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Abstract

Objectives: Identify which NIH Toolbox Cognition Battery (NIHTB-CB) subtest(s) best differentiate healthy controls (HC) from those with
amnestic mild cognitive impairment (aMCI) and compare the discriminant accuracy between a model using a priori “Norm Adjusted” scores
versus “Unadjusted” standard scores with age, sex, race/ethnicity, and education controlled for within the model. Racial differences were also
examined. Methods: Participants were Black/African American (B/AA) and White consensus-confirmed (HC= 96; aMCI= 62) adults
60–85 years old that completed the NIHTB-CB for tablet. Discriminant function analysis (DFA) was used in the Total Sample and separately
for B/AA (n= 80) and White participants (n= 78). Results: Picture Sequence Memory (an episodic memory task) was the highest loading
coefficient across all DFA models. When stratified by race, differences were noted in the pattern of the highest loading coefficients within the
DFAs. However, the overall discriminant accuracy of the DFA models in identifying HCs and those with aMCI did not differ significantly by
race (B/AA, White) or model/score type (Norm Adjusted versus Unadjusted). Conclusions: Racial differences were noted despite the use of
normalized scores or demographic covariates—highlighting the importance of including underrepresented groups in research. While the
models were fairly accurate at identifying consensus-confirmedHCs, themodels proved less accurate at identifyingWhite participants with an
aMCI diagnosis. In clinical settings, further work is needed to optimize computerized batteries and the use of NIHTB-CB norm adjusted scores
is recommended. In research settings, demographically corrected scores or within model correction is suggested.
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Currently, it is estimated that 6.5 million persons over the age of 65
years are living with Alzheimer’s disease (AD) and related
dementias in the USA, and the number is projected to be 12.7
million by the year 2050 (Gaugler et al., 2022). Studies have shown
that proactive management of AD and related dementias can
improve the quality of life of affected individuals and their
caregivers (Grossberg et al., 2010; Vickrey et al., 2006; Voisin &
Vellas, 2009). As more treatments are under study or become
available for AD, it is increasingly important to identify people at
risk for AD and related dementias as early as possible, in part
through accurately identifying individuals with mild cognitive
impairment (MCI), as well as those with normal cognition.

A diagnosis ofMCI refers to cognitive decline that is not normal
for a person’s age but generally does not affect that person’s ability
to carry out most activities of daily living (Gauthier et al., 2006).

MCI is classified as one of two types based on a person’s symptoms:
amnestic (memory issues predominate) or non-amnestic (other
cognitive issues predominate; Alzheimer’s Association, 2022;
Petersen et al., 2018; Ward et al., 2013). Though a portion of
those diagnosed with MCI may remain stable or revert to
preclinical cognition (Petersen et al., 2018), the risk for AD is
significantly higher in amnestic MCI versus non-amnestic MCI
(Alzheimer’s Association, 2022; Kaduszkiewicz et al., 2014; Ward
et al., 2013). It is estimated 10%–15% of individuals with MCI go
on to develop a form of dementia each year (Alzheimer’s
Association, 2022) and about 1/3 of people with MCI develop
dementia due to AD within five years (Alzheimer’s Association,
2022; Ward et al., 2013). Accurate identification and diagnosis of
those with MCI is critical for helping individuals, their families,
and physicians prepare for future treatment and care.
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As the older adult population with dementia grows, disparities
have emerged in the prevalence of all-cause dementia among
different races. Older non-Hispanic Black/African American (B/
AA) and Hispanic Americans are disproportionately more likely
than older Whites to have AD or other dementias (Dilworth-
Anderson et al., 2008; Power et al., 2021; Rosselli et al., 2022;
Steenland et al., 2016; Yaffe et al., 2013). There is also evidence that
a missed or delayed diagnosis of AD and other dementia types is
more common among B/AA and Hispanic older adults than
among White older adults (Clark et al., 2005; Fitten et al., 2001;
Gianattasio et al., 2019; Lin et al., 2021), which then contributes to a
delay of care that may impact disease trajectory and outcomes.
Further, despite the increased risk posed to B/AA older adults for
developing all-cause dementia, B/AA adults are largely under-
represented in research seeking to understand these diseases
(Rosselli et al., 2022).

