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Aronszajn tree property
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Abstract. We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn
Tree Property simultaneously hold on ω2 , thereby contributing to the study of the tension between
compactness and incompactness in set theory. The poset which produces the final model follows the
collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second
with an iteration specializing Aronszajn trees.

In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on ω2
after forcing with what we call F-Strongly Proper posets, where F is either the weakly compact filter
or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate
example, uses systems of exact residue functions to create many strongly generic conditions. We
prove a new result about stationary set preservation by quotients of this kind of poset; as a corollary,
we show that the original Laver–Shelah model, which starts from a weakly compact cardinal, satisfies
a strong stationary reflection principle, although it fails to satisfy the full Club Stationary Reflection.
In the second part, we show that the composition of collapsing and club adding (with anticipation) is
an F-Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we show
how to obtain the final model.

1 Introduction

This work is a contribution to the study of the tension between compactness and
incompactness principles in set theory. We focus on the second uncountable cardinal,
ω2, and consider the strong compactness principle of Club Stationary Reflection and
the strong incompactness principle known as the Special Aronszajn Tree Property
(these are defined below).

The two properties have been shown to be consistent separately by Magidor [31]
and Laver and Shelah [30], respectively. Since the properties represent strong forms
of opposing phenomena (compactness and incompactness), it is natural to suspect
that they are jointly inconsistent. The main result of this paper shows, on the contrary,
that the conjunction of the two principles is consistent. More precisely, we prove the
following theorem.

Theorem 1.1 It is consistent relative to the existence of an ineffable cardinal that Club
Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold
at ω2.
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Our work also shows that a weaker version of stationary reflection holds in the
original Laver–Shelah model (which uses a weakly compact).

Theorem 1.2 In the original Laver–Shelah model, the following stationary reflection
principle holds: for every sequence ⟨Sα ∣ α < ω2⟩ of stationary subsets of ω2 ∩ cof(ω),
there is β < ω2 so that Sα ∩ β is stationary in β, for every α < β. However, Club
Stationary Reflection at ω2 fails.

We proceed to define the relevant terms and contextualize our result. If ν is a regular
cardinal, we use cof(ν) denote the class of ordinals with cofinality ν. We recall that
if cf(α) > ω, then S ⊆ α is stationary if S ∩ C ≠ ∅ for each club C ⊆ α. We say that
S reflects if there is some β < α with cf(β) > ω so that S ∩ β is stationary in β. If κ
is regular, we say that stationary reflection holds at κ++ if every stationary S ⊆ κ++ ∩
cof(≤ κ) reflects. Baumgartner originally showed [5] that stationary reflection at ω2 is
consistent from a weakly compact cardinal. Harrington and Shelah [18] later improved
this, showing that the optimal assumption of a Mahlo cardinal suffices. One obtains
stronger principles by requiring that multiple stationary sets reflect simultaneously.
Recall that a collection {S i ∣ i < τ} of τ < α stationary subsets of α is said to reflect
simultaneously if there is some β < α with cf(β) > ω so that S i ∩ β is stationary in
β for every i < τ. Magidor [31] has shown that the consistency strength of “any two
stationary subsets of ω2 ∩ cof(ω) simultaneous reflect” implies the consistency of a
weakly compact cardinal. One may also consider stronger diagonal versions of the
above, defined in the natural way.

We are interested in the following very strong form of stationary reflection which
implies all of the above.

Definition 1.1 Suppose that κ is regular. We say that Club Stationary Reflection holds
at κ++ if for any stationary S ⊆ κ++ ∩ cof(≤ κ), there exists a club C ⊆ κ++ so that for
all β ∈ C ∩ cof(κ+), S reflects at β. We write CSR(κ++).

We will concern ourselves with the case κ = ω, i.e., with stationary subsets of ω2 ∩
cof(ω). Most relevant for us, Magidor [31] showed that CSR(ω2) is consistent from a
weakly compact cardinal; by the above remarks, this is the optimal hypotheses.

Extensions of CSR to other cardinals have been shown to have limitations. For
example, Jech and Shelah [22] proved that for every n < ω, if every stationary subset
of ωn+3 ∩ cof(ωn+1) reflects, then CSR(ωn+2) fails. However, Jech and Shelah [22],
and later Cummings and Wylie [12], proved the consistency of certain best possible
variations of club stationary reflection below ℵω .

Limitations on stationary reflection emerge from incompactness principles. One
of the most prominent of these is Jensen’s ◻κ. In [23], Jensen showed that ◻κ holds
in L for all κ > ω and that ◻κ implies the existence of many nonreflecting stationary
subsets of κ+.

Further studies showed that variations of ◻κ place limitations on the cofinality of
reflection points, as well as the amount of simultaneous reflection. For instance, in
[37], Schimmerling introduced the hierarchy of square principles, ◻κ,λ , 1 ≤ λ ≤ κ+.
As λ increases, this hierarchy is strictly decreasing in strength; see Jensen [24] for κ
regular and [10] for κ singular. For a regular cardinal κ and λ ≤ κ, Schimmerling and
independently Foreman and Magidor have observed that if κ<λ = κ and ◻κ,<λ hold,
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then every stationary subset of κ+ has a stationary subset which does not reflect at
any point of cofinality ≥ λ (see [11]). In particular, κ<κ = κ and ◻κ,<κ imply that every
stationary subset of κ+ has a stationary subset which does not reflect at any point in
κ+ ∩ cof(κ). In [10], Cummings, Foreman, and Magidor extended these results and
developed the theory for κ singular.

Other notable weakenings of ◻κ were introduced and developed by Todorčević
[40]. These principles, denoted ◻(κ+) and ◻(κ+, λ), place refined limitations on the
extent of stationary reflection. See [13, 20, 35].

The weakest nontrivial form of square studied by Jensen is the so-called Weak
Square, denoted ◻∗κ, Remarkably, ◻∗κ is equivalent to a key incompactness phe-
nomenon, the existence of a special κ+-Aronszajn tree. Let us recall the relevant
definitions. A tree is a partially ordered set (T , ≤T) so that for each x ∈ T , the set of
≤T -predecessors of x is well ordered; we refer to the height of x in T as the order type
of this set. If α is an ordinal, we use Levα(T) to denote all x ∈ T of height α. The height
of T is the least ordinal α so that T has no elements of height α. A branch through T is
a linearly ordered subset of T, and a cofinal branch is a branch which intersects every
level below the height of T.

Let κ be regular. A κ-tree is a tree T of height κ so that each level has size < κ;
we will always assume that for each such tree, each node in the tree has incompatible
extensions to all higher levels. κ is said to have the tree property if every κ-tree has
a cofinal branch. König showed [25] that ω has the tree property, whereas Aronszajn
has shown that the tree property fails at ω1 (the result was communicated in [29]).
The extent of the tree property on cardinals greater than ω1, a famous question of
Magidor’s, is independent ofZFC. A watershed in our understanding is due to Mitchell
and Silver [34], who showed that the tree property at ω2 is consistent from a weakly
compact cardinal.

A tree which witnesses the failure of the tree property is said to be Aronszajn (i.e.,
a κ-tree which has no cofinal branches); the existence of such a tree is an instance
of incompactness. A particularly strong witness that a tree is Aronszajn is given by a
specializing function: in the case thatκ = λ+, a specializing function is an f ∶ T �→ λ so
that if x <T y, then f (x) ≠ f (y). (For an exploration of these concepts at an arbitrarily
regular cardinal, see [27].) Having a specializing function is a particularly strong
witness to being Aronszajn since the function witnesses that T remains Aronszajn
in any extension of that model in which κ is still a cardinal. T is said to be a special
Aronszajn tree if there is a specializing function for T. The property of interest to us is
the following.

Definition 1.2 Letκ be regular. We say thatκ+ has the Special Aronszajn Tree Property
if there are Aronszajn trees on κ+, and if every Aronszajn tree on κ+ is special. We
denote this property by SATP(κ+).

By a result of Specker [39], if κ<κ holds, then there is a special Aronszajn tree on
κ+; in particular, if the CH holds, then there is a special Aronszajn tree on ω2. Jensen
[23] later showed that the principle ◻∗κ holds if and only if there is a special Aronszajn
tree on κ+; since κ<κ implies ◻∗κ, this strengthens Specker’s result.

With regard to constructing specializing functions by forcing, Baumgartner,
Malitz, and Reinhardt showed [7] that MA + ¬CH implies SATP(ω1). Later, Laver
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and Shelah showed [30] that SATP(ω2) is consistent from a weakly compact cardinal.
Generalizing this further, Golshani and Hayut have recently shown [17], using posets
which specialize with anticipation, that it is consistent that, simultaneously, for every
regular cardinal κ, SATP(κ+) holds. Krueger has generalized the result of Laver–
Shelah (and also Abraham–Shelah [2]) in a different direction [28], showing that it
is consistent with the CH that any two countably closed Aronszajn trees on ω2 are
club isomorphic. And finally, Asperó and Golshani [3] have announced a positive
solution to the question of whether SATP(ω2) is consistent with the GCH. This work
continues the study of the tension between different manifestations of compactness
and incompactness phenomena in set theory, which together with the study of tension
with other fundamental principles, such as approximation principles (e.g., [8, 16]) and
cardinal arithmetic (e.g., [14, 38]), is central to our understanding of their extent and
limitations.

We proceed to describe our result in general terms and highlight the challenges
that appear in the process. Let κ be a cardinal which is either ineffable or weakly
compact in a ground model V of GCH; we will specify later (Definition 2.8) exactly
when κ is ineffable or weakly compact. We obtain the model which witnesses Theorem
1.1 by first defining, in the extension by P = Col(ω1 , < κ), a κ+-length iteration Cκ+ =
⟨Cτ ,C(τ) ∣ τ < κ+⟩ of adding clubs which will eventually witnesses CSR(ω2).

After forcing with Cκ+ , we then force with a κ+-iteration Sκ+ = ⟨Sτ , S(τ) ∣ τ < κ+⟩
specializing the desired Aronszajn trees Ṫτ , i.e., S(τ) = S(Ṫτ) (see Section 1.2 for
precise definitions of the posets).

To make this strategy work, we need, among other things, that all stationary
subsets of ω2 ∩ cof(ω) which appear in the final generic extension by P ∗ Ċκ+ ∗ Ṡκ+
reflect as in the definition of CSR(ω2). Consequently, the club-adding posets must
anticipate names for stationary sets added by the later specializing iteration. In order
to carry this through, we define the names Ċτ and Ṡτ , for τ < κ+, simultaneously. More
precisely, for each τ < κ+, given that the P-name Ċτ and the (P ∗ Ċτ)-name Ṡτ have
been defined, we use a bookkeeping function to pick the (P ∗ Ċτ ∗ Ṡτ)-name Ṡτ of a
stationary subset ofκ ∩ cof(ω), and we set Ċ(τ) to be the (P ∗ Ċτ)-name for the poset
to add, with Ṡτ-anticipation, the desired club. Then we select the (P ∗ Ċτ+1 ∗ Ṡτ)-
name Ṫτ for an Aronszajn tree on κ.

As expected, the tension between compactness and incompactness gives rise to
tension between the different parts of the forcing construction. We list three notable
manifestations:

(1) Working with intermediate generic extensions. A central property of the
Laver–Shelah forcing [30] is the existence of intermediate forcing extensions in which
regular cardinals α < κ become ω2 and the relevant portion Ṫτ ∩ (α × ω1) of the trees
are Aronszajn trees on α. Accompanying this is machinery for projecting conditions
of P ∗ Ṡτ to those intermediate extensions. In [30], the existence of such intermediate
extensions is secured by the weak compactness of κ, and the fact that P ∗ Ṡτ is κ-
c.c. However, in our case, the presence of the poset Ċτ prevents the initial segment
P ∗ Ċτ from being κ-c.c. To overcome this difficulty, we use the fact that the full
collapse poset P absorbs many restricted subforcings of P ∗ Ċτ , which allows us to
place upper bounds on various generic filters of the restricted poset. We then couple
this in Section 6 with a generalization of a result of Abraham’s [1] that (stated in current
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language) if Q̇ is an Add(ω, ω1)-name for an ω1-closed poset, then Add(ω, ω1) ∗ Q̇
is strongly proper. This secures the existence of sufficiently many strongly generic
conditions (and, in turn, the existence of intermediate extensions).

(2) Preservation of stationary sets by quotients. The ability to add a closed
unbounded set through the reflection points α < κ of a stationary set Ṡτ ⊆ κ ∩ cof(ω)
hinges upon the fact that many such points exist. The ineffability (in fact, just weak
compactness) of κ guarantees that for many α < κ, Ṡτ ∩ α is a stationary subset of α
in the restricted generic extension where α = ω2. The forcing construction of [31] uses
the fact that the related quotient of P ∗ Ċτ by its initial segment is σ-closed, and an
argument of Baumgartner’s [5] shows that σ-closed posets preserve the stationarity
of stationary sets of countable cofinality ordinals. By contrast, for us, the stationary
sets Ṡτ further rely on the specializing poset Ṡτ , and although the poset P ∗ Ċτ ∗ Ṡτ is
σ-closed, it does not in general admit σ-closed quotients by its natural restrictions to
heights α < κ. Nevertheless, in Section 4, we analyze the Laver–Shelah iteration Ṡτ to
prove that the relevant quotients preserve the stationary of Ṡτ ∩ α for many suitable
α < κ.

(3) Preservation of Aronszajn trees. The organization of the posets Ċτ and Ṡτ ,
described above, guarantees that for each τ < κ+, Ṫτ is a (P ∗ Ċτ+1 ∗ Ṡτ)-name of an
Aronszajn tree on κ, which is specialized by P ∗ Ċτ+1 ∗ Ṡτ+1.

However, in the final forcing construction, Sτ+1 follows the extended iteration
P ∗ Ċκ+ , and on its face, P ∗ Ċκ+ ∗ Ṡτ might introduce a cofinal branch to Tτ , causing
the specializing poset S(τ) to collapse κ. To guarantee that this cannot occur, an
Aronszajn preservation theorem is required for the quotient of P ∗ Ċκ+ ∗ Ṡτ by P ∗
Ċτ+1 ∗ Ṡτ . The fact that no new reals are added during the iteration, and that Ċκ+

is not κ-closed, prevents us from using known preservation arguments (for instance,
those of [41]). Therefore, in Section 6, we develop an alternative preservation argument
which fits the properties of the poset P ∗ Ċκ+ , and we apply them in Section 7 to show
that the tree Tτ remains Aronszajn.

1.1 Structure of this work

In the rest of this section, we review relevant preliminaries regarding forcing as well as
ineffable and weakly compact cardinals. The first part of the work consists of Sections
2–4. In Section 2, we develop the notion and fundamental properties of posets which
are strongly proper with respect to the filterF onκ, which is either the weakly compact
filter on κ or the filter dual to the ineffability ideal on κ (depending on whether κ is
weakly compact or ineffable, respectively). We will later verify that initial segments
of the form P ∗ Ċτ , for τ < κ+, are members this class. Section 3 studies an iteration
of specializing posets Sτ , following an F-strongly proper poset P∗. We prove that the
main results of the Laver–Shelah analysis apply in this context as well. In the case when
P∗ is just the Levy collapse to makeκ become ω2, we only need a weakly compact (and
F is the weakly compact filter). This is just the Laver–Shelah argument. However, when
P∗ becomes a more complicated poset, we needed to use the stronger assumption
that κ is ineffable (and F is the filter dual to the ineffability ideal). Nevertheless, we
only need the ineffability for the case when P∗ is not just the collapse, and in this
case, only for the proof of Proposition 3.12 and the corollaries of that proposition.
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Section 4 is devoted to showing that suitable quotients of specializing iterations of
the form P∗ ∗ Ṡτ , where P∗ is F-strongly proper (and in either case for F) preserve
stationary subsets of countable cofinality ordinals.

In Part 2 of the paper, we construct specific posets playing the role of P∗ above,
and we prove our theorem. In Section 5, we introduce the complementary notion of
posets which are completely proper with respect to F, and later we apply this analysis
to Ċτ , τ < κ+. We show that the composition of the Levy collapse and a poset which
is completely proper with respect to F is strongly proper with respect to F. Section 6
develops the main properties of the club-adding iteration Cτ . And finally, we combine
the results of the previous sections in Section 7 to prove Theorem 1.1.

1.2 Forcing

In this subsection, we review our conventions about forcing and provide explicit
definitions of posets which we will use throughout the paper.

To begin, in order to anticipate working with iterations later, we will work with
preorderings (i.e., relations which are transitive and reflexive) rather than partial
orders. Moreover, we will use the Jerusalem convention for forcing. Thus, we view a
forcing poset as a triple (Q, ≤Q , 0Q), where ≤Q is a preordering and where 0Q is a
smallest element; for conditions p, q ∈ Q, we will write p ≥Q q to indicate that p is an
extension of q. When context is clear, we will drop explicit mention of Q in 0Q and ≤Q.
Given that we are only working with preorderings rather than partial orders, we will
often have conditions p, q ∈ Q so that p ≤Q q and q ≤Q p, but q and p are not literally
equal as sets. In this case, we will write p =∗Q q, or simply p =∗ q if Q is clear from
context.

If Q is a poset, we say that Q is ω1-closed with sups if for any increasing sequence
⟨qn ∶ n ∈ ω⟩ of conditions in Q, there exists a ≤Q-least upper bound q of the sequence.
Any such q is referred to as a sup of the sequence. Note that this does not say that any
two compatible conditions in Q have a sup. Moreover, it also does not require that a
sup of an increasing ω-sequence is unique. However, if q1 and q2 are two sups of such
a sequence, then q1 =∗Q q2. These observations will be important later when we deal
with iterations of posets with this property.

If Q is a poset and q ∈ Q, then we use Q/q to denote all conditions in Q which
extend q.

Let M ≺ H(θ) be an elementary substructure, and let U ∈ M be a poset. A con-
dition u in U is (M ,U)-completely generic, if the set {ū ∈ U ∩ M ∶ u ≥ ū} of weaker
conditions in M meets all dense subsets D ⊆ U which belong to M, and thus forms an
(M ,U)-generic filter.

For the remainder of the paper, we fix a cardinal κ which will be either weakly
compact or ineffable (we specify in Definition 2.8 exactly when κ is ineffable or weakly
compact). In the next subsection, we will review facts about ineffability and weak
compactness.

Throughout the paper, we will use P to denote the Levy collapse Col(ω1 , < κ).
If α < κ is inaccessible, we use P ↾ α to denote the collapse Col(ω1 , < α). We view
conditions in Col(ω1 , < κ) as countable functions p so that dom(p) ⊆ κ and so that
for each ν ∈ dom(p), p(ν) is a countable, partial function from ω1 to ν. If G is a
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V-generic filter overP, then we use G ↾ α to denote the V-generic filter {p ↾ α ∶ p ∈ G}
over P ↾ α.

For adding clubs, we generalize the club-adding poset of Magidor [31] by incorpo-
rating anticipation; we only state the definition in the generality needed for our paper.
Recall that if S is stationary in α, then the trace of S, denoted tr(S), consists of all β < α
so that S reflects at β.

Definition 1.3 Let S be a cardinal-preserving poset in some model W, and let Ṡ be
an S-name for a stationary subset of ω2 ∩ cof(ω). We let CU(Ṡ , S) denote the poset,
defined in W, where conditions are closed, bounded subsets c of ω2 so that

⊩S č ⊆ tr(Ṡ) ∪ (ω2 ∩ cof(ω)) .

The ordering is end-extension.

We emphasize that in order to be a condition in CU(Ṡ , S), a given closed, bounded
subset of ω2 must be outright forced by S to be contained, mod cofinality ω points,
in tr(Ṡ). Since any condition c in CU(Ṡ , S) can be extended by placing an ordinal
of cofinality ω above max(c), we see that CU(Ṡ , S) does add a club subset of ω2
of the model. Moreover, the poset is trivially ω1-closed, so preserves ω1. However,
preservation of ω2 is a nontrivial matter.

We now review the definition of the poset which we will use to specialize Aronszajn
trees on ω2. The poset itself will decompose such a tree into a union of ω1-many
antichains, which in this case is equivalent to having a specializing function.

Definition 1.4 Suppose that T is an Aronszajn tree on ω2. Let S(T) denote the poset
where conditions are functions f with countable domain dom( f ) ⊆ ω1, and where
for each α ∈ dom( f ), f (α) ⊆ T is a countable antichain in <T . Recalling that we are
using the Jerusalem convention for forcing, we say that g extends f, written f ≤ g, if
dom( f ) ⊆ dom(g) and if for all α ∈ dom( f ), f (α) ⊆ g(α).

It is clear that S(T) is ω1-closed. Moreover, if a tree T ′ is not Aronszajn, then the
analogously defined poset S(T ′) will collapse ω2.

1.3 Weak compactness

In this final subsection, we review facts about the ineffability of κ. However, we will
also need various facts about the weak compactness of κ, and so we begin with these.

Definition 1.5 FWC is the filter generated by subsets A of κ for which there is some
U ⊆ Vκ and a Π1

1-statement Φ, satisfied by (Vκ , ∈, U), so that

A = {α < κ ∣ α is regular, and (Vα , ∈, U ∩ Vα) ⊧ Φ}.

The filter FWC is κ-closed as well as normal. It will be helpful at later parts in our
argument to phrase membership in the weakly compact filter in terms of embeddings.
The idea will be that for a subset B of κ, where B is a member of a κ-model M, B ∈ FWC
iff for all M-normal ultrafilters U, κ ∈ jU(B), where jU is the ultrapower embedding.
We make this precise in the following few items.

Definition 1.6 Suppose that α is an inaccessible cardinal. We say that a transitive set
M is an α-model if M ⊧ ZFC−, ∣M∣ = α, α ∈ M, and <α M ⊆ M.
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Weak compactness is naturally associated with various embedding properties; here,
we mention the following result from [19].

Proposition 1.3 For any κ-model M, there exist a κ-model N and an elementary
embedding j ∶ M �→ N so that crit( j) = κ and j, M ∈ N.

However, we are mostly interested in a different case, namely, when j is the
elementary embeddings associated with an M-normal ultrafilter on κ and where N
is the ultrapower of M. A filter U ⊆ P(κ) ∩ M is an M-normal ultrafilter if U is an
M-ultrafilter, and for every A ∈ U and regressive function f ∶ A → κ in M, there exists
some A′ ⊆ A in U so that f ↾ A′ is constant. We note that being M-normal implies that
U is closed under intersections of < κ-sequences in M consisting of sets in U.

It is routine to verify that each elementary embedding j ∶ M → N as in the propo-
sition above gives rise to an M-normal ultrafilter U j = {A ∈ P(κ) ∩ M ∣ κ ∈ j(A)}.
Conversely, we can associate to each M-normal ultrafilter U its ultrapower embedding
jU ∶ M → N ≅ Ult(M , U).

Proposition 1.4 Let M be a κ-model, and let B ∈ M be a subset of κ. If B ∈ U for every
M-normal ultrafilter U on κ, then B ∈ FWC.
Proof Let M , B be as in the statement of the proposition, and fix a subset EM ⊆
κ × κ so that (κ, EM) is isomorphic to M. To prove that B ∈ FWC, it suffices to show
that there is a Π1

1 statement Ψ satisfied by (Vκ , ∈, EM , B) so that the set {α < κ ∶
α is regular and (Vα , ∈, EM ∩ Vα , B ∩ α) ⊧ Ψ} is contained in B.

To begin, we observe that the assertions that “EM is well-founded,” that “(κ, EM) is
isomorphic to a transitiveκ-model,” and that “B is represented in (κ, EM) by b ∈ κ” are
all within the class of Π1

1 formulas over (Vκ , ∈, EM , B) (see [26, Section 2] for details).
Let Φ0 denote their conjunction.

We also note that for a subset UM ⊆ κ, the assertion “UM codes a subset of M ∩
P(κ) which is an M-normal ultrafilter” is Σ0

ω . Therefore, the assertion Φ1 stating that

“∀UM ⊆ κ, if UM codes an M-normal ultrafilter, then B ∈ UM”

is Π1
1. Let Φ be the conjunction Φ0 ∧ Φ1, a Π1

1 formula satisfied in (Vκ , ∈, EM , B).
Define X ∶= {α < κ ∶ α is regular, and (Vα , ∈, EM ∩ Vα , B ∩ α) ⊧ Φ}, and we show

that X ⊆ B. Fix some α ∈ X. Then the relation EM ↾ α = EM ∩ Vα ⊆ α × α is well
founded, and it codes an α-model Mα with B ∩ α represented in (α, EM ↾ α) by the
same element b ∈ κ which represents B in (κ, EM). Let iα ∶ Mα → Mκ be the elemen-
tary embedding resulting from the identifications Mα ≅ (α, EM ↾ α) ≺ (κ, EM) ≅ M.
It is straightforward to verify that cp(iα) = α, iα(α) = κ, and iα(B ∩ α) = B.

It follows that Uα = {A ⊆ α ∶ α ∈ iα(A)} is an Mα-normal ultrafilter. Let jα ∶ Mα →
Nα be the induced ultrapower embedding, and let kα ∶ Nα → M be the factor map
given by kα([ f ]Uα) = iα( f )(α). We note that cp(kα) > α. Since (Vα , ∈, EM ↾ α, B ∩
α) satisfies Φ, B ∩ α ∈ Uα . The last implies that α ∈ jα(B ∩ α), which in turn implies
that α = kα(α) ∈ kα ○ jα(B ∩ α) = iα(B ∩ α) = B. ∎

We now review the relevant facts about ineffable cardinals (see [4] for the details).
A cardinal λ is ineffable if for any sequence A⃗ = ⟨Aν ∶ ν < λ⟩ so that Aν ⊆ ν for all ν < λ,
there is an A ⊆ λ so that {ν < λ ∶ Aν = A∩ ν} is stationary in λ. Such a set A is said to
be coherent for A⃗.

https://doi.org/10.4153/S0008414X22000207 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000207


862 O. Ben-Neria and T. Gilton

Notation 1.7 In the case that κ is ineffable, we will denote the ineffability ideal on
κ by Iin throughout the paper, and we will let Fin denote the filter on κ which is
dual to I.

Iin consists of all S ⊆ κ so that for some sequence A⃗ as above, no stationary subset
of S is coherent for A⃗. In the case that κ is ineffable, Iin is a proper, normal ideal on κ.
Finally, we mention the following theorem of Baumgartner [4, Theorem 7.2] (see [21]
for more information).

Theorem 1.5 (Baumgartner) FWC is contained in Fin .

In fact, Baumgartner showed that FWC is contained in the filter dual to the weak
ineffability ideal on κ.

Notation 1.8 F will denote either FWC or Fin throughout this paper depending on
whether κ is weakly compact or ineffable, respectively. I denotes the ideal dual to F.
We will specify in Definition 2.8 in the next section exactly when F is equal to FWC
or equal to Fin .

Remark 1.6
(1) In our paper, we only use the ineffability of κ to prove Proposition 3.12 and in the

corollaries of this proposition. All other results in our paper can be carried out
assuming only that κ is weakly compact.

(2) As is immediate from Theorem 1.5 and the fact that F is either FWC or Fin , all
F-positive sets are also FWC -positive.

(3) Thus, if B ∈ F+ and if M is a κ-model with B ∈ M, then by Proposition 1.4, there is
some M-normal ultrafilter U on κ so that B ∈ U . We will use this fact throughout
the paper.

