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COMPACT ALMOST DISCRETE HYPERGROUPS 

MICHAEL VOIT 

ABSTRACT. A compact hypergroup is called almost discrete if it is homeomorphic 
to the one-point-compactification of a countably infinite discrete set. If the group Up 

of all/7-adic units acts multiplicatively on the/?-adic integers, then the associated com­
pact orbit hypergroup has this property. In this paper we start with an exact projective 
sequence of finite hypergroups and use successive substitution to construct a new sur-
jective projective system of finite hypergroups whose limit is almost discrete. We prove 
that all compact almost discrete hypergroups appear in this way—up to isomorphism 
and up to a technical restriction. We also determine the duals of these hypergroups, 
and we present some examples coming from partitions of compact totally disconnected 
groups. 

Introduction. If the group Up of all/?-adic units acts multiplicatively on the addi­
tive group Tp of/7-adic integers, then the associated compact orbit space Zp

p is a com­
mutative hypergroup which is almost discrete, i.e., it is homeomorphic to the one-point-
compactification of a countably infinite discrete set. These examples of almost discrete 
hypergroups were introduced by Dunkl and Ramirez [5] and studied in [6, 12, 13, 15, 
21]. Vrem [21] pointed out that these hypergroups appear as projective limits of finite 
hypergroups formed by successive hypergroup joins; for hypergroup joins we refer to [8, 
21,24]. 

In this paper we present a construction which is more general than taking successive 
joins. It leads from a given exact projective sequence of finite hypergroups to compact 
almost discrete hypergroups. We prove that this construction gives all compact almost 
discrete hypergroups—up to isomorphism and up to a technical restriction. Our result 
can be regarded as a classification of compact almost discrete hypergroups in terms of 
exact projective sequence of finite hypergroups. Classifications of hypergroup structures 
on other topological spaces—at least under certain additional conditions—are given in 
Connett and Schwartz [3, 11], Zeuner [23, 24], and Voit [19]. 

This paper is organized as follows: In the first section we recapitulate some basic 
facts. In particular we there discuss projective limits of hypergroups (see Voit [18]) as 
well as the method of substituting open subhypergroups (see Voit [19]). Substitution is 
crucial for this paper; it generalizes the join of hypergroups as follows: If// is an open 
subhypergroup of a hypergroup K, and if TT is an open and proper hypergroup homomor-
phism from a further hypergroup L onto H9 then the disjoint union of the spaces K — H 
and L carries a natural hypergroup structure. In Section 2 we shall start with an exact 
projective sequence of finite hypergroups and use successive substitutions to construct 
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a new projective sequence of finite hypergroups whose connecting homomorphisms are 
surjective and whose limit is almost discrete. We shall in particular prove that all com­
pact almost discrete hypergroups appear in this way, if the identity has a neighbourhood 
base consisting of normal subhypergroups. As the latter exists at least in the commu­
tative case, it follows that we at least obtain all commutative compact almost discrete 
hypergroups by our construction. Section 3 is devoted to dual spaces of compact almost 
discrete hypergroups. We shall describe them in terms of the duals of the hypergroups in 
the exact sequences from which the compact almost discrete hypergroup is constructed. 
Finally, Section 4 contains some examples. We there in particular present a method to 
derive examples from certain group partitions. Our method generalizes a construction of 
Spector[12, 13]. 

1. Preliminaries. For an introduction to hypergroups we generally refer to Jew-
ett [8] and to Bloom and Heyer [2]. All notation will be standard and is the same as in 
Voit [18,19]. However, we here recapitulate some notations and facts for the convenience 
of the reader. 

Let K be a locally compact (Hausdorff) space. Then by M(K), Mb(K), Af^(K), and 
MX(K) we denote all Radon measures, the bounded ones, those that are bounded and 
nonnegative, and the probability measures on K respectively. The spaces Cb(K), Co(K) 
and CC(K) consist of the C-valued continuous bounded functions on K, those that are 
continuous and zero at infinity, and those that are continuous and compactly supported 
respectively. Sx G Ml(K) is the point measure at x G K. 

1.1. Hypergroup homomorphisms (Voit [16] and Zeuner [24]). Let (K, *) and (7, •) be 
hypergroups with identities ej and e#. A continuous mapping/?: K —> J is a hypergroup 
homomorphism if Sp^X) • £p(y) = p(8x * 8y) for all x,y £ K. It is easy to see that then 
P(CK) = ej and, for x G K, ej G {p(x)} • {p(x)} and thus/?(x) = p(x) holds. 

p is a hypergroup isomorphism if it is also a homeomorphism. 
Now let H be a compact normal subhypergroup ofK with normalized Haar measure 

UH- Then the coset space K/H bears a natural hypergroup structure such that the quotient 
mapping ir.K—* K/H is a hypergroup homomorphism. In this case, 

if: Mb(K\H) := {/x G Mb(K): uH * /x = //} -»Mb(K/H), /x »-> TT(/X) 

is an isometric isomorphism of Banach algebras. 