The NIH Toolbox Cognition Battery (NIHTB-CB) is one
module within the larger computerized NIH Toolbox for the
Assessment of Neurological and Behavioral Function that was
developed as an assessment tool to provide clinical researchers a
common metric for cross-study comparisons (Weintraub et al.,
2013). The NIHTB-CB was designed to be a brief (30-min),
computerized, widely accessible, and easily administered cognitive
screener for ages 3–85 that is available in both English and Spanish
(Gershon et al., 2013). The battery consists of seven testsmeasuring
five cognitive domains (i.e., executive functioning, episodic
memory, processing speed, working memory, language;
Weintraub et al., 2013), which are separated broadly into “fluid”
or dynamic thinking skills (executive function, episodic memory,
processing speed, working memory) and “crystallized” or skills
that remain relatively stable in adulthood (language; Heaton et al.,
2014). The original NIHTB-CB was unadjusted for demographic
factors (Heaton et al., 2014; Weintraub et al., 2013), with
subsequent normative samples providing corrections for age,
sex, race/ethnicity, and education (Casaletto et al., 2015).

Although the NIHTB-CB may have potential use as a clinical
cognitive screener to help identify individuals appropriate for
referral for more comprehensive neuropsychological assessment,
the utility of the newer computerized NIHTB-CB for tablet has not
been well established for clinical characterization. The measures
within the NIHTB-CB have demonstrated acceptable reliability
and construct validity as compared to traditional paper–pencil
methods (Casaletto et al., 2015; Hackett et al., 2018; Heaton et al.,
2014; Scott et al., 2019; Weintraub et al., 2013), but the test battery
lacks clear support as a standalone replacement for traditional
neuropsychological assessment methods (Garcia et al., 2023;
Hackett et al., 2018; Scott et al., 2019). Further, despite substantial
efforts devoted to the development of representative normative
samples for the NIHTB-CB, there remains a scarcity of published
studies delineating the performance of underrepresented popula-
tions on this cognitive assessment tool. This knowledge gap may
inadvertently disregard the potential for performance disparities
among distinct racial and ethnic groups.

Aims

In our study, we aimed to determine how well NIHTB-CB tablet
subtest scores differentiate those characterized by consensus
diagnosis as either healthy controls (HCs) or those with amnestic
mild cognitive impairment (aMCI), using National Alzheimer’s
Coordinating Center (NACC) criteria. We further sought to
compare the discriminant ability between a model using “Norm

Adjusted” T-scores provided by NIHTB-CB that have been a priori
adjusted for age, sex, race/ethnicity, and education (Casaletto et al.,
2015) to a second model using NIHTB-CB “Unadjusted” standard
scores with the same demographic variables controlled for within
the model. No prior predictions were made, as this aim was largely
exploratory. We also aimed to examine possible differences
between the models when stratified by race (B/AA andWhite). We
hypothesized that there would be no significant differences
between the two subsamples, as scores would be either norm
adjusted or adjusted in the model for age, sex, race/ethnicity, and
education prior to entering the model. We also sought to identify
which subtest(s) within the NIHTB-CB for tablet accounted for the
largest proportion of difference between HCs and aMCIs. On this
point the literature is mixed. Traditionally, Fluid measures have
been shown to be particularly sensitive to changes in cognitive
status (Heaton et al., 2014; Weintraub et al., 2013). However,
studies of older adults in an all B/AA sample (Kairys et al., 2022), a
majority B/AA sample (Garcia et al., 2023), and a majority White
sample (Hackett et al., 2018) found that crystalized measures on
the NIHTB-CB were also important in differentiating those with
MCI from HCs.

Methods

Participants

Participants were recruited through the Michigan Alzheimer’s
Disease Research Center and allied projects. This research was
completed in accordance with the Helsinki Declaration. This study
was reviewed and approved by the human subjects Institutional
Review Board at the University ofMichiganMedical School in Ann
Arbor, MI, USA. All participants signed consent as per the human
subjects University of Michigan Medical School Institutional
Review Board in Ann Arbor, MI, USA prior to participation in the
study. If the competency of a participant was questionable, a
trained study team member administered a decision-making
assessment tool to gauge their understanding of the research study
and their rights as a participant. For those participants deemed not
able to give informed consent, the participant’s assent as well as the
written informed consent of their legal representative (durable
power of attorney, guardian, or next-of-kin as applicable by local
laws and regulations) was obtained. All participants then
completed the NACC – Unified Data Set (UDS) Version 3
evaluation which included a multidomain medical, neurological,
social, and neuropsychological evaluation; participants were then
diagnosed at the Michigan Alzheimer’s Disease Research Center
using NACC consensus conference criteria (Weintraub et al., 2009;
Weintraub et al., 2018).

