < const e •

COROLLARY 4 2 The fixed point of the operator T is a function of class Ci+y, where
y — a — v

Basic existence theory for ordinary differential equations with Holder-continuous
derivatives implies that a one-dimensional bundle Es of class Cl+y is tangent to a
foliation of the same class Obviously, this foliation is invariant under T and its
fibers are contracted by T

We will denote the maximal connected leaf of this foliation containing (x, y) by
W"(x, y), by analogy with the stable manifold notation of the hyperbolic dynamics

The reduction process flow -» diffeomorphism -» mapping of the interval is near
completion We are going to construct an interval map Let Q =
{(x,y)eQ \x\ + Ke\y\<l} be a hexagon There is a well denned projection p Q->
(-1,1) onto the x-axis along the leaves of Ws Let r(x, y) be the only point of the
intersection W (x, y) n {x-axis} Then p is defined by the relation r(x, y) =
(p(x, y), 0) Let IT(X, y) = x be the linear projection From what we have proved it
follows that ||p-77-||c

1+*^const e.
We define a mapping S (—1, l)\{0}-»( — 1,1) via S(x) = p(T(x,y)) From the

proof of Lemma 4 1 it follows that if c>(K + l)e then T(Q*)<=Q, so 5 is well
defined Let S0(x) = ±(1 - c\x\") In some sense we should be able to say that S is
close to So The precise statement is in the following

PROPOSITION 4 2 (a) For every x e ( -1 , l)\{0} we have

|S(x)-S0(x)|< const e|x|1+s, (4 38)

where 8 = min(l — v, yv)
(b) The function S'(x)/S'0(x) admits a Cs-extension ( = 1 at 0) to (-1,1), and in
addition

I I S ' ||
— - 1 < const e (4 39)

II So II c6

Proof It is easy to denve (a) from (b), so we will concentrate on the proof of (b)
We notice that S0(x) = Tc^xl""1 and that
T— \x\*~yD(p° T) = Dp° T\T— |

\ cvcv

= Dp°T (4 40)

cv dx cv dy _
The function Dp » T is Holder with exponent yv as a composition of two Holder
mappings, and moreover

\\Dp° T-[ l ,0] | | c ^sconst e
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The matrix in formula (4 40) is certainly in Cy and is closer than const e to

r. on
Lo oj

The Lemma follows from the formula S'(x) = D(p ° T)(x, 0) ex and from the previous
estimates •

PROPOSITION 4 3 Under the assumption that vc>\ the mapping S (-1,1) -»(-1,1)
has an absolutely continuous invariant measure with respect to the Lebesgue measure
The density of this measure is bounded

Proof One needs to apply the result of Keller [8] The only assumption that needs
verification is that the function g(x) = 1/|S'(*)| extends to a Holder function on /
We have g(x) = \S'0{x)\/h(x), where h(x) = |S'(x)/50(x)| is Holder and from Lemma
4 10 it follows that h is close to 1 Therefore, g is Holder, as well •

Remark 4 1 Using the fact that the density of the invariant measure belongs to a
certain functional space, one easily shows that the measure is unique in the class
of probabilistic measures First one shows that the support of the measure is a finite
union of segments Then one uses the fact that at least one of the segments has to
contain a discontinuity As a consequence we obtain that the invariant measure is
ergodic If in addition vc > V2 then for sufficiently small e the measure will be mixing

COROLLARY 4 3 (I) The mapping T can be studied by means of the kneading theory
(cf [5,22,11]) Since our mapping is symmetric with respect to x*->—x, only one
kneading invariant is needed to classify T topologically
(n) C Robinson's paper [13] is devoted to the ergodic aspects of the theory of geometric
Lorenz attractors The invariant measure for the quotient map by applying the result
of Keller [8] can be found in Robinson's paper

We recall that in order to be amenable to our analysis, the family XM that we started
with, should satisfy the hneanzability condition of class C3 We conjecture (after
Robinson) that the hneanzability assumption can be dropped A possible way to
eliminate it is by applying the technique of normal forms, in a way similar to that of
Leontovich [9]

Exercise 4 1 Obtain an invariant measure for T, which projects down to the absolutely
continuous invariant measure of S (cf Lemma 1 3 in [3] or a similar construction
in [15])

Exercise 4 2 Using a logarithmic bound on the return time to the Poincare section,
construct an invariant measure for the flow which is finite and corresponds to the
invariant measure of T via the special flow (suspension) construction