1.2. Orbital morphisms (see Jewett [8] and Voit [17]). Let J and K be hypergroups 
with identities ej and e#. A continuous, proper, surjective, and open mapping O: J —+ K 
is called an orbital mapping. O is said to be unary if O - 1 ^ ) = {ej}. 

A recomposition of O is a weakly continuous mapping x\-+ qx from K to Mx (J) with 
supp^ = <D_1(x) for all x G K. O is a generalized orbital morphism associated with 
(qx)xeK if in addition qx = q~ and <&(qx * qy) = 8x*6y for all x9y G K. 

If there is a measure / G M*(J) with I = SJ <7<D(y) dl(y\ then (qx)X£K is called consis­
tent with I. If (qx)X£K is consistent with the Haar measure OJ on J, then the generalized 
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orbital morphism <I> is called an orbital morphism. Let O be a generalized orbital mor-
phism associated with (qx)xeK- KM := {/i G Mt,(J) : \i — $Kqydv(y\v E Mb(K)} is 
closed under convolution, then 3> is called consistent. Obviously, any injective consistent 
generalized orbital morphism is a hypergroup isomorphism. 

1.3 Substitution (see Voit [19]). Let (K, *) and (I, •) be hypergroups and ir.L —• K 
a proper and open hypergroup homomorphism. Set W := kern7r. Then there is—up to 
isomorphism—a unique hypergroup (M, o) with the following properties: 

(i) There is an injective and open homomorphism T:L-+M and a proper, surjective, 
and open homomorphism/?:M—+ K with/? o r = -K and kern/? = T(W). 

(ii) If there exists a further hypergroup M, an injective and open hypergroup homo­
morphism f.L —> M, and a proper, surjective hypergroup homomorphismp.M —> K 
with p of — -K and kern/? = f(W), then there exists a unary consistent generalized 
orbital morphism (p:M-^M w i t h p — p o y . 

We say M w obtained from K by substituting the open subhypergroup H := 7r(L) O/X 
by L via n. M will be denoted by S(K, H-^L) where the -K will be often omitted. (M, o) 
can be realized as follows: Take M := (K — H) U L as the disjoint union of A' — H and L 
where both sets are embedded into M as open sets. Then, o is given by 

Sx o6y 

it: Mjy{L\ W) —> Mb(H) being the isometric Banach-*-algebra isomorphism of Section 1.1. 
Identity and involution of M are taken from K — H and L. 

The following definitions and results are taken from Voit [18]. 

1.4. Projective systems. Let (/, <) be a directed set and (Kj)ie/ a family of hypergroups. 
Let (gij)j<t be proper hypergroup homomorphisms gj/. Kj —> Kj such that gifi is the iden­
tity and gjj o gkj = gki for i <j < k. Then (Kj,gjj,l) is called a projective system of 
hypergroups. It is called surjective if all gjj are surjective. 

THEOREM 1.5. For each projective system (Kj, gjj, I) of hypergroups there exists— 

up to isomorphism—a unique hypergroup K with the following properties: 

(i) There is a family (gv)/e/ of proper hypergroup homomorphisms gj.K —•» Kj such 

thatgjj o gj = gj andgj(K) = C\i>igiAKi)for al1 i <J-

(ii) Let K be a further hypergroup and (gj)j^j a family of proper homomorphisms 
gi'.K-* Kj with gjj ogj = gj andgj(K) = fb/giAKi)for l < J- Then there is a surjective 
and proper homomorphism r:K —> K with gj = gj o rfor i £ I. 

K is called the projective limit of (Kj, gjj, I). 

' <5* • Sy fOTX ,y€LcM 
<$7T(JC) * Sy fOTX GLandy £ M --L-- = K--H 

Sx * Sn(y) fory eLandx eM--L-- = K--H 

L (SX * Sy)\M--Z+7T 1{(SX *8y)\H) forjc 9yeM-L, 
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2. Construction of compact, almost discrete hypergroups. In this paper the fol­
lowing definition will be convenient: 

DEFINITION 2.1. A topological space K is called almost discrete ifK is countably 
infinite and every element of K except for exactly one point is isolated. 

As a hypergroup is discrete if and only if its identity element is isolated (Jewett [8], 
Theorem 7. IB), the cluster point of an almost discrete hypergroup has to be the identity 
element. 

The purpose of this section is to discuss a general principle for constructing compact, 
almost discrete hypergroups. The method is based on successive substitution of finite 
subhypergroups and then taking a projective limit of hypergroups. 

