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COMPACT ALMOST DISCRETE HYPERGROUPS

MICHAEL VOIT

ABSTRACT. A compact hypergroup is called almost discrete if it is homeomorphic
to the one-point-compactification of a countably infinite discrete set. If the group U,
of all p-adic units acts multiplicatively on the p-adic integers, then the associated com-
pact orbit hypergroup has this property. In this paper we start with an exact projective
sequence of finite hypergroups and use successive substitution to construct a new.sur-
Jective projective system of finite hypergroups whose limit is almost discrete. We prove
that all compact almost discrete hypergroups appear in this way—up to isomorphism
and up to a technical restriction. We also determine the duals of these hypergroups,
and we present some examples coming from partitions of compact totally disconnected

groups.

Introduction. If the group U, of all p-adic units acts multiplicatively on the addi-
tive group Z,, of p-adic integers, then the associated compact orbit space Z_,l,j” is a com-
mutative hypergroup which is almost discrete, i.e., it is homeomorphic to the one-point-
compactification of a countably infinite discrete set. These examples of almost discrete
hypergroups were introduced by Dunkl and Ramirez [5] and studied in [6, 12, 13, 15,
21]. Vrem [21] pointed out that these hypergroups appear as projective limits of finite
hypergroups formed by successive hypergroup joins; for hypergroup joins we refer to [8,
21, 24].

In this paper we present a construction which is more general than taking successive
joins. It leads from a given exact projective sequence of finite hypergroups to compact
almost discrete hypergroups. We prove that this construction gives all compact almost
discrete hypergroups—up to isomorphism and up to a technical restriction. Our result
can be regarded as a classification of compact almost discrete hypergroups in terms of
exact projective sequence of finite hypergroups. Classifications of hypergroup structures
on other topological spaces—at least under certain additional conditions—are given in
Connett and Schwartz [3, 11], Zeuner [23, 24], and Voit [19].

This paper is organized as follows: In the first section we recapitulate some basic
facts. In particular we there discuss projective limits of hypergroups (see Voit [18]) as
well as the method of substituting open subhypergroups (see Voit [19]). Substitution is
crucial for this paper; it generalizes the join of hypergroups as follows: If H is an open
subhypergroup of a hypergroup K, and if 7 is an open and proper hypergroup homomor-
phism from a further hypergroup L onto H, then the disjoint union of the spaces K — H
and L carries a natural hypergroup structure. In Section 2 we shall start with an exact
projective sequence of finite hypergroups and use successive substitutions to construct
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a new projective sequence of finite hypergroups whose connecting homomorphisms are
surjective and whose limit is almost discrete. We shall in particular prove that all com-
pact almost discrete hypergroups appear in this way, if the identity has a neighbourhood
base consisting of normal subhypergroups. As the latter exists at least in the commu-
tative case, it follows that we at least obtain all commutative compact almost discrete
hypergroups by our construction. Section 3 is devoted to dual spaces of compact almost
discrete hypergroups. We shall describe them in terms of the duals of the hypergroups in
the exact sequences from which the compact almost discrete hypergroup is constructed.
Finally, Section 4 contains some examples. We there in particular present a method to
derive examples from certain group partitions. Our method generalizes a construction of
Spector [12, 13].

1. Preliminaries. For an introduction to hypergroups we generally refer to Jew-
ett [8] and to Bloom and Heyer [2]. All notation will be standard and is the same as in
Voit [18, 19]. However, we here recapitulate some notations and facts for the convenience
of the reader.

Let K be a locally compact (Hausdorff) space. Then by M(K), My(K), M;(K), and
M'(K) we denote all Radon measures, the bounded ones, those that are bounded and
nonnegative, and the probability measures on K respectively. The spaces Cp(K), Co(K)
and C.(K) consist of the C-valued continuous bounded functions on K, those that are
continuous and zero at infinity, and those that are continuous and compactly supported
respectively. §, € M'(K) is the point measure at x € K.

1.1. Hypergroup homomorphisms (Voit [16] and Zeuner [24]). Let (K, x) and (J, ®) be
hypergroups with identities e; and ex. A continuous mapping p: K — J is a hypergroup
homomorphism if §p(x) ® 8y = p(6x * 6y) for all x,y € K. It is easy to see that then
plex) = ey and, for x € K, e; € {p(x)} @ {p(¥)} and thus p(¥) = p(x) holds.

p is a hypergroup isomorphism if it is also a homeomorphism.