Appendix Al An extension of results of Sternberg and Roussane
Roussane [14] showed that two C°°-vector fields which have identical normal forms
at 0, which is assumed to be an equilibrium point of saddle type, are C°°-equivalent
in a neighborhood of 0 This theorem strengthens the results of Sternberg [20]
concerning hneanzability Here we are going to derive a related result which applies
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to the situation when one needs a CMineanzabihty for a finite r This theorem
generalizes the results of Sternberg and Roussane and its value, besides a simple
proof, is an explicit estimate of the smoothness required to produce a Cr-equivalence

Our technique is mostly due to Roussane and it is a version of Moser's homotopy
method We use notation close to Roussane's

By V(n) we denote the vector space of germs of C-vector fields at 0 in R" As
usual, £(«) denotes the algebra of C°° germs of functions on R" at 0 By M we
denote the maximal ideal of %(n) More generally, by M(fl,f2, ,fk) we will
denote the ideal generated by arbitrary functions fx, f2, ,fke%(n) In order to
allow parameters, we will also consider a subspace of Vr(n + s) defined as follows

- "I
ax," 'dxj

x2, ,xn)span — , — (All)

For convenience we will denote the coordinates of W+s by x,, x2, ,xn, yx,
y2, ,ys For a given vector field X € Yr(n, s) by Xy we will denote the vector
field pr1 ° X(x, y), where prx means the projection on the first n coordinates Hence
Xye V(n) for every yeUs sufficiently close to 0 By ̂ r(n) we denote the group of
Cr diffeomorphisms g (R", 0)-> (R", 0) By ̂ "(n, s) we denote the subset of «r(n +
s) consisting of those g which fix the subspaces R" x {y] for every y If r = oo then
we skip the superscnpt r in all our notations

For each of the above objects we introduce a homotopy version, l e an extra
coordinate r e [0,1] So, 'FT(«) will denote the space of C°°-vector fields on [0,1] x
R", identified if they coincide on a neighborhood of [0, l]x{0} In a similar way
we define gT(n), Vr

T(n,s) etc
We call the germs X, X'e T{n, s) Cr-equivalent if there is ge ^'{n, s) such that

Adg(X) = X', (A12)

where Adg(X) = (Dg X) ° g"1 In other words,

Dg(z)X(z) = X'(g(z)) (A13)

for every z = (x, y) e R"+s near 0
By ^i(y), A2(>0, , An(y) we denote the eigenvalues of DXv(0) From now on

we assume that mA,(0)#0 and 9U,(0)>0 for i = l,2, ,p and 9U,(0)<0 for
i = p+1, p + 2, ,n. So, 0 is a saddle-type equilibrium We will also assume that
DXy(0) renders the splitting Rp x R"~p invanant and that the eigenvalues of 0X^,(0)
restncted to W are AJ( J ) , ,Ap(j) By the Stable Manifold Theorem we can
assume that Rpx{0}= W(0,Xy) and {0}xW~p= Ws(0, Xv) for all y Moreover,
we can assume that DXy(Q) is nearly diagonal

Let us introduce two constants depending just on the eigenvalues

A+= max |ffiA,(0)|/ mm |3U,(0)|,

(Al 4)
A_= max \M\,(0)\/ mm |5RA,(0)|

In other words, A+ = (maximal contraction)/(minimal expansion)

https://doi.org/10.1017/S0143385700005915 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005915


Sil'mkov-type bifurcation Part I 813

THEOREM A l l Let k± be two integers such that for some integer r > 1

k±>r(l + A±) (A15)

LetX'eY(n,s) be such that

X'-XeM(Xl, ,xp)
k+nn,s) + M(xp+l, ,xn)

k-T(n,s) (Al 6)

Then X' is Cr equivalent to X

Proof Let Xr = X + r{X' -X)€Yr(n, s) We will look for a homotopy Yr eTr
T(n, s)

which satisfies the following equation

[XT) YT] = -XT = - ( X ' - X ) (A17)

One will obtain the Cr equivalence of X and X' by integrating the following
nonautonomous ODE

~ (A18)

Suppose that we have found a solution YT to the above equation We set out to
prove that gT e ^r

T(n, s) is a C-equivalence of Xo with Xr, so g = g, is an equivalence
of X with X' We need to check that Adgr(X0) = XT, or equivalently, that Adg->(Xr) =
Xo for every T€ [0,1] It suffices to show that