2.2. A construction. Let (//,, g/j7, N) be a projective system of hypergroups with H as its 
projective limit according to Sections 1.4 and 1.5 (this in particular means that the homo-
morphisms gif.Hi —• Hj are proper). Assume that the subhypergroups!/ := g/+i,/(///+i) 
are open in //, for all / E N . Then the homomorphisms gi/. Hi —> Hj are open by Propo­
sition 1.7 of Voit [16]. We inductively construct a family (Ki9it)i£^ of hypergroups Kt 

and open, proper, and surjective homomorphisms it: Ki+\ —> Kt as follows: 
(1) Puti^i :=HX. 
(2) Assume that Kt is constructed and that Kt contains Ht as an open subhypergroup 

in a natural way. Then/,, is an open subhypergroup of A",. Using the surjective, open, and 
proper homomorphismg/+i>I: Hi+i —> Li9 we define 

^,+1 := S(Ki,Lj —•> Hi+\). 

Then Hi+\ is an open subhypergroup of Ki+\, and we can iterate the process. 
The substitution S(Ki,L( —> Hi+\) induces a natural surjective and proper homomor-

phism tf'.Kt+i —> Kt satisfying ^\Hi+i = gt+u- By Proposition 1.7 of [16], it is also 
open. For/ < / we define g^: itoij*x o--Tt~x\Ki-^ Kj- Then (Ki9^

J, N) is a surjective 
projective system of hypergroups. Let K be its projective limit. 

H can be regarded as subhypergroup of K in a natural way (see Section 4 of Voit [ 18]), 
and we have the following commutative diagram 

Hx <5d. H2 ^ - H3 ••• <— . . . H 

I I I I 
Kx £- K2 t— K3 ••• <- • • K 

Let (Hi,gij9 N) be a projective system of hypergroups. For abbreviation we denote the 
new projective system (£/,gJ,/, N) by ?S(Hi,gij, N). 

REMARKS 2.3. (1) The hypergroups Ht are compact, totally disconnected, com­
mutative, symmetric or unimodular if and only if the projective limit K has the same 
property. This is a consequence of the fact that these properties are obviously preserved 
under substitution and surjective projective limits (see Voit [18, 19]). 
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(2) Let (Hi,gij9 N) be a surjective projective system of hypergroups and (Ki,g
i^, N) 

the associated system according to 2.2. It follows inductively that then the homomor-
phisms from /// into Kt are hypergroup isomorphisms. Thus, PS transforms surjective 
projective systems into isomorphic ones. In particular, as PS(i//,g/j7, N) is surjective for 
any projective system (///,gy, N), it follows that PS is an idempotent operation. 

(3) For a finite sequence of hypergroups Hi, the idea of the construction 2.2 can be 
also found in Section 4.4 of Voit [19]. 

We are interested in constructing compact, almost discrete hypergroups. The follow­
ing proposition yields a sufficient condition such that the limit K of a projective system 
PS(Hi,gij, N) is compact and almost discrete. Remark 2.3(2) above shows that the con­
ditions are far from being necessary. 

PROPOSITION 2.4. We retain the notation of Section 2.2 and assume that the hyper­
groups Hi are finite. Then the limits Hand K are compact, second countable, and totally 
disconnected. Furthermore, the following conclusions hold: 

(1) Each x G K — His isolated in K. 
(2) x = (X/)/€N € H is not isolated in K if and only if \gY+\i(xi)\ > 2 for infinitely 

many i G N. 
(3) IfH = {e}, and if the mappings g,-+i,/: Hi+\ —> Hi are not injectivefor infinitely 

many i G N, then K is a compact, almost discrete hypergroup. 

PROOF. Clearly, H and K are compact, second countable, and totally disconnected. 
(1) If JC = (JC/)/€N £ K — H, then there existsy G N such that JC,- G Kt — Ht for i >j. It 

follows from the construction of the hypergroups Ki that (7r')_1 (JC/) = {xi+\} for all i >j. 
Hence, 

^ : = { * I } X . . . X { J 9 } X n * / c n * « -

satisfies WHK = {(JC,-)/GN}- AS W is open in n/GN Ki, (*/)/eN is isolated in K. 
(2) Letx = (X/)/GN € H- As (Ki9g

J\ N) is a surjective projective system, x is not iso­
lated in K if and only if |(gi+1,,)~1 (*/)l ^ 2 for infinitely many i £ N. By the construction 
of (Ki9gJ9 N), this is equivalent to the fact that Ig^H,/(*')I ^ 2 for infinitely many / G N. 

(3) It follows from the parts (1) and (2) that K is an infinite, compact hypergroup such 
that each x G K — {e} is isolated. In particular, e must be a cluster point. As K is second 
countable, we see that K is countably infinite. This completes the proof. 

2.5. Let (Hi9gij, N) be a projective system of hypergroups as introduced in Section 2.2. 
Suppose that kerng/?/_i C gi+i,i(Hi+\) for all i > 2. We consider the open subhyper-
groups Wi := gi+2,i(Hi+2) of Hi. Assume that all Wt are finite and that gi+\j induces a 
hypergroup isomorphism between Wi+\ and Wi for each / G N. These assumptions in 
particular imply that the Hj are discrete and, for / > 3, finite. Moreover, the projective 
limit H is isomorphic to all Wi. 