Participants were community-dwelling older adults and were
included in analyses if they were between 65 and 85 years of age,
classified by consensus diagnosis as either having no clinically
significant cognitive impairment/healthy control (HC; n= 96) or
probable MCI with amnestic features (aMCI; n= 62), identified as
either B/AA (n= 80) or White (n= 78), and were not missing any
scores. Our sample originally included those classified as non-
amnestic MCI (n= 23); however, our subsample of non-amnestic
MCI was so small that it could not be reasonably included in the
analyses and was, therefore, excluded from all analyses. NIHTB-
CB assessments using the tablet version for iPad were conducted
in English up to 10 days before UDS visits and up to 18 days
after UDS assessments with 96.8% of assessments taking place
on the same day. NIHTB-CB results were not available to the
consensus panel.
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Assessment measures

National Institutes of Health Toolbox Cognition Battery (NIHTB-
CB): The NIHTB-CB is a computerized cognitive screener that
takes approximately 30 minutes to administer and is validated to
use from ages 3 to 85 (Gershon et al., 2013). Individual subtest
performances (Weintraub et al., 2013) as well as composite
summary scores for Crystallized, Fluid, and Total Cognition are
provided (Heaton et al., 2014). The Crystallized Cognition
Composite includes the subtests: Oral Reading Recognition
(reading and pronunciation) and Picture Vocabulary (receptive
vocabulary). Measures comprising the Fluid Composite include
the subtests: Dimensional Change Card Sort (executive function/
set-shifting), Flanker Inhibitory Control and Attention (executive
function/attention), List Sorting Working Memory (working
memory), Pattern Comparison Processing Speed (complex
processing speed), and Picture Sequence Memory (episodic
memory). Specific test details, procedures, and extensive psycho-
metric evaluation are available elsewhere (Heaton et al., 2014;
Weintraub et al., 2013).

Statistical analyses

This study is unique because it provides analyses of two types of
NIHTB-CB reported scores. The first are “Norm Adjusted”
T-scores (M= 50, SD = 10) that have been a priori adjusted for age,
sex, race/ethnicity, and education (Casaletto et al., 2015). The
second are “Unadjusted” standard scores (M= 100, SD= 15) that
were standardized using the overall NIHTB-CB norming sample
(without regard to demographic variables) and then, for research
purposes in this paper, have been adjusted for age, sex, race/
ethnicity, and education of our participants through statistical
modeling.

Prior to analysis, all measures were screened visually for
univariate and multivariate outliers. Univariate outliers were
assessed with boxplots, and several were identified. However, only
one multivariate outlier was identified among the Norm Adjusted
scores based on a chi-square statistic of the Mahalanobis distance
with a p-value< .001; this outlier was removed from the analytic
sample with 158 participants remaining in the final sample.

The assumption of multivariate normality was assessed with a
multivariate qq plot and was reasonably met. Demographic data
and NIHTB-CB subtest performance were examined for group
differences using independent measures t-test on continuous
variables and chi-square on categorical variables (see Table 1).
Deeper exploration of the frequency, range, means, and standard
deviations of the subtest Picture Sequence Memory was done post
hoc to investigate possible difference by diagnosis when stratified
by race (see Appendix A).

To determine how well NIHTB-CB tablet subtest scores
differentiate those characterized by consensus diagnosis (the
“Gold Standard”) as either HCs or those with aMCI, a series of
discriminant function analyses (DFAs) with leave-one-out cross-
validation were performed. All individual NIHTB-CB subtests
scores were used in the DFA analyses (summary scores were not
included due to overlapping correlations). DFA allows for
evaluation of the unique contribution of each variable in rank
order. A positive or negative coefficient loading, respectively,
increases or decreases the final total score used to discriminate
groups. It is, therefore, recommended that the absolute value of the
coefficients (see Tables 2 and 3) be used to interpret which tests had
more influence over the model outcome (see Table 4). In each
model, leave-one-out cross-validation was used to assess model
accuracy; meaning that each observation was left out of the model
in turn and group membership can be predicted from the loadings
of each variable across functions (see Cross-Validation percentage
in each model; Table 4).

