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Abstract

In this paper we propose and discuss implications of a general conjecture that there is
a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein
module of the complement of a knot K ⊂ S3. We prove this in a number of nontrivial
cases, including all (2, 2p+ 1) torus knots, the figure eight knot, and all 2-bridge knots
(when q = ±1). As the main application of the conjecture, we construct three-variable
polynomial knot invariants that specialize to the classical colored Jones polynomials
introduced by Reshetikhin and Turaev. We also deduce some new properties of the
classical Jones polynomials and prove that these hold for all knots (independently of
the conjecture). We furthermore conjecture that the skein module of the unknot is a
submodule of the skein module of an arbitrary knot. We confirm this for the same
example knots, and we show that this implies that the colored Jones polynomials of K
satisfy an inhomogeneous recursion relation.

1. Introduction

In this paper we introduce new connections between the representation theory of double affine
Hecke algebras and the colored Jones polynomials of a knot in S3. These connections can be
motivated by the following general considerations.

If K is a knot in S3, the most natural algebraic invariant of K is the fundamental group
π1(S3\K) of the complement. This group is not a complete invariant, since complements of
different knots can have isomorphic fundamental groups (cf. [Fox52]), but it is known that the
peripheral map

α : π1(∂(S3\K))→ π1(S3\K) (1.1)

is a complete knot invariant. More precisely, a theorem of Waldhausen [Wal68] implies that the
peripheral map determines the knot complement, and a theorem of Gordon and Luecke [GL89]
shows that knots in S3 are determined by their complements.

The peripheral map α is quite complicated, so it is natural to simplify (1.1) by replacing
fundamental groups with their linear representations. To this end, fix a complex reductive
algebraic group G and let Rep(π,G) be the set of group representations from a (discrete)
group π into G. The algebraic structure of G gives the set Rep(π,G) the structure of an affine
scheme and G acts on this scheme by conjugation. We write Char(π,G) := Rep(π,G)//G for the
algebro-geometric quotient and OChar(π,G) for the corresponding coordinate ring (which is the
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ring of G-invariant regular functions on Rep(π,G)). This construction is functorial, so a map of

groups f : π→ π′ induces a map of commutative algebras f∗ : OChar(π,G)→ OChar(π′, G).

The boundary of the complement of (a neighborhood of) a knot is a torus S1 × S1 and, if

T ⊂ G is a maximal torus, we have the following natural map:

T× T = Rep(Z2,T) ↪→ Rep(Z2, G)� Char(Z2, G).

In [Tha01], it was shown that this map induces a bijection between (T × T)/W and the

connected component Char◦(Z2, G) of Char(Z2, G) containing the trivial character (here W is

the Weyl group of G acting diagonally on T × T). In [Ric79], Richardson showed that if G is

simply connected, then Char(Z2, G) is connected, i.e. Char◦(Z2, G) = Char(Z2, G). Finally, in

[Sik14], it was shown that for classical groups the bijection (T × T)/W → Char◦(Z2, G) is an

isomorphism of schemes. Therefore, for a simply connected (classical) G we have an isomorphism

of commutative algebras

O(T× T)W ∼= OChar(Z2, G). (1.2)

The commutative algebra O(T × T)W admits interesting (noncommutative) deformations,

which have been studied extensively in recent years. These deformations can be described in the

following way. Denote by P and P∨ the weight and co-weight lattices of the Lie algebra g of

G, and write C[P ⊕ P∨] for the group algebra of their direct sum. The diagonal action of W

on P ⊕ P∨ extends by linearity to C[P ⊕ P∨], and we can thus define the semidirect product

C[P ⊕ P∨] oW . The algebra O(T× T)W is canonically isomorphic to the invariant subalgebra

C[P ⊕ P∨]W , which embeds (nonunitally) in C[P ⊕ P∨] oW via the map a 7→ ae = eae (where

e =
∑

w w/|W | is the symmetrizing idempotent of W ). The image of this last map is called the

spherical subalgebra. In this way, we get an identification

O(T× T)W ∼= e
(
C[P ⊕ P∨] oW

)
e.

Now, for G as above, Cherednik [Che95] (see also [Che05]) defined the double affine Hecke

algebra (DAHA) Hq,t of type G as a two-parameter family of deformations of C[P ⊕ P∨] oW ,

depending on q ∈ C∗ and t ∈ (C∗)r, where r is the number of conjugacy classes of reflections in W .

(If G is simple, then r ∈ {1, 2}.) The symmetrizing idempotent of W deforms to a distinguished

idempotent e = eq,t ∈ Hq,t, and the spherical subalgebra of C[P ⊕ P∨] oW thus deforms to the

spherical subalgebra of Hq,t, which we denote SHq,t := eHq,te. In particular, when q = t = 1, there

is a natural algebra isomorphism between the spherical subalgebra SH1,1 and the commutative

algebra O(T× T)W .

Summarizing the above discussion, for each knot K ⊂ S3, we have a map of commutative

algebras

α∗ : SH1,1→ OChar(π1(S3\K), G). (1.3)

This leads us to propose the following natural questions.

Question 1. Let K ⊂ S3 be a knot and N = OChar(π1(S3\K), G), viewed as an SH1,1-module

via the map α∗.

(i) Is there a canonical SHq,t-module Nq,t which is a deformation of N?

(ii) What knot invariants can be extracted from Nq,t?
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We remark that one’s initial inclination might be to deform α∗ as an algebra homomorphism,

but this is too restrictive. When q is not a root of unity, it is known that SHq,t is a simple

algebra, and OChar(π1(S3\K), G) is ‘small’ (in particular, the image of Char(π1(S3\K), G)

inside Char(Z2, G) is Lagrangian). Therefore, a deformation of α∗ as an algebra homomorphism

would necessarily have a nontrivial kernel, which is impossible by the simplicity of SHq,t.

To the best of our knowledge, this question has only been raised for q-deformations (i.e. for

t = 1) and has only been answered when g = sl2 and t = 1. (There is partial progress for t = 1 and

g = sln in [Sik05]; see also [CKM14].) When g = sl2, we can identify P ∼= P∨ ∼= Z and W ∼= Z2,

so that C[P ⊕ P∨] oW ∼= C[X±1, Y ±1] o Z2, where Z2 acts by simultaneously inverting X and

Y . Then Z2 acts in the same way on the quantum torus Aq, which is the deformation of the

algebra C[X±1, Y ±1] with X,Y satisfying the relation XY = q2Y X. We then have isomorphisms

Hq,1
∼= Aq o Z2 and SHq,1

∼= AZ2
q .

The connection to representation varieties comes from the Kauffman bracket skein module.

This is a topologically defined vector space Kq(M) associated to an oriented 3-manifold M and

the parameter q ∈ C∗ that has three important properties.

(i) For a surface F , the vector space Kq(F × [0, 1]) is an algebra (typically noncommutative).

(ii) If ∂M = F , then Kq(M) is a module over Kq(F × [0, 1]).

(iii) If q = ±1, then Kq=±1(M) is a commutative algebra (for any M).

In [PS00], Przytycki and Sikora showed that Kq=−1(M) is naturally isomorphic to the

commutative algebra OChar(π1(M),SL2(C)) (see also [Bul97]). By a theorem of Frohman and

Gelca in [FG00], Kq((S
1)2 × [0, 1]) is isomorphic to the algebra AZ2

q . Combining these two

theorems shows that Nq,t=1 := Kq(S
3\K) is an AZ2

q -module, which gives a positive answer to

the first part of Question 1 (when g = sl2 and t = 1).

At this point, we pause to remark that the knot invariant Kq(S
3\K) is different from

many other knot invariants in a fundamental way. Roughly, many knot invariants are defined

combinatorially, in the sense that they assign certain data to each crossing in a diagram of K

and then combine these data to produce an invariant that does not depend on the choice of

diagram. In contrast, the definition of the module Kq(S
3\K) depends on the global topology of

the complement S3\K, and this makes it difficult to prove general statements about Kq(S
3\K).

In particular, one may ask what facts are known about Kq(S
3\K) for all q and for all knots K

and, to the best of our knowledge, there are two such statements: Kq(S
3\K) is a module over

AZ2
q and Kq(S

3\K) determines the colored Jones polynomials of K (see below). However, we

believe that the calculations in § 4 give some evidence that these modules are not as intractable as

they might seem. In examples, these modules are q-analogues of smooth holonomic D-modules,

i.e. vector bundles with flat connections over C∗. (Precisely, they are Z o Z2-equivariant vector

bundles over C∗.)
The skein module Kq(S

3\K) is known to be closely related to other ‘quantum’ knot

invariants. In particular, in [RT90], Reshetikhin and Turaev defined a polynomial invariant

JV (g,K; q) ∈ C[q±1] for each finite-dimensional representation V of the quantum group Uq(g).

If g = sl2 and V is the defining representation of Uq(sl2), then JV (sl2,K; q) is the famous

Jones polynomial and, if Vn is the n-dimensional irreducible representation of Uq(sl2), then

the polynomials Jn(K; q) := JVn(sl2,K; q) are called the colored Jones polynomials. The second
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part of Question 1 is answered by a theorem of Kirby and Melvin. The embedding S3\K ↪→ S3

induces a C[q±1]-linear map ε : Kq(S
3\K)→ Kq(S

3) = C[q±1], and it was shown in [KM91] that

Jn(K; q) = ε(Sn−1(L) · ∅), (1.4)

where Sn−1(L) is the (n − 1)st Chebyshev polynomial evaluated at the longitude L of K and
applied to the empty link ∅. (The Chebyshev polynomials correspond to characters of irreducible
representations of sl2.)

Our main goal in this paper is to introduce the Hecke parameter t into this story. In fact,
in the rank 1 case, more deformation parameters are available: there is a family of algebras
Hq,t depending on a parameter q ∈ C∗ and four additional parameters t ∈ (C∗)4. This family
is a nontrivial deformation of Aq o Z2 (see, e.g., [Sah99]), which is actually the universal (i.e.
‘maximum possible’) deformation (see [Obl04]). The algebra Hq,t is the double affine Hecke
algebra associated to the (nonreduced) root system of type C∨C1, and it was introduced by
Sahi [Sah99] (see also [NS04] and [Sto03]) to study the Askey–Wilson polynomials, which are
generalizations of the famous Macdonald polynomials. As an abstract algebra, Hq,t is generated
by elements T0, T1, T

∨
0 , T

∨
1 subject to the relations

(T0 − t1)(T0 + t−1
1 ) = 0,

(T∨0 − t2)(T∨0 + t−1
2 ) = 0,

(T1 − t3)(T1 + t−1
3 ) = 0,

(T∨1 − t4)(T∨1 + t−1
4 ) = 0,

T∨1 T1T0T
∨
0 = q.

For g = sl2, Cherednik’s DAHA Hq,t is isomorphic to Hq,1,1,t−1,1 (see Remark 2.19).
If q ∈ C∗ is not a root of unity, then AqoZ2 and AZ2

q are Morita equivalent algebras; in other

words, the categories of modules over Aq oZ2 and AZ2
q are equivalent via the projection functor

N 7→ eN . This implies that there is a unique Aq oZ2-module K̂q(S
3\K) such that eK̂q(S

3\K)
and Kq(S

3\K) are isomorphic AZ2
q -modules. Explicitly,

K̂q(S
3\K) := Aq ⊗AZ2

q
Kq(S

3\K).

We call K̂q(S
3\K) the nonsymmetric skein module: by definition it is a module over Aq oZ2 =

Hq,(1,1,1,1). We can now reformulate Question 1 as follows.

Question 2. Is there a canonical deformation of the module K̂q(S
3\K) to a family of modules

over Hq,t?

When t = (t1, t2, 1, 1), we (conjecturally) give a positive answer to this question using an
approach inspired by a construction of shift functors for rational double affine Hecke algebras
developed in [BC11] (see also [BS12]). Let Dq be the localization of the algebra AqoZ2 obtained
by inverting all nonzero polynomials in X. For every t ∈ (C∗)4, there is a natural embedding of
Hq,t into Dq:

Θ : Hq,t ↪→ Dq, (1.5)

whose image is the subalgebra generated by X, X−1, and the following operators (see [Sah99,
NS04]):

T0 = t1sY −
qt̄1X + t̄2

q−1X−1 − qX
(1− sY ), T1 = t3s+

t̄3X
−1 + t̄4

X−1 −X
(1− s),
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where t̄i = ti−t−1
i . The operator T1 is usually called the Demazure–Lusztig operator (see [Lus89]),

while T1T0 is called the Cherednik–Dunkl operator of type C∨C1; cf. [NS04]. If K̂ loc
q (S3\K) is the

localization of K̂q(S
3\K) at nonzero polynomials in X, then Θ gives K̂ loc

q (S3\K) the structure
of a module over Hq,t. We can now state our main conjecture.

Conjecture 1. For all knots K ⊂ S3, the natural action of Hq,t1,t2,1,1 on K̂ loc
q (S3\K) preserves

the subspace1 K̂q(S
3\K).

We remark that this conjecture implies that K̂q(S
3\K) is naturally a module over the three-

parameter algebra Hq,t1,t2 , even though only one of these parameters appears in the definition
of the skein module. It is natural to ask whether Conjecture 1 can be extended to the full double
affine Hecke algebra Hq,t1,t2,t3,t4 depending on all five parameters. The simplest example shows
that this is not possible: if t3 6= 1 or t4 6= 1, the operator T1 does not preserve the skein module
of the unknot. However, we believe that this is the only obstruction to a canonical extension of
the action of Hq,t1,t2 on K̂q(S

3\K) to all five parameters.2 More precisely, we have the following
two conjectures.

Conjecture 2. For all knots, there is an embedding of left AZ2
q -modules

Kq(S
3\unknot) ↪→ Kq(S

3\K).

Conjecture 3. Assume Conjecture 2 and let K̄q(S
3\K) be the quotient of K̂q(S

3\K) by the
image of the skein module of the unknot. Then the action of Hq,t1,t2,t3,t4 on K̄ loc

q (S3\K) preserves

the subspace K̄q(S
3\K) ⊂ K̄ loc

q (S3\K).

We provide some evidence for these conjectures with the following theorem (see Theorems 6.1,
4.1, and Corollary 3.11).

Theorem 1. Conjectures 1–3 hold in the following cases:

(i) when K ⊂ S3 is the unknot, a (2, 2p+ 1) torus knot, or the figure eight knot;

(ii) when q = −1 and K is any 2-bridge knot.

Strictly speaking, for 2-bridge knots we prove the symmetric versions of Conjectures 1–3
(see § 3.3). The proof involves calculations which may appear somewhat miraculous and only
applicable to 2-bridge knots. However, in a forthcoming paper, using a different technique, we
extend these calculations to other families of knots (including all torus knots and certain pretzel
knots). More importantly, we show that if Conjecture 1 is true for two knots, then it is true for
their connect sum; thus, for q = −1, it suffices to prove Conjecture 1 for prime knots.

In § 3.4, we also show that the restriction q = −1 is almost unnecessary: more precisely, we
conjecturally identify the q = −1 limit of the nonsymmetric skein module for 2-bridge knots (see
Conjecture 3.16), and we show that if this identification is correct, Conjecture 1 holds for all
2-bridge knots with no restriction on q (see Corollary 3.18).

We now provide some remarks about these conjectures. First, Conjecture 1 is equivalent to
the statement that the operator (1− q2X2)−1(1− sŷ) preserves the nonsymmetric skein module.

1 Technically, part of this conjecture is that the localization map K̂q(S3\K)→ K̂ loc
q (S3\K) is injective.

2 In examples, five-parameter deformations of K̂q(S3\K) can be produced ‘by hand’ (see § 7), but these are not
canonical in general, unlike the deformations arising from Conjecture 1.
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In Lemma 2.25, we show that Hq,t can be embedded in Dq using this operator. In particular,
Conjecture 1 implies that Hq,t acts on the nonsymmetric skein module of a knot complement.
We therefore expect that Question 1 has a positive answer for sln, and for reductive g when
q = 1, at least up to a similar twist by an automorphism.

Second, Conjecture 1 can also be stated directly in terms of skein modules without using
Morita theory; see Remark 6.3. When specialized to q = −1, this interpretation implies that the
rational function

F (ρ) =
Tr(ρ(ml))− Tr(ρ(ml−1))

Tr(ρ(m))2 − 4

on Char(T 2) pulls back to a regular function on (each irreducible component of) Char(S3\K).
(We will discuss geometric implications of Conjecture 1 in future work.)

We next provide two applications of Conjecture 1. First, the existence of a natural Hq,t1,t2-

module structure on the nonsymmetric skein module K̂q(S
3\K) allows us to define three-variable

polynomial knot invariants Jn(K; q, t1, t2) ∈ C[q±1, t±1
1 , t±1

2 ] that specialize to the colored Jones
polynomials when t1 = t2 = 1. To this end, we modify the Kirby–Melvin formula (1.4):

Jn(K; q, t1, t2) := ε(Sn−1(Lt1,t2) · ∅), (1.6)

where we replaced the longitude L (viewed as an operator on Kq(S
3\K)) by its natural (t1, t2)-

deformation Lt1,t2 := T1T0 + T−1
0 T−1

1 , which is called the Askey–Wilson operator (cf. [AW85]
and [NS04, Proposition 5.8]). By definition, L1,1 = L, and this combined with (1.4) shows
that Jn(K; q, t1, t2) specializes to the classical colored Jones polynomial. The Askey–Wilson
operator has a denominator involving the meridian: the key point of Conjecture 1 is that these
denominators cancel with the structure constants of the skein module of the knot complement. In
Proposition 6.9, we show that if K̄ is the mirror of the knot K, then Jn(K̄; q, t1, t2) = Jn(K; q−1,
t−1
1 , t−1

2 ), which generalizes the well-known symmetry for the classical colored Jones polynomials.
This provides some evidence that definition (1.6) is natural.

We remark that a strong form of the so-called ‘AJ conjecture’ (see, e.g., [Lê06, Conjecture 3])
states that the submodule of Kq(S

3\K) generated by the empty link is determined by the colored
Jones polynomials Jn(K; q). However, for general knots it is not clear whether the action of
Hq,t1,t2 preserves the Aq o Z2-submodule generated by the empty link. Hence, the polynomials
Jn(K; q, t1, t2) may contain more information about the skein module Kq(S

3\K) over C[q±1]
than the classical Jones polynomials. This motivates the following question.3

Question 3. Is there an algorithm for computing Jn(K; q, t1, t2) for a fixed n that does not require
computing the skein module Kq(S

3\K)? Is there an interpretation of Jn(K; q, t1, t2) in terms of
representation theory of the quantum group Uq(sl2)?