We now restrict our attention to the case that all Hi are finite. Let K be the limit of the 
projective system (Ki,^J\ N) = ?S(Hi9gij9 N). By Proposition 2.4, x = (JC/)/(EN G K is 
not isolated if and only if x G H C K and jgjii f(JC|)| > 2 for infinitely many / G N. In 
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particular, if for each JC G //there exist infinitely many / E N satisfying |g^ (x / ) | > 2, 
then AT is a compact hypergroup whose non-isolated points form a finite subhypergroup 
isomorphic to H. Theorem 2.6 below shows that, under a mild restriction, the converse 
statement is also true. 

Before stating this result, we consider an important special case which leads to 
compact, almost discrete hypergroups. In the setting above, Wt = {e} means that 
gi+2,i+\(Hi+i) = kerngj+i,/ holds. If this is true for all / E N, then the projective sys­
tem (Hi,gij, N) is called exact. Using the conclusion above, we see that the projective 
limit of PS(///,gy, N) is a compact, almost discrete hypergroup if (Hi,gy, N) is an exact 
projective system of finite hypergroups such that infinitely many //, are not trivial. 

THEOREM 2.6. Let K be a compact, countably infinite hypergroup such that the set V 
of all non-isolated points ofK is a finite subhypergroup. Assume that K admits a neigh­
bourhood base ofe consisting of open and normal subhypergroups. Then there exists a 
projective system (Hi,gij, N) of finite hypergroups with the following properties: 

(i) kerng /+u C g/+2f/+i(#}+2), and Wt .:= gi+2j(
Hi+2) is a subhypergroup ofHt iso­

morphic to V. Moreover, gi+\yi establishes an isomorphism between Wi+\ and Wt 

for all ie N. 
(u) \&\M)\ ^ 1 for all i e N andxt £ W{. 

(Hi) K is isomorphic to the limit ofPS(Hi9gij, N). 
In particular, ifK is a compact, almost discrete hypergroup which admits a neighbour­
hood base ofe consisting of open and normal subhypergroups, then there exists an exact 
projective system (//,,g/j/, N) of finite hypergroups such that K is isomorphic to the limit 
of?S(HhgiJ,H). 

Before we prove this theorem, we discuss its restrictions. Each compact open neigh­
bourhood of the identity element of a hypergroup contains an open subhypergroup by 
Vrem [22]. However, we do not know whether for each compact hypergroup these open 
subhypergroups can be taken to be normal as would be the case for compact groups. 
As this problem does not appear for commutative hypergroups, we obtain the following 
corollary. 

COROLLARY2.7. Let K be a commutative, compact and almost discrete hypergroup. 
Then there exists an exact projective system (Z/ / ,^ , N) of finite commutative hypergroups 
such that K is isomorphic to the limit ofY*S(Hi,gij, N). 

The proof of Theorem 2.6 is based on the following lemma: 

LEMMA 2.8. Let Kbe a hypergroup. Ifx EK— {e} is isolated in K, then 

Ux '•= {y € K : 8X = 8X * 6y = 8y * 8x,8x — 8X * 8y = 6y *8x} 

is an open and compact subhypergroup ofK such thatx $ Ux. Moreover, (8X * 8x)\ux is 
a (non-trivial) Haar measure ofUx. 
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PROOF. In order to check that Ux is a subhypergroup, take yuyi G Ux. Then 
Syi * Sn * Sx = Syi *6X = Sx and thus Sz * Sx = £* for all z G supp^, * Syi). Simi­
lar arguments yield Sx * <SZ = <$* and <5Z * £* = Sx * <SZ = ^ for z G supp(^, * Sy2). As l/^ 
is also closed under involution, Ux is a subhypergroup. 

We next note that x $ Ux since otherwise Sx =SX* Sx in contradiction iox^ e. 
To show that Ux is open in AT, we first recapitulate that the space C(K) of all com­

pact non-void subsets of K carries a natural topology (for details see Jewett [8] and 
Michael [9]), and that, by the hypergroup axioms, the mapping 

K —> C(K), y •-> svpptfx * 6y), 

is continuous with respect to this topology. As Sx*8e = Sx and as {x} is isolated in C(K), 
the set \u G AT: supp(£x *5W) = {JC}} is open. If we apply this argument also to the other 
equations which characterize UX9 it follows that Ux is open. 

We next investigate the measure r := (Sx * Sx)\ux. Since Ux is open, and since e G 
supp(£x *SX)9 it follows that r is a nontrivial, bounded and positive measure on Ux. More­
over, forj> G Ux,we have 

T*6y = (T*8y)\ux = (Sx * Sx * Sy - (Sx * Sx)\K-ux *£y)L = (<$* * 8x)\ ux — 0 = T 

and, similarly, 8y*T=r. This proves that r is a bounded Haar measure on (/*. Therefore, 
by Theorem 7.2B of Jewett [8], Ux is compact, and the proof is finished. 