As an illustration of the type of argument in (3) above, we prove the following fact
which we will need in the proof of Proposition 4.4.

Lemma 1.7 Suppose that B ∈ F+. Then B/ tr(B) ∈ I.

Proof Suppose otherwise, for a contradiction. Then B/ tr(B) ∈ F+. Let M∗ be a
κ-model containing B, and hence B/ tr(B). By Proposition 1.4, there is an M∗-
normal ultrafilter U so that, letting j ∶ M∗ �→ N be the ultrapower embedding,
κ ∈ j(B/ tr(B)). However, B is a stationary subset of κ, since B ∈ F+. Thus κ ∈
j(tr(B)). Since κ ∈ j(B) also, we have κ ∈ j(B) ∩ j(tr(B)) = j(B ∩ tr(B)), which is a
contradiction. ∎

2 F-strongly proper posets

In this section, we transition into the main body of the paper. After briefly reviewing
some important facts about strong genericity in Section 2.1, we then define, in Section
2.2, the class of F-strongly proper posets (see Notation 1.8 for some information
about F and see Definition 2.8 for the exact definition). This class, which includes
the collapse P, consists of posets for which we may build various residue systems and
thereby obtain strongly generic conditions for models of interest.
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2.1 Review of strongly generic conditions

Here, we review the definition and basic properties of strongly generic conditions.
Much of this material was originally developed by Mitchell [34]. Parts of our exposi-
tion here summarize the exposition in [28, Section 1], to which we refer the reader for
proofs.
Definition 2.1 Let N ≺ H(θ), where θ is regular. Let Q ∈ N be a poset. A condition
q ∈ Q is said to be a strongly (N ,Q)-generic condition if for any set D which is dense
in Q ∩ N , D is predense above q in Q.
Remark 2.1 Note that if Q ∈ N , with N as above, then any strongly (N ,Q)-generic
condition is also an (N ,Q)-generic condition. Moreover, q is a strongly (N ,Q)-
generic condition iff q ⊩Q ĠQ ∩ N is a V-generic filter over Q ∩ N .

We now review a combinatorial characterization of strongly generic conditions,
implicit in [34, Proposition 2.15], in terms of the existence of residue functions.
Definition 2.2 Suppose that Q ∈ N ≺ H(θ), q ∈ Q, and s ∈ Q ∩ N . s is said to be a
residue of q to N if for all t ≥Q∩N s, t and q are compatible in Q.

A residue function for N above q is a function fN defined on Q/q so that for each
r ∈ Q/q, fN(r) is a residue of r to N.

Finally, if q, r ∈ Q and s ∈ Q ∩ N , we say that s is a dual residue of q and r to N if s is
a residue for both q and r to N.
Lemma 2.2 q ∈ Q is (N ,Q)-strongly generic iff there is a residue function for N
above q.

In the next subsection, we will isolate further properties of residue functions of
interest. For now, we review the process by which strongly generic conditions allow
us to break apart the forcing Q into a two-step iteration.
Notation 2.3 Let Q be a poset and q ∈ Q. Suppose Q ∈ N ≺ H(θ) and q is a strongly
(N ,Q)-generic condition. Fix a V-generic filter Ḡ over Q ∩ N . In V[Ḡ], let (Q/q)/Ḡ
denote the poset where conditions are all r ∈ (Q/q) which are Q-compatible with
every condition in Ḡ. The ordering is the same as in Q.

The following two results originate in [33]; our formulation of them follows [28].
Lemma 2.3 Suppose Q ∈ N ≺ H(θ) and q is a strongly (N ,Q)-generic condition.
Then, for all r ≥ q and s ∈ Q ∩ N, s is a residue of r to N iff s ⊩Q∩N r ∈ (Q/q)/ĠQ∩N .
Lemma 2.4 Suppose Q ∈ N ≺ H(θ) and q is a strongly (N ,Q)-generic condition.
Then,
(1) if r ≥ q, s ∈ Q ∩ N, and r and s are Q-compatible, then there exists t ≥Q∩N s so that

t is a residue of r to N; and
(2) if D ⊆ Q is dense above q, then Q ∩ N forces that D ∩ (Q/q)/ĠQ∩N is dense in

(Q/q)/ĠQ∩N .

2.2 Exact residue functions and F-strong properness

Following Neeman [15], we next isolate the properties of residue functions (see
Definition 2.2) of interest. We will apply this in our work to the iteration P ∗ Ċ,
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consisting of the collapse poset P followed by a Magidor style, club-adding iteration
Ċ. Neeman also connected this with countable closure of the quotient forcing [15,
Section 2.2]. However, we were not able to apply this analysis to the final poset,
which also includes the specializing iteration, as we do not know if the quotients
involving the specializing iteration are even strategically closed. This will lead us later,
in Section 4, to an ad hoc proof that the quotients of the final poset preserve stationary
sets consisting of countable cofinality ordinals, without having ω1-closed quotients.

Recalling that we are working with preorders (in anticipation of working with
iterations later), we begin our discussion with the following definition.

Definition 2.4 Let Q be a poset which is ω1-closed with sups. D ⊆ Q is said to be
countably =∗-closed if:
(a) for each q ∈ D and r ∈ Q, if r =∗ q, then r ∈ D; and
(b) if ⟨qn ∶ n ∈ ω⟩ is an increasing sequence of conditions, all of which are in D, and

if q∗ is a sup of the sequence, then q∗ ∈ D.

Such sets D will arise later as the domains of exact (see below) residue functions,
whose domains need not, in general, be all of the poset under consideration, but only
a dense, =∗-closed subset. We will construct such functions in Proposition 5.4.

The following is Neeman’s notion of an exact strong residue function for N with
dense domain above q [15, Definitions 1.6 and 2.10], but with the requirement of
strategic continuity strengthened to continuity.

Definition 2.5 LetQ be a poset which is ω1-closed with sups, and fix N withQ ∈ N ≺
H(θ). Let q ∈ Q.

A partial function f ∶ Q/q ⇀ Q ∩ N is said to be an exact, strong residue function
for N above q if it satisfies the following properties:
(1) (dense domain) the domain of f is a dense, countably =∗-closed subset D of Q/q;
(2) (projection) r ≥ f (r) for all r ∈ D;
(3) (order preservation) for all r∗ , r ∈ D, if r∗ ≥ r, then f (r∗) ≥ f (r);
(4) (strong residue) for any r ∈ D and any u ∈ Q ∩ N so that u ≥ f (r), there exists

r∗ ≥ r with r∗ ∈ D so that f (r∗) ≥ u; and
(5) (countable continuity) if ⟨rn ∶ n ∈ ω⟩ is an increasing sequence of conditions in D

with a sup r∗, then f (r∗) is a sup of ⟨ f (rn) ∶ n ∈ ω⟩.1

We call such a pair ⟨q, f ⟩ a residue pair for (N ,Q), or just a residue pair for N if Q is
clear from context.

The following appears in [15] (Lemma 2.11).

Lemma 2.5 Suppose that Q is separative, q ∈ Q, and that f ∶ Q/q �→ Q ∩ N is a
function satisfying properties (2) and (4) of Definition 2.5. Then f is order-preserving
on its domain.

Example 2.6 Let α < κ be inaccessible. Then the function f ∶ P�→ P ↾ α given by
f (p) = p ↾ α is an exact, strong residue function for any M ≺ H(θ) with M ∩ κ = α
above the condition ∅ and has all of P as its domain.

1Note that r∗ is in D by (1) and also that the sequence ⟨ f (rn) ∶ n ∈ ω⟩ is increasing by (3).
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Our next task is to isolate the models which for us will play the role of “N” in
Definition 2.5. First we have some notation which we will fix for the remainder of the
paper.

Notation 2.6 Let ⊲ be a fixed well-order of H(κ+).

In the following definitions and claims, we make a standard use of continuous
sequences of elementary substructures Mα , where ∣Mα ∣ = α < κ and Mα ∩ κ = α, to
form natural restrictions P∗ ∩ Mα of posets P∗ which are members of the models on
the chain. For ease of notation in describing such chains, we use terminology similar
to [28] and introduce the notion of a P-suitable sequence, for a parameter P.

Definition 2.7 Let P ∈ H(κ+) be a parameter. We say that a sequence ⟨Mα ∶ α ∈ A⟩
is P-suitable if:
(1) A ∈ F+;
(2) for each α ∈ A, α is inaccessible, Mα ∩ κ = α, <α Mα ⊆ Mα , and ∣Mα ∣ = α;
(3) for each α ∈ A, Mα ≺ (H(κ+), ∈, ⊲) and P ∈ Mα ; and
(4) if α < β are in A, then Mα ∈ Mβ , and also if γ ∈ A∩ lim(A), then Mγ =

⋃{Mδ ∶ δ ∈ A∩ γ}.
We refer to a single model M satisfying (2) and (3) as a P-suitable model.

It is clear from the definition that if M⃗ is P-suitable and B ⊆ dom(M⃗) is in F+,
then ⟨Mα ∶ α ∈ B⟩ is also P-suitable. It is also clear that for any P ∈ H(κ+), there exists
a P-suitable sequence.

The next definition is the main item of this section; it specifies a class of posets
which contains the Levy collapseP and each of which can play the role of a preparatory
forcing for a ℵ2-c.c. iteration specializing Aronszajn trees. (The work in Section 3 is
devoted to showing this.) It is helpful to recall Notation 1.7.

Definition 2.8 Let P∗ be a poset in H(κ+) which is ω1-closed with sups and which
collapses all cardinals in the interval (ω1 ,κ). In the case that P∗ = P (recall that P =
Col(ω1 , < κ)), we assume that κ is weakly compact, and in the case that P∗ is not P,
we assume that κ is ineffable. Let F denote the following filter on κ:

F =
⎧⎪⎪⎨⎪⎪⎩

FWC , if P∗ = P,
Fin , otherwise,

and let I denote the ideal dual to F.
We say that P∗ is F-strongly proper if for any P∗-suitable sequence M⃗, there exist

an A ⊆ dom(M⃗) with dom(M⃗)/A ∈ I, a sequence ⟨p∗(Mα) ∶ α ∈ A⟩ of conditions in
P∗, and a sequence ⟨φMα ∶ α ∈ A⟩ of functions satisfying the following properties, for
each α ∈ A:
(1) φMα is an exact, strong residue function for (Mα ,P∗) above p∗(Mα) and

φMα(p∗(Mα)) = 0P∗ ; and
(2) if β ∈ A is greater than α, then p∗(Mα) and φMα are members of Mβ .
We will refer to the sequence of pairs ⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ A⟩ as a residue system for
M⃗ ↾ A and P∗.
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Remark 2.7
(1) A corollary of (1) of the above definition is that p∗(Mα) is compatible with every

condition in P∗ ∩ Mα . Such conditions were called universal in [9].
(2) Note that any F-strongly proper poset has size exactly κ. It has size at least κ since

the GCH holds and it collapses all cardinals in the interval (ω1 ,κ) and has size no
more than κ since it is a member of H(κ+).

Example 2.8 The Levy collapse poset P is an example of an F-strongly proper poset
(noting thatF = FWC in this case). Indeed, letting M⃗ be any suitable sequence, we may
take the set A in Definition 2.8 to just be dom(M⃗). Then we define p(Mα) ∶= ∅ for all
α ∈ A and define φMα on the entire poset P by φMα(p) = p ↾ α. As stated in Example
2.6, each φMα is an exact, strong residue function for Mα above ∅. The remaining
properties of Definition 2.8 are trivial.

In our intended applications, the posets playing the role of P∗ in Definition 2.8
will be of the form P ∗ Ċ, where Ċ is a P-name for an iteration of club adding with
anticipation.

We now check, by a standard argument, that forcing with an F-strongly proper
poset preserves κ.

Lemma 2.9 Suppose that P∗ is F-strongly proper. Then forcing with P∗ preserves κ.

Proof By Definition 2.8, we know that P∗ preserves ω1 and collapses all cardinals
in the interval (ω1 ,κ). Thus, if P∗ does not preserve κ, then we may find a condition
p ∈ P∗ and a P∗-name ḟ for a function with domain ω1 which p forces is cofinal in κ.
SinceP∗ has sizeκ, we may assume that the name ḟ is a member of H(κ+). Let M⃗ be an
{ ḟ , p,P∗}-suitable sequence. Moreover, let A ⊆ dom(M⃗) witness Definition 2.8, and
let N denote the least model on the sequence M⃗ ↾ A. By Definition 2.8, we may find
a condition p∗(N) and an exact, strong residue function for (N ,P∗) above p∗(N).
Since p ∈ N , Definition 2.8(1) implies that p∗(N) and p are compatible. So let q be
an extension of them both. Then, since q is an (N ,P∗)-strongly generic condition
and ḟ ∈ N , q forces that ran( ḟ ) ⊆ N ∩ κ < κ. However, this contradicts the fact that p
forces that ḟ is unbounded in κ. ∎

The remainder of the subsection is dedicated to proving lemmas about how suitable
sequences interact with the weak compactness of κ.

Lemma 2.10 Let P ∈ H(κ+), and let M⃗ be P-suitable. Then P ⊆ ⋃α∈dom(M⃗)Mα .

Proof By definition of a suitable sequence, each model on the sequence is elementary
with respect to the fixed well-order ⊲ on H(κ+), and therefore each model contains
the ⊲-least surjection ψ from κ onto P. Then

P = ψ[κ] = ⋃
α∈dom(M⃗)

ψ[α] ⊆ ⋃
α∈dom(M⃗)

Mα . ∎

Lemma 2.11 Let P ∈ H(κ+), and let M⃗ be P-suitable. Suppose that M∗ is a κ-model
containing M⃗ and that U is an M∗-normal ultrafilter on κ so that dom(M⃗) ∈ U. Let
j ∶ M∗ �→ N be the ultrapower embedding. Then:
(1) κ ∈ dom( j(M⃗)), and j(M⃗)(κ) = ⋃α∈dom(M⃗) j[Mα];
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(2) j(P) ∩ j(M⃗)(κ) = j[P]; and
(3) ⋃α∈dom(M⃗)Mα is transitive, and j−1 ↾ Mκ is the transitive collapse of Mκ.

Proof Let B ∶= dom(M⃗). The first part of item (1) follows since B ∈ U =
{X ∈ P(κ) ∩ M∗ ∶ κ ∈ j(X)}. Thus, κ ∈ dom( j(M⃗)), and so we may let Mκ ∶=
j(M⃗)(κ). In addition, j(B) ∩ κ = B, and so by Definition 2.7(4), Mκ = ⋃α∈B j(Mα).
However, ∣Mα ∣ = α < κ for each α ∈ B, and hence j(Mα) = j[Mα]. Thus,

Mκ = ⋃
α∈B

j[Mα],

completing the proof of (1). (2) follows immediately.
For (3), observe that if x ∈ M ∶= ⋃α∈dom(M⃗)Mα , then a tail of the sequence M⃗

is x-suitable, and so x ⊆ M by Lemma 2.10. Thus, M is transitive. Since j−1 ↾ Mκ

is an ∈-isomorphism whose range (namely M) is transitive, j−1 is the transitive
collapse. ∎

Lemma 2.12 Suppose that M⃗ isP∗-suitable and that ⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ dom(M⃗)⟩
is a residue system for M⃗ and P∗. Then we may find some A ⊆ dom(M⃗) with
dom(M⃗)/A ∈ I so that for all α ∈ A, P∗ ∩ Mα ⊩ α̌ = ℵ̇2.

Proof Suppose that M⃗ and ⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ dom(M⃗)⟩ are as in the statement
of the lemma. For a contradiction, assume that

B ∶= {α ∈ dom(M⃗) ∶ P∗ ∩ Mα /⊩ α̌ = ℵ̇2} ∈ F+.

Since FWC ⊆ F, B is also in F+WC .
Let M∗ be a κ-model containing M⃗, B, P∗, and the sequence ⟨⟨p∗(Mα), φMα ⟩ ∶

α ∈ dom(M⃗)⟩. By Proposition 1.4, since κ/B ∉ FWC , we may find some M∗-normal
measure U so that, letting j ∶ M∗ �→ N be the associated ultrapower embedding,
κ ∈ j(B). Let Mκ = j(M⃗)(κ). Then N satisfies that j(P∗) ∩ Mκ does not force that
κ̌= ℵ̇2. On the other hand, by the previous lemma, we know that j(P∗) ∩ Mκ = j[P∗].
Since j[P∗] is isomorphic to P∗ and P∗ forces that κ becomes ℵ2 (by Lemma 2.9), this
implies that j[P∗] forces that κ = ℵ̇2. Thus, N also satisfies that j[P∗] = j(P∗) ∩ Mκ

forces that κ̌ = ℵ̇2, a contradiction. ∎

We recall that in Definition 2.8(1), the condition p∗(Mα) is required to be compat-
ible with every condition in P∗ ∩ Mα . A practical corollary of this is that any generic
for P∗ contains plenty of conditions of the form p∗(Mα).

Lemma 2.13 Suppose that M⃗ is P∗-suitable, that ⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ dom(M⃗)⟩ is
a residue system for M⃗ and P∗, and that B ⊆ dom(M⃗) is in F+. Suppose that there is a
condition p̄ ∈ P∗ satisfying that for each α ∈ B, there is a condition pα ∈ dom(φMα) so
that p̄ =∗ φMα(pα). Then

p̄ ⊩ Ẋ ∶= {α < κ ∶ pα ∈ ĠP∗} is unbounded in κ.

In particular, taking pα ∶= p∗(Mα) with p̄ the trivial condition, and recalling Defi-
nition 2.8(1),

P∗ ⊩ {α < κ ∶ p∗(Mα) ∈ ĠP∗} is unbounded in κ.
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Moreover, letting E abbreviate dom(M⃗), if α ∈ E ∩ lim(E), then

⊩P∗∩Mα {ξ < α ∶ p∗(Mξ) ∈ ĠP∗∩Mα} is unbounded in α.

Proof Let p ∈ P∗ be a condition extending p̄, and let γ < κ. We find an extension
of p which forces that Ẋ/γ ≠ ∅. Since B is unbounded in κ and M⃗ is P∗-suitable,
Lemma 2.10 implies that p ∈ Mβ for some β ∈ B/(γ + 1). By definition of an exact,
strong residue function, pβ is compatible with p ≥ p̄ =∗ φMβ(pβ). Therefore, let p∗ be
a common extension; then p∗ ⊩ β ∈ Ẋ/γ.

The proof in the case α ∈ E ∩ lim(E) is identical, using the fact that, by Definition
2.7, Mα = ⋃ξ∈B∩α Mξ in this case. ∎

3 F-strongly proper posets and specializing Aronszajn trees on ω2

In this section, we will prove that if P∗ is an F-strongly proper poset, then we can
iterate to specialize Aronszajn trees on κ in the extension by P∗ (see Definition 2.8
for the definition of F). Recall from Lemma 2.9 that P∗ forces that κ becomes ℵ2 and
also preserves theCH; thus, there are in fact Aronszajn trees on κ in anyP∗-extension.
By Example 2.8, the collapse poset P is F-strongly proper, and therefore, in the case
that P∗ = P, our results here generalize those of [30] (recall that F = FWC when
P∗ = P).

We consider a countable support iteration Ṡ = ⟨Ṡξ , Ṡ(ξ) ∶ ξ < κ+⟩ of length κ+,
specializing Aronszajn trees on κ in the P∗-extension. More precisely, Ṡ is a P∗-name
for an iteration with countable support so that for any ξ < κ+, Ṡ(ξ) is an Ṡξ-name for
the poset Ṡ(Ṫξ), where Ṫξ is a nice Ṡξ-name for an Aronszajn tree on κ (see Definition
1.4 for the exact definition of posets of the form S(T)). The selection of the names
Ṫξ—and hence the definition of the iteration—is determined by using the fixed well-
order ⊲ of H(κ+) from Notation 2.6 as a bookkeeping function. In particular, for each
ξ < κ+, the name Ṡξ is definable in (H(κ+), ∈, ⊲) from P∗ and ξ, and consequently it
is a member of any model which is suitable with respect to P∗ and ξ. We will use Rξ
to abbreviate P∗ ∗ Ṡξ for each ξ < κ+.

Since the posetRξ is ω1-closed, it is straightforward to see thatRξ has a dense set of
determined conditions, i.e., conditions (p, ḟ ) for which there is some function f in V
so that p ⊩P∗ ḟ = f̌ . The dense set of determined conditions is also closed under sups
of countable increasing sequences. Thus, we will assume that all future conditions are
determined.

Notation 3.1 Strictly speaking, the domain of a (determined) condition f in Rξ is a
countable subset of ξ, and for each ζ ∈ dom( f ), f (ζ) is itself a function whose domain
is a countable subset of ω1. However, we will often make an abuse of notation and write
f (ζ , ν) to mean the countable set of tree nodes f (ζ)(ν).

The main goal of this section is to prove that Ṡ is forced to be κ-c.c. For this, it
suffices to prove the following.

Theorem 3.1 For every ρ < κ+, it is forced by the trivial condition of P∗ that Ṡρ is
κ-c.c.
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We will prove Theorem 3.1 by induction on ρ. Doing so will require two induction
hypotheses, the first of which is the following.

Inductive Hypothesis I: For each ξ < ρ, P∗ ⊩ Ṡξ is κ-c.c.

We will assume Inductive Hypothesis I throughout the entire section. Later in
the section, after developing more of the theory, we will introduce a second, more
technical inductive hypothesis; we state this after Remark 3.6. Although we assume
the first inductive hypothesis throughout, we will only use the second inductive
hypothesis once it is introduced, and the results prior to the statement thereof do not
require it.

The rest of the section will proceed as follows. We will first establish, in Proposi-
tion 3.2, that for all ξ < ρ, there are plenty of intermediate generic extensions between
V and the full Rξ-extension in which various restrictions of Aronszajn trees are
Aronszajn in the intermediate model. In light of this, we will define analogues of the
“hashtag” and “star” principles from [30]; the former will say that two conditions have
the same restriction to a given model, whereas the latter says that two conditions have
a dual residue to a given model. Afterward, we define the notion of a splitting pair of
conditions, a notion which will play a key role in later amalgamation arguments. Next,
we will state our second induction hypothesis, which describes the interplay between
the star and hashtag principles. Using the second induction hypothesis, we will prove
that splitting pairs exist and isolate sufficient conditions under which they can be
amalgamated (see Lemma 3.8). Finally, we show that Ṡρ is forced to be κ-c.c., and
we verify that the second induction hypothesis holds at ρ. As mentioned in Remark
1.6(1), the only substantial use of the ineffability of κ is in verifying that the second
induction hypothesis holds at κ.
Definition 3.2 Let G∗ be V-generic over P∗. If ξ ≤ ρ, f ∈ Sξ , and f̄ is a function (not
necessarily a condition), we write f ≥ f̄ to mean that dom( f̄ ) ⊆ dom( f ) and for all
⟨ζ , ν⟩ ∈ dom( f̄ ), f̄ (ζ , ν) ⊆ f (ζ , ν).

The next item establishes the existence of the desired intermediate generic exten-
sions between V and V[Rξ] for ξ < ρ, and in turn the existence of plenty of residues.
We recommend recalling Lemma 2.11 and Notation 1.7 before reading the proof. In
the statement of the following proposition, we will assume that the various names are
nice names for subsets of H(κ+). Thus, in light of our discussion about determined
conditions, the name Ṡζ will be viewed as a union of sets of the form { f } × A f ,
where f ∶ ζ × ω1 ⇀ κ × ω1 is a countable partial function and A f ⊆ P∗ is an antichain.
This will ensure, for instance, that Ṡζ ∩ Mα is really a (P∗ ∩ Mα)-name. Similar
considerations apply to the Rζ-name Ṫζ .

Proposition 3.2 Suppose that M⃗ is Rρ-suitable. Then there exists B∗ ⊆ dom(M⃗)
with dom(M⃗)/B∗ ∈ I so that for any α ∈ B∗, for any residue pair ⟨p∗(Mα), φMα ⟩ for
(Mα ,P∗), and for any ζ ∈ Mα ∩ ρ, the following are true:

(1) (p∗(Mα), 0Ṡζ
) forces that ĠRζ ∩ Mα is a V-generic filter for Rζ ∩ Mα ;

(2) (p∗(Mα), 0Ṡζ
) forces that Ṫζ ∩ (ω̌1 × α̌) = (Ṫζ ∩ Mα)[ĠRζ ∩ Mα]; and

(3) (P∗ ∩ Mα) ⊩ (Ṡζ ∩ Mα) is α-c.c. Furthermore, (Rζ ∩ Mα) ⊩ Ṫζ ∩ Mα is an Aron-
szajn tree on α = ℵ̇2.
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Proof Fix an Rρ-suitable sequence M⃗, and let B ∶= dom(M⃗) so that B ∈ F+ by
Definition 2.7. Since P∗ is F-strongly proper, we may assume that B satisfies the
conclusion of Definition 2.8, by removing an I-null set if necessary. Our goal is to show
that each of (1)–(3) fail only on a set in I. Thus, we define B1 to be the set of α ∈ B so
that for some ζ ∈ Mα and some residue pair ⟨p∗(Mα), φMα ⟩, (1) fails for these objects;
we define B2 to be the set of α ∈ B so that for some ζ ∈ Mα ∩ ρ and some residue pair
⟨p∗(Mα), φMα ⟩, (2) fails for Mα and ζ ; and we define B3 similarly. We show that each
of these is in I.

Suppose for a contradiction that B i ∈ F+ for some i ∈ {1, 2, 3}. Then B i ∈ F+WC since
FWC ⊆ F. Let M∗ be a κ model containing B i as well as the sequence M⃗. Applying
Proposition 1.4, we may fix an M∗-normal ultrafilter U containing B i , and we let j ∶
M∗ �→ N be the induced ultrapower embedding. In particular, κ ∈ j(B i).

Let Mκ ∶= j(M⃗)(κ). Fix ζ∗ ∈ Mκ ∩ j(ρ) for the remainder of the proof which
witnesses the relevant failure of (1), (2), or (3) on the j-side. Since Mκ = j [⋃α∈B Mα],
by Lemma 2.11, we have that ζ∗ ∈ ran( j), and so ζ∗ = j(ζ) for some ζ < ρ. Moreover,
Mκ ∩ j(P∗) = j[P∗].

Case 1: i = 1. Since κ ∈ j(B1), we may fix a residue pair ⟨p∗(Mκ), φMκ⟩ for
(Mκ , j(P∗)) so that (p∗(Mκ), 0 j(Ṡζ)) does not force that Ġ j(Rζ) ∩ Mκ is generic over
j(Rζ) ∩ Mα .

To obtain our contradiction, we show that (p∗(Mκ), 0 j(Ṡζ)) in fact does force
that Ġ j(Rζ) ∩ Mκ is generic over j(Rζ) ∩ Mκ. Thus, fix an extension (q∗ , ġ) of
(p∗(Mκ), 0 j(Ṡζ)) in j(Rζ). Let A∗ ∈ N be a maximal antichain of j(Rζ) ∩ Mκ =
j[Rζ], and we will find some extension of (q∗ , ġ) which forces that A∗ ∩ Ġ j(Rζ) ≠ ∅.
Since q∗ extends p∗(Mκ) in j(P∗) and φMκ is an exact, strong residue function, we
may extend and relabel, if necessary, to assume that q∗ ∈ dom(φMκ). Then φMκ(q∗) ∈
j(P∗) ∩ Mκ = j[P∗]. Therefore, φMκ(q∗) = j(q) for some q ∈ P∗.