One may also ask whether there is a purely topological construction of our deformations of
skein modules, or of the corresponding polynomial knot invariants. One approach to this question
(and its relation to Cherednik’s two-variable polynomials for torus knots [Che13]) is discussed
in [Sam14].

As a second application, we deduce from Conjecture 1 some algebraic properties of the
classical (colored) Jones polynomials, which, to the best of our knowledge, have not appeared in
the earlier literature. Namely, we prove the following theorem (see Theorem 5.12).

3 In future work we will clarify the relation between the Jn(K; q, t1, t2) and the classical colored Jones polynomials.
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Theorem 2. If Conjecture 1 holds for K, then the following rational function is a Laurent
polynomial:

Pj(K;n; q) :=
(q2 − 1) [J(n+ j) + J(n− 1− j)]

q4n−2 − 1
.

In this theorem, we have used the notation J(n) := Jn(K; q) and the convention J(−n) =
−J(n) (for our choice of normalization of J(n), see Remark 2.15). We also remark that the proof
of Theorem 2 suggests that the sequence J(n) of colored Jones polynomials satisfies a recursion
relation governed by the algebra Hq,t (see Question 5.11). We hope to address this relation in
later work.

As further evidence for Conjecture 1, we follow a suggestion of Garoufalidis and use Habiro’s
cyclotomic expansion of the colored Jones polynomials to prove the following theorem (see
Theorem 5.14).

Theorem 3. The rational function Pj(K;n; q) ∈ C(q) is a Laurent polynomial for all knots
K ⊂ S3.

The result of Theorem 3 seems to be new; however, one of its implications (namely, the
numerator of Pj(n; q) is zero when q = −eiπ/(2n+1)) also follows from [CM15b, Proposition 2.1].
We also note that this theorem can be viewed as a congruence relation, and it is remarkably
similar to several congruence relations for knot polynomials conjectured in [CLPZ14]. In fact,
the proof of Theorem 3 extends almost verbatim to a proof of [CLPZ14, Conjecture 1.6]. We
provide the details in § 5.5 (see Theorem 5.16).

We confirm Conjecture 2 for the figure eight knot and for all (2, 2p + 1) torus knots in
Theorem 4.1. This statement has a conceptual explanation: it can be viewed as a quantization of
the fact that L−1 always divides the A-polynomial of the knot K. (See Remarks 2.4 and 4.2 for
further explanation.) We also point out that even in the simplest examples, this embedding is not
obvious: in particular, the empty link in the skein module of the unknot is sent to a nontrivial
element in the skein module of S3\K. We expect that there is a topological interpretation of
this embedding, but we will not address this here. As an application of Conjecture 2, we prove
the following theorem (see Theorem 5.10).

Theorem 4. Suppose that f : Kq(S
3\unknot)→ Kq(S

3\K) is an AZ2
q -module map such that

im(f) ⊂ Kq(T
2) · ∅. Then there exist two-variable Laurent polynomials ck(−,−) and a sequence

P (n) :=
∑
k

ck(q, q
2n)J(n+ k)

such that P (n) = P (0) for all n.

We now summarize the contents of the paper. In § 2, we give an introduction to double
affine Hecke algebras and Kauffman bracket skein modules. In § 3, we prove Conjectures 1–3
for 2-bridge knots (when q = −1). In § 4, we use computations by Gelca and Sain to give
complete descriptions of the skein modules of the (2, 2p+1) torus knots and the figure eight knot,
and we prove Conjecture 2 for these knots. In § 5, we prove Theorems 2 and 3, which involve
divisibility properties for colored Jones polynomials. We also prove Theorem 4, which involves
inhomogeneous recursion relations for colored Jones polynomials. In § 6, we prove Conjectures 1
and 3 for (2, 2p + 1) torus knots and the figure eight knot. In § 7, we construct noncanonical
deformations of K̂q(S

3\trefoil) to a module over Hq,t for arbitrary t ∈ (C∗)4. In an appendix,
we include example computations of three-variable polynomials specializing to colored Jones
polynomials of the trefoil, the (5, 2) torus knot, and the figure eight knot.
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2. Preliminaries

In this section, we provide the background necessary for the rest of the paper by discussing
definitions and basic properties of the Kauffman bracket skein module and double affine Hecke
algebras.

2.1 Knot groups and their character varieties
Recall that two maps f, g : M → N of smooth manifolds are ambiently isotopic if they are
in the same orbit of the identity component of the diffeomorphism group of N . This is an
equivalence relation, and a knot in a 3-manifold M is the equivalence class of a smooth embedding
K : S1 ↪→M . If NK ⊂M is an (open) tubular neighborhood of K, then the complement M\NK

has a torus boundary.
For an oriented knot K ⊂ S3, there is a canonical identification T = S1 × S1 ∼

→ ∂(S3\K).
More precisely, let NK ⊂ S3 be a closed tubular neighborhood of K and let Nc be the closure
of its complement. Then the following lemma provides a unique (up to isotopy) identification of
NK ∩Nc with S1 × S1 (see [BZ03, Theorem 3.1]).

Lemma 2.1. There is a unique (up to isotopy) pair of simple loops (the meridian m and
longitude l) in T subject to the following conditions:

(i) m is nullhomotopic in NK ;

(ii) l is nullhomotopic in Nc;

(iii) m, l intersect once in T ;

(iv) in S3, the linking numbers (m,K) and (l,K) are 1 and 0, respectively.

Therefore, to an oriented knot K ⊂ S3, one can associate the data (π1(S3\K),m, l), where
m, l ∈ π1(S3\K) are the elements corresponding to the meridian and longitude defined above.
Since the meridian and longitude are well defined up to (base-point-free) isotopy, the elementsm, l
are well defined up to inner automorphism. The following theorem (see [BZ03, Theorem 3.15])
shows that this data is a complete invariant of the knot.

Theorem 2.2 (Waldhausen). Two knots K,K ′ ⊂ S3 are ambiently isotopic if and only if there
is an isomorphism φ : π1(S3\K)→ π1(S3\K ′) that satisfies φ(m) = m′ and φ(l) = l′.

2.1.1 Character varieties and the A-polynomial of a knot. If π is a finitely generated
(discrete) group and G is an algebraic group, the set Rep(π,G) := Hom(π,G) has a natural affine
scheme structure. Informally, one way to define this structure is to pick generators g1, . . . , gn for
π, so that a representation ρ : π → G is completely determined by the images of the gi. This
realizes Rep(π,G) as a subscheme of Gn, where the ideal defining this subscheme is given by
the relations between the gi. It is well known that Rep(−, G) is functorial with respect to group
homomorphisms f : π→ π′. In particular, the scheme structure on Rep(π,G) is independent of
the choices made (see, e.g., [LM85]).

There is a natural action of G on Rep(π,G) (by conjugation), and this induces an action of G
on the corresponding commutative algebra O(Rep(π,G)). We denote the subalgebra of invariant
functions by

OChar(π,G) := O(Rep(π,G))G.

The character variety is the spectrum of this algebra:

Char(π,G) := Spec(OChar(π,G)).

1340

https://doi.org/10.1112/S0010437X16007314 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007314


Double affine Hecke algebras and generalized Jones polynomials

This scheme parameterizes closed G orbits on Rep(π,G).
We now assume that π = π1(M) for a manifold M and specialize to G = SL2(C). To shorten

notation, we will write OChar(M) := OChar(π1(M),SL2(C)), etc. If K ⊂ S3 is a knot and
M := S3\K is the knot complement, then the inclusion T 2 = ∂M ⊂ M induces a map of
algebras ι : OChar(T 2)→ OChar(M).

We may identify the algebraOChar(T 2) withO(C∗×C∗)Z2 , where the generator of Z2 acts via
(a, b) 7→ (a−1, b−1). The algebra O(C∗ × C∗)Z2 is generated by the functions x(a, b) = a + a−1,
y(a, b) = b + b−1, and z(a, b) = ab + (ab)−1. Under the identification with OChar(T 2), these
functions correspond to (A,B) 7→ tr(A), (A,B) 7→ tr(B), and (A,B) 7→ tr(AB), respectively
(cf. Theorem 2.10).

We recall the definition of the A-polynomial, which was originally introduced in [CCG+94].
If M is a knot complement, we have the diagram

C∗ × C∗ � (C∗ × C∗)/Z2
∼= Char(T 2)← Char(M).

We let XM ⊂ C∗ × C∗ be the union of the one-dimensional components of the preimage of the
Zariski closure of the image of Char(M). A theorem of Thurston says that XM is nonempty,
which allows the following definition.

Definition 2.3. The A-polynomial is the polynomial A(m, l) ∈ C[m±1, l±1] that defines the
curve XM .

(Here we have used Lemma 2.1 to pick generators m, l for O(C∗ × C∗).)

Remark 2.4. The abelianization of the fundamental group of a knot complement is isomorphic to
Z, and it is well known that the set of representations factoring through the abelianization map
is a component of the character variety. This implies that l− 1 always divides the A-polynomial.
If K is the unknot, then π1(S3\K) = Z, which implies that the A-polynomial of the unknot
divides the A-polynomial of an arbitrary knot. If we write AK and AU for the A-polynomials
of a knot K and the unknot U , then AK = BKAU , and we have a map of C[m±1, l±1]-modules
(which is not a map of algebras):

φ : C[m±1, l±1]/AU → C[m±1, l±1]/AK , f 7→ BKf. (2.1)

2.2 Kauffman bracket skein modules
A framed link in an oriented 3-manifold M is an embedding of a disjoint union of annuli S1×[0, 1]
into M . (The framing refers to the [0, 1] factor and is a technical detail that will be suppressed
when possible.) We will consider framed links to be equivalent if they are ambiently isotopic.
In what follows, the letter q will denote either an element of C∗ or the generator of the ring
C[q, q−1] (we will specify which when it matters and when it is not clear from context).

Let L(M) be the vector space spanned by the set of ambient isotopy classes of framed
unoriented links in M (including the empty link). Let L′(M) be the smallest subspace of L(M)
containing the skein expressions L+− qL0− q−1L∞ and Lt©+ (q2 + q−2)L. The links L+, L0,
and L∞ are identical outside of a small 3-ball (embedded as an oriented manifold), and inside the
3-ball they appear as in Figure 1. (All pictures drawn in this paper will have blackboard framing.
In other words, a line on the page represents a strip [0, 1] × [0, 1] in a tubular neighborhood of
the page, and the strip is always perpendicular to the paper (the intersection with the paper is
[0, 1]× {0}).)
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Figure 1. Kauffman bracket skein relations.

Definition 2.5 [Prz91]. The Kauffman bracket skein module is the vector space Kq(M) :=
L/L′. It contains a canonical element ∅ ∈ Kq(M) corresponding to the empty link.

Remark 2.6. To shorten the notation, if M = F× [0, 1] for a surface F , we will often write Kq(F )
for the skein module Kq(F × [0, 1]).

Example 2.7. One original motivation for defining Kq(M) is the isomorphism

C[q, q−1]
∼
→ Kq(S

3), 1 7→ ∅.

Kauffman proved that this map is an isomorphism and that the inverse image of a link is the Jones
polynomial of the link. The map is surjective because the skein relations allow one to remove
all crossings and loops in a diagram of any link, but showing that it is injective is (essentially)
equivalent to showing that the Jones polynomial of a link is well defined, which is a nontrivial
theorem.

In general Kq(M) is just a vector space; however, if M has extra structure, then Kq(M) also
has extra structure. In particular:

(i) if M = F × [0, 1] for some surface F , then Kq(M) is an algebra, where the multiplication
is given by ‘stacking links’;

(ii) if M is a manifold with boundary, then Kq(M) is a module over Kq(∂M). The multiplication
is given by ‘pushing links from the boundary into the manifold’;

(iii) an oriented embedding M ↪→ N of 3-manifolds induces a linear map Kq(M) → Kq(N).
Therefore, Kq(−) can be considered as a functor on the category whose objects are oriented
three-dimensional manifolds and whose morphisms are oriented embeddings;4

(iv) if q = ±1, then Kq(M) is a commutative algebra (for any oriented 3-manifold M). The
multiplication is given by ‘disjoint union of links’, which makes sense because when q = ±1,
the skein relations allow strands to ‘pass through’ each other.

Remark 2.8. The third property is stated in [Prz91, Proposition 4] and can be proved using the
isotopy extension theorem. The first two properties are consequences of the third: for example,
there is an obvious map F×[0, 1]tF×[0, 1]→ F×[0, 1], and the product structure ofKq(F×[0, 1])
comes from the application of the functor Kq(−) to this map.

4 To be pedantic, Kq(−) is functorial with respect to maps M → N that are oriented embeddings when restricted
to the interior of M . In particular, if we identify a surface F with a boundary component of M and N , then the
gluing map M tN →M tF N induces a linear map Kq(M)⊗C Kq(N)→ Kq(M tF N).
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Example 2.9. Let M = (S1× [0, 1])× [0, 1] be the solid torus. If u is the nontrivial loop, then the
map C[u]→Kq((S

1× [0, 1])× [0, 1]) sending un to n parallel copies of u is surjective (because all
crossings and trivial loops can be removed using the skein relations). This is clearly an algebra
map and it also injective (see, e.g., [SW07]).

2.2.1 Skein modules and representation varieties. Here we recall a theorem of Przytycki and
Sikora [PS00] (see also Bullock [Bul97]) that identifies the commutative algebra Kq=−1(M) with
the algebra OChar(M) of functions on the SL2(C)-character variety of π1(M).

An unbased loop γ : S1
→M determines a conjugacy class in π1(M) and, since the trace of

a matrix is invariant on conjugacy classes, we can define Tr(γ) ∈ OChar(M) via

Tr(γ)(ρ) := Tr[ρ(γ)].

Theorem 2.10 [PS00, Bul97]. The assignment γ 7→ −Tr(γ) extends to an algebra isomorphism

Kq=−1(M)
∼
→ OChar(M).

The key observation behind this theorem is that for q = −1, the skein relation becomes

Tr(A)Tr(B) = Tr(AB) + Tr(AB−1).

(This formula is a simple consequence of the Hamilton–Cayley identity in SL2(C).)

2.2.2 The Kauffman bracket skein module of the torus. We recall that the quantum torus is
the algebra

Aq :=
C〈X±1, Y ±1〉
XY − q2Y X

,

where q ∈ C∗ is a parameter. Note that Z2 acts by algebra automorphisms on Aq by inverting
X and Y .

We now recall a beautiful theorem of Frohman and Gelca in [FG00] that gives a connection
between skein modules and the invariant subalgebra AZ2

q . First, we introduce some notation.
Let Tn ∈ C[x] be the Chebyshev polynomials defined by T0 = 2, T1 = x, and the relation
Tn+1 = xTn − Tn−1. If m, l are relatively prime, write (m, l) for the m, l curve on the torus (the
simple curve wrapping around the torus l times in the longitudinal direction and m times in the
meridian direction). It is clear that the links (m, l)n span Kq(T

2) and it follows from [SW07]
that this set is actually a basis. However, a more convenient basis is given by the elements
(m, l)T := Td((m/d, l/d)) (where d = gcd(m, l)). Define er,s = q−rsXrY s ∈ Aq, which form a
linear basis for the quantum torus Aq and satisfy the relations

er,seu,v = qrv−user+u,s+v.

Theorem 2.11 [FG00]. The map Kq(T
2) → AZ2

q given by (m, l)T 7→ em,l + e−m,−l is an
isomorphism of algebras.

Remark 2.12. As explained in § 2.1, if K is an oriented knot, then there is a canonical
identification of S1 × S1 with the boundary of S3\K. If the orientation of K is reversed,
this identification is twisted by the ‘hyper-elliptic involution’ of S1 × S1 (which negates
both components). However, this induces the identity isomorphism on Kq(T

2 × [0, 1]), so
the AZ2

q -module structure on Kq(S
3\K) is canonical and does not depend on the choice of

orientation of K.
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We also recall another presentation of this algebra that will be useful for computations. Let
x, y, z ∈ Kq(T

2) be the meridian, longitude, and (1, 1) curve, respectively.

Theorem 2.13 [BP00]. The algebra Kq(T
2) is generated by x, y, z with relations

[x, y]q = (q2 − q−2)z, [z, x]q = (q2 − q−2)y, [y, z]q = (q2 − q−2)x, (2.2)

and the additional cubic relation

q2x2 + q−2y2 + q2z2 − qxyz = 2(q2 + q−2). (2.3)

Combining this presentation with the isomorphism Kq(T
2) ∼= AZ2

q , we have

x 7→ X +X−1, y 7→ Y + Y −1, z 7→ q−1(XY +X−1Y −1).

2.2.3 A topological pairing. Let K ⊂ S3 be a knot. There is a natural pairing

Kq(D
2 × S1)⊗C Kq(S

3\K)→ C,

which is used to compute colored Jones polynomials. Informally, this pairing is induced by gluing
a solid torus D2 × S1 to the complement of a tubular neighborhood of a knot to obtain S3.

Let NK ⊂ S3 be a closed tubular neighborhood of K and let Nc be the closure of its
complement. Then NK ∩ Nc is a torus T , and we let NT be a closed tubular neighborhood
of T . By Remark 2.12, both Kq(NK) and Kq(Nc) have canonical AZ2

q -module structure. More
precisely, if we identify NT with T × [0, 1], then the embedding T × [0, 1] ↪→ S3 gives Kq(Nc)
and Kq(NK) a left and a right AZ2

q -module structure,5 respectively.
It is easy to see that Kq(NK tNc) ∼= Kq(NK)⊗C Kq(Nc), and the embedding property (iii)

above shows that this induces a map 〈−,−〉 : Kq(NK)⊗CKq(Nc)→ Kq(S
3). If α ⊂ NT is a link,

it can be isotoped to a link inside NK or a link inside Nc, and inside S3 both these links are
isotopic. Since these isotopies define the module structure of Kq(NK) and Kq(Nc), the pairing
〈−,−〉 descends to

〈−,−〉 : Kq(D
2 × S1)⊗Kq(T 2) Kq(S

3\K)→ C. (2.4)

(To ease notation for later reference, in this formula we have identified NK with the solid torus
D2 × S1 and written S3\K for Nc. We also used the isomorphism Kq(S

3) ∼= C described in
Example 2.7.)