Now let H be a compact normal subhypergroup of X with normalized Haar measure
wy. Then the coset space K / H bears a natural hypergroup structure such that the quotient
mapping 7: K — K /H is a hypergroup homomorphism. In this case,

f:My(K|H) := {p € Mp(K) : wy * pp = p} — My(K/H), pr— m(p)
is an isometric isomorphism of Banach algebras.

1.2. Orbital morphisms (see Jewett [8] and Voit [17]). LetJ and K be hypergroups
with identities e; and ex. A continuous, proper, surjective, and open mapping ®:J — K
is called an orbital mapping. @ is said to be unary if ® ' (ex) = {e,}.

A recomposition of @ is a weakly continuous mapping x +— g, from K to M (J) with
suppgx = ®!(x) for all x € K. ® is a generalized orbital morphism associated with
(gx)xex if in addition ¢z = g; and ®(gx * q,) = Ox x5, forallx,y € K.

If there is a measure | € M*(J) with ] = [; qa() dl(y), then (gx)xex is called consis-
tent with 1. If (qx)xek is consistent with the Haar measure w on J, then the generalized
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orbital morphism @ is called an orbital morphism. Let ®@ be a generalized orbital mor-
phism associated with (gx)xex. f M = {p € Mp(J) : p = Jxq, dv(y),v € Mp(K)} is
closed under convolution, then @ is called consistent. Obviously, any injective consistent
generalized orbital morphism is a hypergroup isomorphism.

1.3 Substitution (see Voit [19]). Let (K,*) and (L, ®) be hypergroups and m: L — K
a proper and open hypergroup homomorphism. Set W := kemn 7. Then there is—up to
isomorphism—a unique hypergroup (M, ¢) with the following properties:

(i) There is an injective and open homomorphism 7: L — M and a proper, surjective,
and open homomorphism p: M — K with p o7 = 7 and kemp = 7(W).

(i) If there exists a further hypergroup M, an injective and open hypergroup homo-
morphism 7: L — M, and a proper, surjective hypergroup homomorphism p: M — K
with p o 7 = 7 and kemp = 7(W), then there exists a unary consistent generalized
orbital morphism : M — M with p = p o .

We say M is obtained from K by substituting the open subhypergroup H := n(L) of K
by L via . M will be denoted by S(K, H--L) where the 7 will be often omitted. (M, ©)
can be realized as follows: Take M := (K — H)U L as the disjoint union of K — H and L
where both sets are embedded into M as open sets. Then, ¢ is given by

oy @6, forx,ye LCM
b x 6y forxcLandyeM—-L=K—-H
bx 0y = Ox * On(y) forycLandx€EM—-L=K—-H

Gr *8)m—r + 7 (G x)|u) forx,ye M—L,

7t: Myp(L|W) — M,(H) being the isometric Banach-x-algebra isomorphism of Section 1.1.
Identity and involution of M are taken from K — H and L.

The following definitions and results are taken from Voit [18].

1.4. Projective systems. Let (I, <) be a directed set and (K;),cs a family of hypergroups.
Let (g:)j«i be proper hypergroup homomorphisms g;;: K; — K; such that g;;; is the iden-
tity and gj; o gx; = g, for i < j < k. Then (K}, gij, 1) is called a projective system of
hypergroups. 1t is called surjective if all g;; are surjective.

THEOREM 1.5.  For each projective system (K;, g, I) of hypergroups there exists—
up to isomorphism—a unique hypergroup K with the following properties:

(i) There is a family (g;)ic; of proper hypergroup homomorphisms g;: K — K; such
that gj; o g; = gi and g(K) = (1> g1(Ky) for all i <j.

(ii) Let K be a further hypergroup and (§,)ic; a family of proper homomorphisms
8i:K — K;with g;;08; = §; and g(K) = ;> 81/(K)) for i <j. Then there is a surjective
and proper homomorphism 7: K — K with §; = g;oTfori € I

K is called the projective limit of (K;, g, D).
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2. Construction of compact, almost discrete hypergroups. In this paper the fol-
lowing definition will be convenient:

DEFINITION 2.1. A topological space K is called almost discrete if K is countably
infinite and every element of K except for exactly one point is isolated.

As a hypergroup is discrete if and only if its identity element is isolated (Jewett [8],
Theorem 7.1B), the cluster point of an almost discrete hypergroup has to be the identity
element.

The purpose of this section is to discuss a general principle for constructing compact,
almost discrete hypergroups. The method is based on successive substitution of finite
subhypergroups and then taking a projective limit of hypergroups.