Now, let A ∶= j−1[A∗]; since A∗ is a maximal antichain in j[Rζ], A is a maximal
antichain in Rζ . However, note that since Rζ is not necessarily κ-c.c., A could very
well have size κ, and therefore we cannot assume that it is an element of M∗. Until
after the proof of the next claim, we will work in V, not M∗. Let Ȧ(1) be the P∗-name
for { f ∈ Ṡζ ∶ (∃p ∈ ĠP∗) (p, f ) ∈ A} . Then q ⊩ Ȧ(1) is a maximal antichain in Ṡζ .

Since P∗ ⊩ Ṡζ is κ-c.c., by Inductive Hypothesis I, we may extend q in P∗ to some
condition q′ and find an ordinal β < κ and a sequence ⟨ ḟγ ∶ γ < β⟩ ofP∗-names so that

q′ ⊩V
P∗ Ȧ(1) = { ḟγ ∶ γ < β} .

Since a given ḟγ need not be a member of M∗, we show how to replace these names
with ones that are in M∗, up to extending q′.

Claim 3.3 There exist a condition u ≥P∗ q′ and a sequence of P∗-names ⟨ḣγ ∶ γ < β⟩
in M∗ so that u ⊩V (∀γ < β) ḣγ = ḟγ . ∎

Proof To find u, let G∗ be a V-generic filter over P∗ containing q′. Then Sζ ∶=
Ṡζ[G∗] ⊆ ⋃η∈B Mη[G∗], sinceRζ ⊆ ⋃η∈B Mη . Sinceκ = ℵV[G∗]

2 and β < κ, there exists
some η ∈ B so that for all γ < β, ḟγ[G∗] ∈ Mη[G∗]. By Lemma 2.13, there exists a
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δ ≥ η so that p∗(Mδ) ∈ G∗. Now, let u ∈ G∗ be an extension of p∗(Mδ) and q′ so
that u ⊩ (∀γ < β) ḟγ ∈ Mδ[ĠP∗].

Back in V, we define new names ḣγ for each γ < β; recalling Notation 3.1, we view
conditions in Ṡζ as having a domain which is a countable subset of ζ × ω1 so that each
element in the range is a countable subset of κ × ω1.

For each γ < β, each ζ̄ ∈ ζ ∩ Mδ (an iteration stage), each ν < ω1 (corresponding
to the νth tree antichain), and each θ ∈ δ × ω1 (a node with height below δ), let
A(γ, ζ̄ , ν, θ) be a maximal antichain inP∗ ∩ Mδ of conditions p which decide whether
or not θ is a member of ḟγ(ζ̄ , ν). Let ḣγ be the P∗-name which is interpreted in
an arbitrary generic extension via some G∗ as follows: θ ∈ hγ(ζ̄ , ν) iff there is some
p ∈ A(γ, ζ̄ , ν, θ) ∩ G∗ which forces that θ ∈ ḟγ(ζ̄ , ν). Otherwise, hγ is undefined.

We claim that u ⊩V (∀γ < β) ḣγ = ḟγ . To see this, let G∗ be a V-generic filter
containing u. Fix ζ̄ < ζ and ν < ω1, and we verify that fγ(ζ̄ , ν) = hγ(ζ̄ , ν). On the
one hand, if θ ∈ hγ(ζ̄ , ν), then by definition fγ(ζ̄ , ν) is defined and also contains the
node θ.

On the other hand, if τ ∈ fγ(ζ̄ , ν) is a node, then since fγ ∈ Mδ[G∗] has a countable
domain, ζ̄ ∈ Mδ[G∗], and since fγ(ζ̄ , ν) ∈ Mδ[G∗] is countable, τ ∈ Mδ[G∗] too.
However, Mδ[G∗] ∩ V = Mδ , since u ∈ G∗ is a (strongly) (Mδ ,P∗)-generic condition
(as it extends p∗(Mδ)). Hence, ζ̄ , τ ∈ Mδ . Thus, ζ̄ ∈ Mδ ∩ ζ and τ has height below
Mδ ∩ κ = δ. Next, since u is a strongly (Mδ ,P∗)-generic condition which is in G∗, and
since A(γ, ζ̄ , ν, τ) is a maximal antichain P∗ ∩ Mδ , we know that A(γ, ζ̄ , ν, τ) ∩ G∗ ≠
∅, say with ū in the intersection. However, as τ ∈ fγ(ζ̄ , ν), we must have that ū forces
that τ ∈ ḟγ(ζ̄ , ν), and hence τ ∈ hγ(ζ̄ , ν). This completes the proof that u ⊩ ḟγ = ḣγ for
each γ < β.

Finally, since M∗ is < κ-closed, the sequence of antichains

⟨A(γ, ζ̄ , ν, θ) ∶ γ < β, ζ̄ ∈ Mδ ∩ ζ , ν < ω1 , θ ∈ (δ × ω1)⟩

is a member of M∗. Therefore, the sequence ⟨ḣγ ∶ γ < β⟩ is a member of M∗
too. ∎(Claim 3.3)

Continuing with the main body of the argument, let u ≥P∗ q′ and ⟨ḣγ ∶ γ < β⟩
witness the above claim. Since q′ ⊩P∗ Ȧ(1) = { ḟγ ∶ γ < β} and u ≥ q′, we have

(∗) u ⊩P∗ {ḣγ ∶ γ < β} is a maximal antichain in Ṡζ .

Since ⟨ḣγ ∶ γ < β⟩ and u are in M∗, (∗) is satisfied in M∗. Applying j,

j(u) ⊩N
j(P∗) { j(ḣγ) ∶ γ < β} is a maximal antichain in j(Ṡζ).

Next, u ≥P∗ q′ ≥P∗ q so j(u) ≥ j(P∗) j(q) = φMκ(q∗), and j(u) ∈ j[P∗] ⊆ Mκ, so
j(u) and q∗ are compatible in j(P∗). Let q∗∗ be a condition extending both of them
with φMκ(q∗∗) ≥ j(u). Since q∗∗ extends q∗, which forces that ġ is a condition in
j(Ṡζ), q∗∗ forces this too. As q∗∗ ≥ j(u) also forces that { j(ḣγ) ∶ γ < β} is a maximal
antichain in j(Ṡζ), we may find an extension r∗ of q∗∗, a j(P∗)-name ġ∗, and an
ordinal γ < β so that

r∗ ⊩ ġ∗ ≥ ġ , j(ḣγ).
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We may also extend, if necessary, to assume that r∗ ∈ dom(φMκ), since r∗ ≥ q∗ ≥
p∗(Mκ). Let r ∈ P∗ so that φMκ(r∗) = j(r).

Now, r∗ ≥ j(P∗) q∗∗ are both in dom(φMκ). Since φMκ is order-preserving, j(r) =
φMκ(r∗) ≥ φMκ(q∗∗) ≥ j(u). Then r ≥ u. As a result, r ⊩V ḣγ = ḟγ ∈ Ȧ(1). By defini-
tion of Ȧ(1), we may find some P∗-extension r′ of r so that (r′ , ḣγ) extends some
element (r′0 , ḟ ) of A. Then j(r′0 , ḟ ) ∈ A∗, as A = j−1[A∗]. Since r′ extends r in P∗,
we get that j(r′) ≥ j(P∗) j(r) = φMκ(r∗). So j(r′) and r∗ are compatible in j(P∗). Let
r∗∗ be a condition extending both of them. Then (r∗∗ , ġ∗) extends j(r′0 , ḟ ). Indeed,
r∗∗ extends j(r′) which extends j(r′0). Furthermore, r∗∗ extends r∗ which forces
that ġ∗ ≥ j(ḣγ), and r∗ extends j(r′) which forces that j(ḣγ) ≥ j( ḟ ). Thus, (r∗∗ , ġ∗)
extends j(r′0 , ḟ ), and therefore

(r∗∗ , ġ∗) ⊩ j(Rζ) j(r′0 , ḟ ) ∈ A∗ ∩ Ġ j(Rζ) ≠ ∅.

However, (r∗∗ , ġ∗) also extends the starting condition (q∗, ġ). This finishes the proof
that κ is not a member of j(B1), which contradicts our initial case assumption
otherwise.

Case 2: i = 2. In this case, we are assuming that κ ∈ j(B2), and we will derive
a contradiction. Let ⟨p∗(Mκ), φMκ⟩ be a residue pair for (Mκ , j(P∗)) so that
(p∗(Mκ), 0 j(Ṡζ)) does not force the desired equality. We will show, however, that this
residue pair does in fact force the desired equality.

Toward this end, let G∗ be V-generic for j(Rζ) containing (p∗(Mκ), 0 j(Ṡζ)), and
let Ḡ∗ ∶= G∗ ∩ Mκ which, by item (1), is a V-generic filter over j(Rζ) ∩ Mκ = j[Rζ].
Let G ∶= j−1[Ḡ∗], which is V-generic over Rζ . Let j(Tζ) denote j(Ṫζ)[G∗], let Tζ ∶=
Ṫζ[G], and let T ′ζ ∶= ( j(Ṫζ) ∩ Mκ)[Ḡ∗] = j[Ṫζ][Ḡ∗].

Since Ṫζ is a nice Rζ-name for a tree order on κ, for each τ, θ ∈ κ × ω1, there
exists an antichain Bθ ,τ of Rζ so that, letting op(θ , τ) denote the canonical name for
⟨θ , τ⟩,

<Ṫζ
= ⋃{{op(θ , τ)} × Bθ ,τ ∶ θ , τ < κ} .

It is straightforward to see from this that Tζ = T ′ζ . So we will show that Tζ equals
the restriction of j(Tζ) to κ × ω1. However, we know that j ∶ M∗ �→ N lifts to j ∶
M∗[G] �→ N[G∗], since j[G] = Ḡ∗ ⊆ G∗ and since each of the filters is generic
over the appropriate models. From this, it follows that Tζ = j(Tζ) ∩ (κ × ω1). There-
fore, the equality in (2) is in fact satisfied, which contradicts the assumption that
κ ∈ j(B2).

Case 3: i = 3. Let j(q) ∈ j[P∗] = j(P∗) ∩ Mκ be a condition forcing that Ȧ is a
name for a κ-sized antichain in j(Ṡζ) ∩ Mκ. Since B satisfies Definition 2.8, and
since B1 ⊆ B is in U, we may fix a residue pair (p∗(Mκ), φMκ) for (Mκ , j(P∗)).
Let q∗ ≥ q, p∗(Mκ) be a condition, and let G∗ be a V-generic filter over j(P∗)
containing q∗. Then Ḡ∗ is a V-generic filter over j(P∗) ∩ Mκ = j[P∗]. We recall that
j−1 ∶ Mκ �→ ⋃α∈B1 Mα is the transitive collapse, and that j−1 lifts in the standard
way from Mκ[G∗] to (⋃α∈B1 Mα)[G]. Now, let A ∶= Ȧ[Ḡ∗] so that A is an antichain
in ( j(Ṡζ) ∩ Mκ)[Ḡ∗] = j[Ṡζ][Ḡ∗] = j(Ṡζ[G∗]) ∩ Mκ[G∗]. Furthermore, A is a
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member of V[Ḡ∗] and has size κ there. Applying the elementarity of j−1, we have
that j−1[A] =∶ Ā is an antichain in Ṡζ[G], where G ∶= j−1[Ḡ∗] is V-generic over P∗.
Finally, Ā ∈ V[G] since j−1[Ȧ] is a P∗-name in V and Ā = j−1[Ȧ][G]. Since Ā has size
κ in V[G] = V[Ḡ∗], this contradicts the assumption that P∗ ⊩ Ṡζ is κ-c.c.

For the “furthermore” part of (3), suppose now that ḃ′ is a j(Rζ) ∩ Mκ = j[Rζ]-
name which j(q) forces is a branch through j(Ṫζ) ∩ Mκ. Fix q∗ and G∗ as in the pre-
vious paragraph. Then, by (2), we see that j(Ṫζ)[G∗] ∩ (κ × ω1) = Ṫζ[G]. Moreover,
j(Ṫζ)[G∗] ∩ (κ × ω1) = j(Ṫζ)[G∗] ∩ Mκ[G∗] = ( j(Ṫζ) ∩ Mκ)[Ḡ∗]. Thus, ḃ′[Ḡ∗] is
a branch through Tζ ∶= Ṫζ[G]. However, ḃ′[Ḡ∗] is a member of V[Ḡ∗] and V[Ḡ∗] =
V[G]. Thus, Tζ is not Aronszajn in V[G], a contradiction.

Thus, we see that κ cannot be a member of j(B3), completing Case 3 and thereby
the proof.

In both the previous result and Definition 2.8, there was the apparent necessity of
refining the domain of a suitable sequence so that various desired behavior obtains on
each level of the refined sequence. The next item amalgamates this into one definition
which we use frequently throughout.

Definition 3.4 Let M⃗ be an Rρ-suitable sequence. We say that M⃗ is in pre-splitting
configuration up to ρ if there is a residue system ⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ dom(M⃗)⟩
satisfying items (1) and (2) of Definition 2.8 (with respect toP∗) as well as items (1)–(3)
of Proposition 3.2 for all α ∈ dom(M⃗) (with respect to Rρ).

Definition 3.5 Suppose that M⃗ is in pre-splitting configuration up to ρ, ξ ≤ ρ, and
α ∈ dom(M⃗) so that ξ ∈ Mα . Fix a residue pair ⟨p∗(Mα), φMα ⟩ for (Mα ,P∗).
(1) For a (determined) condition (p, f ), we define f ↾ Mα to be the function f̄ with

domain dom( f ) ∩ Mα so that for each ⟨ζ , ν⟩ ∈ dom( f ) ∩ Mα ,

f̄ (ζ , ν) = f (ζ , ν) ∩ Mα .

(2) We define D(φMα , ξ) to be the set of conditions (p, f ) ∈ Rξ so that p ∈ dom(φMα)
and (φMα(p), f ↾ Mα) is a condition in Rξ (and hence in Rξ ∩ Mα).

(3) If (p, f ) ∈ D(φMα , ξ), we make a slight abuse of notation and define (p, f ) ↾ Mα
to be the pair (φMα(p), f ↾ Mα), when φMα is clear from context.

We observe that, in general, for (p, f ) ∈ D(φMα , ξ), although (p, f ) ↾ Mα ∈ Rξ ∩
Mα is a condition, it need not be a residue of (p, f ) to Mα in the sense that it is possible
for some (p′ , f ′) ∈ Rξ ∩ Mα which extends (p, f ) ↾ Mα not to be compatible with
(p, f ). However, (p, f ) ↾ Mα must have some extension (p̄, f̄ ) ∈ Rξ ∩ Mα which is a
residue of (p, f ). This is because if G ⊆ Rξ is V-generic and contains (p, f ), then by
Proposition 3.2 and the definition of pre-splitting configuration, Ḡ ∶= G ∩ Mα is V-
generic over Rξ ∩ Mα and (p, f ) ↾ Mα ∈ Ḡ. Since (p, f ) ∈ G is compatible with every
condition in Ḡ, there must be some (p̄, f̄ ) ∈ Ḡ which extends (p, f ) ↾ Mα and is a
residue of (p, f ), by Lemma 2.3.

Lemma 3.3 Suppose that M⃗ is in pre-splitting configuration up to ρ. Then, for each α ∈
dom(M⃗), each residue pair ⟨p∗(Mα), φMα ⟩ for (Mα ,P∗), and each ξ ≤ ρ with ξ ∈ Mα ,
D(φMα , ξ) is dense and =∗-countably closed in (P∗/p∗(Mα)) ∗ Ṡξ .
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Proof We will first prove the result for ξ < ρ and then use this to prove the result
at ρ. Note that the =∗-countable closure of D(φMα , ξ), in either case for ξ, follows
from the continuity of φMα and the =∗-countable closure of the posets. We therefore
concentrate on showing density.

Let (p0 , f0) ∈ Rξ be given with p0 ≥ p∗(Mα). By the observations following Defi-
nition 3.5, we may build increasing sequences ⟨(pn , fn) ∶ n ∈ ω⟩ and ⟨(p̄n , f̄n) ∶ n ∈ ω⟩
so that:

(i) (p̄n , f̄n) is a residue of (pn , fn) to Mα with p̄n extending φMα(pn) and with f̄n
extending the function fn ↾ Mα in the sense of Definition 3.2 (note that fn ↾ Mα
need not be forced by φMα(pn) to be a condition);

(ii) (pn+1 , fn+1) extends both (pn , fn) and (p̄n , f̄n); and
(iii) pn+1 ∈ dom(φMα) and φMα(pn+1) ≥ p̄n .

Now, let (p∗ , f ∗) be a sup of ⟨(pn , fn) ∶ n ∈ ω⟩. Note that p∗ ∈ dom(φMα) since
pn ∈ dom(φMα) for each n and also that φMα(p∗) is a sup of ⟨φMα(pn) ∶ n ∈ ω⟩. We
claim that (φMα(p∗), f ∗ ↾ Mα) is a condition. Now, φMα(p∗) ≥ φMα(pn+1) ≥ p̄n for
each n, so φMα(p∗) forces that ⟨ f̄n ∶ n ∈ ω⟩ is an increasing sequence of conditions
in Ṡξ , and therefore forces that ⋃n f̄n is a condition too. However, f̄n+1 extends (in
the sense of Definition 3.2) fn+1 ↾ Mα which extends f̄n for all n. Therefore, ⋃n f̄n =
⋃n( fn ↾ Mα) = (⋃n fn) ↾ Mα = f ∗ ↾ Mα , which finishes the claim.

Now, we show that the lemma holds for ξ = ρ. We deal with ρ limit first. If cf(ρ)>ω,
then the result holds since any (p, f ) ∈ Rρ is in Rξ for some ξ < ρ. On the other hand,
if cf(ρ) = ω, then let ⟨ξn ∶ n ∈ ω⟩ be an increasing sequence of ordinals in Mα which
is cofinal in ρ. By applying the lemma below ρ, we define an increasing sequence of
extensions ⟨(pn , fn) ∶ n ∈ ω⟩ of (p, f ) so that fn ↾ [ξn , ρ) = f ↾ [ξn , ρ) and so that
(pn , fn ↾ ξn) ∈ D(φMα , ξn). Now, let p∗ be a sup of ⟨pn ∶ n ∈ ω⟩ and f ∗ ∶= ⋃n fn . Then
(p∗ , f ∗) extends (p, f ) and is a member of D(φMα , ρ).

Finally, assume that ρ = ρ0 + 1 is a successor, and let (p, h) ∈ Rρ be given. By the
remarks after Definition 3.5, we may find a residue (p̄, h̄0) of (p, h ↾ ρ0) to Mα with
respect to the poset Rρ0 . Recalling Notation 3.1, we use h(ρ0) ∩ Mα in what follows
as an abuse of notation for ⟨h(ρ0)(ν) ∩ Mα ∶ ν ∈ dom(h(ρ0))⟩. By the elementarity
of Mα and the fact that h(ρ0) ∩ Mα is a member of Mα , we may find an extension
of (p̄, h̄0), say (p̄′ , h̄′0), which either forces that h(ρ0) ∩ Mα ∈ Ṡ(ρ0) or forces that
h(ρ0) ∩ Mα ∉ Ṡ(ρ0). Since (p̄′ , h̄′0) extends (p̄, h̄0), it is compatible with (p, h ↾
ρ0), and hence it must force that h(ρ0) ∩ Mα ∈ Ṡ(ρ0). Finally, since D(φMα , ρ0) is
dense and ρ0 ∈ Mα , we may find an extension (q, g0) of (p̄′ , h̄′0) and (p, h ↾ ρ0)
which is in D(φMα , ρ0) and which satisfies that φMα(q) ≥ p̄′. Then (q, g0) ↾ Mα is a
condition which forces that h(ρ0) ∩ Mα is a condition in Ṡ(ρ0). Thus, (φMα(q), (g0 ↾
Mα)⌢⟨h(ρ0) ∩ Mα⟩) is a condition and equals (q, g⌢0 ⟨h(ρ0)⟩) ↾ Mα . ∎
Notation 3.6 We will often find it useful to denote conditions in Rξ by the letters
u, v and w. If u ∈ Rξ , we write pu and fu to denote the objects so that u = (pu , fu).
Furthermore, if ζ ≤ ξ, then we write u ↾ ζ to denote the pair (pu , fu ↾ ζ), which
restricts the length. This should not be confused with u ↾ Mα = (φMα(p), f ↾ Mα)
from Definition 3.5, which restricts the height.

The following definitions of # and∗ are taken from [30] and modified to the current
presentation. The dual residue property defined in (2) of the upcoming definition is
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the natural translation into the current situation of the statement that “# implies ∗” at
α from [30].

Definition 3.7 Suppose that M⃗ is in pre-splitting configuration up to ρ, that α ∈
dom(M⃗), and that ζ ≤ ρ is in Mα .
(1) Fix conditions u, v ∈ Rζ and w ∈ Rζ ∩ Mα . Fix a residue pair ⟨p∗(Mα), φMα ⟩ for

(Mα ,P∗).
(a) We say that

#ζ
φMα (u, v , w)

holds if u, v ∈ D(φMα , ζ) and u ↾ Mα =∗ w =∗ v ↾ Mα .2
(b) We say that

∗ζ
φMα (u, v , w)

holds if u, v ∈ D(φMα , ζ) and if w ≥ u ↾ Mα , v ↾ Mα is a dual residue for u and
v (see Definition 2.2).3

(2) We say that Rζ satisfies the dual residue property at Mα if for any residue pair
⟨p∗(Mα), φMα ⟩ for (Mα ,P∗) and any conditions u, v , w so that #ζ

φMα (u, v , w)
holds, there exists w∗ ≥Rζ∩Mα w so that ∗ζ

φMα (u, v , w∗) holds.

Lemma 3.4 Suppose that ∗ζ
φMα (u, v , w) holds and that D is dense and countably =∗-

closed in Rζ/(p∗(Mα), 0Ṡζ
). Then:

(1) there exist u′ ≥ u, v′ ≥ v with u′ , v′ ∈ D and there exists w′ ≥ w so that u′ ↾ Mα ≥ w,
v′ ↾ Mα ≥ w, and ∗ζ

φMα (u′ , v′ , w′) holds; and
(2) there exist u∗ ≥ u and v∗ ≥ v with u∗ , v∗ ∈ D, and there exists w∗ ≥ w so that

#ζ
φMα (u∗ , v∗ , w∗) holds.

Proof First, define E to be the set of conditions s in Rζ/(p∗(Mα), 0Ṡζ
) so that s ∈

D(φMα , ζ) ∩ D and so that either s ↾ Mα ≥ w or s ↾ Mα is incompatible with w; then E
is dense in Rζ/(p∗(Mα), 0Ṡζ

). Now, fix a V-generic filter Ḡ over Rζ ∩ Mα containing
w, and note that u and v are in (Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ. By Lemma 2.4(2), we can
find u′ ≥ u and v′ ≥ v so that u′ , v′ are in E as well as in (Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ. We
next observe that u′ ↾ Mα ∈ Ḡ. Indeed, since u′ ∈ D(φMα , ζ), u′ ↾ Mα is a condition
inRζ ∩ Mα . In addition, since u′ ∈ (Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ and u′ ≥ u′ ↾ Mα , we have
that u′ ↾ Mα (a condition) is compatible with every condition in Ḡ. Thus, u′ ↾ Mα ∈ Ḡ.
However, by definition of E, and since w ∈ Ḡ, u′ ↾ Mα must extend w. A symmetric
argument shows that v′ ↾ Mα ≥ w.

Now, let w′ ∈ Ḡ be a condition extending w which forces that u′ , v′ are in
(Rζ/(p∗(Mα), 0Ṡζ

))/ ˙̄G. By Lemma 2.3, we have that ∗ζ
φMα (u′ , v′ , w′) holds. Since

u′ ↾ Mα and v′ ↾ Mα both extend w, this completes the proof of (1).

2Note that if (p, f ) and (q, g) are (determined) conditions with (p, f ) =∗ (q, g), then f = g.
3One can in fact argue that if w is a dual residue, then it follows that w ≥ u ↾ Mα and w ≥ v ↾ Mα ;

however, we do not need this fact.

https://doi.org/10.4153/S0008414X22000207 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000207


876 O. Ben-Neria and T. Gilton

For (2), suppose that we are given conditions u0 , v0, and w0 so that
∗ζ

φMα (u0 , v0 , w0) holds. By repeatedly applying (1), we may define a coordinatewise
increasing sequence ⟨⟨un , vn , wn⟩ ∶ n ∈ ω⟩ so that for all n ∈ ω, un+1 ≥ un and
vn+1 ≥ vn ; un+1 ↾ Mα ≥ wn and vn+1 ↾ Mα ≥ wn ; and ∗ζ

φMα (un , vn , wn) holds. Let u∗

be a sup of ⟨un ∶ n ∈ ω⟩, and let v∗ and w∗ be defined similarly. Since ∗ζ
φMα (un , vn , wn)

holds for each n, by definition, we have that wn ≥ un ↾ Mα , vn ↾ Mα . Therefore, the
sequences ⟨un ↾ Mα ∶ n ∈ ω⟩ and ⟨vn ↾ Mα ∶ n ∈ ω⟩ are each intertwined with
⟨wn ∶ n ∈ ω⟩, and consequently, they have suprema which are =∗-related. It follows by
the continuity of φMα that #ζ

φMα (u∗ , v∗ , w∗) holds. ∎

Suppose that M⃗ is in pre-splitting configuration up to ρ, that α ∈ dom(M⃗), and
that ζ ∈ Mα ∩ ρ. Fix θ ∈ (κ/α) × ω1, a node in the tree Ṫζ of level greater than or equal
to α.

Let ḃζ(θ , α) denote the Rζ-name for {θ̄ ∈ α × ω1 ∶ θ̄ <Ṫζ
θ}. By Proposition 3.2(2),

the condition (p∗(Mα), 0Ṡζ
) forces that ḃζ(θ , α) is a cofinal branch through (Ṫζ ∩

Mα)[ĠRζ∩Mα ]. Note that by Proposition 3.2 and the definition of pre-splitting con-
figuration, (Ṫζ ∩ Mα)[GRζ∩Mα ] is an Aronszajn tree on α in the V-generic extension
V[GRζ∩Mα ] over Rζ ∩ Mα . In light of this, we make the following definition.

Definition 3.8 Let ζ < ρ, α < κ, and ⟨θ , τ⟩ be a pair of tree nodes (possibly equal) at
or above level α, which we view as nodes in the tree Ṫζ . We say that two conditions u
and v inRζ split ⟨θ , τ⟩ below α in Ṫζ if there exist a level ᾱ < α and distinct nodes θ̄ , τ̄ on
level ᾱ so that u ⊩ θ̄ <Ṫζ

θ and v ⊩ τ̄ <Ṫζ
τ. More generally, if ζ ≤ ξ < ρ and u′ , v′ ∈ Rξ ,

then we say that u′ and v′ split ⟨θ , τ⟩ below α in Ṫζ if u = u′ ↾ ζ and v = v′ ↾ ζ do.