2.2.4 The colored Jones polynomials. The colored Jones polynomials Jn(K; q) ∈ C[q±1]
of a knot K ⊂ S3 were originally defined by Reshetikhin and Turaev in [RT90] using the
representation theory of Uq(sl2). (In fact, their definition works for any semisimple Lie algebra
g, but we only deal with g = sl2.) Here we recall a theory of Kirby and Melvin that shows that
Jn(K; q) can be computed in terms of the pairing from the previous section.

If NK is a tubular neighborhood of the knot K, then we identify Kq(NK) ∼= C[u], where
u ∈ Kq(NK) is the image of the (0-framed) longitude l ∈ Kq(∂NK). Let Sn ∈ C[u] be the
Chebyshev polynomials of the second kind, which satisfy the initial conditions S0 = 1 and S1 = u
and the recursion relation Sn+1 = uSn − Sn−1.

5 The asymmetry between left and right comes from the definition of multiplication in F × [0, 1]: the product ab
means ‘stack a on top of b’. Since the tori T 2×{0} and T 2×{1} are glued to Nc and NK , the spaces Kq(Nc) and
Kq(NK) are left and right Kq(T 2)-modules, respectively.
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Theorem 2.14 [KM91]. If ∅ ∈ Kq(S
3\K) is the empty link, we have

Jn(K; q) = (−1)n−1〈∅ · Sn−1(u),∅〉.

Remark 2.15. The sign correction is chosen so that Jn(unknot; q) = (q2n−q−2n)/(q2−q−2). Also,

with this normalization, J0(K; q) = 0 and J1(K; q) = 1 for every knot K. These conventions agree

with the convention of labelling irreducible representations of Uq(sl2) by their dimension.

2.3 The C∨C1 double affine Hecke algebra
In this section, we define the five-parameter family of algebras Hq,t which was introduced by Sahi
in [Sah99] (see also [NS04]). This is the universal deformation of the algebra C[X±1, Y ±1] o Z2

(see [Obl04]), and it depends on the parameters q ∈ C∗ and t ∈ (C∗)4. The algebra Hq,t can be

abstractly presented as follows: it is generated by the elements T0, T1, T∨0 , and T∨1 subject to
the relations

(T0 − t1)(T0 + t−1
1 ) = 0,

(T∨0 − t2)(T∨0 + t−1
2 ) = 0,

(T1 − t3)(T1 + t−1
3 ) = 0,

(T∨1 − t4)(T∨1 + t−1
4 ) = 0,

T∨1 T1T0T
∨
0 = q.

(2.5)

Remark 2.16. Comparing our notation to [NS04], our q−2 is their q, and our parameters (t1,

t2, t3, t4) are their (k0, u0, k1, u1). These parameters relate to the original parameters a, b, c, d of

Askey and Wilson [AW85] via a = t3t4, b = −t3t−1
4 , c = q−1t1t2, and d = −q−1t1t

−1
2 .

Remark 2.17. The algebra Hq,t is a flat deformation of the fundamental group algebra of an

orbifold Riemann surface. Recall that if X is a simply connected Riemann surface and Γ is a

cocompact lattice (i.e. a Fuchsian subgroup) in Aut(X), the quotient Σ = X/Γ is defined as an

orbifold and Γ is isomorphic to the (orbifold) fundamental group of Σ (see, e.g., [Sco83, § 2]):

πorb
1 (Σ, ∗) =

〈
a1, b1, . . . , ag, bg, c1, . . . , cn

∣∣∣∣∣cni
i = 1,

g∏
i=1

[ai, bi]c1 · · · cn = 1

〉
,

where the ci are generators corresponding to loops around special points of X with stabilizers

Z/niZ and ni > 1. In the case when X = C and Γ = (Z⊕ iZ)oZ2 is acting on X by translation–

reflections, we recover from the isomorphism G ∼= πorb
1 (Σ, ∗) the presentation

Γ = 〈c1, c2, c3, c4 | c2
i = 1, c1c2c3c4 = 1〉,

where the ci are loops around four special points {0, 1/2, 1/2 + i/2, i/2} ∈ C. Thus, H1,1,1,1,1
∼=

C[Γ]. For other interesting examples of Hecke algebras associated to Fuchsian groups, see

[EOR07].
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For t = 1, this algebra is isomorphic to Aq o Z2 (see Remark 2.19). As mentioned in the
introduction, this algebra can also be realized as a subalgebra of a certain localization of AqoZ2.
More precisely, we recall that Aq oZ2 is generated by X, ŷ, and s (all invertible), which satisfy
the relations

sX = X−1s, sŷ = ŷ−1s, s2 = 1, Xŷ = q2ŷX.

Let Dq be the localization of Aq o Z2 obtained by inverting all nonzero polynomials in X, and
define the following operators in Dq:

T0 = t1sŷ −
q2t̄1X

2 + qt̄2X

1− q2X2
(1− sŷ),

T1 = t3s+
t̄3 + t̄4X

1−X2
(1− s).

(We have slightly abused notation by giving these operators the same names as the abstract
generators of Hq,t.) The following Dunkl-type embedding is defined using these operators (see
[NS04, Theorem 2.22]).

Proposition 2.18 [Sah99]. The assignments

Ti 7→ Ti, T∨0 7→ qT−1
0 X, T∨1 7→ X−1T−1

1 (2.6)

extend to an injective algebra homomorphism Hq,t→ Dq.

We recall that the standard polynomial representation V = C(X) of Dq is isomorphic as a
C[X±1]-module to rational functions in X, with the action of s and ŷ given by

s · f(X) = f(X−1), ŷ · f(X) = f(q−2X).

Under this action, it is easy to check that both operators T0 and T1 preserve the subspace
C[X±1] ⊂ C(X), which shows that the action of Hq,t on C(X) preserves C[X±1] ⊂ C(X). In
other words, C[X±1] is an Hq,t-module, which is called the polynomial representation.

Remark 2.19. The algebra Hq,t is also generated by the elements X±1, Y := T1T0, and T := T1.
With this set of generators, the relations become the following (see [NS04, 2.21]):

XT = T−1X−1 − t̄4,
T−1Y = Y −1T + t̄1,

T 2 = 1 + t̄3T,

TXY = q2T−1Y X − q2t̄1X − qt̄2 − t̄4Y, (2.7)

where t̄i = ti − t−1
i . This presentation shows that Hq,1,1,1,1 = Aq o Z2 (as subalgebras of

Dq), since, under this specialization of the parameters, we have T = T1 = s and Y = ŷ.
Furthermore, Cherednik’s sl2 double affine Hecke algebra Hq,t is isomorphic to Hq,1,1,t−1,1. Under
this specialization, the presentation (2.7) becomes

TXT = X−1, TY −1T = Y, (T − t−1)(T + t) = 0, XY = q2T−2Y X. (2.8)

The standard presentation of Hq,t (see [Che05]) replaces the last relation (2.8) with XY =
q2Y XT 2. Under the map Hq,t→ Hq,1,1,t−1,1 given by X 7→ X−1, Y 7→ Y −1, and T 7→ T−1, this
becomes the last relation in (2.8).
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The element e := (T1 + t−1
3 )/(t3 + t−1

3 ) is an idempotent in Hq,t, and the algebra SHq,t :=
eHq,te is called the spherical subalgebra. It is easy to check that e commutes with X + X−1,
and this implies that the subspace e ·C[X±1] is equal to the subspace C[X +X−1] of symmetric
polynomials. The spherical algebra therefore acts on C[X +X−1], and this module is called the
symmetric polynomial representation.

A presentation for the spherical subalgebra SHq,t has been given by Terwilliger in [Ter13].
(A less symmetric presentation was given in [Koo08].) We now recall this presentation in our
notation. Define

x = (X +X−1)e,

y = (Y + Y −1)e,

z = (T1T
∨
0 + (T1T

∨
0 )−1)e,

Ω = −qyzx+ q2x2 + q2y2 + q−2z2 − qαx− qβy − q−1γz,

where

α := t̄1t̄2 + (qt3)t̄4, β := t̄2t̄4 + (qt3)t̄1, γ := t̄1t̄4 + (qt3)t̄2.

Here and later we use the notation qt3 := qt3 − q−1t−1
3 .

Theorem 2.20 [Ter13, Proposition 16.4]. The spherical subalgebra is generated by x, y, z with
relations

[x, y]q = (q2 − q−2)z − (q − q−1)γ,

[y, z]q = (q2 − q−2)x− (q − q−1)α,

[z, x]q = (q2 − q−2)y − (q − q−1)β,

Ω = (t̄1)2 + (t̄2)2 + (qt3)2 + (t̄4)2 − t̄1t̄2(qt3)t̄4 + (q2 + q−2)2.

Remark 2.21. To convert from Terwilliger’s notation to ours, we note that his generators (t0,
t1, t2, t3) are our generators (−iT1,−iT0,−iT∨0 ,−iT∨1 ) (where i2 = −1). Furthermore, his (X,Y )
are our (X−1, Y ), and his (A,B,C) are our (−y,−x,−z). His Ω is our Ω, and his (α, β, γ) are
our (−β,−α,−γ). Finally, his parameters (q, P1, P2, P3) are our parameters (q−1, it̄1, it̄2, it̄4).

Proof. Technically, [Ter13, Proposition 16.4] gives a presentation of the (unital) subalgebra of
Hq,t generated by x, y, z, T1. However, all elements in this subalgebra commute with T1, so when
we multiply this subalgebra by the idempotent e to obtain the (nonunital) spherical subalgebra,
the generator T1 is absorbed by e and becomes the constant t3. Furthermore, all elements of
the spherical subalgebra commute with T1, so [Ter13, Theorem 13.6] shows that the spherical
subalgebra is contained in the algebra generated by x, y, z, T1. We therefore have the equality
eHq,te = e〈x, y, z, T1〉e of (nonunital) subalgebras of Hq,t. Finally, the Poincaré–Birkhoff–Witt
theorem [Ter13, Proposition 12.13] for the algebra 〈x, y, z, T1〉 shows that this algebra can be
identified with the tensor product 〈x, y, z〉 ⊗C C[T1], which shows that the claimed presentation
above is actually a presentation (i.e. that we have listed sufficiently many relations). 2

Remark 2.22. Let t′3 = qt3. The above presentation makes it clear that if we specialize any three
of the parameters {t1, t2, t′3, t4} to 1 and set the last equal to t, then the four spherical subalgebras
obtained in this way are isomorphic. This is not a priori obvious. (We also remind the reader
that our parameters q, t3 are the parameters q1/4, t1/2 of the standard presentation of the DAHA
of type A1 in [Che05].)
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Remark 2.23. If q = 1, then the spherical subalgebras are commutative for any (t1, t2, t3, t4). The

corresponding varieties are affine cubic surfaces studied in detail in [Obl04] (and the presentation

in [Obl04] agrees exactly with the one above, where our x, y, z are his X1, X2, X3). Also, if ti = 1,

a short computation with the commutation relations shows that the presentation of Theorem 2.20

agrees with the presentation of [BP00] for the skein algebra of the torus (see Theorem 2.13).

The operator Lt1,t2 := Y + Y −1 is called the Askey–Wilson operator : it also commutes

with e, so it preserves the subspace of symmetric functions C[X + X−1]. If we write Lsym
t1,t2

for the restriction of this operator to C[X + X−1], then Lsym
t1,t2

is diagonalizable with distinct

eigenvalues (for generic parameters), and its eigenvectors are the Askey–Wilson polynomials (see,

e.g., [Mac03]). In the following lemma, we use the notation (x)+ = x+ x−1 and (x)− = x− x−1.

Lemma 2.24. If t3 = t4 = 1, the Askey–Wilson operator can be written as follows:

Lsym
t1,t2

=
1

(X2)+ − (q2)+
[t1(X2ŷ)+ + t−1

1 (X−2ŷ)+ − t+1 (X2)+ − (t−1
1 q2)+(ŷ+ − 2)

+ t−2 (q(Xŷ)+ − q−1(X−1ŷ)+ − q−X+)] + t+1 .

Proof. This follows from [NS04, Proposition 5.8] and a short calculation. 2

(We remark that under the isomorphism of Theorem 2.11, (Xŷ)+ = q(1, 1), where the right-

hand side is the (1, 1) curve on the torus. This accounts for the apparent differences in the powers

of q in the last terms of the above formula for Lsym
t1,t2

and Remark 6.3.)

Let M be an Aq oZ2-module, let M loc be its localization at nonzero polynomials in X, and

suppose that M →M loc is injective. Let U0 = (1− q2X2)−1(1− ŝŷ) ∈ Dq.

Lemma 2.25. If U0M ⊂M , then Hq,t acts on M .

Proof. Cherednik’s embedding of Hq,t into Dq is given by the following formulas (see [Che05]):

X 7→ X, T 7→ T1, Y 7→ ŷsT1,

with parameters (t1, t2, t3, t4) = (1, 1, t, 1). We now twist this embedding by the automorphism

of Dq given by X 7→ qX, ŷ 7→ ŷ, and s 7→ sŷ. After this twist, the map Hq,t→ Dq is given by

X 7→ qX, T 7→ tsŷ + t̄U0, Y 7→ tŷ + t̄sU0.

By assumption, U0M ⊂M , which implies that Hq,tM ⊂M . 2

3. Deformed skein modules of 2-bridge knots

In this section, we will prove Conjectures 1–3 (when q = −1) for an arbitrary 2-bridge knot. To

this end, we will use an algebraic construction of SL2 character varieties of finitely generated

groups due to Brumfiel and Hilden [BH95]. We begin by recalling the results of [BH95] in the

form that we need.
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3.1 The Brumfiel–Hilden construction
Let Grp be the category of (discrete) groups and let Alg∗ be the category of associative C-
algebras equipped with an anti-involution a 7→ a∗. Assigning to a group π its complex group
algebra C[π] defines a functor C[−] : Grp→Alg∗, where the anti-involution on C[π] is defined on
the group elements by g∗ := g−1 and is extended to C[π] by linearity. The group algebra functor
has an obvious right adjoint SU : Alg∗→ Grp defined by SU(A) := {a ∈ A | aa∗ = a∗a = 1}.

Now, for a commutative C-algebra B, the algebra M2(B) of 2 × 2 matrices over B has an
anti-involution given by the classical adjoint:(

a b

c d

)∗
:=

(
d −b
−c a

)
. (3.1)

In this case, SU[M2(B)] = SL2(B). Thus, for any commutative C-algebra B, we have a natural
bijection

HomAlg∗(C[π],M2(B)) = HomGrp(π,SL2(B)). (3.2)

The representation scheme Rep(π) := Rep(π,SL2) is defined by its functor of points and,
with the identification (3.2), this can be written as

Rep(π) : CommAlg→ Sets, B 7→ HomAlg∗(C[π],M2(B)).

As explained in § 2.1.1, this functor is represented by the commutative algebra ORep(π) :=
O(Rep(π)). Let ρu : C[π]→ M2(ORep(π)) be the algebra map corresponding to the universal
representation ρu : π → SL2(ORep(π)). Geometrically, the scheme Rep(π) parametrizes
representations of π into SL2(C), and ρu(g) is the section of the trivial bundle Rep(π)×M2(C)
given by ρ 7→ ρ(g).

It is easy to see that for any π, the homomorphism ρu factors through the algebra

H[π] := C[π]
/
{[g, h+ h−1] | g, h ∈ π},

which we call the Brumfiel–Hilden algebra of π (since it was introduced and studied in [BH95]).
The algebra H[π] has a canonical (commutative) subalgebra H+[π] := {a ∈H[π] | a∗ = a} (which
is actually central in H[π]). The meaning of these algebras is made clear by the following result
proved in [BH95, Proposition 9.1].

Theorem 3.1. Assume that π is a finitely presented group.

(i) The universal representation ρu : C[π] → M2(ORep(π)) factors through H[π], and the
induced map ρ̄u : H[π] → M2(ORep(π)) is injective. The image of ρ̄u coincides with
the subring of GL2(C)-invariants in M2(ORep(π)), and we therefore have a canonical
isomorphism of algebras

ρ̄u : H[π]
∼
→M2(ORep(π))GL2(C).

(ii) The invariant subring H+[π] is mapped bijectively by ρ̄u onto ORep(π)GL2(C).

Summarizing, we have the following commutative diagram.

H+[π] ⊂ - H[π] �� C[π]

ORep(π)GL2(C)

∼=

?
⊂- M2(ORep(π))GL2(C)

∼=

?
⊂- M2(ORep(π))

ρu

?
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Geometrically, this theorem says that H[π] is the algebra of GL2(C)-equivariant matrix-
valued functions on the representation scheme, and H+[π] is the (commutative) algebra of
GL2(C)-invariant scalar functions. In other words, H+[π] is the ring of functions on the SL2

character variety of π.
Now suppose that M is a manifold with boundary ∂M . The inclusion ∂M → M induces a

map of groups α : π1(∂M)→ π1(M). By functoriality of the Brumfiel–Hilden construction, we
have the following commutative diagram of algebra homomorphisms.

H+[π1(∂M)] ⊂- H[π1(∂M)] �� C[π1(∂M)]

H+[π1(M)]

α+
∗

?
⊂ - H[π1(M)]

ᾱ

?
�� C[π1(M)]

α

?

∩

If M = S3\K is the complement of a nontrivial knot in S3, then ∂M = T 2 and the map α is
an embedding (see, e.g., [BZ03, Proposition 3.17]) (however, the induced map ᾱ is not injective).
Also, in this case the map C[π1(T 2)]→ H[π1(T 2)] is an isomorphism because the fundamental
group of T 2 is abelian. With the identifications of Theorem 3.1, the leftmost arrow is precisely
the peripheral map discussed in § 2.1.1.

3.2 The Brumfiel–Hilden algebra of a 2-bridge knot
Theorem 3.1 reduces the problem of describing the character variety Char(π,SL2) for a finitely
presented group to that of describing the algebra H[π]. In many interesting cases, H[π] can be
computed explicitly (see [BH95, ch. 3]). If K ⊂ S3 is a 2-bridge knot, the fundamental group
π1(S3\K) is generated by two elements (meridians) subject to one relation; in this case, H+[π]
is isomorphic to the ring of regular functions on a plane curve and H[π] has the structure of a
generalized quaternion algebra over H+[π]. We will briefly describe this structure below, and refer
the reader to [BH95, Appendix A4*] for proofs and more details. We begin with the standard
presentation of π1(S3\K) in the case of 2-bridge knots.