2.2. A construction. Let(H;,g;;, N) be a projective system of hypergroups with H as its
projective limit according to Sections 1.4 and 1.5 (this in particular means that the homo-
morphisms g;;: H; — H; are proper). Assume that the subhypergroups L; := gj+1,i(H;+1)
are open in H; for all i € N. Then the homomorphisms g;;: H; — H; are open by Propo-
sition 1.7 of Voit [16]. We inductively construct a family (K;, 7');cn of hypergroups K;
and open, proper, and surjective homomorphisms 7': Ki+; — K; as follows:

(1) Putk, := H;.

(2) Assume that X; is constructed and that X; contains H; as an open subhypergroup
in a natural way. Then L; is an open subhypergroup of K;. Using the surjective, open, and
proper homomorphism g;+1 ;: Hi+1 — L;, we define

K,'+1 = S(K,',L,' — I{iﬂ).

Then H;4) is an open subhypergroup of K;+1, and we can iterate the process.

The substitution S(K;, L; — H;+1) induces a natural surjective and proper homomor-
phism 7': K;v; — K; satisfying 7|y, = gi+1,;. By Proposition 1.7 of [16], = is also
open. Forj < i we defineg¥: 7 ow*! o- - - n'~1: K; — K;. Then (K;, g, N) is a surjective
projective system of hypergroups. Let K be its projective limit.

H can be regarded as subhypergroup of X in a natural way (see Section 4 of Voit [18]),
and we have the following commutative diagram

821 832

H & H & H oo — - H
Lo |
K, £ K £ Ks -+ — --- K

Let (H;, gi;, N) be a projective system of hypergroups. For abbreviation we denote the.
new projective system (K;, g/, N) by PS(H;, gij, N).

REMARKS 2.3. (1) The hypergroups H; are compact, totally disconnected, com-
mutative, symmetric or unimodular if and only if the projective limit K has the same
property. This is a consequence of the fact that these properties are obviously preserved
under substitution and surjective projective limits (see Voit [18, 19]).
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(2) Let(Hi,gij,N) be a surjective projective system of hypergroups and (K;, g/, N)
the associated system according to 2.2. It follows inductively that then the homomor-
phisms from H; into K; are hypergroup isomorphisms. Thus, PS transforms surjective
projective systems into isomorphic ones. In particular, as PS(H;, g, N) is surjective for
any projective system (H;, g, N), it follows that PS is an idempotent operation.

(3) For a finite sequence of hypergroups H;, the idea of the construction 2.2 can be
also found in Section 4.4 of Voit [19].

We are interested in constructing compact, almost discrete hypergroups. The follow-
ing proposition yields a sufficient condition such that the limit X of a projective system
PS(H;, gij, N) is compact and almost discrete. Remark 2.3(2) above shows that the con-
ditions are far from being necessary.

PROPOSITION 2.4.  We retain the notation of Section 2.2 and assume that the hyper-
groups H; are finite. Then the limits H and K are compact, second countable, and totally
disconnected. Furthermore, the following conclusions hold:

(1) Eachx € K — H is isolated in K.

(2) x = (%)ien € H is not isolated in K if and only if |g;} (x)| > 2 for infinitely
manyi € N.

(3) IfH = {e}, and if the mappings gi+1;: Hx1 — H; are not injective for infinitely
many i € N, then K is a compact, almost discrete hypergroup.

PROOF. Clearly, H and K are compact, second countable, and totally disconnected.

(1) If x = (x;)ieNn € K — H, then there existsj € N such thatx; € K; — H; fori > j. It
follows from the construction of the hypergroups K; that (7')~! (x;) = {xi+1} foralli > ;.
Hence,

We={x}x---x{x}x [l Kic [l
i>j+1 ieN
satisfies W NK = {(x;)ien}. As W is open in [Tien K, (xi)ien is isolated in K.

(2) Letx = (x))ien € H. As (K;, 2", N) is a surjective projective system, x is not iso-
lated in X if and only if |(g™") ! (x;)| > 2 for infinitely many i € N. By the construction
of (K;, g"”,N), this is equivalent to the fact that |g7;} (x;)| > 2 for infinitely many i € N.

(3) It follows from the parts (1) and (2) that X is an infinite, compact hypergroup such
that each x € K — {e} is isolated. In particular, e must be a cluster point. As X is second
countable, we see that K is countably infinite. This completes the proof.

2.5. Let(H;, gi;, N)be a projective system of hypergroups as introduced in Section 2.2.
Suppose that kerng;; ;1 C gi+1,(Hi+1) for all i > 2. We consider the open subhyper-
groups W; := g (Hi2) of H;. Assume that all W; are finite and that g;+;; induces a
hypergroup isomorphism between W;,; and W; for each i € N. These assumptions in
particular imply that the H; are discrete and, for i > 3, finite. Moreover, the projective
limit A is isomorphic to all ;.