Lemma 3.5 Suppose that ζ ≤ ξ < ρ and Rξ satisfies the dual residue property at some
Mα , where ζ ∈ Mα (see Definition 3.7). Fix u, v ∈ Rξ so that for some w ∈ Rξ ∩ Mα ,
#ξ

φMα (u, v , w). Let ⟨θ , τ⟩ be a pair of tree nodes (possibly equal) each of which is
at or above level α. Then there exist extensions u∗ ≥ u, v∗ ≥ v, and w∗ ≥ w so that
#ξ

φMα (u∗ , v∗ , w∗) and so that u∗ and v∗ split ⟨θ , τ⟩ below α in Ṫζ .

Proof Since Rξ satisfies the dual residue property at Mα , Rζ does too, and so we
may find some w′ ∈ Rζ ∩ Mα so that w′ ≥Rζ w ↾ ζ and ∗ζ

φMα (u ↾ ζ , v ↾ ζ , w′). Fix a
V-generic filter Ḡ over Rζ ∩ Mα containing w′. As a result, u ↾ ζ and v ↾ ζ are in
(Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ. By the discussion preceding Definition 3.8, we know that
u ↾ ζ forces in the quotient that ḃζ(θ , α) is a cofinal branch through T̄ ∶= (Ṫζ ∩
Mα)[Ḡ], which by Proposition 3.2 is an Aronszajn tree on α in V[Ḡ]. Consequently,
we may find two conditions u0 , u1 which extend u ↾ ζ in (Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ,
some level ᾱ < α, and two distinct nodes θ0 , θ1 on level ᾱ of T̄ so that u i forces in
(Rζ/(p∗(Mα), 0Ṡζ

))/Ḡ that θ i <Ṫζ
θ. Since v ↾ ζ also forces that ḃζ(τ, α) is a cofinal

branch through T̄ , we may find some extension v0 of v ↾ ζ in the quotient so that v0
decides the <Ṫζ

-predecessor, say τ̄, of τ on level ᾱ of T̄ . As θ0 ≠ θ1, there exists some
i ∈ 2 so that θ i ≠ τ̄. Set θ̄ = θ i .
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Now, fix an extension w′′ of w′ in Ḡ so that w′′ forces the following statements: (i)
u i , v0 are in the quotient; (ii) u i forces in the quotient that θ̄ <Ṫζ

θ; and (iii) v0 forces
in the quotient that τ̄ <Ṫζ

τ.
By two applications of Lemma 2.4(3), we may find conditions ū, v̄ in the quotient

so that ū extends u i and w′′, so that v̄ extends v0 and w′′, and so that ū, v̄ ∈ D(φMα , ζ).
We now see that ū ⊩Rζ θ̄ <Ṫζ

θ, since

w′′ ⊩Rζ∩Mα ( u i ⊩(Rζ/(p∗(Mα),0Ṡζ
))/ ˙̄G θ̄ <Ṫζ

θ) ,

and since ū ≥ w′′ , u i . Similarly, v̄ ⊩Rζ τ̄ <Ṫζ
τ.

Finally, let w̄ ≥ w′′ be a condition in Ḡ which forces that ū and v̄ are in the quotient,
so that by Lemma 2.3, ∗ζ

φMα (ū, v̄ , w̄) holds. By Lemma 3.4, we can find some ū∗ ≥ ū,
v̄∗ ≥ v̄, and w̄∗ ≥ w so that #ζ

φMα (ū∗ , v̄∗ , w̄∗) holds. Now, let u∗ be the condition where
pu∗ = pū∗ , and where fu∗ = fū∗

⌢ fu ↾ [ζ , ξ). Let v∗ and w∗ be defined similarly. Then
#ξ

φMα (u∗ , v∗ , w∗), and u∗ and v∗ split ⟨θ , τ⟩ below α. ∎

One of the most important uses of the dual residue property is to obtain splitting
pairs of conditions. Obtaining such conditions will also crucially use the “exactness”
conditions of Definition 2.8.

Definition 3.9 Suppose that M⃗ is in pre-splitting configuration up to ρ.
(1) Let α ∈ dom(M⃗) and ξ ∈ Mα ∩ ρ. Fix a residue pair ⟨p∗(Mα), φMα ⟩ for (Mα ,P∗)

and conditions u, v ∈ Rξ . We say that u and v are a splitting pair for (φMα , ξ) if:
• for some w ∈ Rξ ∩ Mα , #ξ

φMα (u, v , w); and
• for any ⟨ζ , ν⟩ ∈ dom( fu) ∩ dom( fv) ∩ Mα and any ⟨θ , τ⟩ ∈ ( fu(ζ , ν)) ×
( fv(ζ , ν)), both at or above level, α, u, and v split ⟨θ , τ⟩ below α in Ṫζ .

(2) Given fixed enumerations fu(ζ , ν)/(α × ω1) = {θn ∣ n < ω} and fv(ζ , ν)/(α ×
ω1) = {τm ∣ m < ω} (possibly with repetitions in the case the sets are finite,
nonempty), we define a splitting function to be a function Σ with domain4

dom(Σ) = (dom( fu) ∩ dom( fv) ∩ Mα) × ω × ω,

so that for any ⟨ζ , ν, m, n⟩ ∈ dom(Σ), Σ(ζ , ν, m, n) is a pair ⟨θ̄ , τ̄⟩ of tree
nodes satisfying Definition 3.8 with respect to ⟨θm , τn⟩. We will denote θ̄ by
Σ(ζ , ν, m, n)(L) and τ̄ by Σ(ζ , ν, m, n)(R).

Remark 3.6 Let Σ be as in Definition 3.9.
(1) We emphasize the fact that if ⟨ζ , ν, m, n⟩ ∈ dom(Σ), then

Σ(ζ , ν, m, n)(L) ≠ Σ(ζ , ν, m, n)(R)
are two distinct tree nodes on the same level. We will usually suppress explicit
mention of the level.

(2) Any splitting function Σ is a member of Mα since Mα is countably closed and
since Σ maps from a countable subset of Mα into Mα .

4Recall our convention from Notation 3.1 regarding conditions fu and their domains.
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(3) We only require the splitting pair in Definition 3.9 to split nodes coming from
coordinates which are members of Mα . As we will see from Lemma 3.8 and later
thinning out arguments, this is sufficient for our purposes.

Now, we are ready to state our second inductive hypothesis, the point of which is
to provide plenty of instances of the dual residue property. We will assume the second
inductive hypothesis for the rest of the section. We again recall the filter F and its dual
ideal I from Definition 2.8.

Inductive Hypothesis II: Let ξ < ρ, and suppose that M⃗ isRξ-suitable. Then there is
an A ⊆ dom(M⃗)with A ∈ I so that for all α ∈ dom(M⃗)/A,Rξ satisfies the dual residue
property at Mα .

Now, we move to the main part of the proof that P∗ satisfies Inductive Hypotheses
I and II with respect to ρ. After a bit more setup, we will verify Inductive Hypothesis
I for ρ and then use this to verify Inductive Hypothesis II at ρ.

The following lemma amalgamates instance of the second induction hypothesis
below ρ, stating that if M⃗ is ρ-suitable, then for almost all α ∈ dom(M⃗) and all
ξ ∈ Mα ∩ ρ, Rξ satisfies the dual residue property at Mα . However, we note that the
following lemma is far from showing that the second induction hypothesis holds at
ρ itself, only asserting (roughly) that it holds up to ρ. The proof involves a standard
diagonal union, using the normality of I.

Lemma 3.7 Suppose that M⃗ is Rρ-suitable. Then there is an A ⊆ dom(M⃗) with A ∈ I
so that for all α ∈ dom(M⃗)/A and all ξ ∈ Mα ∩ ρ, Rξ satisfies the dual residue property
at Mα .

Proof Fix M⃗ which is Rρ-suitable. If ρ < κ, then the lemma follows by taking the
union of < κ-many sets in I which witness the second induction hypothesis below ρ.
Suppose, then, that ρ ≥ κ, and let h ∶ κ�→ ρ be the ⊲-least bijection from κ onto ρ.
Note that h is in Mα for all α ∈ dom(M⃗) (since ρ is an element of Mα) and that for each
such α, Mα ∩ ρ = h[Mα ∩ κ]. Next, observe that for all ξ < ρ, a tail of the sequence M⃗
is Rξ-suitable, since a tail of this sequence contains ξ as an element and since each
model on M⃗ is Rρ-suitable.

For each ξ < ρ, we may then find Aξ ∈ I so that for all α ∈ dom(M⃗)/Aξ , Mα is
Rξ-suitable and so that Rξ satisfies the dual residue property at Mα . For each ν < κ,
let Bν ∶= Ah(ν), and let B ∶= ∇ν<κBν = {β < κ ∶ (∃ν < β) [β ∈ Bν]}. B ∈ I since I is a
normal ideal.

We now claim that for all α ∈ dom(M⃗) and all ξ ∈ Mα ∩ ρ, Mα is Rξ-suitable and
Rξ satisfies the dual residue property at Mα . So let such α and ξ be given. ξ ∈ Mα ∩ ρ,
and hence ξ = h(ν̄) for some ν̄ < α. However, α ∉ B, and therefore for all ν < α, α ∉
Bν = Ah(ν). In particular, α ∉ Ah(ν̄) = Aξ . Thus, by choice of Aξ , Mα is Rξ-suitable,
and Rξ satisfies the dual residue property at Mα . ∎

At important parts of the following proofs, we will need to understand the circum-
stances under which we can amalgamate conditions in Rρ , and in particular, in Ṡρ .
We will often be interested in the following strong sense of amalgamation.
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Definition 3.10 Let u, v ∈ Rρ so that pu and pv are compatible in P∗. We say that fu
and fv are strongly compatible over pu and pv if for any condition q ∈ P∗ which extends
pu and pv , q forces that f̌u ∪ f̌v ∈ Ṡρ .

The next lemma gives sufficient conditions under which we may amalgamate
conditions in Rρ whose specializing parts are strongly compatible as above.

Lemma 3.8 Suppose that M⃗ is in pre-splitting configuration up to ρ, that α < β are in
dom(M⃗), and that ⟨p∗(Mα), φMα ⟩ and ⟨p∗(Mβ), φMβ ⟩ are residue pairs for (Mα ,P∗)
and (Mβ ,P∗), respectively. Let ⟨uα , vα⟩ and ⟨uβ , vβ⟩ be two pairs of conditions in Rρ
which satisfy the following:
(1) ⟨uα , vα⟩ is a splitting pair for (φMα , ρ) with splitting function Σα ;
(2) ⟨uβ , vβ⟩ is a splitting pair for (φMβ , ρ) with splitting function Σβ ;
(3) Σα = Σβ ;
(4) there exists w ∈ Mα so that #ρ

φMα (uα , vα , w) and #ρ
φMβ

(uβ , vβ , w) both hold; and
(5) uα , vα ∈ Mβ .
Then uα and vβ are compatible in Rρ ; in fact, fuα is strongly compatible with fvβ over
puα and pvβ .

Proof We first observe that puα and pvβ are compatible in P∗. Indeed, by (4),
φMα(puα) =∗ pw =∗ φMβ(pvβ), and by (5), puα ∈ Mβ . Thus, as puα ≥ φMα(puα) ≥
φMβ(pvβ), and as φMβ is a residue function, puα is compatible with pvβ .

Now, let q ∈ P∗ be any common extension of puα and pvβ . We will argue by
induction on ζ ≤ ρ that q ⊩ ( f̌uα ∪ f̌vβ) ↾ ζ ∈ Ṡζ . Limit stages are immediate. For
the successor stage, suppose that ⟨ζ , ν⟩ ∈ dom( fuα) ∩ dom( fvβ) and that we have
proved that q ⊩ ( f̌uα ∪ f̌vβ) ↾ ζ ∈ Ṡζ . Since fuα ∈ Mβ by (5), ⟨ζ , ν⟩ ∈ Mβ . Thus, ⟨ζ , ν⟩ ∈
dom( fvβ) ∩ Mβ = dom( fw), since w =∗ vβ ↾ Mβ . Since we also have that w =∗ uβ ↾
Mβ , it follows that ⟨ζ , ν⟩ ∈ dom( fuβ). Thus, ⟨ζ , ν⟩ ∈ dom( fuβ) ∩ dom( fvβ) ∩ Mβ =
dom( fuα) ∩ dom( fvα) ∩ Mα , with equality holding by (3) and the definition of a
splitting function. Moreover, ζ ∈ Mα since ⟨ζ , ν⟩ ∈ dom( fw) ⊆ Mα .

Now, pick a pair of distinct nodes ⟨θ , τ⟩ ∈ fuα(ζ , ν) × fvβ(ζ , ν), and we will show
that (q, ( fuα ∪ fvβ) ↾ ζ) forces in Rζ that θ and τ are Ṫζ-incompatible. If θ is below
level α, then θ ∈ ( fuα ↾ Mα)(ζ , ν) = fw(ζ , ν) ⊆ fvβ(ζ , ν). Thus, (q, fvβ ↾ ζ) ⊩ θ , τ are
Ṫζ-incompatible, and so (q, ( fuα ∪ fvβ) ↾ ζ) forces this too. A similar argument
applies if τ is below level β.

We therefore assume that θ is at or above level α and τ is at or above level β. Let
m and n be chosen so that θ is the mth node in fuα(ζ , ν)/(α × ω1) and τ is the nth
node in fvβ(ζ , ν)/(β × ω1). By assumption (3), letting Σ ∶= Σα = Σβ , we know that
Σ(ζ , ν, m, n)(L) and Σ(ζ , ν, m, n)(R) are two distinct nodes on the same level and
also that

(puα , fuα ↾ ζ) ⊩ Σ(ζ , ν, m, n)(L) <Ṫζ
θ ,

and

(pvβ , fvβ ↾ ζ) ⊩ Σ(ζ , ν, m, n)(R) <Ṫζ
τ.
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Therefore, (q, ( fuα ∪ fvβ) ↾ ζ) forces that τ and θ are incompatible in Ṫζ , as we
intended to show. ∎

The following item shows how we can obtain the desired splitting pairs of condi-
tions.

Lemma 3.9 Suppose that M⃗ is in pre-splitting configuration up to ρ and that
dom(M⃗) satisfies the conclusion of Lemma 3.7. Fix α ∈ dom(M⃗), and suppose that
⟨p∗(Mα), φMα ⟩ is a residue pair for (Mα ,P∗). Finally, fix u, v , w so that #ρ

φMα (u, v , w).
Then there exist extensions u∗ ≥ u and v∗ ≥ v so that u∗ , v∗ are a splitting pair for
(φMα , ρ).

Proof Fix u, v , w as in the statement of the lemma. We define a coordinatewise
increasing sequence of triples ⟨⟨un , vn , wn⟩ ∶ n ∈ ω⟩ of conditions and a sequence
⟨⟨ζn , νn , θn , τn⟩ ∶ n ∈ ω⟩ of tuples of ordinals and tree nodes so that ⟨u0 , v0 , w0⟩ =
⟨u, v , w⟩ and so that for each n,
• #ρ

φMα (un , vn , wn) holds;
• ⟨ζn , νn⟩ ∈ dom( fun) ∩ dom( fvn) ∩ Mα and ⟨θn , τn⟩ ∈ ( fun(ζn , νn)/(α × ω1)) ×
( fvn(ζn , νn)/(α × ω1)); and

• un+1 and vn+1 split ⟨θn , τn⟩ below α.
This is done with respect to some bookkeeping device in such a way that if u∗ is a sup of
⟨un ∶ n ∈ ω⟩ (and similarly for v∗), then for each ⟨ζ , ν⟩ ∈ dom( fu∗) ∩ dom( fv∗) ∩ Mα
and each ⟨θ , τ⟩ ∈ ( fu∗(ζ , ν)/(α × ω1)) × ( fv∗(ζ , ν)/(α × ω1)), ⟨ζ , ν, θ , τ⟩ appears as
the nth tuple for some n.

To show the successor step, suppose that un , vn , and wn are given, and consider
⟨ζn , νn , θn , τn⟩. Note that #ζn

φMα (un ↾ ζn , vn ↾ ζn , wn ↾ ζn) also holds. Then Lemma 3.5
applies since ζn ∈ Mα and since Rη satisfies the dual residue property at Mα for all η ∈
Mα ∩ ρ. Thus, we may find conditions u′n ≥ un ↾ ζn , v′n ≥ vn ↾ ζn , and w′n ≥ wn ↾ ζn

so that #ζn
φMα (u′n , v′n , w′n) and so that u′n and v′n split ⟨θn , τn⟩ below α. Now, define

fun+1 to be the function which equals fu′n on ζn and which equals fun on [ζn , ρ).
Moreover, let un+1 be the pair (pu′n , fun+1). Let vn+1 and wn+1 be defined similarly.
Then #ρ

φMα (un+1 , vn+1 , wn+1) holds, and un+1 and vn+1 split ⟨θn , τn⟩ below α.
This completes the construction of the sequence. Fix sups u∗ , v∗ , w∗. Since

#ρ
φMα (un , vn , wn) holds for all n, #ρ

φMα (u∗ , v∗ , w∗) also holds. By the choice of book-
keeping, u∗ , v∗ is a splitting pair for (φMα , ρ), completing the proof. ∎

Lemma 3.10 Suppose that M⃗ is in pre-splitting configuration up to ρ. Suppose that
for each α ∈ dom(M⃗), there exist uα , vα which are a splitting pair for (φMα , ρ), where
⟨p∗(Mα), φMα ⟩ is a residue pair for (Mα ,P∗). Then there exists B ⊆ dom(M⃗) in F+

so that for any α < β in B, uα , vα ∈ Mβ , uα ↾ Mα =∗ vβ ↾ Mβ , and uα is compatible
with vβ .

Proof Suppose that for each α ∈ dom(M⃗), we have a splitting pair uα , vα for
(φMα , ρ); we also let wα ∈ Rρ ∩ Mα be a condition witnessing #ρ

φMα (uα , vα , wα). Let
Σα be a splitting function for (uα , vα) with respect to Mα , as in Definition 3.9. By
Remark 3.6, Σα ∈ Mα . Now, the function on dom(M⃗) defined by α ↦ ⟨wα , Σα⟩ is
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regressive (since the pair can be coded by an ordinal below α). Since dom(M⃗) ∈ F+
and F is normal, there exists some B ⊆ dom(M⃗) which is also in F+ on which that
function takes a constant value, say ⟨w̄ , Σ⟩. Moreover, by intersecting with a club and
relabeling if necessary, we may assume that if α < β are in B, then uα , vα ∈ Mβ . But
then, for any α < β in B, we have that uα ↾ Mα =∗ w̄ =∗ vβ ↾ Mβ . Therefore, for all
α < β in B, the assumptions of Lemma 3.8 are satisfied, and consequently uα and vβ
are compatible. ∎

Proposition 3.11 P∗ ⊩ Ṡρ is κ-c.c.

Proof Let p ∈ P∗ be a condition, and suppose that p ⊩ ⟨ ḟγ ∶ γ < κ⟩ is a sequence of
conditions in Ṡρ . We will find some extension p∗ of p which forces that this sequence
does not enumerate an antichain.

Let M⃗ be a sequence which is suitable with respect to the three parameters Rρ , p,
and ⟨ ḟγ ∶ γ < κ⟩, and which is in pre-splitting configuration up to ρ. By removing an
I-null set, we may assume that dom(M⃗) satisfies the conclusion of Lemma 3.7.

Let B ∶= dom(M⃗). Since M⃗ is in pre-splitting configuration up to ρ, let
⟨⟨p∗(Mα), φMα ⟩ ∶ α ∈ B⟩ be a residue system. For each α ∈ B, p ∈ P∗ ∩ Mα , and there-
fore we may find some extension pα of p so that pα ∈ dom(φMα). We may also assume
that for some function fα in V, pα ⊩P∗ ḟα = f̌α . Now, extend ⟨pα , fα⟩ to a condition uα
in D(φMα , ρ). By Lemma 3.9, we may further extend uα to a splitting pair ⟨u∗α , v∗α⟩ for
(φMα , ρ). By Lemma 3.10, we may find some B∗ ⊆ B with B∗ ∈ F+ so that for all α < β
in B∗, u∗α and v∗β are compatible. Let w be a condition extending them both. Then pw

forces that f̌w extends both f̌u∗α and f̌v∗β and hence extends ḟα and ḟβ . Therefore, pw

forces that ḟα and ḟβ are compatible in Ṡρ . ∎

We are now ready to verify that the second induction hypothesis holds at ρ. We
again remark that this proposition (and the later results which build off of it) is the
only place in our work where we need the ineffability of κ. In all other cases, the weak
compactness of κ suffices.

Proposition 3.12 Suppose that M⃗ is in pre-splitting configuration up to ρ. Then there
is an A ∈ I so that for all α ∈ dom(M⃗)/A, Rρ satisfies the dual residue property at Mα .

Proof We only deal with the case whenP∗ is not just the collapse posetP (and hence
we are in the case where κ is ineffable, and F = Fin). The case when P∗ is the collapse
P is simpler and taken care of in [30].

Suppose otherwise, for a contradiction. Then

B ∶= {α ∈ dom(M⃗) ∶ Rρ does not satisfy the dual residue property at Mα}

is in F+. Moreover, by removing an I-null set if necessary, we may assume that B
satisfies the conclusion of Lemma 3.7. We will derive our contradiction by creating
a κ-sized antichain in Rρ for which we can amalgamate many of the P∗-parts. This
will then lead to a κ-sized antichain in Sρ in some V-generic extension over P∗.

For each α ∈ B, we fix a residue pair ⟨p∗(Mα), φMα ⟩ for (Mα ,P∗) and a triple
⟨uα , vα , wα⟩which witnesses that Rρ does not satisfy the dual residue property at Mα .
Thus, #ρ

φMα (uα , vα , wα) holds, but for any w∗ ≥Rρ∩Mα wα , either w∗ is not a residue
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for uα to Mα or w∗ is not a residue for vα to Mα . In particular, for each such w∗,
we may find a further extension in Rρ ∩ Mα which is either incompatible with uα or
incompatible with vα in Rρ .

By Lemma 3.9, we may extend ⟨uα , vα , wα⟩ to another triple ⟨u∗α , v∗α , w∗α⟩ so that
u∗α and v∗α are a splitting pair for Mα . By Lemma 3.10, we may find some B∗ ⊆ B with
B∗ ∈ F+ so that for all α, β ∈ B∗ with α < β, w∗α =∗ w∗β , u∗α and v∗α are in Mβ , and
u∗α is compatible with v∗β . We let w̄∗ denote a condition which is =∗ equal to w∗α for
α ∈ B∗.

Next, for each α < β both in B∗, we define a condition w∗α ,β . Fix such α and β.
Since u∗α ∈ Mβ is compatible with v∗β , there is an extension w∗α ,β of u∗α in Rρ ∩ Mβ
which is a residue for v∗β to Rρ ∩ Mβ . Since β ∈ B and since w∗α ,β is a residue for v∗β , we
may further extend (and relabel if necessary) to assume that w∗α ,β is incompatible with
u∗β . Since pw∗α ,β

≥ pu∗α ≥ p∗(Mα), we may further assume that pw∗α ,β
is in the domain

of φMα .
We now set up an application of the ineffability of κ. For each β ∈ B∗, we define the

function Eβ by

Eβ ∶= {(α, w∗α ,β) ∶ α ∈ B∗ ∩ β} ⊆ β × (Mβ ∩Rρ).

Formally, we ought to apply the ineffability of κ to a sequence A⃗ where the αth element
on the sequence is a subset of α. However, we will work with the sets Eβ ; this poses no
loss of generality since, by using the ⊲-least bijection from Rρ onto κ and the Gödel
pairing function, we can code Eβ as a subset of β.

Since κ is ineffable and B∗ ∈ F+, we can find a subset E of κ ×Rρ and a stationary
S ⊆ B∗ so that for all β ∈ S, E ∩ (β × (Mβ ∩Rρ)) = Eβ . We observe that E is a function:
if (α, w) and (α, w′) are both in E, fix some β ∈ S large enough so that w , w′ ∈ Mβ ∩
Rρ . Then (α, w) and (α, w′) are in E ∩ (β × (Mβ ∩Rρ)) = Eβ . Since Eβ is a function,
w = w′. We can now rephrase the coherence as follows: if β ∈ S, then E ↾ β = Eβ , since
E ↾ β and Eβ are both functions with domain B∗ ∩ β and Eβ ⊆ E ↾ β.

Next, B∗ ⊆ dom(E). Indeed, for each β ∈ S, E ↾ β = Eβ , and the domain of Eβ is
B∗ ∩ β. Since S is unbounded (in fact stationary) in κ, there are unboundedly many β
so that E ↾ β = Eβ , from which the conclusion follows. And finally, if α ∈ B∗, then for
any β ∈ S/(α + 1), E(α) = w∗α ,β , since E(α) = Eβ(α) = w∗α ,β .

Now, we press down residues for conditions indexed by S. Since S ⊆ B∗ = dom(E),
E(α) is defined for each α ∈ S. Moreover, pE(α) is in the domain of φMα since it
equals w∗α ,β for some/any β ∈ S/(α + 1), and since w∗α ,β is in the domain of φMα .
Then φMα(pE(α)) is a condition in Mα ∩Rρ , and each such condition can be coded
by an element of α, using the ⊲-least bijection from Rρ onto κ. Thus, the function
α ↦ φMα(pE(α)) on S is regressive, and so we can find a stationary S∗ ⊆ S so that it
has a constant value, say the condition p∗∗.

Now, fix α < β in S∗, and we will show that pE(α) and pE(β) are compatible in P∗.
Indeed, E(α) = w∗α ,β is an element of Mβ ∩Rρ . In addition, pw∗α ,β

≥ φMα(pw∗α ,β
) =

p∗∗ = φMβ(pE(β)). Thus, pE(α) = pw∗α ,β
extends, inside of Mβ , the residue of pE(β) to

Mβ . pE(α) and pE(β) are therefore compatible in P∗.
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However, for such α < β, we also know that E(α) and E(β) are incompatible
conditions in Rρ , since E(β) extends u∗β and since E(α) = w∗α ,β is incompatible with
u∗β . Thus, if q is any condition which extends pE(α) and pE(β) in P∗, then q must force
that fE(α) and fE(β) are incompatible conditions in Ṡρ .

Now, we can create our κ-sized antichain of specializing conditions. Let G∗ be
a V-generic filter over P∗ which contains the condition p∗∗, and recall that p∗∗ =
φMα(pE(α)) for all α ∈ S∗. By Lemma 2.13, the set

X ∶= {α ∈ S∗ ∶ pE(α) ∈ G∗}

is unbounded in κ. Therefore, if α < β are in X, then fE(α) and fE(β) are incompatible
conditions in Ṡρ[G]. Since κ is a cardinal after forcing with P∗ and since X has size κ,
this gives aκ-sized antichain in Ṡρ[G]. This contradicts Proposition 3.11 and completes
the proof. ∎

Here, we comment on the use of the ineffability of κ. In the original Laver–Shelah
argument,P∗ is just the collapse forcing. Thus, their entire forcing isκ-c.c. However, in
our setup, P∗ will in general fail to be κ-c.c., and consequently it is not enough to find
a κ-sized antichain in P∗ ∗ Ṡρ = Rρ . Rather, we need to arrange that there is a κ-sized
antichain in Rρ for which we can amalgamate plenty of the P∗-parts of the conditions.
This in turn requires that we are able to press down on the residues of the P∗-parts.
Considering the array ⟨w∗α ,β ∶ α, β ∈ B∗ ∧ α < β⟩ from the proof of the previous result,
we need to find a stationary S ⊆ B∗ on which, for each α ∈ S, the function on S/(α + 1)
taking β to w∗α ,β is independent of β, say taking value w∗∗α . Then, using the stationarity
of S, we pressed down on the residue of w∗∗α . The ineffability of κ allowed us to create
a function, namely E, out of the above array with dom(E) containing a stationary set
on which the approximations (the Eβ) cohere. We were not able to create this function
and set up an application of pressing down just assuming that κ is weakly compact.