Separate DFA analyses were run for the Total Sample (N = 158)
and then separately for B/AA participants (n= 80) and White
participants (n= 78). The same analytic samples were used in the
Norm Adjusted score models and the Unadjusted score models to
allow for direct comparison of the models by sample (Total Sample
(N = 158), B/AA (n= 80), andWhite (n= 78)). In the DFAmodels
using the Norm Adjusted scores (a priori adjusted for age, sex,
race/ethnicity, education), all variables were entered into the
models in a single step with no additional control variables
included in the models (see Tables 2–4). In the DFA models using
Unadjusted scores, the control variables (age, sex, race/ethnicity,
and education) were added in a single step concurrent with the

Table 1. Sample characteristics

Total Sample HC aMCI B/AA White

N= 158 n= 96 n= 62 p-Value n= 80 n= 78 p-Value

Education (M/SD) 15.9 (2.6) 16.1 (2.7) 15.6 (2.4) .25 15.7 (2.6) 16.1 (2.6) .31
Age (M/SD) 70.2 (6.7) 69.0 (6.4) 72.1 (6.8) <.01* 69.9 (5.9) 70.4 (7.5) .60
Female (n%) 113 (71.5%) 75 (78.1%) 38 (61.3%) .03* 64 (80.0%) 49 (62.8%) .03*
B/AA (n%) 80 (50.6%) 43 (44.8%) 37 (59.7%) .10
White (n%) 78 (49.4%) 53 (55.2%) 25 (40.3%)
NIH Toolbox Cognition Battery (M/SD)
Crystalized Abilities
Picture Vocabulary 112.8 (9.1) 114.4 (9.1) 110.2 (8.5) <.01* 107.5 (7.3) 118.2 (7.4) <.01*
Oral Reading Recognition 107.4 (6.9) 108.1 (7.1) 106.3 (6.5) .09 103.9 (6.8) 111.0 (5.1) <.01*

Fluid Abilities
Flanker Inhibitory Control and Attention 90.0 (8.5) 91.8 (7.3) 87.3 (9.5) <.01* 87.5 (7.9) 92.6 (8.4) <.01*
Dimensional Change Card Sort 98.6 (8.8) 100.5 (8.2) 95.7 (8.9) <.01* 97.1 (7.9) 100.1 (9.4) .03*
List Sorting Working Memory 93.8 (11.9) 97.4 (10.4) 88.2 (12.0) <.01* 89.5 (11.4) 98.2 (10.8) <.01*
Pattern Comparison Processing Speed 84.3 (14.5) 86.9 (14.6) 80.2 (13.6) <.01* 80.3 (12.3) 88.3 (15.5) <.01*
Picture Sequence Memory 93.5 (12.1) 98.7 (11.3) 85.5 (8.2) <.01* 90.9 (11.8) 96.3 (11.8) <.01*

Note: To examine for group differences, independent measures t-test was used on continuous variables and chi-square statistic on categorical. Scores used in the NIH Toolbox portion of this
table were unadjusted standard scores (M= 100, SD= 15) available through NIH Toolbox Cognition for tablet. B/AA= Black/African American; HC= Healthy Controls; aMCI = Mild Cognitive
Impairment with amnestic features; M/SD=Mean/Standard Deviation.
*Significance p< .05.
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subtest variables (see Tables 3 and 4). A two-sample proportional
test was used to determine whether there was a statistically
significant (p< .05) difference between the proportion of
diagnoses correctly differentiated across model type (Norm
Adjusted versus Unadjusted) in the Total Sample and when
stratified by race (Table 4). A two-sample proportional test was
also used to determine whether there was a statistically significant
difference (p< .05) between the proportion of diagnoses correctly
differentiated by race (B/AA versus White) in the Norm Adjusted
model and Unadjusted model, respectively (see results section).