-AdgV(Xr) = (A19)

(We follow the convention that [X,Y] = DX Y-DY X) Let hs = gT+s° g~l

Obviously,

= YT,

dS

(Al 9a)

We also have

dS
Adg-<AdhV(XT+s)

Adh-S'(XT+S)) (Al 9b)

J
s=o do

XT+S)
=0 /

= Adg->(-[YT,Xr]

Now from (Al 7) we obtain that the last expression is 0
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An equation of the form [XT, YT] = ZT admits a formal solution
•co

AdVu(ZT) du,
o

I AdvS
Zr)du,

Jo

where <pu is the flow generated by XT Indeed,

- « ( n ) = ^ AdVu{AdvS(YT))

AdvS(Yr)) = AdVu([XT, yT])
= 0 /

(Al 10)

au dS 8=0

(Al l l )

and because <po = id we have AdVo(YT) = YT Therefore by integrating (Al 11) from
0 to oo and assuming that AdVu( YT)-»0 as M->OO, we obtain the first of formulas
(Al 10) The second formula can be obtained by reversing the time Our task is to
make the formal solutions (Al 10) into Cr-solutions by adding appropriate condi-
tions on XT and ZT

In the first step we choose representatives of X and X' in such fashion that
Xy(x)-DXv(0)x has a compact support and is small in C'-topology A standard
way to proceed is to choose a function * e C°°(R") supported on the unit ball and
= 1 m a neighborhood of 0 We replace the homotopy XT with

T = DxXT(O,y)x + X( (Xr{x, y) - DxXr(0, y)x) (Al 12)

We easily find that the support of XTV is in S8(e)xRs(S8(e) the ball of radius e
centered at the origin) The germs XT and XT are identical and one shows easily that

e (Al 13)

(Al 14)

Therefore we can assume that

\\XT(x,y)-DxXT(O,y)x\\c>

is arbitrarily small We will defer the proof of Theorem Al 1 until several auxiliary
results become available

PROPOSITION Al 1 Let C, be an arbitrary constant bigger than

max (Al 15)

For sufficiently small e in (Al 12) and for every r> 1 there is Kr> 0 such that

||Dr<pu||co<A:rexp(C1rw) (Al 16)

Proof Let us start with r = 1 We have

— D(pu = DXT - <puD<pu
du

(Al 17)
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We may assume that ||DXT||C°< C,, so

This inequality implies (Al 16) with r= 1 by a standard argument

Then we proceed by induction For r> 1 we can write the composition formula

j - D> u = D'(XT ° <pu) = I claD'Xr o ? a D > u D > u , (Al 19)

where the summation extends over all / and a such that 0< /< r, |a| = / and

I a, = r (Al 20)
J = I

The constants c,Q are universal We can rewrite (Al 19) as follows

where 0* stands for a 'differential polynomial' Let us notice that Dr<p0 = 0 for r > 1
We can write the solution to (Al 21) explicitly as

D > u = | D<pu-jP(D<pv, D
2<pv, , D r " V . ) dv (Al 22)

Jo
By induction hypothesis we find that

HS^D^, ,Dr-V,)NXrexp(C1n;),
(Al 23)

| |D^_,| |<exp(C1(M-t;))

Hence we have

| |DV U | |< /M exp(C,M + ( r - l ) C 1 t ; ) d t > s r - ^ — e x p ( C 1 r M ) (Al 24)
Jo C~"IJt-i

The proof has been completed •
The following lemma shows that YT e C°

LEMMA Al 1 Suppose that k is an integer, k> A+ and

ZreM(xu ,xp)
knn,s) (Al 25)

Then the first of the formulas (Al 10) defines YTeV°(n, s)

Proof Let p(z) = {x2
l+ +x2

p)
1/2 (the distance from {0}xR"-pxKs) Let

X=ix,{z)~ (A126)
, = i dX,

From the Taylor expansion of X, for i ̂  p we obtain the following representation

X,= I XlJ{z)x) (Al 27)

Let X(p2) be the Lie derivative of the function p2 along the vector field X We obtain

X(p2) = 2 £ x,X,(r) = 2 I X,J(z)x,x] (Al 28)
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Since the matrix [X,j(O, >>)] = DxXy(O) is nearly diagonal, we can write that