We now restrict our attention to the case that all H; are finite. Let K be the limit of the
projective system (K;, g/, N) = PS(H;, gi;, N). By Proposition 2.4, x = (x;);en € K is
not isolated if and only if x € H C K and |gj;} /(x;)| > 2 for infinitely many i € N. In
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particular, if for each x € H there exist infinitely many i € N satisfying lg,.:ll,,.(x,»)l > 2,
then K is a compact hypergroup whose non-isolated points form a finite subhypergroup
isomorphic to H. Theorem 2.6 below shows that, under a mild restriction, the converse
statement is also true.

Before stating this result, we consider an important special case which leads to
compact, almost discrete hypergroups. In the setting above, W; = {e} means that
gin2i+1(Hiva) = kerng;sy; holds. If this is true for all i € N, then the projective sys-
tem (H;, gij, N) is called exact. Using the conclusion above, we see that the projective
limit of PS(H;, g, N) is a compact, almost discrete hypergroup if (H;, g, N) is an exact
projective system of finite hypergroups such that infinitely many H; are not trivial.

THEOREM 2.6. Let K be a compact, countably infinite hypergroup such that the set V
of all non-isolated points of K is a finite subhypergroup. Assume that K admits a neigh-
bourhood base of e consisting of open and normal subhypergroups. Then there exists a
projective system (H;, gi j, N) of finite hypergroups with the following properties:

(1) kemgi1; C giv2,i+1(Hi2), and W; = giva (Hiv2) is a subhypergroup of H; iso-
morphic to V. Moreover, gi+1; establishes an isomorphism between Wy, and W;
forallie N.

(i) |ga} ()|l =2 forallie Nandx; € W,

(iii) K is isomorphic to the limit of PS(H;, gij, N).

In particular, if K is a compact, almost discrete hypergroup which admits a neighbour-
hood base of e consisting of open and normal subhypergroups, then there exists an exact
projective system (H;, g j, N) of finite hypergroups such that K is isomorphic to the limit
OfPS(I‘Ii,g,'J', N)

Before we prove this theorem, we discuss its restrictions. Each compact open neigh-
bourhood of the identity element of a hypergroup contains an open subhypergroup by
Vrem [22]. However, we do not know whether for each compact hypergroup these open
subhypergroups can be taken to be normal as would be the case for compact groups.
As this problem does not appear for commutative hypergroups, we obtain the following
corollary.

COROLLARY 2.7. Let K be a commutative, compact and almost discrete hypergroup.
Then there exists an exact projective system (H;, g j, N) of finite commutative hypergroups
such that K is isomorphic to the limit of PS(H;, gij, N).

The proof of Theorem 2.6 is based on the following lemma:

LEMMA 2.8. Let K be a hypergroup. If x € K — {e} is isolated in K, then
U= {y €K :6x =0x %6y = by % 6,0 = bz ¥ 6, = 6, x b5}

is an open and compact subhypergroup of K such that x ¢ Uy. Moreover, (6; * 6z)|u, is
a (non-trivial) Haar measure of Us.
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PROOF. In order to check that U, is a subhypergroup, take y;,y, € U,. Then
0y, * 8y, x 6y = b, ¥y = 6 and thus 6, x 6, = 6, for all z € supp(5,, * 6y,). Simi-
lar arguments yield 6, * 0, = 6x and §; * 8z = 6z x 6, = &; for z € supp(d,, *9,,). As Uy
is also closed under involution, Uy is a subhypergroup.

We next note that x & U, since otherwise 6, = 6, * 05 in contradiction to x # e.

To show that Uy is open in K, we first recapitulate that the space C(K) of all com-
pact non-void subsets of K carries a natural topology (for details see Jewett [8] and
Michael [9]), and that, by the hypergroup axioms, the mapping

K — C(K), yv supp(dx * ),

is continuous with respect to this topology. As 6, 6. = &, and as {x} is isolated in C(K),
the set {u € K : supp(d, *6,) = {x}} is open. If we apply this argument also to the other
equations which characterize U,, it follows that U, is open.

We next investigate the measure 7 := (§, * 8;)|y,. Since Uy, is open, and since e €
supp(d;x *65), it follows that 7 is a nontrivial, bounded and positive measure on U,. More-
over, for y € U,, we have

48, = (T * &)y, = (8x ¥ 82 %6y — (G2 ¥ 8)|k-u, ¥6)|, = G %)y, —0 =7

and, similarly, 6, T = 7. This proves that T is a bounded Haar measure on U;. Therefore,
by Theorem 7.2B of Jewett [8], U, is compact, and the proof is finished.