3.2.1 The fundamental group. Recall that the 2-bridge knots can be indexed by pairs (p, q)
of relatively prime odd integers with p > 0 and 0 < q < p. The pairs (p, q) and (p′, q′) define
the same knot if and only if p = p′ and qq′ ≡ ±1 (mod p). For a knot K = K(p, q), the group
π := π1(S3\K(p, q)) has a presentation

π = 〈a, b | aw = wb〉,

where a and b are meridians around two trivial strands contained in one of the balls in a 2-bridge
decomposition of S3\K. The element w can be expressed in terms of a±1 and b±1 as a product
of two words:

w = vv̄,

which are images of each other under the anti-involution of the free group F 〈a, b〉 that switches
a and b. The word v is given by

v := be1ae2 · · · (a or b)ed ,

where d = (p− 1)/2 and the exponents en ∈ {±1} are computed by the rule sign(en) = sign(kn),
with kn defined by the conditions

kn ≡ nq (mod 2p), −p < kn < p, kn 6= 0.

1350

https://doi.org/10.1112/S0010437X16007314 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007314


Double affine Hecke algebras and generalized Jones polynomials

The peripheral map α : π1(T 2)→ π is defined by the assignments

α(m) = a, α(l) = ww̃a−s,

where w̃ is the word w written backwards (without switching a and b) and s = 4
∑d

n=1 en.

Example 3.2. Let p = 5 and q = 3. The corresponding knot K = K(5, 3) is the figure eight knot.
In this case, d = (5−1)/2 = 2, k1 = 3, and k2 = −4, so that e1 = 1, e2 = −1, and s = e1 +e2 = 0.
We therefore have w = ba−1b−1a, and the fundamental group has the following presentation:

π1(K) = 〈a, b | aba−1b−1a = ba−1b−1ab〉 = 〈a, b | aba−1ba = bab−1ab〉.

(The second presentation is standard, and the relation in the first is conjugate to the relation in
the second.) In this notation, the peripheral map α : π1(T 2)→ π1(K) is given by

m 7→ a, l 7→ ba−1b−1a2b−1a−1b.

3.2.2 The Brumfiel–Hilden algebra. For a 2-bridge knot, the algebra H[π] has the following
structure (see [BH95, Proposition A.4*.9]).

Theorem 3.3. Let π be the knot group of a 2-bridge knot of type (p, q). There is a polynomial
Q ∈ C[I, J ] of degree d = (p− 1)/2 such that H[π] admits an H+[π]-module decomposition

H[π] = H+[π]⊕ H̄+[π]i⊕H+[π]j ⊕ H̄+[π]k,

where

H+[π] :=
C[x, I, J ]

〈IQ, I + J − 4(x2 − 1)〉
, H̄+[π] :=

C[x, I, J ]

〈Q, I + J − 4(x2 − 1)〉
.

The multiplication in H[π] is determined by the (generalized) quaternion relations

i2 = I, j2 = J, ij = −ji = k.

The canonical projection C[π]→ H[π] is given by the equations

a±1 7→ x± 1
2(i + j), b±1 7→ x∓ 1

2(i− j).

Finally, the canonical anti-involution ∗ : H[π]→ H[π] is given by

x∗ = x, i∗ = −i, j∗ = −j, k∗ = −k.

Remark 3.4. The image of the polynomial Q in H+[π] determines a curve of conjugacy
classes of mostly irreducible SL2 representations of π; more precisely, the classes of irreducible
representations ρ : π→ SL2(C) correspond to the algebra homomorphisms ϕ : H+[π]→ C such
that ϕ(Q) = 0 and ϕ(I) 6= 0. It is shown in [BH95] that Q actually has integral coefficients, i.e.
Q ∈ Z[I, J ]. We give a formula for Q in Remark 3.7.

Remark 3.5. Under the identification of Theorem 3.1, H+[π] ∼= OChar(π), the generators x, I,
and J correspond to the following functions:

x 7→ 1
2Tr(a),

I 7→ 1
2Tr(a)2 + 1

2Tr(a)Tr(b)− Tr(ab)− 2,

J 7→ 1
2Tr(a)2 − 1

2Tr(a)Tr(b) + Tr(ab)− 2,

(3.3)

where Tr(g) is the character function ρ 7→ Tr(ρ(g)).
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3.3 The nonsymmetric skein module (at q = −1)
In this section, we prove Conjectures 1–3 for all 2-bridge knots when q = −1. We fix a 2-bridge
knot K = K(p, q) and write H := H[π] and H+ := H+[π] for the corresponding knot group
π = π1(S3\K). Let X ∈ H and Y ∈ H denote the images of the meridian m and longitude l
under the (induced) peripheral map

ᾱ : H[T 2] = C[m±1, l±1]→ H. (3.4)

With the identification of Theorem 3.3, we have

X±1 = x± 1
2(i + j), Y = ww̃X−s. (3.5)

Next, we let H+[X±1] denote the subalgebra of H generated by H+ and X±1. Note that
H+[X±1] is commutative and the canonical anti-involution on H restricts to H+[X±1] and maps
X 7→ X−1. The following observation is implicit in [BH95, Appendix A.4*].

Proposition 3.6. For any 2-bridge knot, the image of the peripheral map (3.4) is contained in
H+[X±1].

Proof. We need to prove that Y ∈ H+[X±1]. Following [BH95], we introduce the algebra

H̄[〈a, b〉] := H[〈a, b〉]/〈a+ − b+〉,

which is the quotient of the Brumfiel–Hilden algebra of the free group F 〈a, b〉 on generators a, b
modulo the relation a+ = b+, where a+ = 1/2(a+ a−1). Note that, for any 2-bridge knot group
π = 〈a, b | aw = wb〉, the natural projection H[〈a, b〉]� H[π] factors through H̄[〈a, b〉], since the
relation aw = wb implies that a+ = b+ in H[π]. The advantage of H̄[〈a, b〉] over H[〈a, b〉] is that
H̄ is a free quaternion algebra:

H̄ = H̄+ ⊕ H̄+i⊕ H̄+j ⊕ H̄+k,

with H̄+ being isomorphic to a free polynomial ring in two variables (see [BH95, Proposition
3.1]).

The algebra H̄[〈a, b〉] inherits many symmetries fromH[〈a, b〉]. In particular, we have the anti-
automorphism γ : H̄ → H̄ that fixes a and b and sends ab 7→ ba, and the involution σ : H̄ → H̄
that ‘switches a and b’ (i.e. σ(a) = b and σ(b) = a). It is easy to see that γ and σ act trivially
on H̄+, while

γ : (i, j,k) 7→ (i, j,−k), σ : (i, j,k) 7→ (−i, j,−k).

If we write v = D + Ei + Fj +Gk ∈ H̄ for some D,E, F,G ∈ H̄+, then

v̄ = σγ(v) = D − Ei + Fj +Gk.

It follows that

w = vv̄ = L+Mj +Nk, w̄ = γ(w) = L+Mj −Nk,

where

L = D2 − E2I + F 2J −G2IJ,

M = 2DF + 2GEI,

N = 2DG+ 2EF.

(3.6)
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In H̄, we therefore have

ww̄ = (L2 +M2J +N2IJ) + 2MNJi + 2MLj. (3.7)

On the other hand,

ww∗ = L2 −M2J +N2IJ = 1, (3.8)

aw − wb = (L−NJ)i. (3.9)

It follows from (3.7) and (3.8) that ww̄ = (1 + 2M2J) + 2M(NJi+Lj) in H̄, while (3.9) implies
that Li = NJi in H[π]. Hence, projecting onto H[π], we get

Y = ww̄X−s = [(1 + 2M2J) + 2ML(i + j)]X−s = [(1 + 2M2J) + 2MLδ]X−s, (3.10)

where δ := X −X−1 = i + j; see (3.5). This shows that Y ∈ H+[X±1], completing the proof of
the proposition. 2

Remark 3.7. In the notation of the previous proposition, Q = L−NJ in H+[π].

Example 3.8. In the case of the figure eight knot, K = K(5, 3) (cf. Example 3.2), we have

v = ba−1 = (x− 1
2(i− j))(x− 1

2(i + j)) = (1 + 1
2I)− xi + 1

2k.

Hence, by (3.6),
L = 1− 1

2IJ, M = −xI, N = 1 + 1
2I.

By Remark 3.7, Q = 1− J − IJ and, by Theorem 3.3,

OChar(π) = H+[π] ∼=
C[x, I, J ]

〈I(1− J − IJ), I + J − 4(x2 − 1)〉
.

Finally, formula (3.10) gives

Y = (1 + I − IJ)− IJX2 + IX−2.

Next, we note that S = {1, δ, δ2, . . .} is an Ore subset in H. We write H[δ−1] for the
localization of H at S and define

M := H+[X±1] +H+[X±1]Qδ−1 ⊂ H[δ−1], (3.11)

where Q = Q(I, J) is the polynomial featured in Theorem 3.3. By construction, M is a module
(actually, a fractional ideal) over H+[X±1] and, by Proposition 3.6, it is a module over C[m±1,
l±1]. We extend this last module structure to C[m±1, l±1] o Z2, letting s ∈ Z2 act on M by the
canonical involution X 7→ X−1.

Now, recall the double affine Hecke algebra from (2.5). We let q = −1 and t3 = t4 = 1 and
define

T0 7→ −t1sY + (t̄1X + t̄2)δ−1(1 + sY ),

T∨0 7→ T−1
0 X−1,

T1 7→ s,

T∨1 7→ Xs,

(3.12)

where t̄i = ti − t−1
i for i = 1, 2. The main result of this section is the following theorem.
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Theorem 3.9. For any 2-bridge knot, the assignment (3.12) extends to an action of H−1,t1,t2

on M .

Remark 3.10. The term (1+sY ) in formula (3.12) agrees with the term (1−sŷ) in formula (2.6)
because of the sign in Theorem 2.10 (a loop γ in the skein algebra at q = −1 gets sent to the
function ρ 7→ −Tr(ρ(γ)) on the character variety). (The change X 7→ X−1 is inessential.)

Proof. Let U = δ−1(1 + sY ) = δ−1(1 + Y −1s) ∈ H[δ−1]. We need to check that UM ⊂ M . For
this, it suffices to check that there exist f, g, h ∈ H+[X±1] such that

Y = fQ+ gδ − 1, (3.13)

Y Q = (1 + hδ)Q (3.14)

or, equivalently, there exist f ′, g′, h′ ∈ H+[X±1] such that

Y −1 = f ′Q+ g′δ − 1, (3.15)

Y −1Q = (1 + h′δ)Q. (3.16)

Indeed, observe that

M = H+[X±1] +H+[X±1]Qδ−1 = H+ +H+δ +H+Qδ−1, (3.17)

so it suffices to check that U maps H+, H+δ, and H+Qδ−1 into M . Assuming (3.15) and (3.16),
we have

U [H+] = δ−1(1 + Y −1s)H+ = δ−1(1 + Y −1)H+

= δ−1(f ′Q+ g′δ)H+ = g′H+ + f ′H+Qδ−1.

Similarly, we have

U [H+Qδ−1] = δ−1(1 + Y −1s)H+Qδ−1 = δ−1(1− Y −1)QH+δ−1

= δ−1(−h′δQ)H+δ−1 = −h′H+Qδ−1 ⊂M,

U [H+δ] = δ−1(1 + Y −1s)H+δ = δ−1(1− Y −1)H+δ

= (1− Y −1)H+ ⊂ H+[X±1] ⊂M,

where in the last line we used Proposition 3.6 (and the fact that X and Y commute).
To prove (3.13), we note that by Remark 3.7, we have L − JN = Q, and we also have

I = 4(x2 − 1)− J = δ2 − J . Hence, by (3.8) and (3.10), we have

Y = X−s(1 + 2M2J + 2MLδ)

= X−s(2L2 + 2N2J(δ2 − J)− 1 + 2MLδ)

= X−s[2(L+NJ)(L−NJ) + 2(N2Jδ + LM)δ − 1]

= 2X−s(L+NJ)Q+ 2X−s(N2Jδ + LM)δ −X−s

= 2X−s(L+NJ)Q+X−s[2N2Jδ + 2LM +A(X)]δ − 1,

where A(X) := X +X3 + · · ·+Xs−1 with s = 4
∑d

n=1 en.
Formula (3.14) follows from Lemma 3.12 below, which completes the proof of the theorem. 2

As a consequence of Theorem 3.9, we deduce Conjecture 1 (at q = −1) ‘at the symmetric
level’.
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Corollary 3.11. The SL2-character ring of any 2-bridge knot carries a natural action of the
spherical subalgebra SH−1,t1,t2 of the double affine Hecke algebra H−1,t1,t2 .

Proof. Since eδ = 1/2(1 + s)δ = 0, equation (3.17) shows that eM = H+, while Theorem 3.1
shows that H+ = OChar(π,SL2). Then the action of H−1,t1,t2,1,1 on M induces an action of
SH−1,t1,t2,1,1 on eM . 2

To prove Conjecture 2, we need the following lemma, which refines formula (3.14) used in
the proof of Theorem 3.9. We will keep the notation introduced earlier in this section.

Lemma 3.12. For any 2-bridge knot, the following identity holds in H[π]:

Y Q = Q. (3.18)

Proof. We will actually prove a stronger identity:

w̃a−s/2Q = Q, (3.19)

where s = 4
∑d

n=1 en and w̃ is the word w written backwards. To see that (3.19) implies (3.18),
first note that there is an automorphism6 of the fundamental group π mapping a 7→ a−1, b 7→ b−1.
This induces an automorphism β of the Brumfiel–Hilden algebra H[π], which fixes elements of
H+ and maps (i, j,k) 7→ (−i,−j,k). Applying β to (3.19), we get w∗as/2Q = Q. Therefore,
w∗as/2Q = w̃a−s/2Q, which implies that Q = a−s/2ww̃a−s/2Q = ww̃a−sQ = Y Q, since ww̃
commutes with a.

To prove (3.19), we assume (without loss of generality) that s > 0 and

v = be1ae2 · · · bed−1aed , w = vv̄, w̃ = ae1be2 · · · bedaedbed−1 · · · be1 .

Next, we introduce the following notation: for e = ±1, we write xe := x+ (1/2)ej, so that

aen = x+ 1
2en(i + j) = xen + 1

2eni, ben = x+ 1
2en(j − i) = xen − 1

2eni

for n = 1, 2, . . . , d. Observe that we obviously have

xenxem = xemxen , ixe = x−ei. (3.20)

Using the commutator relations (3.20) and the fact that iQ = Qi = 0 in H[π], we compute

w̃a−s/2Q = (xe1 + 1
2e1i)(xe2 − 1

2e2i) · · · (xed − 1
2edi)(xed + 1

2edi)(xed−1
− 1

2ed−1i) · · ·
· · · (xe1 − 1

2e1i)(x− − 1
2i)

s/2Q

= xe1xe2 · · ·xedxedxed−1
· · ·xe1x

s/2
− Q

= x
2N+
+ x

2N−
− x

s/2
− Q

= x
2N+
+ x

2N+
− Q

= (x+x−)2N+Q,

where N+ is the number of (+1) among the {e1, . . . , ed} and N− is the number of (−1), so that
N+ −N− =

∑d
n=1 en = s/4. Finally, note that

x+x− = (x+ 1
2j)(x− 1

2j) = x2 − 1
4J = 1 + 1

4I.

This shows that (x+x−)Q = Q and therefore w̃a−s/2Q = (x+x−)2N+Q = Q. 2

6 The existence of this automorphism is a consequence of the fact that 2-bridge knots are invertible [BZ03,
Proposition 3.19].
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Remark 3.13. The proof of Lemma 3.12 shows that we also have va−s/4Q = Q in H[π].

To prove Conjecture 2, we note that by Theorem 3.3 (cf. also [BH95, Proposition A.4*.10])
the element Q ∈ H[π] has the following form:

Q = a0 + a1I + · · ·+ ad−1I
d−1 + (−1)dId,

where ai ∈ C[x2] ⊂ H+. Hence, every element of H+[X±1] ∼= C[X±1, I]/(IQ) can be written
(uniquely) in the form

u = u0 + u1I + · · ·+ udI
d (mod IQ),

where ui ∈ C[X±1]. It follows that H+[X±1]Qδ−1 = C[X±1]Qδ−1 in H[δ−1]. The module
M = H+[X±1] + H+[X±1]Qδ−1 from (3.11) is therefore free over C[X±1] of rank d + 1; for
a basis in M , we can take {1, I, . . . , Id−1, Qδ−1}. Now, by Lemma 3.12, M0 := C[X±1]Qδ−1 ⊂M
is a C[X±1, Y ±1] o Z2-submodule of M which is isomorphic to the sign representation. The
corresponding AZ2

1 -module eM0 is thus isomorphic to the skein module of the unknot, which
implies Conjecture 2 for two-bridge knots at the symmetric level (when q = −1).

Now, for M0 as above, consider the quotient M̄ := M/M0 and identify

M̄ = C[X±1]1⊕ · · · ⊕ C[X±1]Id−1, (3.21)

so that M̄ loc = C(X±1)1⊕ · · · ⊕C(X±1)Id−1. To prove Conjecture 3, we need to show that the
operators

T0 = −t1sY + (t̄1X + t̄2)δ−1(1 + sY ),

T1 = t3s+ (t̄3X + t̄4)δ−1(1− s),

preserve the subspace M̄ ⊂ M̄ loc for all values t1, . . . , t4. For this, it suffices to check that
U = δ−1(1 + sY ) and U1 = δ−1(1 − s) preserve (3.21). The inclusion UM̄ ⊂ M̄ follows from
(3.13) by the same argument as in the proof of Theorem 3.9, and U1M̄ ⊂ M̄ follows from the
fact that s acts trivially on the basis vectors {1, I, . . . , Id−1}. Thus, Conjecture 3 follows.

