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Abstract. Nowadays there is no field research which is not flooded with data. Among the
sciences, astrophysics has always been driven by the analysis of massive amounts of data. The
development of new and more sophisticated observation facilities, both ground-based and space-
borne, has led data more and more complex (Variety), an exponential growth of both data
Volume (i.e., in the order of petabytes), and Velocity in terms of production and transmission.
Therefore, new and advanced processing solutions will be needed to process this huge amount
of data. We investigate some of these solutions, based on machine learning models as well as
tools and architectures for Big Data analysis that can be exploited in the astrophysical context.
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1. Introduction
In the last decades, the exponential growth of data has changed the way we do sci-

ence. New and increasingly sophisticated astronomical facilities, both ground-based and
spaceborne, produce massive amounts of data and they will be able to reach in few years
a production rate in the order of petabytes per year. This data tsunami, both in terms of
volume and velocity, will bring Astronomy in the big data era. In many situations where
it could be infeasible to store all data produced by facilities, it is crucial to efficiently
analyze these data and to produce a response close to real time. So, machine learning
(ML) algorithms, combined with big data analytics (BDA) architectures, become neces-
sary tools in knowledge data discovery process, helping to automatically recognize hidden
patterns inside the data and to understand their relationships. In this paper, we provide
an overview of BDA in astrophysics describing the big data generated by the sky sur-
veys, the ML algorithms and the BDA platforms that could help to gain more meaningful
insight on these datasets.

2. Big Data 3V in Astrophysics
What is Big Data? According to Manyika et al. 2011 definition “Big data is datasets

whose size is beyond the ability of typical database software tools to capture, store, man-
age, and analyze”. This definition contains a time-variant aspect. Datasets that today
can be considered as Big Data tomorrow could become “normal” data. Since this def-
inition does not use any metric to define big data, we prefer to use Laney et al. 2001
definition that identifies the data growth challenge as three-dimensional, i.e., concerning
an increase in Volume, Velocity, and Variety.

Following the latter definition, Table 1 shows modern sky surveys in terms of the 3V
characteristics.
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Table 1. Big Data 3V characteristics in astronomical sky surveys.

Sky Survey Volume Velocity Variety

SDSS
Sloan Digital Sky Survey

50 TB 200 GB per day images, catalogs, redshits

GAIA 100 TB 40 GB per day more then 100 parameters

Pan-STARRS
Panoramic Survey Telescope
and Rapid Response System

5 PB 5 TB per day images, catalogs

LSST
Large Synoptic Survey Telescope

60 PB 10 TB per day images, catalogs

SKA
Square Kilometer Array

3 ZB 150 TB per day images, catalog, redshifts

Notes:
The column Volume refers to raw data produced at the end of the experiment.
Values regarding Pan-STARRS, LSST, and SKA surveys refer to expected Volume and Velocity values.

• Volume refers to the amount of data. Different surveys produce datasets measurable
in terabytes, petabytes, and even exabytes. This abundance forces to face challenges to
capture, clean, transfer, store, analyze and visualize datasets.
• Velocity refers to both the data generation rate and the processing time require-

ment. Depending on the speed of data arrival, they can be processed in batch, if they
arrive at intervals of time, or streaming if they require a real-time analysis (e.g. during
the cleaning phase). Table 1 depicts surveys where the generation data is anticipated to
exceed terabytes each night rate.
• Variety refers to the data type, i.e., structured, semi-structured, unstructured, and

mixed. Astronomical sky surveys could include images, redshifts, time series data, and
simulation data. Data from various sources have their formats, which causes the challenge
of integrating data, and they have hundreds of features, introducing the problem of high
dimensional data visualization.

3. Machine Learning Methods
Machine learning was defined in 1959 by Arthur Samuel as “the field of study that

gives computers the ability to learn without being explicitly programmed”. ML allows
to uncover hidden correlation patterns through an iterative learning by sample data (or
past experiences) instead of being explicitly programmed. Common classes of problems
that ML algorithms can solve are classification, regression, clustering, and outlier de-
tection. These algorithms have been successfully used in astrophysics to solve different
tasks. D’Isanto et al. 2016, presented an extensive investigation about classification per-
formance of Random Forests, Multi-Layer Perceptron (MLP) with Quasi-Newton Algo-
rithm, and K-Nearest Neighbors to classify transient objects, through experiments on the
identification of cataclysmic variables, the separation between galactic and extra-galactic
objects and identification of supernovae. Masters et al. 2015 applied the Self-Organizing
Maps (SOM) to the photometric redshifts problem, mapping the empirical distribution
of galaxies in a multidimensional color space. A review of the use of data mining in
astronomy was presented by Tagliaferri et al. (2003). Table 2 gives an overview on ML
methods used to face some astrophysical problems.
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Table 2. Machine Learning Algorithms for Astrophysics