PROOF OF THEOREM 2.6. (1) Let (JC,-)/€N be an enumeration of ̂  - F. We construct 
open and normal subhypergroups I/} of ^ inductively as follows: 

Put Ux := * . 
If Ui is constructed, then we consider the compact subhypergroup 

Ri:=UinuXln n ux 
xeK-V*Ui 

ofK, the hypergroup Ux being defined as in Lemma 2.8. As V* U( is an open set containing 
V, it follows that K—V*Ut is finite. Hence i?/ is open. Now choose Ui+\ as an open and 
normal subhypergroup of AT such that 

Uj+\ C Ri, Ui+i *{v}nC/z+i *{«} = 0, and £//+i *{v} ^ Uj*{v} for w, v G V, u ^ v. 

In fact, this is possible by our assumptions and by Lemma 3.2D of Jewett [8]. In partic­
ular, we have Ui+\ C Ui for all i G N and fl/eN Ut = {e} where the second statement is 
a consequence of the facts that UtDV = {e} for / > 2 and that f|/eN Ui C H/GN k*, C K 
(see Lemma 2.8). This completes the construction of the £//. 

As Uj is normal in K for each / G N, the subhypergroup (7/ * V is open in K (i G N). 
Now we define finite hypergroups Hi and Li by 

ft := Lx := (t/i * F)/t/2 , ft := (ty-i * F) /£ / m , U := (£/, * F)/£/,+i C Ht (/ > 2). 
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By the isomorphism theorem (Jewett [8], 14.3 A), the coset hypergroups 

Hi/(Ui/Um) = ((ty-i * Vi)/Ui+l)/(Ui/Ui+l) and (Ui-i * V)/Ui = U-x 

are isomorphic, and we shall identify Hi/(Ui/Ui+\) and Z,,-_i from now on. Taking the 
canonical projections 

*t:Hm — Hi+l/(Ui+l/Ui+2) = Lt C Ht 

and defining gifH\ —> /^ by gy = 79+1 o • • • o 7r,-, we obtain a projective system 
(Hi9gij, N). The isomorphism theorem also shows that 

g/+i,/-i(«+i) = &*-i(I/) ^ (Ut * F)/1// for i > 2. 

Moreover, </?,•: V —* (Ut*V)/ Ui9 v»—> v*£^ is ahypergroup isomorphism. Thus, condition 
(i) holds. Moreover, gi+2^+2) = (Ui+\ * V)/Ui+{ ~ F, C/j+i C Ui9 and (7J+i * {v} ^ 
C// * {v} for v E F ensure that that condition (ii) holds. 

(2) We still have to check that K is isomorphic to the projective limit K of the system 
J?S(Hi9gij9 N). For this, we first fix/ e N. The obvious homomorphism from (Ui*V)/Ui+2 
onto (Uj *V)/Ut+\ C K/ Ui+\ yields that we may apply part (ii) of Section 1.3 to Mf := 
K/UM. It follows that 

r,: tf/I/w -> S(K/UnrU(Ui * F) /£/m -> (£/, * F)/£/»2), 

l J I {*} * C/f+2 if * £ #f * ^ 

is a consistent generalized orbital morphism. As {x} * t/,-+i = {JC} = {x} * C//+2 for all 
x EK—Ui*Vby construction, r, is bijective and hence an isomorphism. Obviously, rt 

is equal to the identity on the common subhypergroup (£/, * V)j Ui+2 of the hypergroups 
S(K/Ui+u(Ui * V)/Ui+l -> ([/, * F ) / t / « ) VDAK/UM. 

Let (Ki,gij, N) be the projective system associated with the hypergroups Hi = (£/,_i * 
V)j Ui+\ and I , = ([/,* F)/ l//+i according to Section 2.2. Now we construct inductively 
hypergroup isomorphisms r,:^, —-> K/Ui+\ for / € Nas follows: Using K\ = H\ = 
K/U2, we take ri to be the identity. If 17 is constructed, then r,- induces an obvious iso­
morphism 

f?.Km = S(^-, W * F ) / £ / M - (Ut * F)/£/»2) -> 

S(K/Ui+u(Ui * F)/£//+1 — ([/, * V)/UMy 
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We define r,-+i: Ki+\ —-> Kj Ui+2 by 77+1 = rt,
l o fy. By this construction, 

Ki 
gi+U 

Ki+\ 

'/ui+l i  K/Ui+2 

commutes for each i E N. Therefore, by part (ii) of Section 1.5, there exists an open 
homomorphism r from K onto the projective limit K such that, for i E N and z E K, 

TJ~1({Z} * Ui+i) is equal to the i-th component of r(z) E K. Finally, f]ieN Uj = {e} 

implies that r is injective. This completes the proof of the theorem. 