PROOF OF THEOREM 2.6. (1) Let (x;);en be an enumeration of K — V. We construct
open and normal subhypergroups U; of K inductively as follows:

Put U; :=K.

If U; is constructed, then we consider the compact subhypergroup

Ri=UnNnU,N [} U
x€XK—VxU;
of K, the hypergroup U, being defined as in Lemma 2.8. As VxU; is an open set containing
V, it follows that K — V' x U; is finite. Hence R; is open. Now choose Uy, as an open and
normal subhypergroup of X such that

Ui CR;, U *x{v}NUix{u} =0, and Uy x{v} # Uix{v} foru,veV,u#v.

In fact, this is possible by our assumptions and by Lemma 3.2D of Jewett [8]. In partic-
ular, we have Uy C U; forall i € N and (;cy U; = {e} where the second statement is
a consequence of the facts that U; NV = {e} fori > 2 and that ;e Ui C Nien Uy, CV
(see Lemma 2.8). This completes the construction of the U;.

As U; is normal in K for each i € N, the subhypergroup U; x V' is open in K (i € N).
Now we define finite hypergroups H; and L; by

Hy:=Li := (Ui * W)/ U, H; := Ut # )/ Upi, Li = (U; s V) Ui CH; (i 22).
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By the isomorphism theorem (Jewett [8], 14.3A), the coset hypergroups
H; /(Ui Us1) = ((Uie1 * Vi) /Uin1) [(Ui/ Uin1) and Uiy % V) U; = Liy

are isomorphic, and we shall identify H;/(U;/U;+1) and L;—; from now on. Taking the
canonical projections

mii Hipp — Hi+l/(Ui+1/Ui+2) =L; CH;

and defining g;;: H; — H; by g;; = mjx o --- o m;, we obtain a projective system
(Hi,&ij, N). The isomorphism theorem also shows that

gi+tic1(Hin) = giimi(L) ~ (Ui x V) /U; - fori > 2.

Moreover, ¢;: V — (UxV)/ U;, v +— vxU; is a hypergroup isomorphism. Thus, condition
(i) holds. Moreover, gis2i(Hi+2) = (Uit * V) /Uiy ~ V, Uy C U;, and Upy * {v} #
U; x {v} for v € V ensure that that condition (ii) holds.

(2) We still have to check that K is isomorphic to the projective limit K of the system
PS(H;, gij, N). For this, we firstfix i € N. The obvious homomorphism from (U;*¥) / U2
onto (U; * V) /Ui C K/ Uy yields that we may apply part (ii) of Section 1.3 to M; :=
K/ Uis,. 1t follows that

ri: K [Usp — S(K/Uiﬂ,(Ui * V) [ Uit — (Ui * V)/UM)’
' {x}*Us ifxeK—-UxV
.1 {x}x Uiy — { {x}xUny ifxe UV,

is a consistent generalized orbital morphism. As {x} * U1 = {x} = {x} * Ua, for all
x € K — U; x V by construction, 7; is bijective and hence an isomorphism. Obviously, r;
is equal to the identity on the common subhypergroup (U; * V) / U4, of the hypergroups
S(K/ U1, (U; * V) Uy — (Ui % V) [ Uin2) and K / Usa.

Let (K;, gij, N) be the projective system associated with the hypergroups H; = (U *
V)/ U1 and L; = (U; x V) / Ui+ according to Section 2.2. Now we construct inductively
hypergroup isomorphisms 7;:K; — K /Ui fori € N as follows: Using K, = H, =
K/ U,, we take 7; to be the identity. If 7; is constructed, then 7; induces an obvious iso-
morphism

#: K = S(Ki, (Ui ¥ V) Uiy — (Ui ¥ V) [ Uiz) —
S(K /Ui, Ui * V)[ Ui — (Ui ¥ V) [ Up2).
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We define 7;+1: Kis — K/ Uz by 7141 = r,.“l o 7;. By this construction,

8i+l,i
K; — K

Til Tit] 1

K/Uwn «— K/Un

commutes for each i € N. Therefore, by part (ii) of Section 1.5, there exists an open
homomorphism 7 from K onto the projective limit K such that, fori € N and z € K,
771({z} * Uss1) is equal to the i-th component of 7(z) € K. Finally, N;en Ui = {e}
implies that 7 is injective. This completes the proof of the theorem.