Results

Sample characteristics can be found in Table 1. HCs did not
significantly differ from those with aMCI in education. Age

differed significantly between HCs and those with aMCI in the
Total Sample, with HCs being approximately 3 years younger than
those with aMCI on average. There were significantly more female
HCs in the total sample than there were females with aMCI. HCs
consistently scored higher on NIHTB-CB subtests than those with
aMCI when using non-demographically corrected scores. Apart
from the crystalized measure Oral Reading Recognition, all
differences between HCs and those with aMCI were significant. In
a deeper post hoc exploration of the subtest Picture Sequence
Memory by diagnosis when stratified by race we found that the
range of scores was more restricted in theWhite sample than in the
B/AAwhen using both NormAdjusted and Unadjusted scores (see
Appendix A). There was also greater score range overlap between
the performance of HCs and those with aMCI in theWhite sample
than in the B/AA sample when using both Norm Adjusted and
Unadjusted scores (see Appendix A).

The B/AA sample did not significantly differ from the White
sample in education or age, and there was no significant difference
between the samples on these variables when further broken down
into HCs and those with aMCI. However, there were significantly
more female participants in the B/AA sample than the White
sample. White participants scored significantly higher on all
NIHTB-CB subtests than B/AA participants when using non-
demographically corrected scores; though, it should be noted that
the percentage of those with aMCI was greater in the B/AA sample
(59.7%) than in the White sample (40.3%).

Table 2 shows the individual contribution of tests within the
NIHTB-CB using the Norm Adjusted scores (a priori adjusted for
age, sex, race/ethnicity, and education) in the Total Sample and
stratified by race. Picture Sequence Memory was the subtest that
accounted for the largest proportion of the between-group
difference in the Total Sample and B/AA sample, followed by
List Sorting Working Memory. In the White sample, Picture
Sequence Memory was again the coefficient with the highest
loading followed by Oral Reading Recognition and Picture
Vocabulary.

Table 2. Discriminant function analyses differentiating those with amnestic
mild cognitive impairment from healthy controls in total sample and by race
using the norm adjusted NIH Toolbox Cognition for tablet T-scores

Discriminant function
standardized score

Variable Total Sample B/AA White

Crystalized Abilities
Picture Vocabulary −.03 .25 −.34*
Oral Reading Recognition .09 −.10 .39*
Fluid Abilities
Flanker Inhibitory Control and Attention .16 .11 .18
Dimensional Change Card Sort −.11 −.04 −.22
List Sorting Working Memory −.45* −.58* −.19
Pattern Comparison Processing Speed −.17 −.28 −.01
Picture Sequence Memory −.76* −.72* −.85*

Note: Coefficients are standardized structure matrix scores that identified the discriminant
function. The absolute value of coefficient loadings represents the unique contribution of
each measure in rank order. All variables contributed to the model. Scores used were the
norm a priori adjusted (age, sex, race/ethnicity, and education) T-scores (M= 50, SD= 10)
available through NIH Toolbox Cognition for tablet. B/AA= Black/African American.
*Coefficients with an absolute value of at least .30 were interpreted.

Table 3. Discriminant function analyses differentiating those with amnestic
mild cognitive impairment from healthy controls in the total sample and by race
using the unadjusted NIH toolbox cognition for tablet standard scores

Discriminant function
standardized score

Variable Total Sample B/AA White

Crystalized Abilities
Picture Vocabulary −.23 −.05 −.39*
Oral Reading Recognition .26 .31* .24
Fluid Abilities
Flanker Inhibitory Control and Attention −.02 .01 −.07
Dimensional Change Card Sort −.10 .15 −.27
List Sorting Working Memory −.27 −.26 −.23
Pattern Comparison Processing Speed −.03 −.09 .07
Picture Sequence Memory −.74* −.74* −.72*
Covariates
Age .06 .15 −.02
Sex −.31* −.44* −.19
Education −.11 −.33* .23
Race .02 −− −−

Note: Coefficients are standardized structure matrix scores that identified the discriminant
function. The absolute value of coefficient loadings represents the unique contribution of
each measure in rank order. All variables contributed to the model. Scores used were
unadjusted standard scores (M= 100, SD= 15) available through NIH Toolbox Cognition for
tablet, and then correcting for differences within themodel using age, sex, race/ethnicity, and
education as covariates. B/AA= Black/African American.
*Coefficients with an absolute value of at least .30 were interpreted.