2C2p2<X(p2)<2Cl P
2 , (A129)

where Cx and C2 are numbers satisfying the inequalities

C2< mm |9U,(0)|, w

(Al 30)
C\> max |SRA,(O)|

Moreover, we assume that C, and C2 are sufficiently close to the above bounds, so
that k > C,/ C2 > A+ This may require a linear change of coordinates to assure that
DxXy(0) is sufficiently close to the diagonal matnx It may also require using e
small enough in (Al 12)

We have the following estimate

exp(C2M)p(z)<p(^u(z))<exp(C,M)p(z) (Al 31)

Now we can write

<exp (C1u)p(v3_u(z))'tC3<exp (ClU)[p(z) exp {-C2u)fC, (Al 32)

where C3 = sup ||ZT|| If k> CJC2 then the first of the integrals (Al 10) converges
uniformly for all z and therefore defines a continuous vector field •

In a similar fashion we will establish that YT is smooth

PROPOSITION Al 2 Let Y" be defined by the formula

Ya
T = - Adv (ZT) du (Al 33)

o

Let k>r(\ + A+) and

ZreM(Xl, ,xp)
kT(n,s) (Al 34)

Then Y" converges to YT in C-topology, as a-»oo

Proof It is obvious that Ya
T is in T°°(n, s) We can write

DmY° = - I DmAdvu(ZT) du (Al 35)
Jo

As an immediate consequence YT is C°° on the complement of W x {0} x Us We
need to show that the last integral converges uniformly a s m < r and a-*oo

By another application of the Composition Theorem we obtain

r ZT)°<p_u]

T ZT) ° <p-uD
a'<p.u £ > > _ „ , (A136)

where the summation is over / < m and a = (a{, ,at) such that \a\ = l and

Y!J=\ otj = m Also by Leibnitz's Rule we get

D'(DXT ZT)oip_u={d (l) DJ+1Xr o <p.uD'-JZT o <p_u (Al 37)
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Besides, from (Al 34) we get

|| D'JZr || < const p(z)k~u'j) (A138)

Therefore

||D'-JZT°(p_u||<const p(z)k-'exp(-(Jt-/)C2M) (Al 39)

Let C] > maxp<isn |SHA,(O)j and C2 < minOsiSp |5RA,(0)| be as in the proof of Lemma
Al 1 By Proposition Al 1 applied to —XT we obtain

||DV_y||:sconst exp(Cjii) (Al 40)

Now from (Al 37) and (Al 39) we obtain

\\D'(DXT ZT)°(p_u|| sconst p(z)k~' exp (-(Jfc-/)C2u) (Al 41)

since in (Al 37) all DJ+XXT are bounded as a consequence of (Al 12) By applying
(Al 40) and (Al 41) to (Al 36) we get

\\DrAdVu(ZT)\\< const p(z)k-rexp{[r(C2+C1)-fcC2]w} (Al 42)

Therefore, if fc> r(l + C,/C2) then the integral (Al 35) converges uniformly, as
a-»oo •

COROLLARY Al 1 Under the assumptions of Proposition Al 2 YT e Yr(n, s)
Now we are ready to complete the proof of Theorem Al 1 We need to split

ZT = XT = X'-X = Z'T + Z"T, so that

Z'TeM(Xl, ,xp)
k*rr(n,s),

(Al 43)
Z*TeM(xlt ,xp)

k-Tr(n,s),

and obtain solutions to the equations [XT, Y'T] = Z'T and [XT, Y"] = Z"T We define
the solution to [XT, YT] = ZT as YT= Y'T+ Y" Then we solve (Al 8) to get the
Cr-equivalence •

COROLLARY Al 2 Let X eT(n, s) and k = k+ + fe_ Let X' be the Taylor polynomial
of X of degree k — \ Then X and X' are C" -equivalent

Proof We can write

X'-X = I I xaQaj(z)^-, (A144)
7 = 1 \a\ = k 9Xj

where QajeCr{Rn+s) Let ^ = (0^ , ap) and a"=(ap+l, , an) We split the
sum (Al 44) into two parts, a term will be in the first or second part, depending on
whether |a ' |>k + or |a"|>fe_ (exactly one of those two possibilities holds, since
\a'\ + \a"\ = k) •