Let (Hi,g;j, N) be an exact projective system of hypergroups as introduced in Sec­
tion 2.2. Then, in particular, the hypergroups Hi are discrete and, for / > 3, also finite 
(cf. Section 2.5). As above we put Lt := g/+i/(///) and assume that Lt is non-trivial for 
infinitely many z E N. We now determine the limit K of?S(Hi9gij, N) explicitly. By The­
orem 2.6, this includes all compact, almost discrete hypergroups which admit a neigh­
bourhood base of the identity consisting of normal subhypergroups. 

THEOREM 2.9. Retaining the situation above, we realize K as follows: 

If Wk := Hk - Lkfor k E N, then K := Uj£i Wk U {e} is the disjoint union of 
the identity element e and of the sets Wk which are assumed to be embedded into K as 
open subsets. The sets \Jj^=n Wk U {e} (n E N)form a neighbourhood base of the only 
non-isolated point e E K. 

Let ek be the identity element and *k the convolution ofHk. Ifujk is the Haar measure 

on Hk normalized by ujk(Hk) = I, then the convolution on K satisfies 

Sx * Sy = 

sx ifxewk,yewh 
k<l-2 

Sy ifx €Wk,yG Wh 

l<k-2 
sx *k <^u(y) ffx €Whye Wk+X 

<W(*) *k Sy ify ewk,x<E wk+x 
(Sx *kSy)\Wk + gk+\t{(6x HSy)\Lk) ifx,y eWk,x^y 
($x *k&x)\wk +ghi\Jt(@x *k$x)\Lk-{ek}) 

+ En t f 2 ^ **&({**}) • {lf~Jk+2us(Ls))u>j\Wj ifx,y EWk,x=y 

where gk+\j is the inverse of the isomorphism gk+\yk: Mb(Hk+i \Lk+\) 
tion 1.1. 

Mb(Lk); cf Sec-

PROOF. Consider the hypergroups Kt (i E N) defined by K\ := H\ and Ki+\ := 
S(Ki,Lt —• Hi+\). Using the results of Section 1.3 and induction, we see that Ki is given 
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by Ki = \Jl
k=\ Wk U Hi with the following convolution: 

sy 

sgw(x)*ksy 

k < 1 - 2 < i - 2 
ifx€HknKj, 

yeH,<iKh 

l<k-2<i-2 
if x£Wk,yeWk+u 

k<i-\ 

ifyewk,xewk+u 
)X * 8y = < 

8X */ Sy 
k<i-\ 

ifx,y S Ht 

(8X *kt>y)\wk'* •feUft * t ^ ) | l t ) ifx,y € Wk, and either 
k = i - 1 
or k < i — 1 
and x ^ y 

(ftc * * £ * ) ! FT*-* •iM*((sx **k)k-te>) 
+z;j - i + 2 ^ *t«i({«t})-(ltU2W*(I i))wyVj 
+8x*k8x({ek})-(l¥sZ =1+2 Ws(^))wi ifx,y eWk,k<i- 2, 

^ x = y 

K is the projective limit of(Ki9g
J\ N) where the surjective homomorphismsg/+u: Ki+\ 

Kt satisfy 

(2.2) *> 
I gi+U 

if x G UUi Wk 

(x) if* G //,-+i 

The assertion of Theorem 2.9 now follows from the convolution on the hypergroups Kt 

and the construction of a projective limit of hypergroups; see the proof of Theorem 2.2 
ofVoit[18]. 

REMARK 2.10. It is difficult to find attractive criteria when the application of the 
construction PS to two given projective systems leads to projective systems with iso­
morphic limits. Clearly, the information about the structure of a given compact, almost 
discrete hypergroup will be optimal if the subhypergroups I/,- in the proof of Theorem 2.6 
are as large as possible. 

3. The dual space. We next compute the dual space K of the hypergroup K as stud­
ied in Theorem 2.9 above in terms of the dual spaces of the hypergroups 7/,. For details 
on (irreducible) representations of hypergroups see Bloom and Heyer [1], Jewett [8] and 
Vrem [20]. For annihilators in K we refer to Bloom and Heyer [1, 2] and Voit [16, 18, 
19]. 

THEOREM 3.1. Let (//l9gy, N) be an exact projective system of finite hypergroups 
and let K := | J ^ 1 Wk U {e} be defined as in Theorem 2.9. 
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(1) For each irreducible representation T ofH\ on some Hilbert space H, 

f T(x) ifx (EHi-Li 
RX(T):K-*B{X\ Ri(T)(x):= <T(g2A(x)) ifxeH2-L2 

I 1 otherwise 

defines an irreducible representation R\{T) of K on the same Hilbert space Of. This 
construction leads to an injective mapping R\ from H\ to K. 

(2) If for i>2we have some irreducible representation T € #z — A(Ht, Li) on some 
Hilbert space 9f, then 

Ri(T):K->B(!H), Ri(T)(x):--

0 ifx £Hk-Lhk< i 
T(x) ifx e Hi -Li 
T(gi+ui(xi) tfx € Hi+i - Li+i 
1 otherwise 

also defines an irreducible representation Ri(T) ofK. This again leads to an injective 
mapping Rifrom Hi — A(Hi9Li) to K. 