Astrophysics Application Machine Learning Algorithms

Supervised

Classification
AGN Classification,
Globular Cluster Classification,
Photometric Classification

Neural Network, Genetic Algorithms,
Random Forest, Support Vector Machine,
Bayesian Network, K-Nearest Neighbors

Regression Photometric redshifts estimation Linear Regression, Random Forest,
Neural Network, K-Nearest Neighbors

Unsupervised

Clustering Outlier Detection Principal Component Analysis,
K-Means, Self-organizing Map

Dimensional
Reduction Parameter space reduction Principal Component Analysis,

Probabilistic Principal Surface

4. A data mining tool for astrophysics: DAMEWARE
DAMEWARE (Data Mining and Exploration Web Application REsource) is a web-

based distributed platform for data mining with machine learning methods (Brescia et al.
2014). The current release offers: as supervised methods four MLP implementations (i.e.
classic Back Propagation, Genetic Algorithm, Quasi-Newton, and Levenberg-Marquardt
Optimization Network), Random Forests, and Support Vector Machines (SVM); six SOM
implementations, Principal Probabilistic Surfaces (PPS) and K-Means as unsupervised
models. This set of techniques is useful for classification, regression, clustering, and fea-
ture selection tasks. DAMEWARE aims at to be an invaluable machine learning toolkit
to face astronomical tasks such as AGN classification, photometric redshifts prediction,
and globular cluster classification.

5. Big Data Analytics Platforms
BDA architectures, deployed on the cloud or an in-house data center, have become

critical to face the computationally demand ML algorithms. Apache Hadoop is an open
source platform for distributed storage and batch processing of large data sets on clusters
built from commodity hardware. Hadoop is widely adopted by many leading institutions
for educational or production uses. Its services provide data access (HIVE and HBase),
job scheduling (YARN), a distributed file system (HDFS), and data processing (Map-
Reduce). Apache Spark is an open source BDA framework which makes it possible to
analyze tons of data both in batch and streaming way. It provides two libraries for
implementing machine learning: ML Lib, which provides ML models, and ML Pipelines
handling the ML workflow, (i.e. data preparation, post-processing, and validations), help-
ing to prepare and deploy the aforementioned models in a production environment. For
both frameworks, Fig. 1 shows a schematic representation of the architecture and the
steps involved in the analytics process. Several vendors, such as Amazon, Google, and
Microsoft, make available these frameworks as cloud services. Amazon Elastic MapRe-
duce (EMR) provides an Hadoop cluster distributing the computation across multiple
Amazon EC2 instances. Moreover, EMR can run processing frameworks, such as Apache
Spark and HBase, and interact with data in other Amazon Web Services (AWS) data

https://doi.org/10.1017/S1743921316012813 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316012813


348 M. Garofalo et al.

Figure 1. Hadoop vs Spark. Example of Big Data Analytics platforms for batch and
streaming computing.

stores. Google, with Cloud Dataproc, provides Apache Spark services on Hadoop clusters
for batch processing, querying, streaming, and machine learning. Finally, Microsoft, with
Azure HDInsight provides an HDP Hadoop distribution in the cloud.

6. Conclusions
The aim of this paper was to provide a brief overview of big data challenges in astro-

physics. Astrophysical use cases which successfully exploit machine learning algorithms
were presented. Some cloud implementations of BDA platforms have been cited as sys-
tems able to efficiently and quickly execute these computationally demanding algorithms.
They will be interesting to face with astrophysics big data challenges, but currently, data
transfer technologies are unsuitable for the amount of data involved in the computing.
Thus, we keep following the “move computing to the data” paradigm.

References
Brescia, M., Cavuoti, S., Garofalo, M., et al. 2014, PASP, 126, 783
D’Isanto, A., Cavuoti, S., Brescia, et al. 2016, Mon. Not. R. Astron. Soc., 457, 3
Bishop, C. M. 2006, Springer
Laney, D. 2001, Application Delivery Strategies, 949, 4
Manyika, J., Chui, M., Brown, et al. 2011, McKinsey Global Institute
Masters, D., Capak, P., et al. 2015, Astrophys. J., 813, 1
Tagliaferri, R., Longo, G., Milano, L., et al. 2003, Neural Networks, 16, 297
Apache Hadoop, https://hadoop.apache.org
Powered by Apache Hadoop, https://wiki.apache.org/hadoop/PoweredBy
Apache Spark, https://spark.apache.org
Amazon Elastic MapReduce, https://aws.amazon.com/emr
Amazon Elastic Cloud Compute, https://aws.amazon.com/ec2
Amazon Web Services, https://aws.amazon.com
Google Cloud Dataproc, https://cloud.google.com/dataproc
Microsoft Azure HDInsight, https://azure.microsoft.com/en-us/services/hdinsight

https://doi.org/10.1017/S1743921316012813 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316012813