In conjunction with the technique of normal forms these theorems give a powerful
method for deciding Cr-hnearizabihty of saddles In this fashion Theorem 1 1
follows easily from the last Corollary and Poincare-Dulac Theorem (cf [2]) A
subtle point is that the corresponding diffeomorphisms both in the Poincare-Dulac
Theorem and in our Corollary commute with the symmetry (1 1), if we apply them
to a vector field observing that symmetry This is due to the nature of that symmetry,
since observing it is equivalent to vanishing some terms in the Taylor expansion of
X and the derived diffeomorphisms
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Remark Al 1. (a) It is sufficient to assume in Theorem Al 1 that X and X' are of

X'-XeM(xu ,xp)
k*Tr(n,s) + M{xp+x, ,xn)

k-Y(n,s) (Al 45)

class Cr+l and that

(b) Subsequently, we can assume in Corollary Al 2 that X is of class Ck+r instead
of C°°

Example Al 1 Let us consider the following system of equations on the plane

x = x,
(Al 46)

y = -Xy + xmy"+\

where A is nearly m/n If A = m/n then we have a resonance and cannot C^-hneanze
the system On the other hand, one can write down a C""~E-hneanzation, which
smoothly depends on A

) = (x,y(l + nxmy"0yw"), (Al 47)

where 0 is the 'Leontovich variable' (cf [9])

m~-m«-m). ...-.»,«. ( A M 8 )

In |x| otherwise-i
Example Al 2 In [12] C Robinson considers the eigenvalues of the Lorenz system
(with the original values of parameters) A, = -11 /2+ 1/2V1201, A2 =
-11 /2-1 /2V1201 , A3 = - 8 / 3 It is easy to see that A = (A,, A2, A,) is resonant and
that the lowest order resonance is

8A, + 8A2-33A3 = 0 (Al 49)

Also, A+ = |A2|/A, and A_ = A,/|A3| Numerically, A+~ 1 93 and A_ = 443 F o r r = l
we get fc+>l + A+ = 2 93 and fc_>l+A_~5 43 Hence, the best choice is fc+ = 3
and fc_ = 6 This yields k = 9 and X needs to be Ck+r = C10 in order to be C1-
hneanzable Similarly for r = 2 we need k±>2(l + A±), which yields /c+>5 86 and
k_ > 10 86 Hence we put k+ = 6, fc_ = 11, k = 17 and we obtain that X has to be of
class C19 in order to be C2-hneanzable These estimates are slightly better than
those of Robinson (C1 4 and C20)

One can see easily that the highest class C for which we still have a Cr-
hneanzation without any assumptions on X is less than the order of the resonance
(Al 49), l e (8 + 8 + 3 3 ) - 1 = 4 8 X admits a C47-hneanzation if it is of class at
least C541'

Exercise Al 1 Rewrite this Appendix, so that it applies to diffeomorphisms
Exercise Al 2 Verify that in the case of C^-vector fields with the same normal form
at 0 we get a C°°-equivalence (Sternberg, Roussane)

Appendix A2 A reparametenzation of the Lorenz system
By simple calculations one can show the following theorem, which can be found
in a similar form in [21]
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THEOREM A2 1 Suppose that cr(r-l)>0 and we change variables in the Lorenz
system according to

X =

Y =

~

(y-x),

NrO"^) (Z~—
2a

(A2 1)

ds Vcr(r— 1) df

T7ie« r/ie system becomes

X'=Y,

" = X-2Xi + aY+yXZ,

where

l + a

(A2 2)

(A2 3)

K =-
/a(r-l)

Moreover, if a, y and K are such that

then there are (r, a, b), solving (A2 3) and such thata(r— 1)>O, given by the following
formulas

y — 2K

4a-

r=l+-
16

b = —

a-y + 2K)(y-2i<)'

4K

(A2 4)

Hence, if (a, y)-»0, while K #0 is fixed, then

We notice that for K e {\, 1) we have re (-15, -3) As it follows from § 0 and § 3,
these values of K played a special role in our considerations
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Remark A2 1 It is clear that our result does not imply that there are geometric
Lorenz attractors in the Lorenz system for some values of r, a and b The reader
should also be aware that one can not bifurcate geometric Lorenz attractors near
the segment of parameters re (-15, -3), a = - 1 , b = -2 in the way described in
this paper The reason is, roughly speaking, that we are short of one parameter to
prove transversahty of our family By adding another term in equations (Al 12)
(and a new parameter /3) we achieved the following goal one can perturb the system
without disrupting the double unstable manifold loop (figure 2) The loop becomes
attractive and another perturbation can be applied to obtain a geometric Lorenz
attractor
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