Let (H;, g:j, N) be an exact projective system of hypergroups as introduced in Sec-
tion 2.2. Then, in particular, the hypergroups H; are discrete and, for ; > 3, also finite
(cf Section 2.5). As above we put L; := g;4; ;(H;) and assume that L; is non-trivial for
infinitely many i € N. We now determine the limit K of PS(H;, g;, N) explicitly. By The-
orem 2.6, this includes all compact, almost discrete hypergroups which admit a neigh-
bourhood base of the identity consisting of normal subhypergroups.

THEOREM 2.9. Retaining the situation above, we realize K as follows:

If Wy := Hy — Ly for k € N, then K := |2, W, U {e} is the disjoint union of
the identity element e and of the sets Wy which are assumed to be embedded into K as
open subsets. The sets \Js>,, Wi U {e} (n € N) form a neighbourhood base of the only
non-isolated point e € K.

Let e; be the identity element and *; the convolution of Hy. If wy is the Haar measure
on Hy, normalized by wi(Hy) = 1, then the convolution on K satisfies

& fxEWLyEW,
k<IlI-2
8y ifxeWy,y€eW,
1<k-2
5, %6, = 4 Ok Oguis) ifx € Wi, y € Wisy
7] Bgpns ¥ 8y ify € Wi, x € Wiy
(Ox *x 5y)|W,, +gk_+11,k((5x *g 5y)|Lk) ifx,y € Wy, x 76 ¥
R IR R S
{ +Zj?:k+2 Ox * 5i({ek}) . ( S;;(“"Z ws(Ls))wjlm ifx,y EWx= ¥y

where g,;‘l,,( is the inverse of the isomorphism i1 x: Mp(Hys1|Lis1) — Mu(Ly); cf: Sec-
tion 1.1.

PROOF. Consider the hypergroups K; (i € N) defined by K, := H; and Kj4; =
S(K;, L; — H;+1). Using the results of Section 1.3 and induction, we see that K; is given
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by K; = U2, Wi U H; with the following convolution:

( Ox ifx € H,NK;,
y € HHNK;,
k<I-2<i-2
5}, lfx € Hk ﬂK,-,
y € HINK,,
: 1<k—-2<i-2
bx *4 §gm'k(y) ifx € Wi,y € Wiy,
k<i—1
6gk+1,lz(x) *x 5y lfy € Wi, x € Wi,
Ox %6, = ) k<i—1
0x *i by ifx,y € H;
(6x %k 8w, + & 4 (Gx % 8\, if x,y € Wy, and either
k=i—1
ork<i-1
andx # y
(6x *k 62| w, +§[+11,k((5x *i 6i)lLk—{ek})
+ Z};}ﬁz Ox *i 5f({ek}) ’ (nls;}(n ‘US(LS)) wjl%
+5, 1t 5({er}) - T2k we(Lo))wi ifx,y € Wi, k<i—2,
xX=Yy
K is the projective limit of (K;, g/, N) where the surjective homomorphisms g™ K,y —
K; satisfy
i+ic oy . | X ifx € U=y Wi
@3 g = {gi+l,i(x) ifx € Hiny

The assertion of Theorem 2.9 now follows from the convolution on the hypergroups X;

and the construction of a projective limit of hypergroups; see the proof of Theorem 2.2
of Voit [18].

REMARK 2.10. It is difficult to find attractive criteria when the application of the
construction PS to two given projective systems leads to projective systems with iso-
morphic limits. Clearly, the information about the structure of a given compact, almost
discrete hypergroup will be optimal if the subhypergroups U; in the proof of Theorem 2.6
are as large as possible.

3. The dual space. We next compute the dual space K of the hypergroup X as stud-
ied in Theorem 2.9 above in terms of the dual spaces of the hypergroups H;. For details
on (irreducible) representations of hypergroups see Bloom and Heyer [1], Jewett [8] and
Vrem [20]. For annihilators in K we refer to Bloom and Heyer [1, 2] and Voit [16, 18,
19].

THEOREM 3.1. Let (H;,gij,N) be an exact projective system of finite hypergroups
and let K := U2, Wi U{e} be defined as in Theorem 2.9.
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(1) For each irreducible representation T of H; on some Hilbert space H,

T(x) ifx € Hy — L
Ry(T):K — B(H), R\(T)x) = { T(g21(x) ifx € Hy— Ly
1 otherwise

defines an irreducible representation R|(T) of K on the same Hilbert space H . This
construction leads to an injective mapping R, from H, to K.