We conclude this section by exhibiting an interesting relation between the polynomial Q and
the classical Alexander polynomial ∆K(t) of a 2-bridge knot. First, we observe that for any knot
group π = π1(S3\K) and for any complex reductive group G, there is a natural map

f : T ∼
→ Rep(π,T) ↪→ Rep(π,G)→ Char(π,G), (3.22)

where T ⊂ G is a maximal torus of G (the first arrow in the definition of f is an isomorphism
induced by the abelianization map π→ π/[π, π] = Z of π). It is easy to see that f factors through
the quotient by W , so that f : T/W → Char(π,G). Hence, by dualizing (3.22), we get a map of
commutative algebras

f∗ : OChar(π,G)→ O(T)W ⊂ O(T). (3.23)

IfG= SL2(C) and π is the fundamental group of a 2-bridge knot, we can identifyOChar(π,G)
with C[x, I, J ]/(IQ, I + J − 4(x2 − 1)) and O(T) = C[X±1] using (3.3). With this identification,
the map (3.23) is given by

f∗(x) = 1
2(X +X−1), f∗(J) = 1

4(X −X−1)2, f∗(I) = 0.

A direct calculation (similar to the one in Lemma 3.12) shows that

f∗(Q) = X−s/2[1−X2e1 +X2(e1+e2) −X2(e1+e2+e3) + · · ·+X2(e1+···+ep−1)],

where s = 4
∑d

i=1 ei. The expression in the right-hand side coincides with a known formula for the
Alexander polynomial ∆K(t) of a 2-bridge knot evaluated at t = X2 (see, e.g., [Fuk05, Theorem
1.2(1)] or [Min82]). Thus, we conclude the following proposition.
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Proposition 3.14. For any 2-bridge knot, the image of Q under the map (3.23) is equal to
∆K(X2).

Remark 3.15. The relation between Q and the Alexander polynomial ∆K(t) was observed in
[BH95] (see Example A.8*.13 therein). However, this relation is stated in [BH95] in purely
algebraic terms, without referring to the map (3.23), and the proof in [BH95] is quite different
from ours.

3.4 Conjecture 1 for 2-bridge knots for an arbitrary q
Technically, we proved Conjectures 1, 2, and 3 for the moduleM ⊂H[δ−1] defined in (3.11), which
imply symmetric versions of these conjectures for skein modules of 2-bridge knot complements
(cf. Corollary 3.11). However, we believe that the following conjecture is true.

Conjecture 3.16. The module M defined in (3.11) is the q = −1 specialization of the
nonsymmetric skein module of the 2-bridge knot K.

Using the results of § 4, it is easy to check that this conjecture is true for the trefoil and the
figure eight knot. We now show that Conjecture 3.16 implies Conjecture 1 for arbitrary q. Let
U = (1− q2X2)−1(1− sŷ) ∈ Dq.

Theorem 3.17. Let N be a module over AqoZ2 which is free and finitely generated over C[X±1],
and suppose that UN ⊂ N for q = ±1. Then UN ⊂ N for arbitrary q.

Proof. Pick an identification of C[X±1]-modules N ∼= C[X±1]⊗C V for some finite-dimensional
vector space V . The actions of ŷ and s on N are completely determined by the matrices A(X),
B(X) ∈ EndC[X±1](N) defined by

A(X) · v := ŷ · (1⊗ v), B(X) · v := s · (1⊗ v).

Define operators S, P : N → N via the formulas S ·(f(X)⊗v) = f(X−1)⊗v and P ·(f(X)⊗v) =
f(q−2X)⊗ v. Then the actions of ŷ and s on N can be written in terms of the operators P, S as
follows:

ŷ = A(X)P, s = B(X)S,

where the equalities are inside EndC(N). Furthermore, the operators X, ŷ, and s satisfy the
relations of Aq o Z2, and the relation ŷsŷs = 1 implies the identity

B(X)A(X−1)B(q−2X−1)A(q2X) = Id. (3.24)

Let C(q) ∈ EndC(V ) be the matrix C(q) = B(q−1)A(q). By Remark 6.5, the condition UN ⊂ N
is equivalent to the conditions C(q) = Id and C(−q) = Id.

Now, by assumption, we have C(1) = C(−1) = Id and, if we substitute X = q−1 into equation
(3.24), we get C(q)2 = Id. Now let q = ez and write C(q) = C(ez) =

∑
iCiz

i. Expanding the
equation C(q)2 = Id in powers of z, we obtain C(ez)2 = C2

0 + C0C1z + · · · = Id, and induction
on powers of z shows that C(ez) = Id. This shows that C(q) = Id, and a similar argument shows
that C(−q) = Id, which completes the proof. 2

Corollary 3.18. Conjecture 3.16 implies Conjecture 1 for 2-bridge knots (for an arbitrary q).

Proof. Indeed, if M is the correct specialization of N = K̂q at q = −1, then the assumption
UN ⊂ N of Theorem 3.17 holds by (the proof of) Theorem 3.9 for q = −1. A theorem of Barrett
[Bar99] shows that the q = 1 and q =−1 skein modules are isomorphic, which shows that UN ⊂N
for q = 1. The fact that N is free and finitely generated over C[X±1] was proved in [Lê06], and
Theorem 3.17 therefore implies that UN ⊂ N for arbitrary q, which implies Conjecture 1. 2
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4. Examples of skein modules of knot complements

In this section, we give an explicit description of the nonsymmetric skein modules for the unknot,
(2, 2p+ 1) torus knots, and the figure eight knot. In the process, we prove Conjecture 2 for these
knots.

Theorem 4.1. If K is the figure eight knot or any (2, 2p+ 1) torus knot, then Kq(unknot) is a
submodule of Kq(S

3\K).

Remark 4.2. This theorem can be viewed as a quantization of the map φ from (2.1). In particular,
in examples the image of the empty link is a nontrivial element of the skein module of the knot
complement, and this quantizes the fact that φ(1) = BK (see Remark 2.4).

We also remark that the natural algebra map C[m±1, l±1]/AK � C[m±1, l±1]/AU from
Remark 2.4 does not quantize for (2, 2p+ 1) torus knots or the figure eight knot. In particular,
for the trefoil, Lemma 4.10 shows that if q is not a root of unity, then the unknot submodule
of M := Kq(trefoil) is the unique submodule, which shows that M has a unique quotient. This
quotient is clearly not isomorphic to the skein module of the unknot.

To simplify notation, we will divide the proof of Theorem 4.1 into separate subsections
after first proving some useful technical lemmas. For the trefoil (i.e. the (2, 3) torus knot)
and the figure eight knot, Gelca and Sain have given complete calculations of the symmetrized
module Kq(S

3\K) in [Gel02] and [GS04], respectively. Using these calculations, we describe the
corresponding Aq o Z2-modules explicitly. For the (2, 2p + 1) torus knots, Gelca and Sain gave
only partial computations of the module structure of Kq(S

3\K) in [GS03]. We complete their
computations to fully determine the module structure of the submodule of Kq(S

3\K) generated
by the empty link and describe the corresponding Aq o Z2-module.

Remark 4.3. The calculations in this section are lengthy, and the reader might worry about
errors with signs or powers of q. However, a strong ‘consistency check’ is available: one can
use Lemma 5.6 together with the module structures described in this section to give explicit
computations of the colored Jones polynomials, and then compare these to known results. For
the (2, 2p+1) knots this has been done in [Sam12, Lemma 6.4.7] for all n, and for the figure eight
knot this has been done for many small n. (See also the explicit computations in the appendix.)

We now establish a few technical lemmas. We recall that if m, l ∈Kq(T
2) are the meridian and

longitude, respectively, and z is the (1, 1) curve, then, under the embedding Kq(T
2) ↪→ Aq oZ2,

we have

m 7→ x := X +X−1, l 7→ y := Y + Y −1, z 7→ q−1(XY +X−1Y −1).

As an algebra, the image of Kq(T
2) is generated by x, y, and z. We now prove a lemma that

is useful for constructing isomorphisms of AZ2
q -modules: it essentially says that the AZ2

q -module
structure of M is determined by the actions of y and z on a C[x]-basis for M .

Lemma 4.4. Suppose that M and N are modules over AZ2
q , and that as a C[x]-module, M is

generated by elements {mi} ⊂M . Furthermore, suppose that f : M → N is an isomorphism of
C[x]-modules that satisfies f(ymi) = yf(mi) and f(zmi) = zf(mi). Then f is an isomorphism
of AZ2

q -modules.
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Proof. From (2.2), the elements x, y, z ∈ AZ2
q satisfy the commutation relations

[x, y]q = (q2 − q−2)z, [z, x]q = (q2 − q−2)y, [y, z]q = (q2 − q−2)x

(where we have used the notation [a, b]q := qab − q−1ba). An arbitrary element of M can be

written as m =
∑n

i=1 pi(x)mi and, using the C[x]-linearity of f and the commutation relations,

powers of x in the expressions ym and zm can inductively be moved to the left. This shows that

f(ym) = yf(m) and f(zm) = zf(m) for arbitrary m ∈M , which completes the proof. 2

We also give a lemma which is useful for explicitly constructing modules over Aq o Z2. Let

M = C[X±1]⊗C V and define operators S, P : M →M via the formulas

S · (f(X)⊗ v) := f(X−1)⊗ v, P · (f(X)⊗ v) := f(q−2X)⊗ v. (4.1)

Then the operators X, S, and P satisfy the relations of Aq o Z2 (and, with these operators, M

is a direct sum of copies of the standard polynomial representation of Aq oZ2). Furthermore, if

A(X) ∈ EndC[X±1](M), then SA(X) = A(X−1)S and PA(X) = A(q−2X)P (where the equalities

are inside EndC(M)).

Lemma 4.5. Suppose that A(X), B(X) ∈ EndC[X±1](M) satisfy

B(X−1)B(X) = IdM , A(X)B(q−2X)A(q2X−1) = B(X).

Then the operators X, s := B(X)S, and Y := A(X)P endow M with the structure of an

Aq o Z2-module.

Proof. The relation XY = q2Y X follows from the fact that X commutes with A(X) and the

fact that XP = q2PX. Since X commutes with B(X), we see that XsX = s. The relation s2 = 1

follows from the fact that B(X−1)B(X) = 1. For the final relation, we compute that Y sY is

equal to

A(X)PB(X)SA(X)P = A(X)B(q−2X)A(q2X−1)PSP = A(X)B(q−2X)A(q2X−1)S = s. 2

In the following sections, we will frequently use the element

δ := X −X−1 ∈ Aq o Z2.

We will also use the Chebyshev polynomials Sn, Tn ∈ C[x], which are defined by

S0 = 1, S1 = x, Sn+1 = xSn − Sn−1,

T0 = 2, T1 = x, Tn+1 = xTn − Tn−1.

Lemma 4.6. The Chebyshev polynomials satisfy the identities

(X −X−1)Sn(X +X−1) = Xn+1 −X−n−1 and Tn(X +X−1) = Xn +X−n.
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4.1 The unknot
Let K ⊂ S3 be the unknot, so that S3\K is a solid torus. Then Kq(S

3\K) ∼= C[u]1K , where
1K ∈ Kq(S

3\K) is the empty link. The action of Kq(T
2) on Kq(S

3\K) is given by

x · f(u)1K = uf(u)1K ,

y · 1K = (−q2 − q−2)1K ,

z · 1K = −q−3u1K .

(4.2)

(The image of the longitude inside the solid torus is contractible, and the −q−3 factor in the
third formula comes from the framing of the image of the (1, 1) curve inside the solid torus.)

We give the C[X±1]-module M̂ := C[X±1] the structure of an AqoZ2-module via the formulas

Y · f(X) := −f(q−2X), s · f(X) := −f(X−1). (4.3)

The module M̂ is called the sign representation of Aq o Z2. As a Z2-module, we have the

decomposition M̂ ∼= C[x]⊕ C[x]δ. Since s · 1 = −1, we see that eM̂ = C[x]δ as a C[x]-module.

Lemma 4.7. The C[x]-isomorphism f : eM̂ → Kq(S
3\K) defined by f(δ) = 1K is an

isomorphism of AZ2
q -modules. In particular, the skein module of the unknot is the (symmetric)

sign representation.

Proof. By Lemma 4.4, the following computations show the claim:

y · δ = (Y + Y −1)(X −X−1) = −(q2 − q−2)δ,

z · δ = q−1(XY +X−1Y −1)(X −X−1) = −q−3(X +X−1)δ. 2

4.2 The trefoil
Let M = Kq(S

3\K) be the skein module of the complement of the trefoil knot. In [Gel02], Gelca
showed that M is free and finitely generated as a module over the meridian subalgebra C[x].
(This was also shown in [Lê06] and [BLF05].) Gelca’s generators are w′, 1K ∈ M , where 1K is
the empty link and w′ is the loop labelled d in Figure 2. However, the vector w := w′ + q−21K
generates a proper submodule of M , so it is easiest to describe the AZ2

q -module structure in
terms of the basis w, 1K . Translating his formulas for the actions of y and z into this basis, we
get

y · w = −(q2 + q−2)w,

z · w = −q−3S1(x)w,

y · 1K = (q6S4(x)− q2)w + q6T6(x)1K ,

z · 1K = q5S3(x)w + q5T5(x)1K .

(This follows from [Gel02], Lemmas 3 and 7 for q = 0 and q = 1. The parameter q in [Gel02] is
an integer, unrelated to our q, and the parameter t is our q.)

Remark 4.8. From these formulas, it is clear that w generates an AZ2
q -submodule of M .

Comparing to formula (4.2), we see that this submodule is isomorphic to the skein module
of the unknot. (The isomorphism is determined by sending the empty link to w ∈M .)

To describe the nonsymmetric module, we first define a C[X±1]-module M̂ via

M̂ ∼= C[X±1]u⊕ C[X±1]v. (4.4)
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d

m

Figure 2. Generators for the (2, 2p+ 1) knot.

(With this notation, v will be identified with the empty link.) Let P, S : M̂ → M̂ be the operators
given by (4.1). We then define an Aq o Z2-module structure on M̂ via the following matrices
(written with respect to the ordered basis u, v):

s =

[
−1 0

0 1

]
S, Y =

[
−1 q2X−1 − q6X−5

0 q6X−6

]
P. (4.5)

It is easy to check that these matrices satisfy the conditions of Lemma 4.5, which implies that
they define a representation of AqoZ2. Explicitly, the action of Y on M̂ is given by the formulas

Y · u = −u, Y · v = (q2X−1 − q6X−5)u+ q6X−6v. (4.6)

Since s acts diagonally in the basis (u, v), there is a C[x]-module isomorphism eM̂ = C[x]δu⊕
C[x]v.

Lemma 4.9. The C[x] isomorphism f : eM̂ →M determined by f(δu) = w and f(v) = 1K is an
isomorphism of AZ2

q -modules.

Proof. Lemma 4.4 reduces this to several straightforward computations. For example,

y · v = (Y + Y −1)v = (Y + sY s)v = (1 + s)Y v

= (1 + s)[(q2X−1 − q6X−5)u+ q6X−6v]

= [q2(X−1 −X)− q6(X−5 −X5)]u+ q6(X−6 +X6)v

= [−q2 + q6S4(x)]δu+ q6T6(x)v.

(In the last step we used Lemma 4.6.) 2

The next lemma describes the structure of M in terms of standard (induced) modules of
Aq o Z2. Let τ : Aq o Z2→ Aq o Z2 denote the automorphism

τ(X) = X, τ(s) = s, τ(Y ) = q−1XY.

Let V − be the sign representation of AqoZ2 (i.e. the nonsymmetric skein module of the unknot)
and let V + be the standard polynomial representation.

Lemma 4.10. The module M admits a decomposition into a nonsplit exact sequence

0→ V −→M → τ−6(V +)→ 0,

where τN (V +) is the twist of V + by τN . If q is not a root of unity, then V − is the unique
nontrivial submodule of M .
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Proof. The existence of this short exact sequence is clear because in our chosen basis (4.4) the
operators S, P , s, Y , and X all act by upper-triangular matrices. We have already identified
the submodule with V −, and the identification of the quotient is clear by (4.5). If this sequence
were split, there would exist an m ∈M with m = v+ f(x)u and (q6X−6−Y ) ·m = 0 (since this
equation holds in the quotient). However, this equation implies that q6X−6f(X) + f(q−2X) =
q6X−5 − q2X−1, and this is impossible because the total degree of the left-hand side is at least
6, while the total degree of the right-hand side is 4.

If q is not a root of unity, then in the standard polynomial representation V + the element
Xk is a C-basis for the kernel of the operator Y − q−2k. This implies that V + is simple, which
implies that V − and τ(V +) are simple. Then the final claim follows from the general fact that
a nonsplit extension of two simple modules has a unique nontrivial submodule. 2

4.3 (2, 2p + 1) torus knots
In this subsection, we recall the calculations of Gelca and Sain [GS03] for the (2, 2p + 1) torus
knot Kp. We also extend their calculations to completely determine the module structure of the
submodule of Kq(S

3\Kp) generated by the empty link 1K ∈ Kq(S
3\Kp), and we give an explicit

presentation of the nonsymmetric version of this module.
In [GS03], the authors proved that there is an isomorphism of C[x]-modules

Kq(S
3\Kp) ∼=

p⊕
i=0

C[x]vi.

Here v is the loop labelled d in Figure 2 and vi is i parallel copies of v (and v0 = 1K is the empty
link, by convention). We define the element

w := Sp−1(v) + q−2Sp(v) ∈ Kq(S
3\Kp).

Then Gelca and Sain proved the following lemma.

Lemma 4.11 [GS03, Proposition 4.4].

y · 1K = q4p+2T4p+21K + (−1)p+1q2p+2(q2S2p+2 − q−2S2p−2)w,

z · 1K = q4p+1T4p+11K + (−1)p+1q2p+2(qS2p+1 − q−3S2p−3)w. (4.7)

We extend their computations with the following lemma.

Lemma 4.12. The action of Kq(T
2) on w ∈ Kq(S

3\Kp) is determined by

y · w = −(q2 + q−2)w,

z · w = −q−3xw.
(4.8)

Proof. (In [GS03], the convention for the isomorphism of Theorem 2.11 is different from ours. In
particular, in their convention the image of (m,n)T ∈Kq(T

2) in AZ2
q is qmn(XmY −n+X−mY n).

In this proof only, we will follow their convention.) We first note that proving equations (4.8) is
equivalent to proving the following:

(1,−4p− 2)T · w = −q4p−2
(
q−2S4p+2 − q2S4p

)
w,

(1,−4p− 1)T · w = −q4p−1
(
q−2S4p+1 − q2S4p−1

)
w.