Table 4. Discriminant function analysis results by model type

Norm
Adjusted Unadjusted p-Value

Total Sample .70
% Correctly Identified 77.2% 79.1%
% Correctly Identified After
Cross-Validation

72.8% 75.3%

% of HC 84.4% 81.3%
% of aMCI 54.8% 66.1%
All B/AA Sample .86
% Correctly Identified 71.3% 78.8%
% Correctly Identified After Cross
Validation

67.5% 70.0%

% HC 74.4% 69.8%
% of aMCI 59.5% 70.3%
All White Sample 1.00
% Correctly Identified 78.2% 82.1%
% Correctly Identified After
Cross-Validation

71.8% 73.1%

% HC 83.0% 86.8%
% of aMCI 48.0% 44.0%

Note: Norm Adjusted = model using a priori norm adjusted (age, sex, race/ethnicity, and
education) T-scores (M= 50, SD= 10); Unadjusted=model using unadjusted standard scores
(M= 100, SD= 15) and, then, correcting for differences within the model using age, sex, race/
ethnicity, and education as covariates; p-value= a two-sample proportional test was used to
determine whether there was a statistically significant difference between the proportion of
diagnoses correctly predicted by eachmodel (based on a p< .05) between the NormAdjusted
and Unadjusted models; B/AA= Black/African American; HC= Healthy Controls; aMCI = Mild
Cognitive Impairment with amnestic features.
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DFAs that controlled for age, sex, race/ethnicity, and education
within the models using the Unadjusted NIHTB-CB standard
scores can be seen in Table 3. This table shows the individual
contribution of NIHTB-CB subtests in the Total Sample and
stratified by race. In the Total Sample analysis, Picture Sequence
Memory was the subtest that accounted for the largest proportion
of the between-group difference followed by sex. In the B/AA
sample, Picture Sequence Memory was again the coefficient with
the highest loading followed by sex, education, and Oral Reading
Recognition, respectively. In the White sample, Picture Sequence
Memory was the coefficient with the highest loading followed by
Picture Vocabulary.

Table 4 shows a side-by-side comparison of DFA results by
model type (Norm Adjusted versus Unadjusted) in the Total
Sample and stratified by race (B/AA; White). The Norm Adjusted
and Unadjusted DFAs did not significantly differ in their ability to
discriminate consensus-confirmed HCs from those with a
consensus diagnosis of aMCI across samples (Total Sample, B/
AA, White). Further, neither the Norm Adjusted (p= .68) nor
Unadjusted models (p= .80) significantly differed in their overall
discriminant ability when comparing model type by race. Though
the overall accuracy of the models did not significantly differ by
race, the White sample models were notably worse at identifying
those with aMCI than the B/AA sample models. This finding
indicates that in the White sample the ability to discriminate
between the two diagnoses (HC versus aMCI) is relatively weak in
both the Fully Adjusted and Unadjusted models.

Discussion

We found that the DFA models using Norm Adjusted scores
produced a similar pattern of results to the models using
Unadjusted scores that were corrected within the analyses for
age, sex, race/ethnicity, and education. Both White sample models
were notably worse at identifying those with aMCI than the B/AA
sample models. To explore this difference, we reexamined
frequency plots, ranges, means, and the standard deviations of
the subtest that accounted for the largest proportion of the
between-group difference by sample type in each model—Picture
Sequence Memory. We found that the White sample had a
restricted range of scores when compared to the B/AA sample and
there was greater score range overlap between HCs and those with
aMCI in the White sample than in the B/AA sample. Thus, the
coefficient loadings in the White models are describing a small
between-group difference that is being reflected in the relatively
low discriminant accuracy of the models. Similar to our findings in
the White sample, a study found that the NIHTB-CB yielded a
moderate level of specificity but demonstrated chance level
sensitivity to subtle cognitive impairment in a racially diverse
sample (Buckley et al., 2017).