(3) The sets Ri(Hi)f Ri{Ht -A{HhLt)) andRj(Hj -A(HhLj)) are disjoint subsets of 

Kfor 1 < j <j, and we have 

K = Rl(Hl)U\jRi(Hi-A(HhLi)). 
i>2 

PROOF. First fix / G N. The definition of the hypergroups Ki together with Theo­
rem 3.3 of Voit [19] and an obvious induction lead to the following description of the 
dual space Ki of Kf. If we have some irreducible representation T G H\ on some Hilbert 
space 9f, then 

f T(x) if JC e Wx 

Ru(T):Ki — B{fK\ Ri,i(T)(x) := I r(g2fi(x)) ifx e W2 

I 1 otherwise 

establishes an irreducible representation R\j(T) € Ki on Of. Moreover, if we have some 
TeHi- A(Hh Li) for i > 2, then 

0 if JC € Wk and k < i 
T(x) if JC G Wt (i < I) or JC <E /// 
T{g»iM) ifx ^ Wi+X and i + 1 < / 
1 otherwise 

again defines an irreducible representation Rij(T) of K{ on the same Hilbert space 9f. 
Moreover, it is clear that the mappings Rtj (1 < / < /) are obviously injective, and that 
Ki = R\,i(H\) U U/=2 Ruifii ~ A(Hi,Lif) holds where the union is disjoint. 

We now have to extend these results to the projective limit. The natural projections 
from K onto Ki(l eN) are given by 

[x . if xeUi^Wi 
(3.1) gi(x) := I gl+u(x) iixeWl+x 

I ei otherwise 

R,AT):K,-*B{?{), Ru(T)(x) 
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It follows from Theorem 5.1 of Voit [ 18] that the mappings Rt as defined in Theorem 3.1 
establish injective mappings from H\ (for / = 1) and Hi — A(Hi,Li) (for i > 2) respec­
tively to K, and that each irreducible representation ofK appears in this way. As the other 
assertions are evident, the proof is complete. 

REMARKS 3.2. In the setting of Theorem 2.9, the hypergroup K is commutative if 
and only if all hypergroups Ht are commutative. In this case, Theorem 3.1 may be stated 
as follows: For each character a G K there exists either a unique a\ G H\ such that 

fai(jc) ifxeWi 
*(*) = W&i(*)) ifxeW2 

11 otherwise 

or there exist a unique / > 2 and a unique a, G Hi — A(Hi9 Lt) such that 

(3.2) a(x) = 

0 if x eWk,k< i 
(Xi(x) if x G Wt 

<*i{gi+u(x)) i f * ^ Wi+i 
I 1 otherwise 

It is easy to decide whether K carries a dual hypergroup structure. In fact, by Theorem 5.7 
of Voit [18], this is equivalent to the statement that all dual spaces K\ carry hypergroup 
structures. Moreover, the latter statement is true whenever all H\ have dual hypergroups 
(this follows from Theorem 3.6 of Voit [19] and induction). We also note that K, as a 
totally disconnected hypergroup, has a dual hypergroup if and only if AT is a Pontrya-
gin hypergroup, i.e. if Pontryagin's duality theorem holds for K (cfi Theorem 6.5(2) of 
Voit [ 18]). It is not difficult to investigate the structure of K whenever the dual K carries a 
dual hypergroup structure. This will be done in a forthcoming paper by using substitution 
of open subhypergroups together with inductive limits of suitable finite hypergroups. 

We finish our discussion of the dual K with the following consequence of Theorem 2.6 
above and Theorem 3.6 of Voit [19]: 

COROLLARY 3.3. The following statements are equivalent: 
(1) K is a compact, almost discrete Pontryagin hypergroup. 
(2) K is compact, almost discrete and commutative, and has a dual hypergroup K. 
(3) There exists an exact projective system (Hi,gij, N) of finite Pontryagin hyper-

groups such that K is isomorphic to the limit ofPS(Hi,gij, N). 

4. Examples. 
EXAMPLES 4.1. Let (Z/)/€N be a sequence of nontrivial finite hypergroups. Set H\ := 

L\ and Ht := S(Lf-\,{e} —> Li) for i > 2. Using the canonical projections 7r,-://i-+i —» 
Hi+\ /Li+\ = Li andg,y := 79 o • • • o 7r,+i: //, —• Hj for / >j9 we obtain an exact projective 
system (Hi9gij, N) as assumed in Section 2.5. 

For a constant b G ]0,1], we define the hypergroup structure Lb on the set {e,z} with 
identity element e by 8Z * 8Z = (1 — b)Sz + bSe. Clearly, each hypergroup K with |A |̂ = 2 
is isomorphic to some Lb. 
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Now we fix a sequence (6/),-eN C ]0,1]. If we apply the construction above to the 
hypergroups Z; := Lbi, then the convolution on the resulting compact, almost discrete 
hypergroup K = N U {e} with identity element e is given by 8n*6m = Sn forn <m and 
by 

oo U k U 

Sn*sm = (i-bH)8n+ E if n 7iir«*. 