However, in the case that P∗ is just the collapse, then a weakly compact cardinal
suffices for the entirety of the argument, since the entire poset P ∗ Ṡρ is then κ-c.c. In
this case, we only need to create an unbounded Z ⊆ B∗ on which the function β ↦
w∗α ,β is independent of β, for each α ∈ Z and β ∈ Z/(α + 1); this is because ⟨w∗∗α ∶ α ∈
Z⟩ would then be a κ-sized antichain in P ∗ Ṡρ , a contradiction. Z can be constructed
by working inside a κ-model M∗ containing all of the relevant information, for which
there exists an M∗-normal ultrafilter containing B as an element.

We have now completed the proof of Theorem 3.1. We conclude with a corollary
which adds to that theorem an additional clause about the dual residue property; this
will be useful later.

Corollary 3.13 Suppose that P∗ is F-strongly proper and that Ṡκ+ is a P∗-name for
a κ+-length, countable support iteration specializing Aronszajn trees on κ. Then, for all
ρ < κ+,
(1) P∗ forces that Ṡρ is κ-c.c.; and
(2) if M⃗ is in pre-splitting configuration up to ρ, then there is some A ⊆ dom(M⃗) with

A ∈ I so that for all α ∈ dom(M⃗)/A, Rρ satisfies the dual residue property at Mα .
Hence, for all ζ ∈ Mα ∩ (ρ + 1), Rζ satisfies the dual residue property at Mα .
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Proof If the corollary is false, let ρ be the least such that it fails at ρ. Then Induction
Hypotheses I and II hold below ρ, so Propositions 3.11 and 3.12 show that (1) and (2)
hold at ρ, a contradiction. ∎

4 F-strongly proper posets and preserving stationary sets

In this section, we will prove that the appropriate quotients preserve stationary sets
of cofinality ω ordinals. We will apply this result in Section 6 when we show that our
intended club-adding iteration is F-completely proper (see Definition 5.3). In the first
part of this section, we will prove some helpful lemmas which we use in the second
part to complete proof of the preservation of the relevant stationary sets.

For the remainder of this section, we fix an F-strongly proper poset P∗ and an
iteration Ṡρ of length ρ < κ+ specializing Aronszajn trees in the extension by P∗ (see
the beginning of Section 3 for a more precise definition and relevant notation). Note
that the conclusions of Corollary 3.13 hold.

We first prove two lemmas which describe how the residue functions with respect
to two models on a suitable sequence interact. More precisely, suppose we have
a suitable sequence M⃗, where α < β are both in dom(M⃗) and Mα and Mβ have
respective residue pairs ⟨p∗(Mα), φMα ⟩ and ⟨p∗(Mβ), φMβ ⟩ with respect to P∗. A
natural question is whether, on a dense set, φMα(φMβ(q)) =∗ φMα(q), i.e., whether
the Mα-residue of the Mβ-residue is equivalent to the Mα-residue. Proposition 4.2
shows that this is the case.

Lemma 4.1 Suppose that M⃗ is P∗-suitable with residue system

⟨⟨p∗(Mγ), φMγ ⟩ ∶ γ ∈ dom(M⃗)⟩

and that α < β are in dom(M⃗).
(1) For every p ∈ P∗ that extends both p∗(Mα) and p∗(Mβ), there is an extension

p∗ ≥P∗ p with p∗ ∈ dom(φMα) ∩ dom(φMβ).
(2) D0(φMα , φMβ) ∶= {q ∈ dom(φMα) ∩ dom(φMβ) ∶ φMβ(q) ∈ dom(φMα)} is =

∗-countably closed and dense in P∗/ {p∗(Mα), p∗(Mβ)}.5

Proof For (1), we apply a dovetailing construction using the properties of the residue
functions. Define, by recursion, an increasing sequence ⟨pn ∶ n ∈ ω⟩ of extensions of p
so that p2n+1 ∈ dom(φMα) and, for n > 0, p2n ∈ dom(φMβ). Let p∗ be a sup of ⟨pn ∶ n ∈
ω⟩. Then p∗ ∈ dom(φMα) since it is also a sup of ⟨p2n+1 ∶ n ∈ ω⟩, and p∗ ∈ dom(φMβ)
since it is a sup of ⟨p2n ∶ n > 0⟩.

For (2), fix a condition q−1 ∈ P∗ which extends both p∗(Mα) and p∗(Mβ), where
by (1) we may assume that q−1 ∈ dom(φMα) ∩ dom(φMβ). We first make a cosmetic
improvement to q−1 before the main construction. Since q−1 extends both φMβ(q−1)
and p∗(Mα) and since both of these conditions are in Mβ (using Definition 2.8(2)
to see that p∗(Mα) ∈ Mβ), we may apply the elementarity of Mβ to find a condition
s−1 ∈ Mβ which extends φMβ(q−1) and p∗(Mα). Now, find an extension q0 ≥ q−1 so
that φMβ(q0) ≥ s−1, noting that we may assume that q0 ∈ dom(φMα) ∩ dom(φMβ).

5This denotes the set of r ∈ P∗ which extend both p∗(Mα) and p∗(Mβ).
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Having completed this modification, we now define, by recursion, an increas-
ing sequence of conditions ⟨qn ∶ n ∈ ω⟩ in dom(φMα) ∩ dom(φMβ) and an increas-
ing sequence ⟨sn ∶ n ∈ ω⟩ of conditions in Mβ ∩ dom(φMα) so that for each n,
φMβ(qn+1) ≥ sn ≥ φMβ(qn). So assume that qn is defined. Since φMβ(qn) ≥ p∗(Mα)
(using the previous paragraph for the case n = 0), we may find an extension sn of
φMβ(qn) which is a member of Mβ ∩ dom(φMα). Then let qn+1 ≥ qn be a condition
with φMβ(qn+1) ≥ sn . Finally, let q∗ be a sup of ⟨qn ∶ n ∈ ω⟩, and let s∗ be a sup of
⟨sn ∶ n ∈ ω⟩, noting by the intertwined construction that s∗ is also a sup of ⟨φMβ(qn) ∶
n ∈ ω⟩. By the countable continuity of the residue functions, we have φMβ(q∗) =∗ s∗.
However, s∗ ∈ dom(φMα), since it is the sup of the increasing sequence ⟨sn ∶ n ∈ ω⟩ of
conditions in dom(φMα). Consequently, φMβ(q∗) is also in dom(φMα). Since q−1 in
P∗/ {p∗(Mα), p∗(Mβ)} was arbitrary, this completes the proof of (2). ∎

Proposition 4.2 Suppose that M⃗ is P∗-suitable with residue system

⟨⟨p∗(Mγ), φMγ ⟩ ∶ γ ∈ dom(M⃗)⟩,

and let α < β be in dom(M⃗). Then

E(φMα , φMβ) ∶= {p ∈ P∗ ∶ φMβ(p) ∈ dom(φMα) ∧ φMα(φMβ(p)) =∗ φMα(p)}

is =∗-countably closed and dense in P∗/ {p∗(Mα), p∗(Mβ)}.

Proof We begin by observing that if q ∈ D0(φMα , φMβ), then φMα(q) extends
φMα(φMβ(q)). Indeed, since q ∈ dom(φMβ), q ≥ φMβ(q), and since φMα is order-
preserving and both q and φMβ(q) are in dom(φMα), we conclude that φMα(q) ≥
φMα(φMβ(q)).

With this observation in mind, let p ∈ P∗ extend both p∗(Mα) and p∗(Mβ),
and by extending further if necessary, we may assume that p is in D0(φMα , φMβ).
We will define by recursion an increasing sequence of conditions ⟨pn ∶ n ∈ ω⟩ in
D0(φMα , φMβ) with p0 = p so that for all n,

φMα(φMβ(pn+1)) ≥ φMα(pn) ≥ φMα(φMβ(pn));

note that all of the above items are defined, by definition of D0(φMα , φMβ).
Suppose we are given pn . As observed earlier, since pn ∈ D0(φMα , φMβ), we have

φMα(pn) ≥ φMα(φMβ(pn)). Since φMα(pn) extends, in Mα , the residue of φMβ(pn)
to Mα , we may find a condition q ∈ Mβ extending φMβ(pn) so that φMα(q) ≥
φMα(pn). Since q ∈ Mβ extends φMβ(pn), there is an r ≥ pn so that φMβ(r) ≥ q.
Finally, let pn+1 ≥ r be a condition in D0(φMα , φMβ). Then φMβ(pn+1) ≥ φMβ(r) ≥ q,
and hence φMα(φMβ(pn+1)) ≥ φMα(q) ≥ φMα(pn). This completes the construction
of the desired sequence.

Let p∗ be a sup of ⟨pn ∶ n ∈ ω⟩. It is straightforward to verify that it witnesses the
lemma. ∎

The last lemma that we will need before turning to the main result of this section
is a technical refinement of Lemma 3.9 which isolates circumstances in which for α <
β < κ as above, we can find splitting pairs u, v for (Mα , ρ)with the additional property
that u ↾ Mβ and v ↾ Mβ also form a splitting pair for (Mα , ρ). Moreover, u ↾ Mβ and
v ↾ Mβ will split the nodes on levels between α and β in the same way that u and v do.
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For the statement of the next result, recall the way we denote restriction of (iteration)
length p ↾ ξ, and restriction in the poset height, p ↾ Mα , from Notation 3.6.

Lemma 4.3 Suppose that M⃗ is in pre-splitting configuration up to ρ and that dom(M⃗)
satisfies the conclusion of Corollary 3.13(2). Suppose α < β are both in dom(M⃗) and
that ⟨p∗(Mα), φMα ⟩ and ⟨p∗(Mβ), φMβ ⟩ are residue pairs for (Mα ,P∗) and (Mβ ,P∗)
respectively. Finally, fix a condition u ∈ Rρ with pu ∈ dom(φMα) ∩ dom(φMβ). Then
there exist a splitting pair (u∗ , v∗) for (φMα , ρ) extending u and a splitting function Σ
satisfying the following:
(1) pu∗ and pv∗ are both in E(φMα , φMβ) (see Proposition 4.2); and
(2) (u∗ ↾ Mβ , v∗ ↾ Mβ) is also an (Mα , ρ)-splitting pair, and for any tuple

(ζ , ν, m, n) ∈ dom(Σ) so that the mth node of fu∗(ζ , ν)/(α × ω1) and the nth node
of fv∗(ζ , ν)/(α × ω1) are both in Mβ ,

(φMβ(pu∗), ( fu∗ ↾ Mβ) ↾ ζ) ⊩Rζ Σ(ζ , ν, m, n)(L) <Ṫζ
θ

and

(φMβ(pv∗), ( fv∗ ↾ Mβ) ↾ ζ) ⊩Rζ Σ(ζ , ν, m, n)(R) <Ṫζ
τ.

Proof By Lemma 3.3, we know that D(φMα , ρ) ∩ D(φMβ , ρ) is dense and =∗-
countably closed in Rρ/ {p∗(Mα), p∗(Mβ)}. Moreover, by Proposition 4.2 (with the
notation from the statement thereof), E(φMα , φMβ) is dense and countably =∗-closed
in P∗/ {p∗(Mα), p∗(Mβ)}. Consequently,

E∗(φMα , φMβ , ρ) ∶= {v ∈ Rρ ∶ v ∈ D(φMα , ρ) ∩ D(φMβ , ρ) ∧ pv ∈ E(φMα , φMβ)}

is dense and countably =∗-closed in Rρ/ {p∗(Mα), p∗(Mβ)}. For use later, we also let
E∗(φMα , φMβ , ζ) be defined similarly, with ζ replacing ρ in the above definition.

Let u be as in the assumption of the current lemma. We may extend and
relabel if necessary to assume that u ∈ E∗(φMα , φMβ , ρ). We set u0 ∶= v0 ∶= u and
w0 ∶= u ↾ Mα . We will now define a coordinatewise increasing sequence of triples
⟨⟨un , vn , wn⟩ ∶ n ∈ ω⟩ and a sequence of tuples ⟨⟨ζn , νn , θn , τn⟩ ∶ n ∈ ω⟩ (with respect
to some bookkeeping device) of tree nodes and ordinals so that the following condi-
tions are satisfied for all n:
(1) #ρ

φMα (un , vn , wn);
(2) un , vn ∈ D(φMβ , ρ);
(3) ⟨ζn , νn⟩ ∈ dom( fun) ∩ dom( fvn) ∩ Mα , and ⟨θn , τn⟩ ∈ ( fun(ζn , νn)/(α × ω1)) ×

( fvn(ζn , vn)/(α × ω1));
(4) un+1 and vn+1 split ⟨θn , τn⟩ below α in Ṫζn , and if θn and τn are both below level

β, then in fact un+1 ↾ Mβ and vn+1 ↾ Mβ split ⟨θn , τn⟩ below α in Ṫζn . Moreover,
in this case, there is a pair of nodes ⟨θ̄n , τ̄n⟩ below level α which witnesses the
splitting for both un+1 and vn+1 as well as their restrictions to Mβ ; and

(5) pun and pvn are in E(φMα , φMβ).
For n = 0, we have that (1), (2), and (5) hold because u ∈ E∗(φMα , φMβ , ρ). (3) holds
by definition and (4) is vacuous.

https://doi.org/10.4153/S0008414X22000207 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000207


Club stationary reflection and the special Aronszajn tree property 887

Suppose, then, that we have defined un , vn , and wn . By Lemma 3.5, we may find
extensions u′n ≥ un , v′n ≥ vn , and w′n ≥ wn so that #ρ

φMα (u′n , v′n , w′n) holds and so that
u′n and v′n split ⟨θn , τn⟩ below α in Ṫζn . Let θ̄n and τ̄n be nodes below level α which
witness the splitting.

We now define conditions u∗∗∗n , v∗∗∗n , and w∗∗∗n (the superscript for later notational
purposes) which extend, respectively, u′n ↾ ζn , v′n ↾ ζn , and w′n ↾ ζn . If either θn or τn
are at or above level β (namely, outside of Mβ), then we simply set u∗∗∗n ∶= u′ ↾ ζn ,
v∗∗∗n ∶= u′ ↾ ζn . Since dom(M⃗) satisfies the conclusion of Corollary 3.13(2), and since
ζn ∈ Mα , we may find a dual residue w∗∗∗n of u∗∗∗n and v∗∗∗n to Mα . This completes
the definition of the triple (u∗∗∗n , v∗∗∗n , w∗∗∗n ) in the case that either θn or τn are at or
above level β.

Suppose on the other hand that θn and τn are both below level β and therefore are in
Mβ . Since dom(M⃗) satisfies the conclusion of Corollary 3.13(2), and since ζn ∈ Mα ∩ ρ
and #ζn

φMα (u′n ↾ ζn , v′n ↾ ζn , w′n ↾ ζn), we may find a condition w∗n ∈ Mα ∩Rζn which is
a dual residue of u′n ↾ ζn and v′n ↾ ζn to Mα . We next extend u′n ↾ ζn to a condition
which extends not only w∗n but also some residue to Mβ .

Let u∗∗n be an extension in D(φMβ , ζn) of u′n ↾ ζn and w∗n . By the remarks before
Lemma 3.3, we may let ū∗∗n ∈ Mβ be a residue of u∗∗n to Mβ in Rζn . Finally, let u∗∗∗n
be a condition in D(φMβ , ζn) ∩ D(φMα , ζn) which extends u∗∗n and ū∗∗n and which
satisfies that u∗∗∗n ↾ Mβ ≥Rζn

ū∗∗n .
By definition of θ̄n above, we know that u′n ↾ ζn ⊩Rζn

θ̄n <Ṫζn
θn , and hence the

extension u∗∗n of u′ ↾ ζn forces this too. Since ū∗∗n is a residue of u∗∗n to Mβ in Rζn

and θ̄n , θn are nodes in Mβ , we conclude that ū∗∗n also forces that θ̄n <Ṫζn
θn . Finally,

since u∗∗∗n ↾ Mβ is a condition (because u∗∗∗n ∈ D(φMβ , ζn)) which extends ū∗∗n , we
conclude that u∗∗∗n ↾ Mβ forces that θ̄n <Ṫζn

θn . This completes the first round of
extensions of u′n ↾ ζn .

We now turn to extending v′n ↾ ζn . Since u∗∗∗n ∈ D(φMα , ζn), we may let w∗∗n be
a residue of u∗∗∗n to Mα which extends w∗n . Since w∗∗n ≥ w∗n and w∗n is a residue of
v′n ↾ ζn to Mα , w∗∗n is also a residue of v′n ↾ ζn to Mα . Applying the same argument
as in the previous two paragraphs to v′n ↾ ζn with w∗∗n playing the role of w∗n and
with τ̄n and τn playing the respective roles of θ̄n and θn , we may find an extension
v∗∗∗n of v′n ↾ ζn in D(φMβ , ζn) ∩ D(φMα , ζn) and a condition w∗∗∗n so that v∗∗∗n ↾
Mβ forces τ̄n <Ṫζn

τn and so that w∗∗∗n is a residue of v∗∗∗n to Mα in Rζn which
extends w∗∗n . Note that since w∗∗∗n ≥ w∗∗n , w∗∗∗n is also a residue of u∗∗∗n to Mα
in Rζn .

To summarize, we now have extensions u∗∗∗n and v∗∗∗n of u′n ↾ ζn and v′n ↾ ζn ,
respectively, which are both in D(φMβ , ρ) and which satisfy that u∗∗∗n ↾ Mβ and v∗∗∗n ↾
Mβ split ⟨θn , τn⟩ as witnessed by ⟨θ̄n , τ̄n⟩. Moreover, w∗∗∗n is a dual residue of u∗∗∗n
and v∗∗∗n to Mα in Rζn , i.e., ∗ζn

φMα (u∗∗∗n , v∗∗∗n , w∗∗∗n ). This completes the definition of
the triple (u∗∗∗n , v∗∗∗n , w∗∗∗n ) in the case that θn and τn are below level β.

We now apply Lemma 3.4, to find un+1 ↾ ζn ≥ u∗∗∗n , vn+1 ↾ ζn ≥ v∗∗∗n , and wn+1 ↾
ζn ≥ w∗∗∗n so that #ζn

φMα (un+1 ↾ ζn , vn+1 ↾ ζn , wn+1 ↾ ζn) and so that un+1 ↾ ζn , vn+1 ↾
ζn ∈ E∗(φMα , φMβ , ζn). Define un+1 ∶= (un+1 ↾ ζn)⌢(u′n ↾ [ζn , ρ)), with vn+1 and wn+1
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defined similarly. un+1 , vn+1, and wn+1 then satisfy (1)–(5), completing the successor
step of the construction.

If we now let u∗ , v∗ , w∗ be sups of their respective sequences, it is straightfor-
ward to see that they satisfy the lemma, using (4) to secure the desired splitting
function. ∎

Having laid the groundwork in the previous results, we next turn to analyzing when
quotients of Rρ preserve stationary sets of cofinality ω ordinals. We will prove the
following proposition.

Proposition 4.4 Suppose that M⃗ is in pre-splitting configuration up to ρ and that
dom(M⃗) satisfies Corollary 3.13(2). Then there exists some B∗ ⊆ dom(M⃗) with
dom(M⃗)/B∗ ∈ I so that for any α ∈ B∗, any (Rρ ∩ Mα)-name Ṡ for a stationary
subset of α ∩ cof(ω), and any residue pair ⟨p∗(Mα), φMα ⟩ for (Mα ,P∗), the poset
Rρ/(p∗(Mα), 0Ṡρ

) forces that Ṡ remains stationary.

Thus, the quotient forcing of Rρ above the condition (p∗(Mα), 0Ṡρ
) preserves the

stationarity of Ṡ. The remainder of the section is devoted to the proof.

Proof To begin, we define the set B∗ ∶= tr(B) ∩ B, where B = dom(M⃗). Since B ∈
F+, Lemma 1.7 implies that B/B∗ ∈ I.

Now, fix, for the rest of the proof, an ordinal α ∈ B∗ and a residue pair
⟨p∗(Mα), φMα ⟩ for (Mα ,P∗); since M⃗ is in pre-splitting configuration up to ρ, we
may also fix, for each γ ∈ B ∩ α, a residue pair ⟨p∗(Mγ), φMγ ⟩ for (Mγ ,P∗).

Next, fix a condition (p, f ) in Rρ/(p∗(Mα), 0Ṡρ
) and an Rρ-name Ċ for a closed

unbounded subset of α. We will find some extension (p∗ , f ∗) of (p, f ) which forces
in Rρ that Ċ ∩ Ṡ ≠ ∅. By Lemma 3.3, we may assume that (p, f ) ∈ D(φMα , ρ).

In V, let θ > κ+ be a large enough regular cardinal, and let K ≺ H(θ) be chosen so
that ∣K∣ = κ, <κK ⊆ K, and so that K has the following parameters as elements:
(i) the sequences M⃗ and ⟨⟨p∗(Mγ), φMγ ⟩ ∶ γ ∈ B ∩ (α + 1)⟩, the set B∗, the poset Rρ ,

the Rρ-condition (p, f ), the Rρ-name Ċ, and the (Rρ ∩ Mα)-name Ṡ; and
(ii) the fixed well-order ⊲ of H(κ+) from Notation 2.6.
Finally, let K denote the tuple (K , ∈, α, M⃗ , B∗ ,Rρ , (p, f ), Ċ , Ṡ , ⊲).

Define E0 to be the club of β < α so that SkK(β) ∩ α = β. Since α ∈ B∗, we know
that B ∩ α is stationary in α. Thus, B ∩ lim(B) ∩ α is stationary in α, and therefore
E ∶= lim(E0 ∩ B) is a club in α.

Recalling that (p, f ) ∈ D(φMα , ρ), we can find a residue (p̄, f̄ ) of (p, f ) to Mα
which extends the condition (φMα(p), f ↾ Mα). Let Ẋ be the (Rρ ∩ Mα)-name for

{β ∈ E0 ∩ B∩ lim(B) ∩ α ∶ (p∗(Mβ), 0Ṡρ
) ∈ ĠRρ∩Mα} ;

by Lemma 2.13, we know that Ẋ is forced by Rρ ∩ Mα to be unbounded in α. Since Ṡ
is an (Rρ ∩ Mα)-name of a stationary subset of α ∩ cof(ω), Ṡ is forced to contain
a limit point of Ẋ. This, combined with the fact that Rρ ∩ Mα does not add new
ω-sequences, implies that we can find an extension (q, g) ≥Rρ∩Mα (p̄, f̄ ) and an
increasing sequence ⟨βn ∶ n ∈ ω⟩ in E0 ∩ B∩ lim(B)with supn βn = ν ∈ E ∩ cof(ω), so
that (i) (q, g) ⊩Rρ∩Mα ν ∈ Ṡ, and (ii) for all n ∈ ω, q ≥P∗ p∗(Mβn).
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For the rest of the proof, we will fix (q, g) ∈ Rρ ∩ Mα , ⟨βn ∣ n < ω⟩, and ν with the
above properties. Define Kβn ∶= SkK(βn), noting that Kβn ∩ α = βn because βn ∈ E0.
It will be helpful for later to see that Mβn ⊆ Kβn for each n. Indeed, βn ∈ B ∩ lim(B)
which implies that Mβn = ⋃η∈B∩βn Mη . Moreover, βn ⊆ Kβn , and therefore applying
the elementarity of Kβn , we see that for all η ∈ B ∩ βn , Mη ∈ Kβn . Since βn ⊆ Kβn , η ⊆
Kβn too. Thus, Mη ⊆ Kβn since Kβn sees a bijection between Mη and η. Combining all
of this, we see that Mβn = ⋃η∈B∩βn Mη ⊆ Kβn .

We proceed to find an extension (p∗ , f ∗) of (p, f )which is compatible with (q, g)
and forces that ν ∈ Ċ. We will secure this by building two increasing ω-sequences of
conditions, one above (p, f ) and another above (q, g), in such a way that the limits
of each sequence can be amalgamated; the resulting condition will then force ν into
Ṡ ∩ Ċ. Let (p0 , f0) ∶= (p, f ) and (q0 , g0) ∶= (q, g).

Claim 4.1 There exists an increasing sequence ⟨(pn , fn) ∶ n ∈ ω⟩ of conditions in Rρ
and an increasing sequence ⟨(qn , gn) ∶ n ∈ ω⟩ of conditions in Rρ ∩ Mα so that for
each n ∈ ω,
(1) (pn , fn) ∈ Kβn ;
(2) (pn+1 , fn+1) ⊩Rρ Ċ ∩ (βn , ν) ≠ ∅;
(3) (pn , fn) ∈ D(φMα , ρ);
(4) qn ≥P∗∩Mα φMα(pn); and
(5) fn+1 and gn+1 are strongly compatible (Definition 3.10) over pn+1 and qn+1. ∎

Before we prove this claim, we show that proving it suffices to obtain the desired
condition (p∗ , f ∗). So suppose that Claim 4.1 is true. Let (p∗, f ∗) be a sup of
⟨(pn , fn) ∶ n ∈ ω⟩, and let (q∗ , g∗) be a sup of ⟨(qn , gn) ∶ n ∈ ω⟩.

Observe that by item (2) of Claim 4.1 and the fact that the sequence ⟨βn ∶ n ∈ ω⟩
is cofinal in ν, we have that (p∗ , f ∗) ⊩Rρ ν ∈ lim(Ċ) and hence forces that ν ∈ Ċ as Ċ
names a club. Furthermore, since (q∗, g∗) ≥ (q0 , g0) and since (q0 , g0) = (q, g) forces
that ν ∈ Ṡ, (q∗ , g∗) forces that ν ∈ Ṡ too. We claim that p∗ and q∗ are compatible inP∗,
from which it follows by item (5) of Claim 4.1 that f ∗ and g∗ are strongly compatible
over p∗ and q∗. Indeed, (p∗ , f ∗) ∈ D(φMα , ρ) since this set is closed under sups of
increasing ω-sequences by Lemma 3.3. Furthermore, by the countable continuity of
φMα , φMα(p∗) is a sup of the increasing sequence ⟨φMα(pn) ∶ n ∈ ω⟩. Thus, to show
that p∗ and q∗ are compatible, since q∗ ∈ P∗ ∩ Mα , it suffices to show that q∗ ≥P∗∩Mα

φMα(p∗). However, we know that q∗ ≥ qn for all n and so by (4) of Claim 4.1, q∗ ≥
φMα(pn) for all n. Therefore, q∗ extends φMα(p∗), by definition of a supremum.