(2) Iffori > 2 we have some irreducible representation T € H; — A(H;, L;) on some
Hilbert space H, then

0 ifxeH, — L, k<i
. 1w ifx e H;—L;
R(T):K — B(H), R =
(T): K — B(H) (Mx) T(g;+ l,i(x)) ifx € Hiy — Lisy
1 otherwise

also defines an irreducible representation R(T) of K. This again leads to an injective
mapping R; from H; — A(H;,L;) to K.
(3) The sets R\(H)), R; (H, — A(H,, L,-)) and R; (Hj — A(H;, Lj)) are disjoint subsets of
K for 1 < i < j, and we have
K =Ri(H)U | Ri(H: — AH,, Ly)).

i>2

PROOF. First fix / € N. The definition of the hypergroups K; together with Theo-
rem 3.3 of Voit [19] and an obvious induction lead to the following description of the
dual space K; of K: If we have some irreducible representation T € H, on some Hilbert

space H , then
T(x) ifxew,
Riy(T):K; — B(H), Ry (T)x):= T(gz,l(x)) ifx € W,
1 otherwise

establishes an irreducible representation R, ;(T) € K; on H . Moreover, if we have some
T € H; — A(H;,L;) for i > 2, then

0 ifx€e Wyandk <i
. — ) T(x) ifxe W;i<l)orx €H,
: : R; = .
Ri(T):K; — B(#H), Ri(T)x) T(g,~+1,,-(x)) ifxe Wo andi+1 <]
1 otherwise

again defines an irreducible representation R; (T) of K; on the same Hilbert space # .
Moreover, it is clear that the mappings R;; (1 < i < /) are obviously injective, and that
Ki = Ry (H) UUl, Riy(H: — A(H;, L)) holds where the union is disjoint.

We now have to extend these results to the projective limit. The natural projections
from K onto K; (/ € N) are given by

X . if x € UiSI VV:
G- &i(x) == g1 yx) ifx € Wi,y
e otherwise
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It follows from Theorem 5.1 of Voit [18] that the mappings R; as defined in Theorem 3.1
establish injective mappings from A, (for i = 1) and H; — A(H;, L;) (for i > 2) respec-
tively to K, and that each irreducible representation of K appears in this way. As the other
assertions are evident, the proof is complete.

REMARKS 3.2. In the setting of Theorem 2.9, the hypergroup K is commutative if
and only if all hypergroups #; are commutative. In this case, Theorem 3.1 may be stated
as follows: For each character-« € K there exists either a unique o € H, such that

a;(x) ifxew
a(x) = { i (gu() ifx €W
1 otherwise
or there exist a unique i > 2 and a unique o; € H; — A(H;, L;) such that
0 ifxe W, k<i
3.2 a(x) = { %K) if x € W,
©-2) ) ai(gm1i(x) ifx € Wi
1 otherwise

It is easy to decide whether K carries a dual hypergroup structure. In fact, by Theorem 5.7
of Voit [18], this is equivalent to the statement that all dual spaces K carry hypergroup
structures. Moreover, the latter statement is true whenever all H; have dual hypergroups
(this follows from Theorem 3.6 of Voit [19] and induction). We also note that K| as a
totally disconnected hypergroup, has a dual hypergroup if and only if X is a Pontrya-
gin hypergroup, i.e. if Pontryagin’s duality theorem holds for X (c¢f. Theorem 6.5(2) of
Voit [18]). It is not difficult to investigate the structure of K whenever the dual K carries a
dual hypergroup structure. This will be done in a forthcoming paper by using substitution
of open subhypergroups together with inductive limits of suitable finite hypergroups.

We finish our discussion of the dual K with the following consequence of Theorem 2.6
above and Theorem 3.6 of Voit [19]:

COROLLARY 3.3. The following statements are equivalent:

(1) K is a compact, almost discrete Pontryagin hypergroup.

(2) K is compact, almost discrete and commutative, and has a dual hypergroup K.

(3) There exists an exact projective system (H;,gi;,N) of finite Pontryagin hyper-
groups such that K is isomorphic to the limit of PS(H;, g, N).

4. Examples.

ExaMPLES4.1. Let(L;);eN be a sequence of nontrivial finite hypergroups. Set H :=
L, and H; := S(L;—1,{e} — L;) fori > 2. Using the canonical projections m;: Hys; —
Hi1/Lisy = Liand g;; := mjo- - - omsy: H; — Hj fori > j, we obtain an exact projective
system (H;, gij, N) as assumed in Section 2.5.

For a constant b € ]0, 1], we define the hypergroup structure L° on the set {e, z} with
identity element e by 6, 6, = (1 — b)J, + bb,. Clearly, each hypergroup K with |K| = 2
is isomorphic to some L°.
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Now we fix a sequence (b;);en C 10, 1]. If we apply the construction above to the
hypergroups L; := L, then the convolution on the resulting compact, almost discrete
hypergroup K = NU {e} with identity element e is given by 6, x§,, = §, for n < m and
by
bn k bl
— ——b.
b IH 1+b k

=n+1

o
Snkbp =1 —=bp)on+ D
k=n+1
Clearly, K is a Pontryagin hypergroup by Corollary 3.3. Moreover, our construction just
leads to the hypergroups (in particular for constant coefficients b;) introduced in Dunkl
and Ramirez [5] and Spector [13].

