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Platinum on ceria support is a technologically important and highly active catalyst for CO oxidation [1-

3]. Past studies have shown that the functioning of this catalyst is influenced by structural re-

arrangements (fluxionality) occurring under reaction conditions [4]. Our latest in situ TEM results on 

this catalyst show  significant fluxionality exhibited by Pt nanoparticles even at room temperature in a 

CO atmosphere. Correlating fluxionality and catalytic activity will provide fundamental insights into the 

reaction pathways and help in the design of better catalysts. The fluxionality is often stochastic with the 

particles showing periods of structural stability punctuated with periods of intense structural re-

arrangement. In this work we discuss an approach to detect the onset of unstable behavior of Pt 

nanoparticles on ceria exposed to CO gas of different partial pressures at room temperature. 

 

Atomic resolution time-resolved image series of Pt/ CeO2 nanoparticles were acquired under varying 

CO partial pressures on an aberration-corrected FEI Titan environmental transmission electron 

microscopy (ETEM) operated at 300 kV. The in situ images were recorded using the Gatan K3 IS 

camera in CDS mode at 75 frames per second (fps). The state-of-the-art direct detection cameras allows 

temporal resolution of up to ~10
-3

 s. However, the signal-to-noise ratio is degraded due to limited beam 

intensity and low exposure time per frame [5, 6]. The basic approach that we initially tried in detecting 

the changes in the structural re-arrangements was subtracting the 2 adjacent frames and looking at the 

residual. This approach fails because of high noise present in the images. Handling the extremely noisy 

dataset required a more sophisticated approach to event detection based on an exponentially weighted 

moving average (EWMA) method to detect significant changes in the image signal in time. 

Exponentially weighted moving average (EWMA) is a widely used technique for smoothing out random 

fluctuations in a time series dataset by averaging with exponentially decaying weighting factors [7]. To 

determine the optimum approach for detection of structural dynamics, we tested several different 

implementations of EWMA. We used 2 different weighting factors (applied in exponentially decaying 

manner backwards in time) and performed the absolute difference of those EWMAs (called as „EWMA 

Backward‟). In a similar manner we compute „EWMA Forward‟, placing exponentially decaying 

weights for the data ahead of time. We further subtracted EWMA Backward from EWMA Forward and 

used the derivative of the difference between 2 EWMAs for pinpointing the exact time to locate the 

changes in the signal. 

 

A time dependent step function is shown to demonstrate the working the principle of EWMA. Figure 1 

(a) shows the function used for testing the algorithm, Figure 1 (b), (c) show the EWMA Backward and 

EWMA Forward respectively, Figure 1 (d), (e) show subtraction of EWMA Backward from EWMA 

Forward and the derivative of the difference. We demonstrate the application of same approach on 

detecting fluxionality on Pt particles using the experimental data in Figure 2. We considered a region on 

the Pt nanoparticle and applied the technique shown in Figure 1(e). To apply the technique described in 
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Figure 1(e), we consider a region on the Pt nanoparticle of 100 x 100 pixels. We sum the squared values 

of the pixels in that region and normalize it with the area to obtain a number which we refer to as 

„Fluxionality Coefficient‟. Figure 2 (a) demonstrates the plot of „Fluxionality Coefficient‟ versus Frame 

Number. Figure 2 (b)-(e) show the noisy experimental images around the peak corresponding to the 

frame number 908. As, it is very difficult to see structural differences in the noisy images, to denoise the 

experimental images we have used an Unsupervised Deep Video Denoiser (UDVD) [8]. Figure 2 (f)-(i) 

display the denoised images by applying the unsupervised neural network, which easily show the fading 

of the fringes in Pt nanoparticle in the frame 908 (as indicated by figure 2 (a)).   From the results 

demonstrated in Figure 2, we see this EWMA framework can detect the subtle structural re-

arrangements in nanoparticles under catalytic conditions and can be used on large in situ TEM datasets 

captured at high-temporal resolution [9]. 
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Figure 1. (a) Represents the „time-step‟ signal value used for testing the algorithm. (b) and (c) represent 

the „EWMA Backward‟ and „EWMA Forward‟ respectively. (d) shows the difference between EWMA 

Forward and EWMA Backward. (e) shows the derivative of the difference computed in (d). 

 
Figure 2. (a) Displays the plot between the fluxionality coefficient and frame number (after applying the 

EWMA Derivative method). (b)-(e) shows the noisy experimental image time-series on which the 

algorithm is applied. (f)-(i) represent the images with improved SNR obtained after denoising the 

experimental dataset showing the fluxionality of Pt nanoparticles. 
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