Now, let (p∗∗ , f ∗∗) be a condition in Rρ above both (p∗ , f ∗) and (q∗, g∗). Then,
because (p∗∗ , f ∗∗) extends (p∗(Mα), 0Ṡρ

) as well as (q∗ , g∗), which in turn forces
in Rρ ∩ Mα that ν ∈ Ṡ, we have that (p∗∗ , f ∗∗) ⊩Rρ ν ∈ Ṡ. And finally, as (p∗∗ , f ∗∗)
extends (p∗ , f ∗) which forces in Rρ that ν ∈ Ċ, we conclude that (p∗∗ , f ∗∗) ⊩Rρ

ν ∈ Ṡ ∩ Ċ. Thus, it suffices to prove Claim 4.1 in order to finish the proof of
Proposition 4.4.

Proof of Claim 4.5 We will construct the sequences satisfying (1)–(5) of Claim 4.1
recursively. For the base case n = 0, items (2) and (5) hold vacuously. For item (1), we
have that (p0 , f0) = (p, f ) ∈ Kβ0 as (p, f ) = (p0 , f0) was chosen to be definable by
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a constant in the language of K. We also ensured that (p0 , f0) ∈ D(φMα , ρ), which
establishes (3). Finally, q0 ≥P∗∩Mα p̄ ≥P∗∩Mα φMα(p0), which establishes (4).

Suppose, then, that we have defined (pn , fn) and (qn , gn) satisfying (1)–(5).
We first observe that (pn , fn) and (qn , gn) are compatible. If n = 0, this holds
since (q0 , g0) is in Rρ ∩ Mα and extends (p̄, f̄ ), which is a residue of (p0 , f0) to
Rρ ∩ Mα . If n > 0, then we have that qn ≥P∗∩Mα φMα(pn), and therefore pn and
qn are P∗-compatible. Moreover, fn and gn are strongly compatible over the com-
patible conditions pn and qn , and therefore (pn , fn) and (qn , gn) are compatible
in Rρ .

Next, choose some condition (r, h) in Rρ which extends (pn , fn) and (qn , gn),
and by extending if necessary, we may assume that there is some ordinal μ > βn
so that (r, h) ⊩Rρ μ ∈ Ċ/(βn + 1). Since r ≥ pn ≥ p∗(Mα) and since r ≥ qn ≥ q0 ≥
p∗(Mβn+1), we may also extend if necessary to assume, by Lemma 4.1(1), that r ∈
dom(φMβn+1 ) ∩ dom(φMα) and also that φMα(r) ≥ qn .

We now apply Lemma 4.3, with α and βn+1 playing the respective roles of “β”
and “α” in the statement thereof, to find extensions (rL , hL) and (rR , hR) of (r, h)
which satisfy the conclusion of that lemma. We let (r̄, h̄) be a condition so that
#ρ

φMβn+1
((rL , hL), (rR , hR), (r̄, h̄)).

Let Σ be a splitting function for (rL , hL) and (rR , hR) with respect to the model
Mβn+1 which satisfies Lemma 4.3. For Z ∈ {L, R}, set

xZ ∶= dom(hZ) ∩ Mβn+1 ;

this is a countable subset of Mβn+1 and therefore is a member of Mβn+1 . Since Mβn+1 ⊆
Kβn+1 , as shown earlier, xZ is also an element of Kβn+1 .

We are now in a position to reflect into the model Kβn+1 . We observe that in H(θ)
the following statement is true in the following parameters βn , Σ, r̄, h̄,Rρ , (pn , fn), α,
B, Ċ , xL , xR , M⃗, and ⟨⟨p∗(Mγ), φMγ ⟩ ∶ γ ∈ B ∩ (α + 1)⟩, all of which are in Kβn+1 : there
exist a condition (r∗, h∗) inRρ and a pair (r∗Z , h∗Z)Z∈{L ,R} of conditions above (r∗, h∗)
in Rρ as well as ordinals μ∗ , η, so that:

(i) (r∗, h∗) ≥Rρ (pn , fn);
(ii) η ∈ B;

(iii) #ρ
φMη ((r∗L , h∗L), (r∗R , h∗R), (r̄, h̄));

(iv) for each Z ∈ {L, R}, (r∗Z , h∗Z) and (r∗, h∗) are in E∗(φMη , φMα) (see Proposition
4.2);

(v) (r∗, h∗) ⊩Rρ μ∗ ∈ Ċ/(βn + 1);
(vi) dom(h∗Z) ∩ Mη = xZ ; and

(vii) (r∗L , h∗L) and (r∗R , h∗R) are an (Mη , ρ)-splitting pair, and Σ is a splitting function
for (r∗L , h∗L) and (r∗R , h∗R) with respect to the model Mη .

This statement is true in H(θ) as witnessed by the conditions (rZ , hZ)Z∈{L ,R} and
(r, h), the ordinal μ playing the role of μ∗, and the ordinal βn+1 playing the role of η.
Since the parameters of this statement are in Kβn+1 , we may therefore find, in Kβn+1 ,
conditions (r∗Z , h∗Z)Z∈{L ,R} extending some (r∗ , h∗) ≥ (pn , fn), an ordinal μ∗, and an
ordinal η ∈ B so that (i)–(vii) above are satisfied of these objects.
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We now define (pn+1 , fn+1) ∶= (r∗L , h∗L). We need to extend the condition
(φMα(rR), hR ↾ Mα) a bit more before defining (qn+1 , gn+1). The following claim will
help us do this.

Subclaim 4.2 φMα(pn+1) and φMα(rR) are compatible in P∗ ∩ Mα . ∎

Proof Both the condition pn+1 and the function φMα are members of Kβn+1 . There-
fore, φMα(pn+1) ∈ Kβn+1 ∩ Mα ∩ P∗. Recall that K contained the fixed well-order ⊲
of H(κ+) and that all suitable models are elementary in H(κ+) with respect to ⊲.
Thus, if we let eP

∗

denote the ⊲-least bijection from κ onto P∗, then we have that
eP
∗

is in Mα and in Kβn+1 . Since Mα is elementary and contains eP
∗

, we see that
φMα(pn+1) = eP

∗(ζ) for some ζ < α. But then, by the elementarity of Kβn+1 , we see that
ζ ∈ Kβn+1 ∩ α = βn+1. Therefore, φMα(pn+1) = eP

∗(ζ) ∈ Mβn+1 . Furthermore, we know
that

r̄ =∗ φMβn+1 (rR) =∗ φMβn+1 (φMα(rR)),

where the first equality holds by definition of r̄ and the second because rR satisfies
Lemma 4.3. Applying (iii) and (iv) above, we also have that

r̄ =∗ φMη(pn+1) =∗ φMη(φMα(pn+1)).

In addition, since φMη is an exact, strong residue function and φMα(pn+1) ∈
dom(φMη), we know that

φMα(pn+1) ≥ φMη(φMα(pn+1)) =∗ r̄.

Therefore, as φMα(pn+1) ∈ Mβn+1 extends r̄, which is a residue of φMα(rR)
to Mβn+1 , we conclude that φMα(pn+1) is compatible with φMα(rR) in
P∗ ∩ Mα . ∎(Subclaim 4.2)

Using Subclaim 4.2, we may fix some condition qn+1 in P∗ ∩ Mα which is
above both φMα(pn+1) and φMα(rR). We finally set gn+1 ∶= hR ↾ Mα , noting that
(qn+1 , gn+1) ∈ Mα .

We next verify that items (1)–(5) of Claim 4.1 hold for n + 1. We have that
(pn+1 , fn+1) ≥ (pn , fn) by (i) of the reflection, more precisely, since

(pn+1 , fn+1) = (r∗L , h∗L) ≥ (r∗ , h∗) ≥ (pn , fn).

In addition, because

qn+1 ≥ φMα(rR) ≥ φMα(r) ≥ qn ,

we have that qn+1 ≥ qn . Moreover, gn+1 extends gn as a function: gn+1 = hR ↾ Mα , gn ∈
Mα , and (rR , hR) ≥ (r, h) ≥ (qn , gn). Thus, (qn+1 , gn+1) extends (qn , gn). (1) of Claim
4.1 holds because we found the witnesses in the model Kβn+1 . For (2), μ∗ ∈ Kβn+1 ∩ α =
βn+1 ⊆ ν, and since μ∗ > βn , we have that (pn+1 , fn+1) ⊩ μ∗ ∈ Ċ ∩ (βn , ν). For (3), we
have (pn+1 , fn+1) ∈ D(φMα , ρ) by (iii) and the definition of #ρ

φMη (see Definition 3.7).
For (4), we have that qn+1 ≥ φMα(pn+1) by choice of qn+1.

It remains therefore to check that item (5) of Claim 4.1 holds. Since qn+1 ≥P∗∩Mα

φMα(pn+1), we know that pn+1 and qn+1 are compatible in P∗; let p∗ ∈ P∗ be any
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condition extending both. We claim that

p∗ ⊩P∗ f̌n+1 ∪ ǧn+1 ∈ Ṡρ .

Suppose by induction on δ < ρ that ⟨δ, ν⟩ ∈ dom( fn+1) ∩ dom(gn+1) and that p∗
forces that the union of f̌n+1 ↾ δ and ǧn+1 ↾ δ is a condition in Ṡδ . Again using the
fixed well-order ⊲ of H(κ+), we may let ψ be the ⊲-least bijection from κ onto ρ,
so that ψ is a member of Kβn+1 as well as every model on the Rρ-suitable sequence
M⃗. Since ⟨δ, ν⟩ ∈ dom(gn+1) and gn+1 ∈ Mα , δ ∈ Mα ∩ ρ = ψ[α]. Furthermore, since
⟨δ, ν⟩ ∈ dom( fn+1) and fn+1 = h∗L ∈ Kβn+1 , we have that δ ∈ Kβn+1 . Thus,

δ ∈ ψ[α] ∩ Kβn+1 = ψ[Kβn+1 ∩ α] = ψ[βn+1] ⊆ Mβn+1 .

Therefore (recalling that gn+1 = hR ↾ Mα),

⟨δ, ν⟩ ∈ dom(hR) ∩ Mβn+1 = xR = dom(h∗R) ∩ Mη .

Continuing, fix a pair

⟨θ , τ⟩ ∈ fn+1(δ, ν) × gn+1(δ, ν),

with θ ≠ τ. We need to show that θ and τ are forced to be incompatible nodes in
the tree Ṫδ by the condition (p∗ , ( fn+1 ∪ gn+1) ↾ δ). Recall, going forward, that (r̄, h̄)
equals both (rR , hR) ↾ Mβn+1 and (pn+1 , fn+1) ↾ Mη ; in particular, fn+1 and hR ↾ Mα =
gn+1 both extend h̄. Continuing, if τ is below level βn+1, then τ ∈ h̄(δ, ν) ⊆ fn+1(δ, ν)
and we are done. Furthermore, if θ is below level η, then θ ∈ h̄(δ, ν) ⊆ gn+1(δ, ν) and
we are done in this case too. Thus, we assume that θ is at or above level η and that
τ is at or above level βn+1. With respect to the fixed enumerations, let k and m be
chosen so that θ is the kth element of fn+1(δ, ν)/(η × ω1) and τ is the mth element
of hR(δ, ν)/(βn+1 × ω1). Then, because the function Σ is the same for both pairs of
splitting conditions, we know that

(pn+1 , fn+1 ↾ δ) ⊩Rδ Σ(δ, ν, k, m)(L) <Ṫδ
θ

and that

(rR , hR ↾ δ) ⊩Rδ Σ(δ, ν, k, m)(R) <Ṫδ
τ.

However, τ ∈ gn+1(δ, ν) = (hR ↾ Mα)(δ, ν), and therefore τ is below level α of the tree
Ṫδ . Therefore, by Lemma 4.3, we have that

(φMα(rR), (hR ↾ Mα) ↾ δ) ⊩Rδ Σ(δ, ν, k, m)(R) <Ṫδ
τ.

Since qn+1 ≥ φMα(rR) and gn+1 = hR ↾ Mα , we conclude that

(qn+1 , gn+1 ↾ δ) ⊩Rδ Σ(δ, ν, k, m)(R) <Ṫδ
τ.

Finally, since (p∗ , ( fn+1 ∪ gn+1) ↾ δ) is above both (pn+1 , fn+1 ↾ δ) and
(qn+1 , gn+1 ↾ δ), it follows that

(p∗ , ( fn+1 ∪ gn+1) ↾ δ) ⊩ Σ(δ, ν, k, m)(R) <Ṫδ
τ ∧ Σ(δ, ν, k, m)(L) <Ṫδ

θ .
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Since the distinct nodes Σ(δ, ν, k, m)(L) and Σ(δ, ν, k, m)(R) are on the same level,
(p∗ , ( fn+1 ∪ gn+1) ↾ δ) therefore forces that θ and τ are incompatible nodes in the
tree Ṫδ .

This completes the proof that fn+1 and gn+1 are strongly compatible over pn+1 and
qn+1. Therefore, the proof of Claim 4.1 is now complete. ∎(Claim 4.1)

As remarked earlier, this completes the proof of Proposition 4.4.

Remark 4.5 As we have noted before, if P∗ is just equal to the collapse poset P, then
the results from Section 3 which are needed for this section hold only assuming that κ
is weakly compact (since then F = FWC ; see Definition 2.8). We then see that if P∗ is
just P, then the arguments in this section can also be carried out only using a weakly
compact.

As a corollary of Proposition 4.4, we can now prove Theorem 1.2.

Proof Recall that the Laver–Shelah model V[G ∗ F] is obtained by starting from a
ground model V with a weakly compact cardinalκ, and forcing with the Levy collapse
P followed by a countable support iteration S = ⟨Sτ , S(τ) ∣ τ < κ+⟩ of specializing
posets S(τ) = S(Ṫτ) of Aronszajn trees onκ, chosen by a bookkeeping function. Since
S satisfies the κ-c.c, every sequence of stationary sets ⟨Sα ∣ α < κ⟩ as in the statement
of Theorem 1.2 belongs to an intermediate extension V[G ∗ Fτ], where Fτ ∶= F ∩ Sτ ,
for some τ < κ+. Now, work in V, and take a (P ∗ Ṡτ)-name ⟨Ṡα ∣ α < κ⟩ for the
sequence of stationary sets. Let M⃗ be suitable with respect to these parameters. By the
weak compactness of κ, let β ∈ dom(M⃗) be such that ⟨Ṡα ∩ Vβ ∣ α < β⟩ are names for
stationary subsets of β in the restricted poset (P ∗ Ṡτ) ∩ Mβ . Recalling Remark 4.5, we
see that Proposition 4.4 can be applied to P, and in this case, F = FWC . We conclude
that each Sα ∩ β remains stationary in the fullP ∗ Ṡτ generic extension V[G ∗ Fτ] and
hence in V[G ∗ F].

To see that CSR(ω2) fails in the Laver–Shelah model, observe that in the ground
model, there exist stationary sets S ⊆ κ ∩ cof(ω) and T ⊆ κ ∩ cof(ω1) so that S does
not reflect at any point in T (see Proposition 1.1 of [22]). The stationarity of S and T
are preserved by the κ-c.c. forcing of Laver and Shelah, and since ω1 is also preserved,
we have that S and T witness the failure of CSR(ω2) in the final model. ∎

5 F-completely proper posets

In this section, we will specify what P-names Ċ for posets are such that P ∗ Ċ is F-
strongly proper, and we will draw some conclusions from this. Since P ∗ Ċ will be
playing the role of P∗ in Definition 2.8, and since P ∗ Ċ is not merely the collapse, we
are in the case when κ is ineffable and F = Fin . However, we only use the ineffability
of κ in the following section when applying Proposition 3.12 through its use in
Proposition 4.4. Recall Definition 2.8 for the definition of F, and also recall that P
denotes the Levy collapse poset Col(ω1 , < κ), where κ is either ineffable or weakly
compact. Two main ideas come into play in this section. The first is an axiomatization
of various properties of the iterated club-adding ĊMagidor from [31], which will allow
us to place upper bounds on various “local” filters added by the Levy collapse. We
then couple this axiomatization with a generalization of a result of Abraham [1]
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that, in current language, if Q̇ is an Add(ω, ω1)-name for an ω1-closed poset, then
Add(ω, ω1) ∗ Q̇ is strongly proper (see [15] for a proof of this fact as stated here). The
strong properness results from using so-called “guiding reals.”

We recall that in [31], to show that an iteration ĊMagidor of length < κ+ adding the
desired clubs is κ-distributive, Magidor argued, in part, as follows: let j ∶ M �→ N
be a weakly compact embedding, where M has the relevant parameters. Let G∗ be
N-generic over j(P) and G ∶= G∗ ∩ P, so that in N[G∗], we may construct an M[G]-
generic filter H for CMagidor . Moreover, j[H] has a least upper bound in j(CMagidor),
namely, the function obtained by placing κ on top of each coordinate in the domain of
j[H]; by the closure of the quotient (which implies the preservation of the stationary
sets appearing along the way in the definition of CMagidor), this is indeed a condition.

The property of ĊMagidor which we will axiomatize is a reflection of the above to
an F-positive set of α < κ. Roughly, we want to say that for many α, if you “cut off ”
P ∗ Ċ at α, then many generics added by the tail of the collapse for “Ċ cut off at α”
have upper bounds in the full poset Ċ. More precisely, given a P-name Ċ in H(κ+)
for a poset which is ω1-closed with sups and given a Ċ-suitable model (see Definition
2.7) M, say with M ∩ κ = α < κ, we consider the poset πM(Ċ), where πM denotes the
transitive collapse of M to M̄. An easy absoluteness argument shows that πM(Ċ) is
a name in πM(P) = P ↾ α. Appealing to the closure of M̄ under < α-sequences, and
hence ω-sequences, we see that πM(Ċ) is forced by P ↾ α to be ω1-closed with sups.
The desired condition on P-names Ċ can now be stated a bit more precisely: we will
demand that after forcing with P, say to add the generic G, for many α as above and
many V[GP↾α]-generics H for πM(Ċ)[GP↾α] in V[G], π−1

M[G][H] has an upper bound
in Ċ[G]. Note that we are implicitly appealing to the properness ofPwith respect to M
to see that πM ∶ M �→ M̄ lifts to πM[G] ∶ M[G] �→ M̄[GP↾α]; we discuss this more
later.

The first step to making this work is to isolate exactly which filters we will use; for
reasons related to building strong, exact residue functions later, we will not consider
all filters added by the tail of the collapse for πM(Ċ). The definition is meant to capture
the behavior of filters generated by using the generic surjections to guide choices of
conditions, similar to how Abraham used guiding reals in [1].

5.1 Residue functions from local filters

Definition 5.1 Let α < κ be inaccessible, and let Q̇ be a (P ↾ α)-name for a poset of
size α which is ω1-closed with sups. Since P ↾ α is α-c.c., there exists a list ⟨γ̇ i ∶ i < α⟩
of (P ↾ α)-names, which is forced to enumerate all conditions in Q̇. We say that a
sequence ṡ = ⟨ḋν ∶ ν < ω1⟩ of P-names (not (P ↾ α)-names) for conditions in Q̇ is
guided by the collapse at α for Q̇ if the following conditions are satisfied:

(1) ⊩P ⟨ḋν ∶ ν < ω1⟩ is ≤Q̇-increasing, ḋ0 is the weakest condition in Q̇, and if ν is
limit, then ḋν is a sup of ⟨ḋμ ∶ μ < ν⟩.

(2) If p ∈ P and dom(p(α)) is an ordinal ν < ω1, then there exists p′ ≥ p with p′ ↾
[α,κ) = p ↾ [α,κ) and a sequence ⟨β(μ) ∶ μ ≤ ν⟩ of ordinals in V so that p′ ⊩
ḋμ =∗ γ̇β(μ) for all μ ≤ ν. In this case, we will say thatp′ determines an initial
segment of ṡ.
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(3) If p′ as in (2) determines an initial segment of ṡ and if γ̇ is a (P ↾ α)-name for a
Q̇-extension of γ̇β(ν), then there exists p∗ ≥ p′ so that p∗ ⊩ ḋν+1 ≥ γ̇.

Lemma 5.1 Suppose that ṡ ∶= ⟨ḋν ∶ ν < ω1⟩ is guided by the collapse at α. Let H(ṡ) be
the P-name for the filter on Q̇ generated by ṡ. Then P forces that H(ṡ) is V[Ġ ↾ α]-
generic over Q̇.
Proof Fix a condition p ∈ P and a P-name Ḋ for a dense subset of Q̇ which is a
member of V[Ġ ↾ α]. We find an extension of p which forces that Ḋ ∩ H(ṡ) ≠ ∅.
By extending p and applying (2) of Definition 5.1 if necessary, we may assume the
following:
(1) there is a (P ↾ α)-name Ḋ0 for a dense subset of Q̇ so that p ⊩ Ḋ = Ḋ0; and
(2) dom(p(α)) is an ordinal ν, and there is a sequence ⟨β(μ) ∶ μ ≤ ν⟩ of ordinals in

V so that p ⊩ ḋμ =∗ γ̇β(μ) for all μ ≤ ν.
Let γ̇ be a (P ↾ α)-name for a condition in Ḋ0 forced to extend γ̇β(ν). By item (3) of
Definition 5.1, we may find an extension p∗ of p so that p∗ ⊩ ḋν+1 ≥ γ̇. Then p∗ ⊩ γ̇ ∈
Ḋ ∩ H(ṡ), finishing the proof. ∎
Definition 5.2 Let Ḣ be a P-name for a filter on Q̇. We say that Ḣ is guided by the
collapse at α if there is a sequence ṡ = ⟨ḋν ∶ ν < ω1⟩ of conditions guided by the collapse
at α so that Ḣ = H(ṡ).

Suppose that M is a suitable model. Let α ∶= M ∩ κ, and let πM ∶ M → M̄ be the
transitive collapse map of M. Let G ⊆ P be generic over V, and set Gα = G ∩ (P ↾ α).
We have thatP ↾ α = πM(P) ∈ M̄, and Gα ⊂ πM(P) is generic for M̄. Moreover, setting
M[G] = {ẋ[G] ∣ ẋ ∈ M is a P-name}, we have that M̄[Gα] is the transitive collapse of
M[G], with the transitive collapse map πM[G] being the natural extension of πM , given
by πM[G](ẋ[G]) = πM(ẋ)[Gα].
Lemma 5.2 Suppose that M is a (P ∗ Ċ)-suitable model, where Ċ is a P-name for a
poset on κ which is ω1-closed with sups. Let α ∶= M ∩ κ and πM be the transitive collapse
map of M. Suppose that Ḣ is a P-name for a subset of πM(Ċ) which is guided by the
collapse at α for πM(Ċ), and further suppose that there is a P-name ċ for a condition
in Ċ which is forced to be an upper bound for π−1

M[Ġ][Ḣ]. Then P forces that ċ is an
(M[Ġ], Ċ)-completely generic condition.
Proof Fix G. To see that c = ċ[G] is (M[G],C)-completely generic, fix a dense, open
E ⊆ C with E ∈ M[G]. We show that c extends some condition in E.

By the elementarity of πM[G] ∶ M[G] → M̄[Gα], we know that πM[G](E) is dense
in πM[G](C) = πM(Ċ)[Gα]. Since H ∶= Ḣ[G] is a V[Gα]-generic filter, by Lemma 5.1,
H ∩ πM[G](E) ≠ ∅, and thus π−1

M[G][H] ∩ E ≠ ∅. ∎
There are two particularly useful properties of this class of names for generic filters.

On the one hand, filters in this class will allow us to generate strong, exact residue
functions by isolating the information which a given conditions determines about the
filters. On the other hand, the class of such filters for one poset, such as a two-step
iteration, often projects to the class of such filters for another poset, such as the first
step in a two-step iteration. This property will be particularly useful in Section 6 when
we want to show, by induction, that our club-adding poset is well behaved.
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It is straightforward to verify that the notion ofP-names of filters, which are guided
by the collapse at a given cardinal, factor well in iterations.

Lemma 5.3 Suppose that α < κ is inaccessible and that Q̇0 ∗ Q̇1 is a (P ↾ α)-name for
a two-step poset of size α which is ω1-closed with sups. Let ⟨ḋν ∶ ν < ω1⟩ be a sequence
of P-names which is guided by the collapse at α for Q̇0 ∗ Q̇1. Then the sequence ⟨ḋν(0) ∶
ν < ω1⟩ of P-names of conditions in Q̇0 is guided by the collapse at α for Q̇0.

The following proposition shows how to generate exact, strong residue functions
from the filters discussed above.

Proposition 5.4 Suppose that Ċ is a P-name in H(κ+) for a poset of size κ which is
ω1-closed with sups, and set P∗ ∶= P ∗ Ċ. Let M be a (P ∗ Ċ)-suitable model, say with
α ∶= M ∩ κ < κ, and let πM denote the transitive collapse of M. Furthermore, let ṡ = ⟨ḋν ∶
ν < ω1⟩ be a sequence of P-names guided by the collapse at α for πM(Ċ). In addition,
suppose that there is a P-name ḋ∗ for a condition in Ċ which is forced to be an upper
bound for the sequence π−1

M[Ġ][ṡ].
Define p∗(M) to be the condition

p∗(M) ∶= (0P , ḋ∗),

and let

D(M) ∶= {(p, ḋ) ≥ p∗(M) ∶ p determines an initial segment of ṡ} .

Finally, define φM on D(M) by

φM(p, ḋ) = (p ↾ α, π−1
M (γ̇β)),

where β < α is the least so that p ⊩ ḋdom(p(α)) =∗ γ̇β (β exists by definition of
“p determines an initial segment of ṡ”). Then:
(a) D(M) is a dense, countably =∗-closed subset of P∗/p∗(M);
(b) p∗(M) is compatible with every condition in P∗ ∩ M; and
(c) φM is an exact, strong residue function from D(M) to M ∩ P∗.

Proof Let ⟨γ̇ i ∶ i < α⟩ be a sequence of (P ↾ α)-names which is forced to enumerate
all conditions in πM(Ċ), and with ḋ∗, satisfies Definition 5.1, witnessing that ṡ = ⟨ḋν ∶
ν < ω1⟩ is guided by the collapse at α for πM(Ċ).

We first prove item (a). Given a condition (p, ḋ) in P∗/p∗(M), by item (2) of
Definition 5.1, we may find an extension p′ of p so that p determines an initial segment
of ṡ. Then (p′ , ḋ) ≥ (p, ḋ) is in D(M), proving density. Similarly, D(M) is =∗-closed:
if (p1 , ḋ1) ∈ D(M) and (p1 , ḋ1) =∗ (p2 , ḋ2), then p2 determines an initial segment
of ṡ, because p2 = p1 (recall these are collapse conditions) and because (p2 , ḋ2) ≥
(p1 , ḋ1) ≥ (0P , ḋ∗).

To see that D(M) is closed under sups of increasing ω-sequences, suppose that
⟨(pn , ċn) ∶ n ∈ ω⟩ is an increasing sequence of conditions in D(M), and let (p∗ , ċ∗)
be a sup. Set νn ∶= dom(pn(α)) and ν∗ ∶= dom(p∗(α)). If ν∗ = νm for some m ∈ ω,
then because pm determines ṡ up to νm , we have that p∗ determines ṡ up to ν∗ = νm .
Thus, p∗ determines an initial segment of ṡ in this case. So consider the case that ν∗ >
νm for all m; in particular, ν∗ is a limit ordinal. Since for all n ∈ ω, pn determines an
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initial segment of ṡ and p∗ ≥ pn , we may find a sequence ⟨β(μ) ∶ μ < ν∗⟩ in V so that
p∗ ⊩ ḋμ =∗ γ̇β(μ) for all μ < ν∗. Now, let β(ν∗) be chosen so that γ̇β(ν∗) is forced to be
a sup of ⟨γ̇β(μ) ∶ μ < ν⟩, if this sequence is increasing, and equals the trivial condition
otherwise. Since ν∗ is a limit, ⊩P ḋν∗ is a sup of ⟨ḋμ ∶ μ < ν∗⟩. However, p∗ forces that
ḋμ =∗ γ̇β(μ) for all μ < ν∗, and therefore p∗ forces that ḋν∗ =∗ γ̇β(ν∗). Thus, in either
case, p∗ determines an initial segment of ṡ, which finishes the proof of (a).