EXAMPLES 4.2. Let (L;);en be a sequence of nontrivial finite groups. Assume that
for each i € N the group L; acts on L;; as a group of automorphisms. Set H, := L,
and, fori > 2, H; := L; X L;_; as the semidirect product of L, and L;_;. Then L; is a
normal subgroup of H; in a natural way. Using the associated natural homomorphisms
it Hisg — Hipy [Liny = L C Hyand g;j == mj0 - -- o m;_1: H; — H; for i > j, we getan
exact projective system (H;, gi;, N). It is now possible to apply construction 2.2 to this
example which leads to a modified projective system of finite hypergroups whose limit
is almost discrete; see also Section 2.5. We finally mention that this almost discrete limit
can be described explicitly in terms of the groups L; with the aid of Theorem 2.9.

For a concrete example, we propose to take a finite non-abelian group G which acts
on itself by conjugation and then to put L; := G forall i € N.

4.3. Hypergroups associated with compact, totally disconnected groups. Let G be an
infinite compact, totally disconnected group. Assume that (G;);eN is a family of open
subgroups of G with

G =G, GiD Gy forieNand ()G = {e}.
ieN
Let (H,);en be a another sequence of open subgroups of G such that, foralli € N,
Hy C H; C Gy C G; and H; is normal in G;.

We define a partition K of G consisting of cosets with respect to the different sub-
groups H; as follows:

K:={xH;:ieN,x € G;— G} U {{e}}

K equipped with the quotient topology is a compact space in which every element except
for {e} is isolated. The associated canonical projection ¢: G — K is continuous, open,
and surjective and hence an orbital mapping. If w; is the normalized Haar measure of
the compact group H;, then we consider the probability measures g} := 6, and g, =
bxxw;onK fori € Nandx € G;—Giy;. Wenext apply Theorem 13.5A and Lemma 13.6A
of Jewett [8] to conclude that there exists a unique hypergroup structure on K such that ¢
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becomes a unary consistent orbital morphism from G onto the compact, almost discrete
hypergroup K. The convolution on X is given explicitly by

by, ifi <j
@.1) Sxt * 6y, = { Ot 1 ifi>)
z;ﬁi Z{zH,:zEG,—GM;zH,nyHi} ]—in'-HI . 521.]1 if i =]

where |H; : H)| stands for the index of H; in H;.

By Theorem 2.6, K can be regarded as the limit of a projective system of finite hy-
pergroups which is constructed by the operation PS of Section 2.2. To construct an ap-
propriate projective system, we consider the projective system (G;/ H;, g, N) of finite
groups G; / H; with the connecting homomorphisms

gijZGi/H,'——* Gj/flj, xH; |—>xHj fori>j.

Then (K;, g%, N) := PS(G;/H,, gij, N) is a surjective projective system. To show that its
limit is isomorphic with K, we use the fact that the hypergroups K; are constructed by
successive substitutions. It follows inductively that X is given by

K= {XI{,'I 1<i<j,xe G,'—-G,'+1}U{Xf1j+1 ZXGGJ-H}.

with the convolution

Syt ifi <k
4.2) by xbym, = { Ooi, ifi >k

+1 1 .
i C{eHy2€Gr—GruszH CayHi} w0 fi=k
It is now obvious that K is isomorphic to the projective limit of (K;, g/, N).

REMARK 4.4. 1t is clear by the construction of K in Section 4.3 that K is commuta-
tive if and only if G;/H; is commutative for each i € N. Furthermore, if X is commu-
tative, then X is a Pontryagin hypergroup as a consequence of Corollary 3.3. The dual
hypergroup K can be constructed explicitly from the abelian groups (G; /H:)" by using
substitution and inductive spectra (see Voit [18]) in a similar way as in Section 2.2.

EXAMPLES 4.5. Let (Gi)ien be a sequence of open subgroups of a compact totally
disconnected group G such that G;4; is normal in G; for eachi € N. If we set H; := Gy
and apply the construction of Section 4.3, then we obtain a compact almost discrete
hypergroup K which may be regarded as the limit of a projective system of finite hy-
pergroups which are constructed by successive hypergroup joins. Hypergroups coming
from groups in this specific way were studied earlier by Spector [12, 13].
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