(4.9)

To see this, we first note that the proof of Lemma 4.15 (along with a short calculation) shows
that both sets of equations (4.8) and (4.9) hold inside the AZ2

q -module eM̂ (which is defined via
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the operators in (4.11)). Then an appropriate Dehn twist of T 2 provides an automorphism of AZ2
q

that fixes x and sends y, z to the elements (1,−4p−1)T and (1,−4p−2)T , respectively. Therefore,
the proof of Lemma 4.4 shows that either set of equations (together with Lemma 4.11) completely
determines the AZ2

q -module structure of eM̂ . (We note that eM̂ is actually an AZ2
q -module by

Lemma 4.14.)
To prove the first equation of (4.9), we follow the strategy of [GS03, Proposition 4.1]. Namely,

if we remove from S3\Kp a regular neighborhood of the Möbius band that is bounded by the
knot, then the resulting 3-manifold is a solid torus which contains both the (1,−4p− 2)T curve
and the element w in its interior. Therefore, the left-hand side of the first equation in (4.9) can be
simplified inside the skein module of the solid torus as follows, where we abbreviate Sk := Sk(v):

(2p+ 1,−2)T · [Sp−1 + q−2Sp] = q−4p−2[q−4pS3p + q−4p−6S3p+1 − q4pSp − q4p+2Sp−1]. (4.10)

(The image in the solid torus of the (1,−4p− 2)T curve on the original torus is the same as the
image of the (2p+1,−2)T curve on the torus which bounds the solid torus, and the v curve in the
original knot complement is the image of the longitude of the boundary of the solid torus.) Then
the right-hand side of the first equation in (4.9) can be simplified using [GS03, Theorem 3.1],
and this agrees with the right-hand side of equation (4.10). (To make the powers of q match
exactly, note that the rightmost parenthesized expression of [GS03, Theorem 3.1] is qw.) This
completes the proof of the first equation of (4.9).

The proof of the second equation in (4.9) is more lengthy, so we include a sketch and leave the
details for the interested reader. The strategy is to follow the proof of [GS03, Proposition 4.3]. To
prove this, the authors define two sequences of skeins ak, bk ∈Kq(S

3\Kp) so that q−6pa2p+1 = (1,
−4p − 1)T · 1K . These sequences of skeins can be modified in a straightforward way to obtain
sequences a′k, b

′
k with q−6pa′2p+1 = (1,−4p − 1)T · w. The authors then show that the sequence

bk satisfies a second-order recurrence that can be solved explicitly, and the sequence ak satisfies
a first-order recurrence with an inhomogeneous term depending on bk, which can also be solved
explicitly. Then [GS03, Theorem 3.1] allows the simplification of this explicit expression to obtain
the second formula of Lemma 4.11. In a similar way, the sequences a′k and b′k can be written
explicitly to obtain the second formula of (4.9). 2

We define the submodule M ⊂ Kq(S
3\Kp) by

M := Kq(T
2) · 1K .

Corollary 4.13. We have equality of subspaces M = Kq(T
2) · 1K = C[x]1K + C[x]w.

Proof. This is straightforward from the formulas (4.7) and (4.8). 2

We now describe the AqoZ2-module M̂ that satisfies eM̂ ∼= M . As in the case of the trefoil,
we define the C[X±1]-module structure first:

M̂ := C[X±1]u⊕ C[X±1]v.

(In this notation, the empty link is identified with v.) We define operators P, S : M̂ → M̂ using
the formula (4.1). Then we define the actions of Y and s via the following operators (which are
written with respect to the ordered basis (u, v)):

s =

[
−1 0

0 1

]
S, Y =

[
−1 (−1)pq2p+4(X−2p−3 − q−4X−2p+1)

0 q2(2p+1)X−2(2p+1)

]
P. (4.11)
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Lemma 4.14. The formulas (4.11) give M̂ an Aq o Z2-module structure.

Proof. This follows from a straightforward calculation and Lemma 4.5. 2

Explicitly, the action of Y on M̂ is given by

Y · u = −u, Y · v = [(−1)pq2p+4(X−2p−3 − q−4X−2p+1)]u+ q2(2p+1)X−2(2p+1)v.

As before, s acts diagonally, which gives a decomposition eM̂ = C[x]δu⊕ C[x]v.

Lemma 4.15. The C[x]-module isomorphism f : eM̂ → M given by f(δu) = w and f(v) = 1K
is an isomorphism of AZ2

q -modules.

Proof. The element u ∈ M̂ generates a proper submodule of M̂ , and it is clear from Lemma 4.7
that the restriction of f to this submodule is an isomorphism. We then compute

y · v = (Y + sY s)v = (1 + s)Y v

= (1 + s)
[
(−1)pq2p+4(X−2p−3 − q−4X−2p+1)u+ q4p+2X−4p−2v

]
= (−1)pq2p+4(X−2p−3 −X2p+3 + q−4X2p−1 − q−4X−2p+1)u+ q4p+2(X−4p−2 +X4p+2)v

= (−1)p+1q2p+4(−q−4S2p−2 + S2p+2)δu+ q4p+2T4p+2v.

(In the last step we have used Lemma 4.6.) This shows that f(y · v) = y · f(v). A similar
computation shows that f(z · v) = z · f(v), and an application of Lemma 4.4 completes the
proof. 2

4.4 The figure eight knot
Let M = Kq(S

3\K) be the skein module of the complement of the figure eight knot. First,
we recall some facts from [GS04] (translated into our notation). As C[x]-modules, we have an
isomorphism

M ∼= C[x]u⊕ C[x]v ⊕ C[x]w.

Under this identification, the empty link is u ∈M and, if v′, w′ ∈M are the loops labelled y and
z (respectively) in Figure 3, then v = q2v′ + u and w = q−2w′ + u. Gelca and Sain then give the
following formulas to describe the module structure.

Lemma 4.16 [GS04]. The actions of y and z on M are determined by the formulas

y · u = (q2 + q−2)S2u+ (q2S2 + q−2)v + (q2 + q−2S2)w,

y · v = (−q6S4 + q2)u+ (−q6S4 + q2S2)v + (−q6S2 − q2)w,

y · w = (q−2 − q−6S4)u+ (−q−2 − q−6S2)v + (q−2S2 − q−6S4)w,

z · u = (qS1 + q−3S3)u+ (q + q−3)S1v + q−3S3w,

z · v = −q5S3u+ (qS1 − q5S3)v + (−q5 − q)S1w,

z · w = (q−3S1 − q−7S5)u− q−7S3v + (q−3S3 − q−7S5)w.

As in the case of the trefoil, there is a proper submodule of M which is isomorphic to the
skein module of the unknot. In this case it is generated by the element

p := (x2 − 3)u+ v + w.
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x

z

y

Figure 3. Generators for the figure eight knot.

Lemma 4.17. We have equalities

y · p = (−q2 − q−2)p, z · p = −q−3xp.

Proof. This is an entertaining but lengthy computation, which we omit. 2

As before, it is convenient to describe the module structure of M using the C[x]-basis p, u, v.

Lemma 4.18. As C[x]-modules, we have an isomorphism M ∼= C[x]p ⊕ C[x]u ⊕ C[x]v, and the
actions of y and z in this basis are given by

y · p = −(q2 + q−2)p,

z · p = −q−3xp,

y · u = (q2 + q−2S2)p+ [−q−2T4 + q−2T2 + q2T0]u+ (q2 − q−2)T2v,

z · u = q−3S3p+ (−q−3T5 + q−3T3 + qT1)u+ (−q−3T3 + qT1)v,

y · v = (−q6S2 − q2)p+ (q2 − q6)T2u+ (−q6T4 + q2T2 + q2T0)v,

z · v = (−q5 − q)S1p+ (qT3 − q5T1)u+ (−q5T3 + 2qT1)v.

Proof. This is a straightforward calculation. 2

We now define the AqoZ2-module M̂ that satisfies eM̂ ∼= M . As a C[X±1]-module, we define

M̂ := C[X±1]⊗C C{p′, u, v}.

(We have slightly abused notation by reusing the letters u, v, but this is justified by the fact
that the inclusion Kq(S

3\K) → M̂ identifies u, v ∈ Kq(S
3\K) with u, v ∈ M̂ . In particular,

with this notation, the empty link is identified with u.) We use formula (4.1) to define operators
S, P : M̂ → M̂ . As before, we will define the Aq o Z2-module structure on M̂ using matrices
(with respect to the ordered basis p′, u, v). To write these matrices in a more compact form, we
define the following polynomials in C[X±1]:

a := −q−2X4 + q−2X2 + q2, b := −q−2X2 + q2X−2, c := q−2X3 − q2X−1.

To shorten notation further in what follows, if f ∈ C[X±1], we write f ′(X) := f(q2X−1)
(note that f ′′ = f). We then define s, Y ∈ EndC(M) as follows:

s :=

 −1 0 0

0 1 0

0 0 1

S, Y :=

 −1 c q2c′

0 a q4b′

0 b a′

P. (4.12)
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Lemma 4.19. The operators in (4.12) define a representation of Aq o Z2.

Proof. Let B and A(X) be the matrices in (4.12). The first condition of Lemma 4.5 clearly holds,
so we are reduced to checking that A(X)BA(q2X−1) = B. We compute −1 c q2c′

0 a q4b′

0 b a′

B
 −1 c′ q2c

0 a′ q4b

0 b′ a

 =

 −1 c′ + a′c+ q2b′c′ q2(c+ q2bc+ ac′)

0 aa′ + q4b′b′ q4(ab+ ab′)

0 a′b+ a′b′ q4bb+ aa′

 .
The fact that the matrix on the right is the matrix B follows from the identities

b′ =−b, c′ =−q2X−2c, aa′−q4bb′ = 1, a′c+q2b′c′+c′ = 0. 2

Explicitly, the action of Y on M̂ is given by

Y · p′ = −p′,
Y · u = [q−2X3 − q2X−1]p′ + [−q−2X4 + q−2X2 + q2]u+ [−q−2X2 + q2X−2]v,

Y · v = [q6X−3 − q2X]p′ + [q2X2 − q6X−2]u+ [−q6X−4 + q2X−2 + q2]v.

Again, since s acts diagonally, we see that eM̂ = C[x]{δp′, w, v}.

Lemma 4.20. The C[x]-isomorphism f : eM̂ →M defined by f(δp′) = p, f(u) = u, and f(v) = v
is an isomorphism of AZ2

q -modules.

Proof. This is a straightforward computation, which is quite similar to the proof of Lemma 4.9.
2

Remark 4.21. The lower-right 2×2 block of the matrix defining the action of Y in formula (4.12)
appeared in [CM15a, Proposition 4.5], where it was used to describe an inhomogeneous recursion
relation satisfied by the sequence of colored Jones polynomials for the figure eight knot.

Remark 4.22. The module M̂ fits into a short exact sequence

0→ N → M̂ → Q→ 0,

where N is the unknot submodule and Q is the quotient. It is not too difficult to see that Q
is simple, as long as q is generic. Furthermore, M̂ is a nontrivial extension, so, since N is also
simple, M̂ is generated by the empty link u (as long as q is generic).

5. Divisibility and recursion relations of colored Jones polynomials

If q4− 1 is invertible, then Aq oZ2 and AZ2
q are Morita equivalent, so there is a unique Aq oZ2-

module K̂q(S
3\K) such that eK̂q(S

3\K) is isomorphic to Kq(S
3\K) as an AZ2

q -module. We call

K̂q(S
3\K) the ‘nonsymmetric skein module’, and we give a formula (5.2) for the colored Jones

polynomials in terms of K̂q(S
3\K).

Garoufalidis and Lê [GL05] defined an action of AqoZ2 on the space H := Hom(Z,C[q±1]) of
sequences of Laurent polynomials (see (5.3)). If we define J−n(q) = −Jn(q), then we can consider
Jn(q) as an element of H, and the main theorem of [GL05] is that the annihilator of Jn(q) in
Aq is nonzero. In other words, the sequence Jn(q) satisfies a (generalized) recurrence relation.
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Lemmas 5.6 and 5.7 give a close relationship between the Aq oZ2-modules K̂q(D
2×S1) and H:

the latter is the linear dual of the former (up to a twist by an automorphism; see Remark 5.9).

We use this observation to give two applications of our conjectures. First, Conjecture 2

states that Kq(S
3\K) contains Kq(S

3\unknot) as a submodule. (In particular, the action of

the longitude on the skein module of the knot complement has an eigenvector with eigenvalue

−q2 − q−2.) In Theorem 5.10, we show that this conjecture implies that the colored Jones

polynomials of a knot satisfy a (generalized) inhomogeneous recursion relation. These generalized

inhomogeneous recursion relations have been found in examples, but when this paper was written

it had not been proved that they exist for all knots.

Second, the algebra Hq,t1,t2,1,1 acts on the space H(q) := Hom(Z,C(q)) of sequences of

rational functions. We show that our conjectured action of Hq,t1,t2,1,1 on the nonsymmetric

skein module of the complement of a knot K implies that a · (Jn(q)) ∈ C(q)H ⊂ H(q) for any

a ∈Hq,t1,t2,1,1. In other words, if Pn(q) is a sequence of rational functions obtained by multiplying

Jn(q) by an element of Hq,t1,t2,1,1, then there is a uniform common denominator for the rational

functions in the sequence Pn(q). (This is a nontrivial statement, because the action of Hq,t1,t2,1,1

does not preserve the subspace C(q)H ⊂ H(q).)

As a corollary, we show a divisibility property for the colored Jones polynomials: the rational

function
(q − q−1)(Jn+j(q) + Jn−1−j(q))

1− q4n−2

is actually a Laurent polynomial. Following a suggestion of Garoufalidis, we use Habiro’s

cyclotomic expansion of the colored Jones polynomials to give a proof of this statement that

does not rely on Conjecture 1.

5.1 Nonsymmetric pairings

In this section, we show that the topological pairing (2.4) lifts via the Morita equivalence between

Aq o Z2 and AZ2
q , and we give a formula for the colored Jones polynomials in terms of this

nonsymmetric pairing.

5.1.1 Pairings and Morita equivalence. We first give a lemma that gives a sufficient condition

for Aq o Z2 and AZ2
q to be Morita equivalent.

Lemma 5.1. Suppose that q4 − 1 is invertible. Then Aq o Z2 and AZ2
q are Morita equivalent.

Proof. Recall that e = (1 + s)/2 ∈ Aq o Z2 and that AZ2
q is isomorphic to e(Aq o Z2)e via the

map a 7→ ae. Standard Morita theory shows that AqoZ2 and e(AqoZ2)e are Morita equivalent

if the two-sided ideal generated by e contains 1. Then the following computation completes the

proof:

[Y, s[X, 1+s]]qY
−1X = q−1−q3. 2

We now give a lemma showing that pairings lift via Morita equivalences. Let A be an algebra

with an idempotent e2 = e ∈ A.

Lemma 5.2. Suppose that AeA = A and let Me and eN be left and right eAe-modules,

respectively. Then the natural map of vector spaces Me⊗eAe eN →M ⊗AN is an isomorphism.
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Proof. Since AeA = A, the functors Ae ⊗eAe − and eA ⊗A − are inverse equivalences, so the
natural map Ae ⊗eAe eA ⊗A A→ A given by ae ⊗ eb ⊗ c 7→ aebc is an isomorphism. We then
have the following isomorphisms of vector spaces:

Me⊗eAe eN ∼= (M ⊗A Ae)⊗eAe (eA⊗A N)
∼= M ⊗A (Ae⊗eAe eA)⊗A N
∼= M ⊗A A⊗A N
∼= M ⊗A N.

Under this chain of isomorphisms, we have me⊗ en 7→ me⊗ en. 2

Corollary 5.3. If q4 − 1 is invertible, then there is a unique (nonsymmetric) pairing

〈−,−〉 : K̂q(D
2 × S1)⊗AqoZ2 K̂q(S

3\K)→ C,

which lifts the topological pairing of § 2.2.3.

5.1.2 The nonsymmetric skein module of the solid torus. Recall that under the isomorphism
Kq(T

2)→ AZ2
q , the meridian and longitude are sent to X +X−1 and Y +Y −1, respectively, and

the (1, 1) curve is sent to q−1(XY +X−1Y −1). If NK ⊂ S3 is a closed tubular neighborhood of
a knot K ⊂ S3, then NK is diffeomorphic to D2 × S1 and Kq(NK) is a right Kq(T

2)-module.
Let u = 1K · (Y + Y −1) ∈ Kq(NK), where 1K is the empty link in NK .

Lemma 5.4. As vector spaces, Kq(NK) ∼= C[u]. The right action of Kq(T
2) is determined by the

formulas

1K · f(Y + Y −1) = f(u),

1K · (X +X−1) = −(q2 + q−2)1K ,

1K · q−1(XY +X−1Y −1) = −q−3u.

Proof. The identification Kq(NK) ∼= C[u] and the first claimed formula follow from § 2.2.4. The
second formula follows from the fact that the meridian is contractible inside D2×S1 and 0-framed
inside S3 under the inclusion D2×S1 ↪→ S3. The third formula follows from the fact that inside of
the solid torus, the (1, 1) curve is isotopic to the longitude with a framing twist (which accounts
for the factor of q). The statement that these formulas completely determine the module structure
of Kq(NK) follows from Lemma 4.4. 2

Let V = C[U±1] and give V a right Aq o Z2-module structure via

f(U) · g(Y ) = f(U)g(U−1), f(U) ·X = −f(q2U), f(U) · s = −f(U−1).

Because of the sign in the action of s, we have V e = (U − U−1)C[U + U−1] ⊂ V .

Lemma 5.5. The C-linear isomorphism Kq(NK)→ V e given by f(u) 7→ (U −U−1)f(U +U−1)
is an isomorphism of right AZ2

q -modules.

Proof. The isomorphism is linear over C[Y + Y −1] because Y + Y −1 commutes with s. We then
compute

(U − U−1) · (X +X−1) = −(q2 + q−2)(U − U−1),

(U − U−1) · q−1(XY +X−1Y −1) = −q−3(U − U−1) · (Y + Y −1).