Now, we verify item (b). Fix a condition (u, ċ0) in P∗ ∩ M, and we will show
that it is compatible with p∗(M). We observe that, trivially, u determines an initial
segment of ṡ since dom(u(α)) = 0 and ⊩P ḋ0 is the trivial condition in πM(Ċ), by
(1) of Definition 5.1. By (3) of the same definition, we may find an extension p ≥ u
s.t. p ⊩ ḋ1 ≥ πM(ċ0). Then (p, ḋ∗) extends (u, ċ0) since p forces that ḋ∗ is an upper
bound for the sequence π−1

M [ṡ] and that π−1
M (ḋ1) ≥ ċ0.

It therefore remains to verify that φM is an exact, strong residue function. Condi-
tion (1) of Definition 2.5 holds since, by (a), D(M) is dense and countably =∗-closed
in P∗/p∗(M). For the projection condition of Definition 2.5, fix (p, ċ) ∈ D(M), and
let γ̇ be the (P ↾ α)-name so that φM(p, ċ) = (p ↾ α, π−1

M (γ̇)). Since (p, ċ) ∈ D(M),
p determines an initial segment of ṡ, and therefore p ⊩ ḋdom(p(α)) =∗ γ̇. Since p also
forces that ċ ≥ ḋ∗, p forces that ċ is an upper bound for π−1

M [ṡ] and therefore that ċ
extends π−1

M (ḋdom(p(α))) =∗ π−1
M (γ̇). Therefore, (p, ċ) ≥ (p ↾ α, π−1

M (γ̇)) = φM(p, ċ).
It is straightforward to verify that φM is order preserving, i.e., condition (3) of

Definition 2.5. So we prove that φM has the strong residue property (condition (4)
of Definition 2.5). Thus, fix (p, ċ) ∈ D(M), where we let ν ∶= dom(p(α)) and γ̇ so
that φM(p, ċ) = (p ↾ α, π−1

M (γ̇)). Fix a condition (u, δ̇) in P∗ ∩ M with (u, δ̇) ≥ (p ↾
α, π−1

M (γ̇)), and we will verify that (u, δ̇) is compatible with (p, ċ). Let p′ ∶= u ∪ p,
a condition in P, and observe that p′ still determines an initial segment of ṡ and
ν = dom(p′(α)). By item (3) of Definition 5.1, we may find some p∗ ≥ p′ so that
p∗ ⊩ ḋν+1 ≥ πM(δ̇). Then (p∗ , ċ) extends both (p, ċ) and (u, δ̇).

We now check that φM is ω-continuous, which will finish the proof of (c) and
thereby the proof of the proposition. Fix an increasing sequence of conditions
⟨(pn , ċn) ∶ n ∈ ω⟩ in D(M), and let (p∗ , ċ∗) be a supremum of this sequence. Then
p∗ ∶= ⋃n pn , and ċ∗ is forced by p∗ to be a sup of ⟨ċn ∶ n ∈ ω⟩. By item (a) of the propo-
sition, (p∗ , ċ∗) ∈ D(M). We need to show that φM(p∗ , ċ∗) is a sup of ⟨φM(pn , ċn) ∶
n ∈ ω⟩. For each n < ω, set νn ∶= dom(pn(α)), and also set ν∗ ∶= dom(p∗(α)). In
addition, for each n, fix the least ordinal β(νn) with pn ⊩ ḋνn =∗ γ̇β(νn), so that
φM(pn , ċn) = (pn ↾ α, π−1

M (γ̇β(νn))). Finally, let β(ν∗) be least so that φM(p∗ , ċ∗) =
(p∗ ↾ α, π−1

M (γ̇β(ν∗))).
We claim that p∗ ⊩ γ̇β(ν∗) is a sup of ⟨γ̇β(νn) ∶ n ∈ ω⟩. Note that proving this claim

suffices: indeed, then p∗ ↾ α forces that γ̇β(ν∗) is a sup of ⟨γ̇β(νn) ∶ n ∈ ω⟩, and as a
result φM(p∗ , ċ∗) = (p∗ ↾ α, π−1

M (γ̇β(ν∗))) is a sup of ⟨φM(pn , ċn) ∶ n ∈ ω⟩.
To prove the claim, we have two cases on ν∗. Since ν∗ = supm νm , either ν∗ > νm for

all m, or ν∗ = νm for almost all m. In the first case, ν∗ is a limit, and so P forces that ḋν∗

is a sup of ⟨ḋν ∶ ν < ν∗⟩. Since pn ⊩ ḋνn =∗ γ̇β(νn) for each n, p∗ forces that ⟨γ̇β(νn) ∶
n ∈ ω⟩ is cofinal in ⟨ḋν ∶ ν < ν∗⟩. Therefore, p∗ forces that these two sequences have
the same sups. Consequently, p∗ forces that γ̇β(ν∗) =∗ ḋν∗ is a sup of ⟨γ̇β(νn) ∶ n ∈ ω⟩.
For the second case, ν∗ = νm for all m above some k. Then P forces that ⟨ḋνn ∶ n ∈ ω⟩
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is eventually equal to ḋν∗ . Because pn ⊩ ḋνn =∗ γ̇β(νn) for all n and p∗ ≥ pn , we have
that p∗ ⊩ ⟨γ̇β(νn) ∶ n ∈ ω⟩ is eventually equal to ḋν∗ . Finally, p∗ ⊩ γ̇β(ν∗) =∗ ḋν∗ , and
therefore p∗ forces that ⟨γ̇β(νn) ∶ n ∈ ω⟩ is eventually =∗-equal to γ̇β(ν∗), and therefore
that γ̇β(ν∗) is a sup. This finishes the proof of the claim and thereby the proof that φM

is ω-continuous. ∎

The final result in this subsection shows that we can create filters which are
guided by the collapse at α by using the generic surjection from ω1 onto α to guide
extensions in the second coordinate. This combines ideas of collapse absorption with,
as previously mentioned, Abraham’s use of guiding reals.

Lemma 5.5 Suppose that Q̇ is a (P ↾ α)-name for a poset of size α, which is ω1-closed
with sups, and let ⟨γ̇ i ∶ i < α⟩ be forced to enumerate all conditions in Q̇. Let ḟα be the
P-name for the standard surjection added from ω1 onto α.

Suppose that ṡ = ⟨ḋν ∶ ν < ω1⟩ is a sequence of P-names for conditions in Q̇ forced by
P to satisfy the following properties:

(1) ṡ is ≤Q̇-increasing, ḋ0 names the trivial condition, and if ν is a limit, then ḋν is a
≤Q̇-sup of ⟨ḋμ ∶ μ < ν⟩;

(2) if ν < ω1 and γ̇ ḟα(ν) extends ḋν in Q̇, then ḋν+1 extends γ̇ ḟα(ν); and
(3) for each ν < ω1, the sequence ⟨ḋμ ∶ μ ≤ ν⟩ is definable in V[Ġ ↾ α] from ḟα ↾ ν.

Then ṡ is guided by the collapse at α for Q̇.
In particular, there exists a P-name for a sequence which is guided by the collapse at

α for Q̇.

Proof We will verify that items (1)–(3) of Definition 5.1 hold. Item (1) of the
definition is immediate from assumption (1) of the lemma.

For item (2) of Definition 5.1, suppose that p ∈ P is a condition where dom(p(α))
is an ordinal ν < ω1. Let G be V-generic over P containing p, and let Ḡ ∶= G ∩ (P ↾ α).
For each μ ≤ ν, let dμ ∶= ḋμ[G], and let β(μ) be an ordinal < α so that dμ = γ̇β(μ)[Ḡ].
By assumption (3) of the lemma, the sequence ⟨dμ ∶ μ ≤ ν⟩ is definable in V[Ḡ]
from fα ↾ ν = p(α). Therefore, there exists a condition p̄ ≥ p ↾ α with p̄ ∈ Ḡ so that p̄
forces that ⟨γ̇β(μ) ∶ μ ≤ ν⟩ satisfies the definition with respect to p(α). Then p′ ∶= p ∪ p̄
witnesses item (2) of Definition 5.1, since p′ forces that ⟨γ̇β(μ) ∶ μ ≤ ν⟩ and ⟨ḋμ ∶ μ ≤ ν⟩
both satisfy the same definition in V[ ˙̄G] with the parameter ḟα ↾ ν = p(α).

Turning to item (3) of Definition 5.1, let p′ be a condition as in the previous
paragraph. Fix a (P ↾ α)-name γ̇ for a Q̇-extension of γ̇β(ν), and let δ < α and p̄∗ ≥ p′ ↾
α so that p̄∗ ⊩P↾α γ̇ = γ̇δ . Define p∗ to be the minimal extension of p̄∗ ∪ p′ ↾ [α,κ) so
that p∗ ⊩ ḟα(ν) = δ. Then p∗ ⊩ γ̇ ḟα(ν) ≥ γ̇β(ν) =∗ ḋν , so there exists an extension p∗∗

of p∗ so that p∗∗ forces ḋν+1 ≥ γ̇ ḟα(μ) = γ̇.
For the “in particular” claim of the lemma, define a sequence ṡ by recursion so

that it satisfies (1) and so that if ν < ω1, then ḋν+1 is forced to be equal to γ ḟα(ν) if this
extends ḋν , and otherwise equals ḋν . Then (2) and (3) are also satisfied, so ṡ is guided
by the collapse at α for Q̇. ∎
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5.2 F-complete properness

We are now ready to isolate a sufficient condition on names Ċ so that P ∗ Ċ is
F-strongly proper.

Definition 5.3 Let Ċ be a P-name in H(κ+) for a poset forced to be ω1-closed with
sups. We say that Ċ is F-Completely Proper if for any (P ∗ Ċ)-suitable sequence M⃗,
there is some A ⊆ dom(M⃗) with A ∈ I so that for each α ∈ dom(M⃗)/A and each P-
name Ḣ for filter over πMα(Ċ) which is guided by the collapse at α, there exists
a P-name ċḢ for a condition in Ċ which is forced to be a least upper bound for
π−1

Mα[ĠP]
[Ḣ].

We recall that a poset U is λ-distributive if forcing with U adds no sequences of
ordinals of length less than λ. A sufficient condition to guarantee this is that the
intersection of fewer than λ-many dense, open subsets of U is dense, open. They are
equivalent if U is separative.

Lemma 5.6 Suppose that Ċ is F-completely proper. Then P forces that the intersection
of fewer than κ-many dense, open subsets of Ċ is dense, open. Hence, Ċ is forced to be
κ-distributive.

Proof Let D⃗ = ⟨Ḋ i ∶ i < ω1⟩ be a sequence of P-names for dense, open subsets of
Ċ. We show that the intersection is forced to be nonempty. Fix a sequence M⃗ which
is suitable with respect to P ∗ Ċ and D⃗ so that dom(M⃗) satisfies the conclusion of
Definition 5.3. Let α ∈ dom(M⃗). By Lemma 5.5, there exists a P-name Ḣ for a filter
which is guided by the collapse at α for πMα(Ċ). Since dom(M⃗) satisfies Definition
5.3, we may find a P-name ḋ for a condition which is forced to be an upper bound in
Ċ for π−1

Mα[ĠP]
[Ḣ]. Then, by Lemma 5.2, ḋ is forced to be an (Mα[Ġ], Ċ)-completely

generic condition. However, Ḋ i ∈ Mα for each i < ω1 and is dense, open. Therefore, it
is forced that ḋ ∈ ⋂i∈ω1 Ḋ i . ∎

By combining Lemmas 2.12 and 5.5 and Proposition 5.4, we conclude with the
following key result.

Proposition 5.7 Suppose that Ċ is F-completely proper. Then P ∗ Ċ is F-strongly
proper.

6 Properties of the club-adding poset

In this section, we have two main tasks. In the first subsection, we will prove that our
intended club-adding iteration, as well as useful variants thereof, are F-completely
proper, and in the second subsection, we will prove that our intended club-adding
iteration does not add branches through various Aronszajn trees. Each of these results
will be used as part of a larger inductive argument in the final section in which we
prove Theorem 1.1. Again, we comment that, in this case, κ is ineffable, but we are
only using the ineffability of κ when we apply Proposition 4.4, since this requires
Proposition 3.12.
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6.1 Adding clubs is F-completely proper

In order to anticipate arguments in the next subsection, where we show that appropri-
ate F-completely proper posets do not add branches through certain Aronszajn trees,
we will need to not only show that our club-adding poset is F-completely proper, but
also show that variants of it have this property. These variants are created by iterating
the process of taking an initial segment of the iteration followed by products of finitely
many copies of the tail.

The following iteration follows Magidor’s work [31] on adding clubs through
reflection points of stationary subsets of a weakly compact cardinal κ, which has been
collapsed to become ω2.

Let ρ < κ+, and suppose that we have defined aP-name for an iteration ⟨Ċσ , Ċ(η) ∶
σ ≤ ρ, η < ρ⟩ and a (P ∗ Ċρ)-name ⟨Ṡσ , Ṡ(η) ∶ σ ≤ ρ, η < ρ⟩ for an iteration so that for
all σ < ρ the following assumptions are satisfied:

(1) P forces that the iteration ⟨Ċσ , Ċ(η) ∶ σ ≤ ρ, η < ρ⟩ has < κ-support, and P ∗ Ċρ
forces that ⟨Ṡσ , Ṡ(η) ∶ σ ≤ ρ, η < ρ⟩ has countable support. Furthermore, Ṡσ is a
(P ∗ Ċσ)-name

(2) Ċ(σ) is a (P ∗ Ċσ)-name for CU(Ṡσ , Ṡσ) (see Definition 1.3), where Ṡσ is a (P ∗
Ċσ ∗ Ṡσ)-name for a stationary subset of κ ∩ cof(ω) and Ċσ+1 = Ċσ ∗ Ċ(σ).

(3) Ṡ(σ) is a (P ∗ Ċσ+1 ∗ Ṡσ)-name for S(Ṫσ) (see Definition 1.4), where Ṫσ is a (P ∗
Ċσ+1 ∗ Ṡσ)-name for an Aronszajn tree on κ.

(4) Ċσ isF-completely proper (and henceP ∗ Ċσ isF-strongly proper, by Proposition
5.7), and P ∗ Ċσ forces that Ṡσ is a countable support iteration specializing
Aronszajn trees, as defined in Section 3.

Working in an arbitrary generic extension by P, we now define the variations of Ċρ

mentioned above; we call these Doubling Tail Products. These will be the posetsCρ(δ⃗),
where δ⃗ = ⟨δ0 , δ1 , . . . , δn−1⟩ ∈ [ρ]n is a strictly decreasing sequence of ordinals. We use
[ρ]<ω

dec to denote the set of all finite, strictly decreasing tuples from ρ; [ρ]n
dec is defined

similarly.
We first introduce an auxiliary name for a poset Ċδ∗ ,ρ(δ⃗), where δ⃗ is as above and

δ∗ ≤ δn−1 is an additional ordinal. This is done by recursion on n = ∣δ⃗∣ as follows:

• For n = 0 (i.e., δ⃗ = ∅), we define Ċδ∗ ,ρ(∅) = Ċδ∗ ,ρ to be the tail segment of the
iteration Cρ , starting from stage δ∗.

• For n ≥ 1, δ⃗ ∈ [ρ]n , and δ∗ ≤ δn−1, the poset Cδ∗ ,ρ(δ⃗) is given by

Ċδ∗ ,ρ(δ⃗) = Ċδ∗ ,δn−1 ∗ (Ċδn−1 ,ρ(δ⃗ ↾ n − 1))2 ,

where Ċδ∗ ,δn−1 is the segment of the iterationCρ starting from (and including) stage
δ∗ to stage δn−1, and δ⃗ ↾ (n − 1) = ⟨δ0 , . . . , δn−2⟩.

We can now define Cρ(δ⃗).

Definition 6.1 For δ⃗ ∈ [ρ]<ω
dec, define Cρ(δ⃗) = C0,ρ(δ⃗) (i.e., as Cδ∗ ,ρ(δ⃗) with

δ∗ = 0).
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For example, if δ⃗ = ⟨δ0⟩ is a singleton, then Cρ(⟨δ0⟩) = Cδ0 ∗ Ċ2
δ0 ,ρ . Similarly, if

δ⃗ = ⟨δ0 , δ1⟩ has two elements δ0 > δ1, then

Cρ(⟨δ0 , δ1⟩) = Cδ1 ∗ Ċ2
δ1 ,ρ(⟨δ0⟩) = Cδ1 ∗ (Ċδ1 ,δ0 ∗ Ċ2

δ0 ,ρ)
2 .

We refer to posets Cρ(δ⃗) as the doubling tail products of Cρ . We now return to
working in V, in particular with the statement of the next item.

Proposition 6.1 (Given assumptions (1)–(4) stated at the beginning of the subsection)
For each ρ < κ+ and δ⃗ = ⟨δ0 , . . . , δn−1⟩ ∈ [ρ]<ω

dec, the doubling tail product Ċρ(δ⃗) is
F-completely proper. In particular, Ċρ is F-completely proper.

We will explain the necessity of proving Proposition 6.1 for the doubling tail
products of Ċρ in the final section of the paper.

Proof We will first work with Ċρ , rather than with the doubling tail products, in
order to establish that a certain statement (∗) (see below) holds. We will then show
that this statement (∗) can be used to prove the desired result for the doubling tail
products. We use Rσ , for σ ≤ ρ, to denote P ∗ Ċσ ∗ Ṡσ .

To begin, we fix an Rρ-suitable sequence M⃗; by removing a set in I, we may assume
that M⃗ is in pre-splitting configuration up to ρ. By removing a further I-null set, we
may assume that M⃗ satisfies the conclusion of Proposition 4.4.

Let M be a κ-model so that M contains the relevant parameters, including M⃗. Since
dom(M⃗) is in F+, we may apply Proposition 1.4 to find an M-normal ultrafilter U so
that, letting j ∶ M �→ N be the corresponding ultrapower map, κ ∈ j(dom(M⃗)). Let
Mκ be the κth model on the sequence j(M⃗).

Fix a V-generic filter G∗ over j(P), and let G ∶= G∗ ∩ P. For notational simplicity,
we continue using j to denote the lifted map j ∶ M[G] �→ N[G∗]. Recall by Lemma
2.11 that j−1 ↾ Mκ is the transitive collapse map of Mκ and that j−1 lifts in the standard
way to Mκ[G∗].

Suppose that σ ≤ ρ and that Ḣ is a j(P)-name in N for a generic filter over
πMκ[Ġ∗]( j(Ċσ)) = Ċσ . We define the κ-flat function for (the pullback of) Ḣ to be
the j(P)-name for the function with domain j[σ],6 so that for each η < σ , ṙ( j(η))
is forced to be equal to (⋃ Ḣ(η)) ∪ {κ}.

We will prove the following proposition (∗) by induction:
(*) for any σ ≤ ρ, if Ḣ is a j(P)-name in N for a generic filter over Ċσ =

πMκ[G∗]( j(Ċσ)) which is guided by the collapse at κ (see Definition 5.2), then
it is forced by j(P) that the κ-flat function for Ḣ is a condition in j(Ċσ).

We first consider the case that σ ≤ ρ is limit. Suppose that we know the result for
all η < σ . We use throughout the fact that j−1 equals the transitive collapse map of
Mκ[G∗].

Let H ∈ N[G∗] be a filter over Cσ which is guided by the collapse at κ, and let
r be the κ-flat function for H. Since ∣dom(r)∣N < j(κ) and j(Cσ) is taken with
< j(κ)-supports, in order to see that r ∈ j(Cσ), it suffices to show that for all η < σ ,

6We note that j[σ] ∈ N : Mκ ∩ j(ρ) = j[ρ], and so j[ρ] is in N. Then intersect with j(σ).
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r ↾ j(η) ∈ j(Cη). So let η < σ be fixed. Since Cσ ≅ Cη ∗ Ċη ,σ and since H is guided
by the collapse at κ over Cσ , we have by Lemma 5.3 that H ↾ Cη is also guided by the
collapse at κ over Cη . By induction, this implies that the κ-flat function for H ↾ Cη ,
namely r ↾ j(η), is a condition in j(Cη). This completes the proof of (∗) in the limit
case.

Now, suppose that σ + 1 ≤ ρ and that we know that (∗)holds at σ . Let H ∈ N[G∗]be
a filter overCσ+1 which is guided by the collapse at κ, and let Hσ denote the restriction
of H to Cσ . Again, appealing to Lemma 5.3, we know that Hσ is guided by the collapse
at κ.

Let r be the κ-flat function for H, and let r̄ denote r ↾ j(σ), the κ-flat function for
Hσ . Since Hσ is guided by the collapse at κ, we may apply the induction hypothesis
to conclude that r̄ is a condition in j(Cσ). By Proposition 5.4, since Hσ is guided by
the collapse at κ, we know that in N we may find a residue pair ⟨(0 j(P), ˙̄r), φMκ⟩ for
the pair (Mκ , j(P∗)), where ˙̄r is a j(P)-name in N for r̄. We use p∗(Mκ) to denote
(0 j(P), ˙̄r).

Since r̄ is an upper bound for π−1
Mκ[G∗][Hσ] = j[Hσ], we conclude that r̄ forces in

j(Cσ) over N[G∗] that⋃ j[H(σ)]= ⋃H(σ) is club in κ (equality follows since j is the
identity on bounded subsets of κ). Therefore, to see that r ∈ j(Cσ+1) (which finishes
the proof of (∗) in the successor case), it suffices to show that

r̄ ⊩N[G∗]
j(Cσ)

(⋃H(σ) ∪ {κ}) ∈ j(Ċ(σ)).

Since j(Ċ(σ)) is a j(P ∗ Ċσ)-name for CU( j(Ṡσ), j(Ṡσ)), the above holds if and
only if

(r̄, 0 j(Ṡσ)) ⊩
N[G∗]
j(Cσ∗Ṡσ)

(⋃H(σ) ∪ {κ}) ⊆ (tr ( j(Ṡσ)) ∪ ( j(κ) ∩ cof(ω))) .

By the elementarity of j and since r̄ is an upper bound for j[Hσ], we see that

(r̄, 0 j(Ṡσ)) ⊩
N[G∗]
j(Cσ∗Ṡσ)

⋃H(σ) ⊆ (tr ( j(Ṡσ)) ∪ ( j(κ) ∩ cof(ω))) .

Since κ has cofinality ω1 after forcing with j(Cσ ∗ Ṡσ), it therefore suffices to show
that

(r̄, 0 j(Ṡσ)) ⊩
N[G∗]
j(Cσ∗Ṡσ)

( j(Ṡσ) ∩ κ) is stationary in κ.

Before continuing, we recall that Rσ denotes P ∗ Ċσ ∗ Ṡσ . By Proposition 3.2, we
know that

(p∗(Mκ), 0 j(Ṡσ)) ⊩
N
j(Rσ) j(Ṡσ) ∩ κ = ( j(Ṡσ) ∩ Mκ)[Ġ j(Rσ) ∩ Mκ].

However, j(Rσ) ∩ Mκ = j[Rσ] is isomorphic toRσ , and j(Ṡσ) ∩ Mκ = j[Ṡσ]. Since Ṡσ
is a nice Rσ -name for a stationary subset of κ ∩ cof(ω), j[Ṡσ] is therefore a j(Rσ) ∩
Mκ-name for a stationary subset of κ ∩ cof(ω).

We now apply Proposition 4.4 in N, recalling that M⃗ satisfies the conclusion of that
proposition and that κ ∈ j(dom(M⃗)). Thus, applying the observations in the previous
paragraph, we conclude that (p∗(Mκ), 0 j(Ṡσ)) forces over N that j[Ṡσ] is stationary

https://doi.org/10.4153/S0008414X22000207 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000207


Club stationary reflection and the special Aronszajn tree property 903

in κ. Recalling that p∗(Mκ) = (0 j(P), ˙̄r), we now conclude that

(r̄, 0 j(Ṡσ)) ⊩
N[G∗]
j(Cσ∗Ṡσ)

j(Ṡσ) ∩ κ = j[Ṡσ][Ġ j(Rσ) ∩ Mκ] is stationary.

This completes the proof that r, the κ-flat function for H, is a condition in j(Cσ) and
also finishes the proof that (∗) holds.

To finish the proof of Proposition 6.1, we prove by induction on k < ω that for
any δ⃗ = ⟨δ0 , . . . , δk−1⟩ ∈ [ρ]k

dec, the poset Cρ(δ⃗) is F-completely proper. Working
by contradiction, let k ∈ ω be the least so that for some (empty in case k = 0)
δ⃗ ∈ [ρ]k

dec, the proposition fails for Cρ(δ⃗). Let M⃗ be a δ⃗-suitable sequence which
witnesses that Cρ(δ⃗) is not F-suitable. Since M⃗ is δ⃗-suitable it is also P ∗ Ċρ(δ⃗)-
suitable. By removing an I-null set, we may assume that M⃗ satisfies the conclusion of
Proposition 4.4.

Let M be a κ-model containing the relevant parameters, including M⃗. Since
dom(M⃗) ∈ F+, we may find some M-normal ultrafilter U so that, letting j ∶ M �→ N
be the ultrapower embedding, κ ∈ j(dom(M⃗)).

First, we deal with the case k = 0. Since M⃗ witnesses that Ċρ is not F-completely
proper, N satisfies that the conclusion of Definition 5.3 fails at κ with respect to j(P)
and j(Ċρ). However, this directly contradicts (∗), which we showed holds in this
setup.

Now, we assume that k = l + 1 is a successor. Then we may find an N-generic filter
G∗ over j(P) so that in N[G∗] there is a filter H∗ over πMκ[G∗]( j(Cρ(δ⃗))) = Cρ(δ⃗)
so that no condition in j(Cρ(δ⃗)) is a least upper bound for π−1

Mκ[G∗][H
∗]. We will

show, on the contrary, that there is such a least upper bound for the pullback of H∗.
Write δ⃗ = ⟨δ0 , . . . , δk−1⟩. For simplicity of notation, we also write Cρ(δ⃗ ↾ k − 1) =

Cδk−2 ∗ Ḋ so that Cρ(δ⃗) = Cδk−1 ∗ (Ċ[δk−1 ,δk−2) ∗ Ḋ)
2. Note in the case k = 1, we just

have Cρ(δ⃗) = Cδ0 ∗ (Ċ[δ0 ,ρ))2. The filter H∗ adds generics J0 , J1 over Cρ(δ⃗ ↾ k − 1)
so that J0 and J1 agree on Cδk−1 (recall that δk−1 < δk−2) but are mutually generic
afterward. Since H∗ is guided by the collapse at κ, both J0 and J1 are guided by the
collapse at κ. Hence, our inductive assumption implies that for each i ∈ 2, π−1

Mκ[G∗][J i]
has a sup r i in j(Cρ(δ⃗ ↾ k − 1)). By the agreement between J0 and J1 up to stage
δk−1 < δk−2, we know that r0 ↾ j(Cδk−1) = r1 ↾ j(Cδk−1). We let r̄ denote the common
value. Finally, we define r∗ to be the function r̄ ⌢⟨r i ↾ j(Cρ(δ⃗ ↾ k − 1)) ∶ i < 2⟩. Then
r∗ is a condition in j(Cρ(δ⃗)) which is a sup of π−1

Mκ[G∗][H
∗].