Clearly, AT is a Pontryagin hypergroup by Corollary 3.3. Moreover, our construction just 
leads to the hypergroups (in particular for constant coefficients bf) introduced in Dunkl 
and Ramirez [5] and Spector [13]. 

EXAMPLES 4.2. Let (Z/)/GN be a sequence of nontrivial finite groups. Assume that 
for each / E N the group Z, acts on Li+\ as a group of automorphisms. Set H\ := Zi 
and, for / > 2, //, := Z, x Z/_i as the semidirect product of Lt and Z;_i. Then Zz is a 
normal subgroup of//, in a natural way. Using the associated natural homomorphisms 
7iy. ///+i —* Hi+\ /Li+\ = Lt C Hi andg/j7 := 79 o • • • o 7T/_i: /// —• //, for 1 >y, we get an 
exact projective system (Hi9gij, N). It is now possible to apply construction 2.2 to this 
example which leads to a modified projective system of finite hypergroups whose limit 
is almost discrete; see also Section 2.5. We finally mention that this almost discrete limit 
can be described explicitly in terms of the groups Lt with the aid of Theorem 2.9. 

For a concrete example, we propose to take a finite non-abelian group G which acts 
on itself by conjugation and then to put Z, := G for all i EH. 

4.3. Hypergroups associated with compact, totally disconnected groups. Let G be an 
infinite compact, totally disconnected group. Assume that (G/)/GN is a family of open 
subgroups of G with 

Gx = G, d D Gi+i for i G N and f| Gt = {e}. 

Let (///)/GN be a another sequence of open subgroups of G such that, for all i EN, 

Hi+\ C Hf C G/+i C Gt and /// is normal in G,. 

We define a partition K of G consisting of cosets with respect to the different sub­
groups Hi as follows: 

K := {xHi: 1 E N,x E Gt - Gi+{}U {{e}}. 

K equipped with the quotient topology is a compact space in which every element except 
for {e} is isolated. The associated canonical projection </?: G —* K is continuous, open, 
and surjective and hence an orbital mapping. If ut is the normalized Haar measure of 
the compact group ///, then we consider the probability measures q^ := 8e and qXHt := 
5JC*O;/ on AT for / G N and* E G/—G/+1. We next apply Theorem 13.5A and Lemma 13.6A 
of Jewett [8] to conclude that there exists a unique hypergroup structure on K such that <p 
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becomes a unary consistent orbital morphism from G onto the compact, almost discrete 
hypergroup K. The convolution on K is given explicitly by 

(4.1) SxHi^8yHj:= 
SxyHi if l<j 
SxyHj if i>j 

where \Ht : ///| stands for the index of/// in //;. 

By Theorem 2.6, AT can be regarded as the limit of a projective system of finite hy-
pergroups which is constructed by the operation PS of Section 2.2. To construct an ap­
propriate projective system, we consider the projective system ( G , / / / / , ^ , N) of finite 
groups GijHi with the connecting homomorphisms 

gtJ: Gi/Hi -> GjjHj, xHt ^ xHj for i >j. 

Then (Kug*, N) := PS(G,-///,-, g,y, N) is a surjective projective system. To show that its 
limit is isomorphic with K, we use the fact that the hypergroups Kj are constructed by 
successive substitutions. It follows inductively that Kj is given by 

Kj := {xHi: 1 < i <j,x G G,- - G m } U {xHj+l : x G G;+i}. 

with the convolution 

(4.2) 5xHi*6yHk:= 

(SxyHi if i<k 
&xyHk if i>k 

2/=,- ̂ zfli^ec-Gw^/Cxyfl;-} p ^ f ' &zH, ifi = *-

It is now obvious that K is isomorphic to the projective limit of(Ki9gJ9 N). 

REMARK 4.4. It is clear by the construction of K in Section 4.3 that K is commuta­
tive if and only if G///// is commutative for each / E N . Furthermore, if AT is commu­
tative, then K is a Pontryagin hypergroup as a consequence of Corollary 3.3. The dual 
hypergroup K can be constructed explicitly from the abelian groups (G////,)A by using 
substitution and inductive spectra (see Voit [18]) in a similar way as in Section 2.2. 

EXAMPLES 4.5. Let (G,)/GN be a sequence of open subgroups of a compact totally 
disconnected group G such that G,+i is normal in G/ for each / E N. If we set /// := G,+i 
and apply the construction of Section 4.3, then we obtain a compact almost discrete 
hypergroup K which may be regarded as the limit of a projective system of finite hy­
pergroups which are constructed by successive hypergroup joins. Hypergroups coming 
from groups in this specific way were studied earlier by Spector [12, 13]. 
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