Then the claim follows from Lemma 4.4. 2
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5.1.3 The colored Jones polynomials from the nonsymmetric pairing. Let K̂q(S
3\K) be the

nonsymmetric skein module of the complement of a knot K. From Corollary 5.3 and Lemma 5.5,
we see that if q4 − 1 is invertible, then the topological pairing lifts to a nonsymmetric pairing

〈−,−〉 : V ⊗AqoZ2 K̂q(S
3\K)→ C. (5.1)

(The fact that we have used the same notation for the topological pairing and the nonsymmetric
pairing is justified by the last sentence of the proof of Lemma 5.2.) From Theorem 2.14, we have
the equality

Jn(K; q) = (−1)n−1〈Sn−1(u),∅〉.
In the nonsymmetric setting, this formula simplifies substantially.

Lemma 5.6. We have the equality

Jn(K; q) = (−1)n2〈1V · Y n,∅〉. (5.2)

Proof. Under the isomorphism Kq(D
2×S1) ∼= V e, the empty link is identified with the element

U − U−1. Combining this with Lemma 4.6 gives

Sn−1(u) = (U − U−1)Sn−1(U + U−1) = Un − U−n ∈ V.

Then the following computation completes the proof:

〈Un−U−n,∅〉=−〈1V Y n(1+s),∅〉=−〈1V Y n, 2e∅〉=−2〈1V Y n,∅〉. 2

5.1.4 The action of Aq o Z2 on the sequence Jn(K; q). If we define H := Hom(Z,C[q±1])
and fix a knot K, then J(n) := Jn(K; q) is an element of H (after extending the colored Jones
polynomials to negative integers via J−n(K; q) := −Jn(K; q)). In [GL05], Garoufalidis and Lê
defined a left action of Aq o Z2 on H as follows:

(Xf)(n) := −q−2nf(n), (Y f)(n) := −f(n+ 1), (sf)(n) := −f(−n). (5.3)

(Actually, their action is a twist of this action by an automorphism of Aq o Z2; we have chosen
this twist so that Lemma 5.7 holds.) We now relate this action to the formula for the colored
Jones polynomials from Lemma 5.6.

Lemma 5.7. For a ∈ Aq o Z2, we have the equality

(a · J)(n) = (−1)n〈Y n, a · 1M 〉. (5.4)

Proof. It suffices to show the claim for generators of Aq o Z2, and these are straightforward
computations. For example,

(−1)n〈Y n, Y ·1M 〉= (−1)n〈Y n+1, 1M 〉=−J(n+1) = (Y ·J)(n). 2

Remark 5.8. This lemma has appeared in the literature for a ∈ AZ2
q . However, the extension of

the lemma to all of Aq o Z2 gives an interpretation of the appearance of the action (5.3). Also,
the fact that V is the sign representation (i.e. 1V s = −1V ) gives a skein-theoretic interpretation
of the sign in the definition J(n) := −J(−n).

Remark 5.9. If V is the nonsymmetric skein module of the solid torus, then the choice of basis
{Un} for V gives a linear isomorphism V ∗→ H, where V ∗ is the linear dual of V . Since V is a
right AqoZ2-module, its dual V ∗ is a left AqoZ2-module and, in this language, Lemma 5.7 can
be interpreted as the statement that the map V ∗→H is an isomorphism of left AqoZ2-modules.
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5.2 Inhomogeneous recursion relations
We will say that a sequence f(n) ∈ H satisfies an inhomogeneous recursion relation if there
is a nonzero a ∈ Aq o Z2 such that the sequence7P (n) := af(n) satisfies P (n) = P (0). Let
K∅ ⊂ Kq(S

3\K) be the AZ2
q -submodule generated by the empty link ∅.

Theorem 5.10. Suppose that there is a nonzero map Kq(S
3\unknot) → K∅ of AZ2

q -modules.
Then the sequence J(n) := Jn(K; q) satisfies an inhomogeneous recursion relation.

Proof. Let V = K̂q(S
3\unknot) be the nonsymmetric skein module of the unknot described in

(4.3). Since Morita equivalence is functorial, we have a nonzero map V → K̂∅ ⊂ K̂q(S
3\K). Let

p ∈ K̂∅ be the image of 1V under this map (which is not the image of the empty link). The
surjective map AZ2

q � K∅ lifts via the Morita equivalence to a surjective map (Aq oZ2)e� K̂∅,

which implies that K̂∅ is generated (as an AqoZ2-module) by the empty link ∅. Therefore, there
exists a ∈ Aq o Z2 such that p = a · ∅. Formula (4.3) shows that 1V is an eigenvector of Y with
eigenvalue −1, so we have Y a∅ = −a∅. We define

P (n) := a · J(n).

We then compute

P (n+1) =−Y a · J(n) = (−1)n〈Y n, Y a∅〉= (−1)n−1〈Y n, a∅〉= P (n). 2

5.3 Divisibility properties of Jn(K; q)
Recall that Dq is the localization of Aq o Z2 at the multiplicative set consisting of all nonzero
polynomials in X. If we define H(q) := Hom(Z,C(q)) to be the space of sequences of rational
functions, then the action of Aq oZ2 on H extends to an action of Dq on H(q) via the formulas

(
F (X)

G(X)
· f
)

(n) :=
F (−q−2n)

G(−q−2n)
f(n), (Y · f)(n) := −f(n+ 1), (s · f)(n) := −f(−n). (5.5)

The double affine Hecke algebra Hq,t can be viewed as a subalgebra of Dq, and this gives H(q)
the structure of an Hq,t-module. Garoufalidis and Lê [GL05] showed that the Aq o Z2-module
map defined by a 7→ a · J(n) has a nontrivial kernel. This leads to the following question, which
we hope to address in future work.

Question 5.11. Does the map Hq,t→ H(q) defined by a 7→ a · J(n) have a nontrivial kernel?

In this section, we relate the conjectured action of Hq,t1,t2,1,1 on the nonsymmetric skein
module to the action of Hq,t1,t2,1,1 on H(q). We recall from Proposition 2.18 that under the
standard embedding, Hq,t1,t2,1,1 is the subalgebra of Dq generated by the elements X, s, and

Yk,u := t1Y − (q2t̄1X
−2 + qt̄2X

−1)sU,

where U is the operator

U :=
1

1− q2X2
(1− sY ). (5.6)

7 In the definition of inhomogeneous recursion relation, we do not require P (n) to be nonzero. If P (n) = 0, then
f(n) satisfies an inhomogeneous recursion relation that happens to be homogeneous.
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Let M := (AqoZ2)·1K ⊂ K̂q(S
3\K) be the submodule of the nonsymmetric skein module of a

knot K generated by the empty link. If M loc is the localization of M at all nonzero polynomials in

X, then both Dq and its subalgebra Hq,t1,t2,1,1 naturally act on M loc. We recall that Conjecture 1

states that the natural map M → M loc is injective and that the action of Hq,t1,t2,1,1 preserves

the subspace M ⊂ M loc. It is clear that this statement implies that UY j1M ∈ M for all j ∈ Z.

We then define

Pj(n) := (−1)n+j J(n+ j) + J(n− j − 1)

q4n−2 − 1
. (5.7)

Theorem 5.12. If Conjecture 1 holds for K ⊂ S3, then (q2 − 1)Pj(n) is a Laurent polynomial

in C[q±1].

Proof. We use Lemma 5.7 to compute the quantity 〈Y n, UY j1M 〉 in terms of the pairing:

〈Y n, UY j1M 〉 = (−1)nUY jJ(n)

= (−1)n
1

1− q2X2
(1− sY )Y jJ(n)

= (−1)n+j 1

1− q2X2
(1− sY )J(n+ j)

=
(−1)j

1− q2X2
[(−1)nJ(n+ j) + (−1)−n+1J(−n+ 1 + j)]

=
(−1)n+j [J(n+ j) + J(n− 1− j)]

q4n−2 − 1
= Pj(n).

Since the nonsymmetric pairing exists whenever q4 − 1 is invertible, the rational function Pj(n)

can only have poles when q4 − 1 = 0. However, the colored Jones polynomials are Laurent

polynomials, and the denominator of Pj(n) has simple zeros when q2 − 1 = 0 and does not

have zeros when q2 + 1 = 0. Therefore, (q2 − 1)Pj(n) is a Laurent polynomial, which shows the

claim. 2

5.4 Habiro’s cyclotomic expansion

In this section, we use Habiro’s cyclotomic expansion [Hab08, § 6] (see also [GL11, (12)]) of

the colored Jones polynomials to prove that for any knot, the rational function (q2 − 1)Pj(n)

from (5.7) is actually a Laurent polynomial. We first recall this expansion in our normalization

conventions (see Remark 2.15). Define the polynomials

cn,k :=

k∏
j=1

(q4n + q−4n − q4j − q−4j).

By definition, cn,0 = 1, cn,n = 0, and cn,k+1 = (q4n + q−4n − q4k+4 − q−4k−4)cn,k.

Theorem 5.13 [Hab08]. There exist (unique) Hk ∈ Z[q±1], independent of n, such that

J(n) =
q2n − q−2n

q2 − q−2

n−1∑
k=0

cn,kHk.
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Note that H0 = 1 for all knots. Since cn,n = 0, we may take the upper limit of this sum to be
infinity. Also, as an example of the theorem, for the figure eight knot we have Hk = 1 for all k,
and for the unknot we have H0 = 1 and Hk = 0 for k > 1. Finally, since we use the convention
J(n) = −J(−n), the theorem is also true for negative n if we define H−k = Hk.

Theorem 5.14. The following rational function is actually a Laurent polynomial:

(q2 − 1)Pj(n) = (q2 − 1)
J(n+ j) + J(n− j − 1)

q4n−2 − 1
.

Proof. (In the statement of the theorem we have ignored the sign (−1)n+j .) Since Theorem 5.13
is true for both positive and negative n, we are free to assume that n+ j > 0 and n− j − 1 > 0.

If we shorten notation by writing a = (q2n+2j − q−2n−2j) and b = (q2n−2j−2− q2+2j−2n), we then
have

(q2 − 1)Pj(n) =
1

(q + q−1)(q4n−2 − 1)

∞∑
k=0

Hk[acn+j,k + bcn−j−1,k]

=:
∞∑
k=0

Hk
sk

(q + q−1)(q4n−2 − 1)
.

We prove that sk is divisible by (q + q−1)(q4n−2 − 1) by induction on k. Since cn,0 = 1, we
have

sk=0 = (q2n+2j − q−2n−2j) + (q2(n−j−1) − q2(1+j−n))

= q2n+2j − q2(1+j−n) − q−2n−2j + q2(n−j−1)

= q2j(q2n − q−2n+2) + q−2j(q2n−2 − q−2n)

≡ q2j−2n(q−2 + q−4j) (mod q4n−2 − 1).

Since the expression on the final line is divisible by q4j−2 + 1, it is divisible by q2 + 1, and this
proves the claim for k = 0. For the inductive step, we will show that sk ≡ sk−1(mod q4n−2 − 1).
We first compute

sk = acn+j,k + bcn−j−1,k

= a(q4(n+j) + q−4(n+j) − q4k − q−4k)cn+j,k−1

+ b(q4(n−j−1) + q−4(n−j−1) − q4k − q−4k)cn−j−1,k−1.

We now split this into four terms, each of which can be dealt with similarly. For example,

aq4(n+j)cn+j,k−1 + bq−4(n−j−1)cn−j−1,k−1 = q4j(aq4ncn+j,k−1 + bq4−4ncn−j−1,k−1)

≡ q4j(aq4ncn+j,k−1 + bq4ncn−j−1,k−1)

≡ q4j+4nsk−1 (mod q4n−2 − 1). 2

Remark 5.15. This proof actually shows that the following rational function is a Laurent
polynomial:

(q2 − 1) (J(n+ j) + J(n− j − 1))

(q4n−2 − 1)(q4j−2 + 1)
.
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5.5 More divisibility properties

In this section, we prove [CLPZ14, Conjecture 1.6] of Chen et al. using the techniques of the

previous section (and, in particular, Habiro’s theorem). Their conjecture is stated using a different

normalization of the colored Jones polynomials, so in this section we use their normalization.

In particular, their q is our q2, and they used the normalized colored Jones polynomials J̄n(K),

which are related to ours via J̄n(K) = Jn+1(K)/Jn+1(unknot). Let [n] := qn − q−n. We prove

the following theorem, which implies [CLPZ14, Conjecture 1.6].

Theorem 5.16. For any knot, the following congruence holds:

J̄n−1(q)− J̄k−1(q) ≡ 0 (mod [n− k][n+ k]). (5.8)

Proof. First, we define

dn,j :=

j∏
k=1

(q2n + q−2n − q2k − q−2k)

(where dn,0 = 1 by convention). Habiro’s theorem in the normalization conventions of [CLPZ14]

says that there exist polynomials Hk ∈ Z[q±1], independent of n, such that

J̄n−1(q) =
∞∑
j=0

dn,jHj .

(This sum is finite because dn,n = 0.) We can therefore write the left-hand side of (5.8) as follows:

J̄n−1(q)− J̄k−1(q) =
∞∑
j=0

(dn,j − dk,j)Hj .

We prove by induction on j that each coefficient aj := (dn,j − dk,j) is congruent to 0 modulo
[n− k][n+ k]. The base case j = 0 is trivial since dn,0 = 1. Now assume that aj−1 ≡ 0. We first
compute

dn,j = (q2n + q−2n − q2j − q−2j)dn,j−1

≡ (−[n− k][n+ k] + q2n + q−2n − q2j − q−2j)dn,j−1

= (q2k + q−2k − q2j − q−2j)dn,j−1.

We then have the following congruences:

aj = (q2n + q−2n − q2j − q−2j)dn,j−1 − dk,j
≡ (q2k+2 + q−2k−2 − q2j − q−2j)dn,j−1 − dk,j
= (q2k+2 + q−2k−2 − q2j − q−2j)(dn,j−1 − dk,j−1)

≡ 0.

This completes the proof of the theorem. 2

Remark 5.17. The difference in the signs in (5.8) and the numerator of Remark 5.15 comes from

the differences in normalization between Jn and J̄n.
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6. Canonical three-parameter deformations

In this section, we discuss deformations of (nonsymmetric) skein modules to the double affine
Hecke algebra Hq,t1,t2,t3,t4 = Hq,t of type C∨C1 introduced by Sahi in [Sah99] (see also [NS04]).
To reduce confusion, in this section we write X, ŷ, and s for the generators of AqoZ2. As before,
we let Dq be the algebra obtained from AqoZ2 by inverting all nonzero polynomials in X. Then
Hq,t is the subalgebra of Dq generated by X, X−1, and the following operators in Dq:

T0 = t1sŷ −
q2t̄1X

2 + qt̄2X

1− q2X2
(1− sŷ),

T1 = t3s+
t̄3 + t̄4X

1−X2
(1− s).

If M is an Aq o Z2-module, we write M loc := Dq ⊗AqoZ2 M for the localization of M at all
nonzero polynomials X. If M is free over the subalgebra C[X±1] (which is the case in all our
examples), then the natural map M →M loc is injective. Since Hq,t is a subalgebra of Dq, it acts
naturally on M loc.

We now prove Conjectures 1 and 3 for our example knots.

Theorem 6.1. Let M be the Aq o Z2-module which is the nonsymmetric skein module of the
unknot, a (2, 2p + 1) torus knot, or the figure eight knot, and let M ′ be the quotient of M by
the unknot submodule.

(i) The action of Hq,t1,t2,1,1 preserves the subspace M ⊂M loc.

(ii) The action of Hq,t1,t2,t3,t4 preserves the subspace M ′ ⊂ (M ′)loc.

Remark 6.2. For the knots listed in the theorem, the results of § 4 make it clear that there is a
unique map from the skein module of the unknot to the skein module of K, so the quotient M ′

in the second statement of the theorem is well defined.

Proof. We define the operators

U0 :=
1

1− q2X2
(1− sŷ), U1 :=

1

1−X2
(1− s). (6.1)

To prove the first statement, it suffices to show that U0 preserves M ⊂M loc. Once this is proved,
the second statement is implied by the statement U1M

′ ⊂ M ′. To avoid confusion of notation,
after proving the technical Lemma 6.4, we will divide the proof into separate subsections (one
for each knot). 2

Remark 6.3. Before continuing with the proof of the theorem, we remark that if eM =
Kq(S

3\K), the conjecture that U0 preserves the nonsymmetric skein module M ⊂M loc implies
that q−1eX−1U0e preserves eM inside the localization of eM at polynomials in x = X +X−1.
Under the identification AZ2

q = Kq(T
2 × [0, 1]), we have

q−1eX−1U0e =
1

(x− (q + q−1))(x+ (q + q−1))
[(q − q−1)x− q−2(1,−1) + q2(1, 1)].

(Here x is the meridian (1, 0), and the notation (m, l) refers to the (m, l) curve on T 2.) We note
that if K is the unknot, then the operator q−1eX−1U0e annihilates the empty link.
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We first give a technical lemma that provides conditions that imply that UiM ⊂M for i = 0,
1. We recall the notation of Lemma 4.5. In particular, suppose that M = C[X±1]⊗CV and define
operators S, P ∈ EndC(M) using (4.1). Furthermore, suppose that A(X), B(X) ∈ EndC[X±1](M)
satisfy

B(X)B(X−1) = 1, A(X)B(X)A(q2X−1) = B(X).

We then define s, ŷ : M → M by ŷ = A(X)P and s = B(X)S, and Lemma 4.5 shows that the
operators X, s, ŷ : M →M define a representation of Aq o Z2.

Lemma 6.4. Assume the notation in the previous paragraph, and suppose that the following
condition holds:

(1−B(X)A(X−1))M ⊂ (1− q2X2)M.

Then the operator U0 from formula (6.1) preserves M ⊂M loc. Also, the statement U1M
′ ⊂M ′

is implied by the following condition:

(1−B(X))M ′ ⊂ (1−X2)M ′.

Proof. Since (SP )2 = 1, the elements f± := (1± SP )/2 are idempotents that satisfy (SP )f± =
±f±. (These are not the standard idempotents that have been used previously.) We can then
write

(1− sŷ) = (1−B(X)SA(X)P )(f+ + f−)

= (1−B(X)A(X−1)SP )(f+ + f−)

= (1−B(X)A(X−1))f+ + (1 +B(X)A(X−1))f−.

Since (1− SP ) · (f(X)⊗ v) = (f(X)− f(q−2X−1))⊗ v, we see that f− ·M ⊂ (1− q2X2)M and,
since B(X) and A(X) are C[X±1]-linear, this implies that

(1 +B(X)A(X−1))f−M ⊂ (1− q2X2)M.