This completes the inductive step and the proof of the proposition. ∎

6.2 No new branches

In this subsection, we will show that various F-completely proper posets do not add
branches through Aronszajn trees of interest. We will use this general result to show,
in particular, that tails of the club adding poset Cρ do not add any branches to trees
Ṫ which are Aronszajn trees in an intermediate extension obtained by forcing with
Cσ∗Ṡσ , for σ < ρ. This will ensure that the tree specializing iteration of length ρ
above is in fact an iteration of specializing Aronszajn trees in the extension by Cρ ,
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a conclusion which is essential in order to see that the specializing iteration does not
collapse κ.

Arguments for securing that certain posets do not add new cofinal branches to
trees play a crucial role in consistency results concerning the tree property, going back
to the work of Mitchell [34], and Magidor and Shelah [32]. Lemma 6 of Unger [41]
provides such an argument with respect to closed posets and trees named by posets
with reasonable chain condition, given constraints on the continuum function. Here,
we prove a version of these results, in which the relevant posets (which in practice are
variants of the club-adding poset) are F-completely proper (and thus κ-distributive)
but not κ-closed.

The statement of the following proposition involves (names of) posets Q̇1 , Q̇2,
and Ṡ. To relate the statement to our scenario, we suggest keeping in mind the
following assignments of the posets: Fixing ρ < ρ∗ < κ+, Q̇1 = Ċρ is the (P-name)
of the first ρ steps of the club adding iteration, Ṡ = Ṡρ is the P ∗ Ċρ-name of the
first ρ steps of the iteration specializing trees, and Q̇2 = Ċ[ρ ,ρ∗) is the P ∗ Ċρ-name
of the segment of the final iteration from (and including) stage ρ to stage ρ∗ (i.e.,
Q̇1 ∗ Q̇2 = Ċρ∗).

Proposition 6.2 Suppose that Q̇1 is a P-name and that Q̇2 and Ṡ are (P ∗ Q̇1)-names
so that Q̇1 ∗ Q̇2

2 is F-completely proper and so that P ∗ Q̇1 ∗ Q̇2
2 forces that Ṡ is κ-c.c. Let

Ṫ be a (P ∗ Q̇1 ∗ Ṡ)-name for an Aronszajn tree on κ. Then P ∗ Q̇1 ∗ (Q̇2 × Ṡ) forces
that Ṫ is an Aronszajn tree.

That is to say, forcing with Q̇2 after P ∗ Q̇1 ∗ Ṡ does not add branches to Ṫ . To
show this, we will follow the standard approach and show that if Q̇2 were to add such
a branch, then we can find some model in which a level of the tree has too many nodes.

For the rest of this subsection, we suppose for a contradiction that ḃ is (P ∗
Q̇1 ∗ (Q̇2 × Ṡ))-name for a branch through Ṫ , where Ṫ is a (P ∗ Q̇1 ∗ Ṡ)-name for
an Aronszajn tree on κ. In the context of working with the forcing R∗ ∶= P ∗ Q̇1 ∗
(Q̇2

2 × Ṡ), for which a typical generic looks like G ∗ Q1 ∗ (QL
2 × QR

2 × F), we will
use ḃL to denote the (P ∗ Q̇1 ∗ (Q̇2 × Ṡ))-name for ḃ[Ġ ∗ Q̇1 ∗ (Q̇L

2 × Ḟ)], i.e., the
interpretation of ḃ using the left generic filter added by Q̇2

2. ḃR is defined similarly.
The next lemma will be used as a successor step in obtaining a tree of conditions

forcing incompatible information about a branch.

Lemma 6.3 (Under the assumptions of Proposition 6.2) P forces that for each Q̇1-
name ḋ for a condition in Q̇2, there is a dense, open set of c in Q̇1 satisfying the following
property: there exist names ḋL , ḋR for conditions in Q̇2 and an ordinal ξ < κ so that:
(1) c ⊩ ḋZ ≥ ḋ for each Z ∈ {L, R}; and
(2) ⟨c, ḋL , ḋR , 0Ṡ⟩ ⊩

V[Ġ]
Q̇1∗(Q̇2×Q̇2×Ṡ)

ḃL(ξ) ≠ ḃR(ξ).

Proof We work in V[G]. Fix c ∈ Q1 and a Q1-name ḋ for a condition in Q̇2. Let Q1
be V[G]-generic over Q1 containing c, and let QL

2 × QR
2 be V[G ∗ Q1]-generic over

Q2
2 containing (d , d).
We first claim that 0S forces over V[G ∗ Q1 ∗ (QL

2 × QR
2 )] that ḃL ≠ ḃR . Thus, let

F be an arbitrary V[G ∗ Q1 ∗ (QL
2 × QR

2 )]-generic filter for S. Since S and Q2
2 both

live in V[G ∗ Q1], the product lemma implies that QL
2 × QR

2 is V[G ∗ Q1 ∗ F]-generic
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over Q2
2. Since QL

2 and QR
2 are mutually V[G ∗ Q1 ∗ F]-generic filters over Q2, we

conclude that

V[G ∗ Q1 ∗ F] = V[G ∗ Q1 ∗ (F × QL
2 )] ∩ V[G ∗ Q1 ∗ (F × QR

2 )].
Therefore, if b ∶= bL = bR , then b is in V[G ∗ Q1 ∗ F], and therefore T is not an
Aronszajn tree in that model, a contradiction.

We now claim that there is an ordinal ξ so that 0S forces over V[G ∗ Q1 ∗ (QL
2 ×

QR
2 )] that ḃL(ξ) ≠ ḃR(ξ). Let A ⊆ S be a maximal antichain in V[G ∗ Q1 ∗ (QL

2 ×
QR

2 )] consisting of conditions g ∈ S so that for some ζg < κ,

g ⊩V[G∗Q1∗(Q L
2 ×Q R

2 )]
S

ḃL(ζg) ≠ ḃR(ζg).

Because ḃL and ḃR name branches in Ṫ , we see that for any g ∈ A and ζ ≥ ζg , g forces
that ḃL(ζ) ≠ ḃR(ζ). Since S is still κ-c.c. after forcing to add QL

2 × QR
2 , we know that A

has size < κ in V[G ∗ Q1 ∗ (QL
2 × QR

2 )]. Therefore, letting ξ ∶= supg∈A ζg , ξ < κ. Then
ξ witnesses the claim: indeed, if f ∈ S is any condition, we may extend it to f ∗ so
that f ∗ is above some g ∈ A. By the remarks above and since ξ ≥ ζg , we know that
f ∗ ⊩ ḃL(ξ) ≠ ḃR(ξ), completing the proof of the second claim.

Since (c, ḋ , ḋ) ∈ Q1 ∗ (QL
2 × QR

2 ), we may find an extension (c∗ , ḋL , ḋR) of
(c, ḋ , ḋ) as well as an ordinal ξ < κ so that (c∗ , ḋL , ḋR) forces that 0Ṡ forces that
ḃL(ξ) ≠ ḃR(ξ). Then c∗ ≥ c is in the desired dense set. ∎

For the rest of the subsection, let M⃗ = ⟨Mα ∶ α ∈ B⟩ be a sequence which is suitable
with respect to all parameters of interest. Since Q̇1 ∗ Q̇2

2 is F-completely proper, which
implies that Q̇1 ∗ Q̇2 is F-completely proper, we may assume that dom(M⃗) satisfies
the conclusion of Definition 5.3 with respect to Q̇1 ∗ Q̇2

2 and with respect to Q̇1 ∗ Q̇2.
Fix M∗ ≺ H(κ++), where M∗ has size κ, is closed under < κ-sequences, and

contains M⃗ as well as ⊲ from Notation 2.6 as an element. Let M denote the transitive
collapse of M∗, so that M is a κ-model. Since dom(M⃗) ∈ F+, we may find an M-
normal ultrafilter U so that, letting j ∶ M �→ N be the associated ultrapower map,
κ ∈ j(dom(M⃗)). As usual, we use Mκ to denote j(M⃗)(κ). The following claim shows
that we can build the desired tree of conditions forcing incompatible information
about the branch.

Claim 6.2 j(P) forces over N that there exist sequences ⟨ċν ∶ ν < ω1⟩ and ⟨ḋs ∶ s ∈
2<ω1⟩ so that the following properties hold:
(1) for each f ∈ (2ω1)N[Ġ j(P)], ⟨(ċν , ḋ f ↾ν) ∶ ν < ω1⟩ is an increasing sequence of con-

ditions in Q̇1 ∗ Q̇2 which is guided by the collapse at κ (see Definition 5.2); and
(2) if s ≠ t are in 2ν for some ν < ω1, then

j(⟨ċν , ḋs , ḋt , 0Ṡ⟩) ⊩
N[Ġ j(P)]
j(Q̇1∗(Q̇2×Q̇2×Ṡ))

j(ḃ)L ↾ κ ≠ j(ḃ)R ↾ κ.

Proof The definition is by recursion. Let G∗ be an arbitrary V-generic over j(P), and
let G = G∗ ∩ P. Let (c0 , ḋ0) be the trivial condition in Q1 ∗ Q̇2. In order to show that
the desired sequences generate filters which are guided by the collapse at κ (which
in turn will guarantee that they have upper bounds), we will show that (1)–(3) of
Lemma 5.5 are satisfied. In particular, to secure (3) of that lemma, throughout the
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construction, we will select objects which are minimal according to the fixed well-
order ⊲ of H(κ+). We remark that the entire construction takes place in N[G∗], but
the proper initial segments can be carried out in M[G] using a proper initial segment
of fκ, the standard surjection from κ onto ω1 added by G∗.

Suppose that ν is a limit and that for all μ < ν and all s ∈ 2μ , we have defined cμ
and ḋs . Then we let ċν be the ⊲-least P-name for a condition in Q̇1 so that cν ∶= ċν[G]
is a sup of ⟨cμ ∶ μ < ν⟩. Similarly, for s ∈ 2ν , we let ḋs be a Q1-name forced to be a
sup of ⟨ḋs↾μ ∶ μ < ν⟩ so that a P-name for ḋs is ⊲-minimal. Note that item (2) in the
claim still holds since if s ≠ t are in 2ν , then there exists some μ < ν so that s ↾ μ ≠ t ↾
μ. So j(⟨cμ , ḋs↾μ , ḋt↾μ , 0Ṡ⟩) forces that j(ḃ)L ↾ κ ≠ j(ḃ)R ↾ κ. Hence, the extension
j(⟨cν , ḋs , ḋt , 0Ṡ⟩) also forces this.

Now we consider the successor step. Suppose that we have defined cν and ḋs for all
s ∈ 2ν . In order to ensure that the assumptions of Lemma 5.5 are satisfied, and thereby
ensure that the sequences are guided by the collapse at κ (which in turn will guarantee
they have an upper bound), we will first define an auxiliary extension c∗ν ≥ cν and for
each s ∈ 2ν , a Q1-name ḋ∗s forced by c∗ν to extend ḋs . Toward this end, let γ ∶= fκ(ν),
where fκ is the standard surjection added by G∗ from ω1 onto κ. Let uγ be the γth
condition in Q1 ∗ Q̇2, and write uγ as ⟨cγ , ḋγ⟩. If cγ does not extend cν in Q1, set
c∗ν = cν and ḋ∗s = ḋs . On the other hand, if cγ ≥ cν , we set c∗ν = cγ . Then, given s ∈ 2ν , if
c∗ν ⊩ ḋγ ≥ ḋs , we set ḋ∗s = ḋγ , and otherwise we set ḋ∗s = ḋs . Note that there is at most
one s that falls into the first of these, since c∗ν ⊩ {ḋs ∶ s ∈ 2ν} is an antichain in Q̇2.

Now, we move to defining cν+1 and ḋt for all t ∈ 2ν+1. By Lemma 6.3, for each s ∈ 2ν ,
the set Ds of all c ∈ Q1 for which there exist names ḋL and ḋR and an ordinal ξ < κ
satisfying
(i) c ⊩ ḋZ ≥ ḋs for each Z ∈ {L, R}; and

(ii) ⟨c, ḋL , ḋR , 0Ṡ⟩ ⊩ ḃL(ξ) ≠ ḃR(ξ)
is dense, open in Q1. By Lemma 5.6 applied to Q1, there exists an extension of cν
inside ⋂s∈2ν Ds . Let ċν+1 be the ⊲-minimal P-name so that cν+1 ∶= ċν+1[G] is such an
extension. For each s ∈ 2ν , we may find an ordinal ξs < κ and Q1-names ḋs⌢⟨0⟩ and
ḋs⌢⟨1⟩ so that cν+1 ⊩ ḋs⌢⟨i⟩ ≥ ḋs , so that ⟨cν+1 , ḋs⌢⟨0⟩ , ḋs⌢⟨1⟩ , 0Ṡ⟩ forces that ḃL(ξs) ≠
ḃR(ξs), and so that P-names for ḋs⌢⟨0⟩ and ḋs⌢⟨1⟩ are ⊲-minimal. Applying j to this
statement, we secure (2) of the claim. This completes the proof. ∎

Now that we have proved the above claim, we can finish the proof of
Proposition 6.2.

Proof of Proposition 6.2. Let G∗ be N-generic over j(P), let G ∶= G∗ ∩ P, and
fix sequences ⟨c0

ν ∶ ν < ω1⟩ and ⟨ḋ0
s ∶ s ∈ 2<ω1⟩ satisfying Claim 6.2. Let ⟨cν ∶ ν < ω1⟩

and ⟨ḋs ∶ s ∈ 2<ω1⟩ denote the sequences of their j-images. For each f ∈ (2ω1)N[G∗],
⟨(c0

ν , ḋ0
f ↾ν) ∶ ν < ω1⟩ is guided by the collapse at κ. Moreover, dom(M⃗) satisfies

Definition 5.3, and κ ∈ j(dom(M⃗)). Since j(Q1 ∗ Q̇2) is j(F)-completely proper, we
may find a condition (c∗ , ḋ f ) which is a sup in j(Q1 ∗ Q̇2) of ⟨(cν , ḋ f ↾ν) ∶ ν < ω1⟩
(note that c∗ is independent of f since any two sups are =∗-equal). By item (2) of the
previous claim, we know that if f ≠ g are in (2ω1) ∩ N[G∗], then ⟨c∗ , ḋ f , ḋg , 0 j(Ṡ)⟩
forces that j(ḃ)L ↾ κ ≠ j(ḃ)R ↾ κ.
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Now, let Q∗1 ∗ F∗ be N[G∗]-generic over j(Q1 ∗ Ṡ) with Q∗1 containing c∗. Apply-
ing item (2) of the previous claim again, we know that if f ≠ g are in (2ω1) ∩ N[G∗],
then ⟨d f , dg⟩ forces in j(Q2

2) that j(ḃ)L ↾ κ ≠ j(ḃ)R ↾ κ. We note here that the tree
of interest, namely T∗ ∶= j(Ṫ)[G∗ ∗ Q∗1 ∗ F∗], is a member of N[G∗ ∗ Q∗1 ∗ F∗], i.e.,
exists prior to forcing with j(Q2

2).
For each f ∈ (2ω1) ∩ N[G∗], let d∗f be an extension of d f in j(Q2) which decides

the value of j(ḃ)(κ), say as α f . We claim that if f ≠ g are in (2ω1) ∩ N[G∗], then
α f ≠ αg . Indeed, suppose for a contradiction that there were f ≠ g with α f = αg . Then
force in j(Q2

2) above the condition ⟨d∗f , d∗g ⟩ to obtain a pair Q̄L
2 × Q̄R

2 of mutually
generic filters for j(Q2). Since α f = αg , the branch of T∗ below α f is the same as the
branch of T∗ below αg . However, the branch of T∗ below α f equals ( j(ḃ)[Q̄L

2 ]) ↾ κ
and the branch of T∗ below αg equals ( j(ḃ)[Q̄R

2 ]) ↾ κ, contradicting the fact that
⟨d∗f , d∗g ⟩ forces that the interpretations diverge below κ.

Since (2ω1) ∩ N[G∗] has size j(κ) in N[G∗] and j(Q2 ∗ Ṡ) preserves j(κ), this
set still has size j(κ) in N[G∗ ∗ Q∗1 ∗ F∗]. Thus, in the model N[G∗ ∗ Q∗1 ∗ F∗], the
function taking f ∈ (2ω1) ∩ N[G∗] to α f is an injection. Therefore, level κ of T∗ has
size j(κ), which contradicts the fact that j(κ) is ℵ2 in N[G∗ ∗ Q∗1 ∗ F∗] and that T∗
is an Aronszajn tree on j(κ). ∎

7 Putting it all together

Up to this point in the paper, we have worked to establish a number of isolated results.
In this section, we will now define the poset which will witness Theorem 1.1. Each of
the previous sections will function as a component in the inductive verification that
this poset has the desired properties.

We recall that P denotes Col(ω1 , < κ), the Levy collapse of the ineffable cardinal κ.
We define a P-name Ċκ+ for a κ+-length iteration adding clubs, and we also define a
(P ∗ Ċκ+)-name Ṡκ+ for an iteration which specializes Aronszajn trees. This is done
in such a way that for all ρ < κ+, the (P ∗ Ċκ+)-name Ṡρ for the first ρ-stages of Ṡκ+
is actually a (P ∗ Ċρ)-name.

More precisely, we define by recursion on ρ ≤ κ+ the names Ċρ and Ṡρ . Suppose
that ρ = ρ0 + 1 is a successor and that Ċρ0 and Ṡρ0 are both defined. Using the fixed
well-order ⊲ from Notation 2.6 as a bookkeeping device, we select a (P ∗ Ċρ0 ∗
Ṡρ0)-name Ṡρ0 for a stationary subset of κ ∩ cof(ω), and we define Ċρ ∶= Ċρ0 ∗
CU(Ṡρ0 , Ṡρ0) (see Definition 1.3). Next, we use ⊲ to select a (P ∗ Ċρ ∗ Ṡρ0)-name Ṫρ0

for an Aronszajn tree on κ, and we set Ṡρ to be the (P ∗ Ċρ)-name for Ṡρ0 ∗ S(Ṫρ0)
(see Definition 1.4).

Now, suppose that ρ is a limit and that we have defined the sequences ⟨Ċξ , Ċ(ξ) ∶
ξ < ρ⟩ and ⟨Ṡξ , Ṡ(ξ) ∶ ξ < ρ⟩. We first let Ċρ be the < κ-support limit of ⟨Ċξ , Ċ(ξ) ∶
ξ < ρ⟩. Second, we see that P ∗ Ċρ forces that ⟨Ṡξ , Ṡ(ξ) ∶ ξ < ρ⟩ names an iteration
with countable support: by induction, if ξ < ρ is a limit, then Ṡξ is the (P ∗ Ċξ)-name
for the countable support limit of ⟨Ṡζ , Ṡ(ζ) ∶ ζ < ξ⟩. However, Ċρ is ω1-closed, and
consequently, the countable support limit of ⟨Ṡζ , Ṡ(ζ) ∶ ζ < ξ⟩ is the same in both the
extension by P ∗ Ċξ and the extension by P ∗ Ċρ . In light of this, we let Ṡρ denote the
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countable support limit of ⟨Ṡξ , Ṡ(ξ) ∶ ξ < ρ⟩, noting that this is an ω1-closed poset in
the extension by P ∗ Ċρ . This completes the definitions of the names. We may now
define R∗ ∶= P ∗ Ċκ+ ∗ Ṡκ+ .

We begin our analysis of R∗ with some simple remarks. First, R∗ is ω1-closed,
since all the posets under consideration are (and since our iterations were taken with
supports which are at least countable). In addition, R∗ is κ+-c.c. Indeed, P trivially is.
Furthermore, κ<κ = κ after forcing with P, and so if β < κ+, Ċβ is forced to be a poset
of size κ. Since direct limits in the iteration Ċκ+ are taken at all stages in κ+ ∩ cof(κ),
standard arguments (e.g., see [6]) show that Ċκ+ is κ+-c.c. Finally, since for every
β < κ+, Ṡβ is forced to have size κ by P ∗ Ċκ+ , and since Ṡκ+ is taken with countable
supports, a standard Δ-System argument shows that Ṡκ+ is κ+-c.c.

We next claim that if R∗ preserves κ, then it forces all Aronszajn trees on κ
are special, that such trees exist, and that every stationary subset S ⊆ κ ∩ cof(ω)
reflects on every ordinal of cofinality ω1 in some closed unbounded subset on κ. First,
suppose that Ṫ is an R∗-name for an Aronszajn tree on κ. Because R∗ is κ+-c.c.,
Ṫ is a (P ∗ Ċγ ∗ Ṡγ)-name for some γ < κ+, and hence names an Aronszajn tree in
any extension between that given by P ∗ Ċγ ∗ Ṡγ and the full R∗-extension. By our
bookkeeping device, there is some δ ≥ γ so that Ṡ(δ) is forced by P ∗ Ċδ+1 ∗ Ṡδ to
equal Ṡ(Ṫ). Hence, R∗ forces that Ṫ is special. Similarly, if Ṡ is an R∗-name for a
stationary subset ofκ ∩ cof(ω), then there is some α < κ+ so that Ṡ is a (P ∗ Ċα ∗ Ṡα)-
name, and hence there is some β ≥ α so that Ċ(β) is forced by P ∗ Ċβ to equal
CU(Ṡ , Ṡβ). Thus, in the extension by P ∗ Ċβ+1 ∗ Ṡβ , Ṡ reflects almost everywhere, and
since the forcing to complete P ∗ Ċβ+1 ∗ Ṡβ to R∗ is ω1-closed, Ṡ still reflects almost
everywhere in the full R∗-extension.

As a result of the previous discussion, we see that in order to show that R∗

witnesses Theorem 1.1, we need to prove that R∗ preserves κ. To achieve this, we
verify that (i) P forces Ċκ+ is κ-distributive, and that (ii) P ∗ Ċκ+ forces that Ṡκ+
is κ-c.c.

To this end, we consider the following simplifications. First, concerning (i), we note
that since Ċκ+ is forced to be κ+-c.c, it is sufficient to verify that Ċρ is forced to be κ-
distributive for all ρ < κ+ to show that (i) holds. We will use Lemma 5.6 to verify this,
by proving that for every ρ < κ+, Ċρ is F-completely proper.

Second, concerning (ii), since Ṡκ+ names a countable support iteration, anyκ-sized
antichain would witness that some proper initial segment Ṡγ is not κ-c.c. Therefore, it
is sufficient to verify that P ∗ Ċκ+ forces Ṡγ is κ-c.c for every γ < κ+. However, as Ċκ+

names a κ+-cc poset, every (P ∗ Ċκ+)-name for a subset of Ṡγ of size κ is equivalent to
a (P ∗ Ċρ)-name, for some ρ ≥ γ. Clearly, if P ∗ Ċρ forces Ṡγ fails to satisfy the κ-c.c
for some γ ≤ ρ, then it forces Ṡρ is not κ-c.c. We conclude that (ii) follows from the
assertion that for every ρ < κ+, P ∗ Ċρ forces that Ṡρ is κ-c.c.

Combining the two simplifications, it remains to prove the next claim.

Claim 7.1 The following holds for every ρ < κ+:

(1) Ċρ is F-completely proper; and
(2) P ∗ Ċρ forces Ṡρ is κ-c.c.
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We prove the claim by induction on ρ < κ+. Let ρ < κ+, and suppose that the claim
holds for every σ < ρ. In particular, if σ < ρ, then since P ∗ Ċσ forces that Ṡσ is a
countable support iteration specializing trees and since (2) holds at σ , we must have
thatP ∗ Ċσ forces that Ṡσ is a countable support iteration specializing Aronszajn trees.
Hence, we see that assumptions (1)–(4) from the beginning of Section 6 hold. Applying
Proposition 6.1, it follows that Ċρ is F-completely proper, and moreover, so is Cρ(δ⃗)
for every finite, decreasing sequence δ⃗ of ordinals below ρ. We use this to prove that
(2) of the claim holds at ρ.

We aim to apply Corollary 3.13 to the F-strongly proper poset P∗ ∶= P ∗ Ċρ , and to
do so, we need to verify that for each σ < ρ, P∗ ∗ Ṡσ ⊩ Ṫσ is an Aronszajn tree. This is
where the doubling tail products come into play. Indeed, we consider a slightly more
general statement, which would allow us to use Proposition 6.2. For each decreasing
sequence δ⃗ = ⟨δ0 , . . . , δn−1⟩ in ρ, we let ⋆ρ(δ⃗) be the statement that P ∗ Ċρ(δ⃗) forces
Ṡδn−1 is κ-c.c. (note that if δ⃗ = ∅, then the statement holds vacuously). We prove by
induction on the reverse lexicographic order <rLex on [ρ]<ω

dec that ⋆ρ(δ⃗) holds. The
base case of the induction, where δ⃗ = ∅, trivially holds, as mentioned above. For the
induction step, fix δ⃗ = ⟨δ0 , . . . , δn−1⟩ ∈ [ρ]<ω

dec and suppose that ⋆ρ(γ⃗) holds for every
γ⃗ <rLex δ⃗. To show that ⋆ρ(δ⃗) holds, we need to verify that P ∗ Ċρ(δ⃗) forces that
Ṡδn−1 is κ-c.c. For this, in turn, by Corollary 3.13, it is sufficient to verify that for
every γ < δn−1, P ∗ Ċρ(δ⃗) ∗ Ṡγ forces that Ṫγ is an Aronszajn tree on κ. If δn−1 = 0,
there is nothing to prove. Otherwise, let γ < δn−1, and set γ⃗ ∶= δ⃗⌢⟨γ⟩. By Proposition
6.2 and the definition of Ċρ(γ⃗), it suffices to verify that P ∗ Ċρ(γ⃗) forces that Ṡγ is
κ-c.c, to conclude that P ∗ Ċρ(δ⃗) ∗ Ṡγ forces that Ṫγ is Aronszajn. However, the last is
just ⋆ρ(γ⃗), which holds by our inductive assumption and the fact that γ⃗ <rLex δ⃗. This
concludes the proof of Claim 7.1, which in turn finishes the proof of Theorem 1.1.

We conclude the paper with two questions:

Question 7.2 Is an ineffable cardinal necessary for proving Theorem 1.1? Is a weakly
compact cardinal sufficient?

As we have remarked throughout the paper, we only use ineffability in the proof of
Proposition 3.12 (and thus in the corollaries of this proposition). If one could prove
this proposition assuming only a weakly compact, then that would suffice to show that
a weakly compact is optimal.

We also mention the following long-standing question.

Question 7.3 Is a weakly compact cardinal needed for SATP(ω2) + 2ω1 = ω3?

We recall that in the Laver–Shelah model of SATP(ω2), 2ω1 = ω3. Moreover, Rinot
has shown [36] that if the GCH and SATP(ω2) both hold, then ω2 is weakly compact
in L.
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