By assumption, (1 − B(X)A(X−1))f+M ⊂ (1 − q2X2)M , and this shows that U0M ⊂ M . The
second statement follows by a similar argument, which we omit. 2

Remark 6.5. The first condition in Lemma 6.4 is equivalent to the conditions B(q−1)A(q) = Id
and B(−q−1)A(−q) = Id, where both equalities hold in Mn(C). We remark that the conditions
in Lemma 4.5 hold a priori, and when specialized to X = q−1 they become (B(q−1)A(q))2 = Id
(and similar for X = −q).

6.1 The unknot
We recall that the module structure of the (nonsymmetric) skein module M of the unknot is
given by

M ∼= C[X±1], s · 1 = −1, ŷ · 1 = −1.

We then compute

(1− sŷ)Xn = Xn − q−2nX−n.

The right-hand side is clearly divisible by (1 − q2X2) and, since {Xn} is a basis for M , we see
that U0 preserves M ⊂M loc. The second claim of Theorem 6.1 is tautological in this case.
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6.2 (2, 2p + 1) torus knots
Let M be the nonsymmetric skein module of the (2, 2p + 1) knot Lp. (More precisely, M is
the lift of the Kq(T

2) submodule of Kq(S
3\Lp) generated by the empty link.) We recall that

M = C[X±1]{u, v} as a C[X±1]-module, with the action of s, ŷ given by

s =

[
−1 0

0 1

]
S, ŷ = A(X)P :=

[
−1 (−1)pq2p+4(X−2p−3 − q−4X−2p+1)

0 q2(2p+1)X−2(2p+1)

]
P.

Since u generates the unknot submodule, we may abuse notation and identify M ′ = C[X±1]v,
with the action of s, ŷ given by

s = B′S = IdS, ŷ = [q2(2p+1)X−2(2p+1)]P.

Lemma 6.6. The operator U0 preserves M ⊂M loc, and the operator U1 preserves M ′ ⊂ (M ′)loc.

Proof. To show that the condition of Lemma 6.4 holds, we compute

1−BA(X−1) =

[
0 (−1)p+1q2p+4(X2p+3 − q−4X2p−1)

0 1− q2(2p+1)X2(2p+1)

]
.

Since all the entries are divisible by 1−q2X2, this shows the first claim. The second claim follows
from the fact that B′ is the identity matrix. 2

Example 6.7. The action of the generators X, s, Y of Hq,t1,t2,1,1 on the generators u, v can be
computed explicitly. For example, for the trefoil (i.e. p = 1), X acts by multiplication, and the
actions of s and Y are given by the following:

s · u = −u,
s · v = v,

Y · u = −t1u,

Y · v = [t1(q2X−1 − q6X−5)− (q2t̄1X
−2 + qt̄2X

−1)(q4X−3 + q2X−1)]u

+ [t1q
6X−6 − (q2t̄1X

−2 + qt̄2X
−1)(q4X−4 + q2X−2 + 1)]v.

Here we have written t̄i = ti− t−1
i . It is clear that when t1 = t2 = 1, these formulas specialize to

the operator Y in (4.6).

6.3 The figure eight
Let M be the nonsymmetric skein module of the figure eight knot. We recall that as a C[X±1]-
module, we have M = C[X±1]⊗C (Cp′ ⊕ Cu⊕ Cv). We recall the polynomials a, b, c ∈ C[X±1]:

a = −q−2X4 + q−2X2 + q2, b = −q−2X2 + q2X−2, c = q−2X3 − q2X−1.

Finally, s and ŷ are defined by matrices (with respect to the ordered basis {p′, u, v}):

s =

−1 0 0

0 1 0

0 0 1

S, ŷ =

−1 c(X) q2c(q2X−1)

0 a(X) q4b(q2X−1)

0 b(X) a(q2X−1)

P.
Since p′ generates the unknot submodule, we may write the action of s on the quotient M ′ as

s = B′S =

[
1 0

0 1

]
S.
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Lemma 6.8. The operator U0 preserves M ⊂M loc, and the operator U1 preserves M ′ ⊂ (M ′)loc.

Proof. To show that the first condition of Lemma 6.4 holds, we compute

1−BA(X−1) =

0 −c(X−1) −q2c(q2X)

0 1− a(X−1) −q4b(q2X)

0 −b(X−1) 1− a(q2X)

 .
It is straightforward to check that all entries in this matrix are divisible by 1 − q2X2, which
proves the first claim. The second claim follows from the fact that B′ is the identity matrix. 2

6.4 Three-variable Jones polynomials
In the previous section, we gave examples of skein modules of knot complements that extend to
representations of Hq,t1,t2,1,1. In this section, we use these modules to give example calculations
of three-variable polynomials Jn(q, t1, t2) ∈ C[q±1, t±1

1 , t±1
2 ] that specialize to the colored Jones

polynomials when t1, t2 = 1. More precisely, if Yt1,t2 = sT0 ∈ Dq, we define

Jn(q, t1, t2) := 〈∅, Sn−1(Yt1,t2 + Y −1
t1,t2

) · ∅〉, (6.2)

where ∅ is the empty link and 〈−,−〉 is the pairing from Corollary 5.3. We remark that the
following equality is a direct consequence of Theorem 2.14 and the fact that Y1,1 + Y −1

1,1 is the
longitude:

Jn(q) = Jn(q, t1 = 1, t2 = 1). (6.3)

In other words, the polynomials Jn(q, t1, t2) specialize to the classical colored Jones polynomials
of the knot K. We prove the following symmetry property of these three-variable polynomials,
which extends the well-known symmetry for the classical colored Jones polynomials.

Proposition 6.9. Let K̄ be the mirror image of K and suppose that Conjecture 1 holds for K.
Then

Jn(K; q, t1, t2) = Jn(K̄; q−1, t−1
1 , t−1

2 ).

Proof. The mirror map S3
→ S3 induces a C-linear isomorphism

Kq(S
3\K)

∼
→ Kq−1(S3\K̄) (6.4)

and we identify these two skein modules as vector spaces using this map. If ε(K, q) : Kq(S
3\K)→

Kq(S
3) is the C-linear map induced by the inclusion K → S3, then ε(K, q) = ε(K̄, q−1) (under

the identification (6.4)). Furthermore, the skein module Kq−1(S3\K̄) is the twist of the skein
module Kq(S

3\K) by the isomorphism

ϕ : Aq o Z2→ Aq−1 o Z2, ϕ(X) = X, ϕ(ŷ) = ŷ−1, ϕ(s) = s.

(Since this isomorphism sends s 7→ s, it descends to an isomorphism of the spherical subalgebras.)
This automorphism extends to ϕ : Dq → Dq−1 . Let Θq,t1,t2 : Hq,t1,t2,1,1 → Dq be the standard
embedding given by Proposition 2.18. To prove the claim, we show that

ϕ(Θq,t1,t2(Yt1+t2 + Y −1
t1,t2

)) = Θq−1,t−1
1 ,t−1

2
(Yt−1

1 ,t−1
2

+ Y −1

t−1
1 ,t−1

2

). (6.5)

Translating [NS04, Proposition 5.8] into our notation and specializing to t3 = t4 = 1, we have

Θq,t1,t2(Yt1,t2 + Y −1
t1,t2

) = Aq,t1,t2(X)(ŷ − 1) +Aq,t1,t2(X−1)(ŷ−1 − 1) + t1 + t−1
1 ,

Aq,t1,t2(X) :=
t−1
1 qX−1 − t2 + t−1

2 − t1q−1X

qX−1 − q−1X
.

(6.6)
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We then have the equality

ϕ(Aq,t1,t2(X)) = Aq−1,t−1
1 ,t−1

2
(X−1),

which proves (6.5) and completes the proof of the proposition. 2

For the unknot, we compute a closed formula for Jn(q, t1, t2) in the following lemma, but
for nontrivial knots this computation seems to be more difficult, so we include several example
computations in the appendix.

Theorem 6.10. If K is the unknot, then

Jn(K; q, t1, t2) =
(t−1

1 q2)n − (t−1
1 q2)−n

t−1
1 q2 − (t−1

1 q2)−1
.

Proof. Using (6.6) and (4.3), it is straightforward to compute

(Yt1,t2 + Y −1
t1,t2

) · ∅ = −(t−1
1 q2 + t1q

−2)∅.

Then the claimed equality follows from the fact that 〈∅,∅〉 = 1 and from the identities for
Chebyshev polynomials in Lemma 4.6. 2

Remark 6.11. If q is specialized to q = 1, then the classical Jones polynomials are independent
of the knot K. In all examples we have checked, this is also true for the polynomials Jn(K; q = 1,
t1, t2) (when they are normalized as in (6.2)).

7. Five-parameter deformations

In this section, we discuss deformations of the nonsymmetric skein moduleM of a knot to a family
of modules over the DAHA Hq,t for all parameters t ∈ (C∗)4. Unfortunately, the deformations
of M that we produce in this section do not seem to be canonical, and in particular depend on
a choice of C[X±1]-splitting of the module M . If M is the nonsymmetric skein module of the
(2, 2p+1) torus knot, there is a natural choice of such a splitting (see Remark 7.2), but for other
knots this does not seem to be the case. For simplicity, in this section we will only discuss the
trefoil.

We recall that Hq,t is the subalgebra of EndC(C[X±1]) generated by X±1 and the two
operators

T0 = t1sŷ −
q2t̄1X

2 + qt̄2X

1− q2X2
(1− sŷ),

T1 = t3s+
t̄3 + t̄4X

1−X2
(1− s).

In § 6, we showed that the operator T0 acts on the nonsymmetric skein module of several knot
complements. However, the operator T1 does not even act on the nonsymmetric skein module
V of the unknot because V is the sign representation of Aq o Z2. More precisely, we recall that
V = C[X±1] as a C[X±1]-module, with the actions of ŷ and s determined by

ŷ · 1 = −1, s · 1 = −1. (7.1)

Then T1 · 1 is a rational function in X, so, in the sign representation, the action of T1 on C(X)
does not preserve the subspace C[X±1].

To avoid this problem, we define a new operator T−1 ∈ Dq that acts on V and show that
the operators X, T0, and T−1 provide an action of Hq,t on the sign representation. In examples,
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the nonsymmetric skein module splits over C[X±1] o Z2 as a sum of the standard and sign
polynomial representations, and we can therefore use this splitting to define an action of Hq,t on
the nonsymmetric skein module. We describe this action for the trefoil and then use this action
to define five-variable polynomials that specialize to the colored Jones polynomials of the trefoil.

7.1 The Dunkl embedding for the sign representation
Let V be the sign representation from (7.1) and let V loc be the localization of V at all nonzero
polynomials in X. Define the following operator:

T−1 := t−1
3 s+

t3 − t−1
3 + (t4 − t−1

4 )X

1−X2
(1 + s). (7.2)

(Note that the sign in the term (1 + s) is not a typo: it is required for T−1 to act on the
sign representation V .) We recall from (2.5) that Hq,t is generated by elements Vi and V ∨i (for
i = 1, 2) with relations (2.5).

Lemma 7.1. The operators T0 and T−1 preserve the subspace V ⊂ V loc. Furthermore, the
operators X, T0, and T−1 generate a copy of Hq,t inside of Dq via the map

T0 7→ T0, T1 7→ T−1 , T∨0 7→ qT−1
0 X, T∨1 7→ X−1(T−1 )−1. (7.3)

Proof. The operator sŷ acts in the same way on the trivial and sign representations of Dq, and
this implies that T0 preserves the subspace V ⊂ V loc. Since the map Dq → EndC(C(X)) is
injective for q not a root of unity, this also shows that T0 and T∨0 satisfy the first two relations
in (2.5). Also, the final relation holds by definition.

To show that the third and fourth relations hold, we first note that as a C[X+X−1]-module,
we have a splitting V = C[X+X−1]1⊕C[X+X−1]X. Furthermore, the operator T−1 commutes
with X + X−1 ∈ Dq, which shows that it suffices to check that the left-hand sides of the third
and fourth relations annihilate the elements 1, X ∈ V . These are straightforward computations,
which we omit. 2

7.2 Five-parameter deformation for the trefoil
We recall that the C[X±1]-module structure of the nonsymmetric skein module M of the trefoil
is

M ∼= C[X±1]u⊕ C[X±1]v. (7.4)

To define the Aq oZ2-module structure of M , we first define two operators S, P : M →M as in
equation (4.1). We can then write the action of the elements ŷ, s ∈ Aq oZ2 in terms of matrices
(with respect to the ordered basis (u, v) of M):

s =

[
−1 0

0 1

]
S, ŷ =

[
−1 q2X−1 − q6X−5

0 q6X−6

]
P.

Remark 7.2. The element u ∈ M generates a submodule M ′ ⊂ M , and we write M ′′ for the
quotient, so that we have an exact sequence

0→M ′→M →M ′′→ 0.

If q is not a root of unity, then M ′ and M ′′ are simple AqoZ2-modules and, since this extension is
nonsplit, it is easy to see that M ′ is the unique nontrivial submodule of M (see Lemma 4.10). The
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moduleM ′′ has a distinguished generator v′′ (the image of the empty link v), so a C[X±1]-splitting
of this exact sequence is determined by the image of v′′ in M . The natural choice for this image
is the empty link in M , which is v. In this sense, the choice of C[X±1]-splitting given in (7.4) is
natural. However, in general the analogue of the quotient M ′′ has C[X±1]-rank greater than 1,
so a choice of C[X±1]-splitting is not determined by a single element of M .

We now define the operator T ∗1 : M →M as follows:

T ∗1 =

[
T−1 0

0 T1

]
.

Theorem 7.3. The operators X, T0, and T ∗1 provide an action of Hq,t on M via the map (7.3).

Proof. It was shown in § 6.2 that the operator T0 preserves the subspace M ⊂ M loc, and this
implies that T0 and qT−1

0 X satisfy the first two relations of (2.5). The final relation holds by
definition. Finally, since the splitting in (7.4) is a splitting of C[X±1]oZ2-modules, the operator
T ∗1 preserves this splitting. Then the third and fourth relations of (2.5) follow from Lemma 7.1
and from the fact that T1 satisfies these relations in the standard polynomial representation. 2

Remark 7.4. This action can be used to produce five-variable polynomials Jn(q, t1, t2, t3, t4) that
restrict to the colored Jones polynomials Jn(q) using a similar formula to (6.2); however, the
polynomials this produces are quite lengthy, so for the sake of brevity we omit them.
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Appendix. Computer calculations of multi-variable Jones polynomials

We now include computer computations of three-variable polynomials normalized as in (6.2). To
shorten notation, we write t := t1 and v = t2 − t−1

2 . (We remind the reader of the normalization
conventions for the colored Jones polynomials; see Remark 2.15. In particular, the q of the
KnotAtlas is our q2.)

A.1 The trefoil
For the trefoil, we have the following polynomials:

J2 = vq − t−1q2 + (−t−1 + t)q4 − tq6 + vq7 − vq9 − t−1q10 + (t−1 − t)q12 − vq15 + t−1q18,

J3 = v2q2 − t−1vq3 + (−1 + t−2 + t2)q4 + (−2t−1v + tv)q5 + (−1 + t−2)q6 + (−t−1v + tv)q7

+ (t−2 + v2)q8 − t−1vq9 + (−1 + t−2)q10 − t−1vq11 + t−2q12 − tvq13 + (1− t2)q14 − tvq15

+ (1− v2)q16 + (t−1v − tv)q17 + (1− t2 − v2)q18 + (2t−1v − tv)q19 + (2− t−2)q20

+ (2t−1v − tv)q21 + (−t−2 + t2 − v2)q22 + (t−1v − tv)q23 + (2− t−2 − t2)q24

+ (t−1v + tv)q25 + (−t−2 + t2 − v2)q26 + t−1vq27 + t−1vq29 + (1− t−2 + v2)q30

+ (t−1v + tv)q31 + (−2 + t2 − v2)q32 − t−1vq33 + (1− t−2 + v2)q34 + tvq35 + tvq37

+ (−1 + t−2)q38 − t−1vq39+(−t−2 + v2)q40+(−1 + t−2)q42 − t−1vq43 − t−1vq45 + t−2q48.
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A.2 The (5, 2) torus knot
For the (5, 2) torus knot, we have

J2 = vq + (−t−1 + t)q2 + (−t−1 + t)q4 + vq5 − tq6 + vq7 + (−t−1 + t)q8 − vq9 − t−1q10

+ vq11 + (t−1 − t)q12 − t−1q14 − vq15 + (t−1 − t)q18 − vq21 + (t−1 − t)q24 − vq27 + t−1q30.

For the (5, 2) torus knot, the polynomial J3 is quite lengthy, so we omit it.

A.3 The figure eight knot
Since the figure eight knot is isotopic to its mirror image, Proposition 6.9 shows that Jn(q, t, v)
= Jn(q−1, t−1,−v) (in the current notation for parameters). Explicitly, we have

J2 = −tq−10 − vq−7 + (t−1 − t)q−4 − vq−1 + vq + (−t−1 + t)q4 + vq7 − t−1q10,

J3 = t2q−28 + tvq−25 + tvq−23 + (−1 + t2)q−22 + (−t2 + v2)q−20 + tvq−19 + (−1 + t2)q−18

+ − t−1vq−17 + (−1 + t2)q−16 − t−1vq−15 + (1− t2 + v2)q−14 + 2tvq−13

+ (−2 + t−2 + t2 − v2)q−12 − t−1vq−11 + v2q−10 − tvq−9 + (1− t2 + v2)q−8

+ (−1 + t−2 − 2v2)q−6 + (−t−1v − tv)q−5 + (2− t−2)q−4 + (2t−1v − 2tv)q−3

+ (2− 2t2)q−2 + (2t−1v − tv)q−1 + (1− 2v2) + (t−1v − 2tv)q + (2− 2t−2)q2

+ (2t−1v − 2tv)q3 + (2− t2)q4 + (t−1v + tv)q5 + (−1 + t2 − 2v2)q6 + (1− t−2 + v2)q8

+ t−1vq9 + v2q10 + tvq11 + (−2 + t−2 + t2 − v2)q12 − 2t−1vq13 + (1− t−2 + v2)q14

+ tvq15 + (−1 + t−2)q16 + tvq17 + (−1 + t−2)q18 − t−1vq19 + (−t−2 + v2)q20

+ (−1 + t−2)q22 − t−1vq23 − t−1vq25 + t−2q28.
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