Picture Sequence Memory (a test of episodic memory) was the
subtest that accounted for the largest proportion of between-group
difference in each model. This finding is unsurprising as episodic
memory is often one of the earliest cognitive domains to decline in
population-based studies of preclinical Alzheimer’s dementia, and
measures of episodic memory are one of the best predictors of
progression from MCI to Alzheimer’s dementia in most
longitudinal studies (Bastin & Salmon, 2014). Other studies of
the NIHTB-CB have found Picture Sequence Memory to be an
important contributor to differentiating HCs from those with MCI
(Garcia et al., 2023; Kairys et al., 2022) and differentiating those
with aMCI from those with non-amnestic MCI (Garcia et al.,

2023). However, a study conducted in a memory clinic setting
found that many cognitively impaired participants had difficulty
completing the task Picture Sequence Memory and it was
ultimately dropped from the analyses and replaced by another
memory task (Rey Auditory Verbal Learning Test; Hackett et al.,
2018). Thus, while memory tasks are important in differentiating
those with a memory deficit from those without, Picture Sequence
Memory may be too difficult to use as a standalone screener in a
clinical setting.

When stratifying by race using NIHTB-CB standard scores,
Oral Reading Recognition (a single word reading task) was among
the largest unique contributors accounting for between-group
difference in the B/AA sample, while Picture Vocabulary (a
receptive language ability task) was in the White sample. Similarly,
a recent study with a majority B/AA older adult sample found Oral
Reading Recognition to be one of the strongest unique contributors
in identifying HCs from those with MCI (both amnestic and non-
amnestic MCI) when using the NIHTB-CB standard scores for
tablet (Garcia et al., 2023). Another study using NIHTB-CB with
an all B/AA older adult sample found that Oral Reading
Recognition and Picture Vocabulary best differentiated HCs from
those with aMCI when using NIHTB-CB Norm Adjusted scores
for laptop (Kairys et al., 2022). In our sample, we found, when
using the NIHTB-CB Norm Adjusted scores for tablet, that
crystalized abilities were among the strongest contributors to the
model identifying HCs from those with aMCI in theWhite sample
but not in the B/AA sample. These findings are interesting, as both
receptive language ability tasks and single word reading tasks are
thought to generally remain stable across the lifespan or become
“crystallized” and are, thus, thought to provide a reasonably
accurate estimate of premorbid cognitive functioning in older
adults with and without neurodegenerative disease (Grober et al.,
1991; Snitz et al., 2000). However, individuals with MCI have been
shown to perform worse than HCs on a receptive language task
(Peabody Picture Vocabulary Test; Jokel et al., 2019) and those
with AD have been shown to perform worse than those with MCI
on that same task (Snitz et al., 2000). Thus, decline in language
ability may be more important than is generally acknowledged for
identifying those declining cognitively. However, neither Oral
Reading Recognition nor Picture Vocabulary were strong
discriminating variables in the Unadjusted or Norm Adjusted
models when the total (race combined) sample was used; this was
due to the opposing coefficient loadings (i.e., negative versus
positive) between the B/AA andWhite samples. Because this effect
washed away once the race stratified samples were unified, it is
important to consider how combining racial samples can some-
times obscure important differences—lending further support to
the call to conduct more studies that focus on understudied
minority populations and cross-study comparisons of factor
invariance.

When looking at the models using unadjusted NIHTB-CB
scores, sex was a strong discriminating variable in the Total Sample
and in the B/AA models, but not in the White models. Sex effects
have been consistently shown across studies with differences
typically favoring males in visuospatial tasks specifically and
favoring femalesmore broadly but particularly in episodicmemory
tasks (Heaton, 2004; Lippa et al., 2010). However, there were
significantlymore females in theHC group than in the aMCI group
and there were more female HCs in the B/AA sample than in the
White. Thus, it is difficult to parse apart whether the relatively high
coefficient loading is related to sex effects, or the uneven
distribution of sex among variables (i.e., HC versus aMCI).
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Similarly, the B/AA group differences are likely driving the sex
effects seen in the Total Sample model using Unadjusted scores.

Despite there being no significant difference in average level of
education between participants when stratified by race, we found
thatWhite participants scored significantly higher on average than
B/AA participants on all NIHTB-CB subtests. This finding is
consistent with a previous finding using NIHTB-CB (Casaletto
et al., 2015) and a finding using traditional neuropsychological
measures (Manly et al., 1998). Further, education was among the
largest unique contributors in identifying HCs from those with
MCI in the B/AA sample in the model using Unadjusted NIHTB-
CB scores. Conversely, education was not a strong discriminating
variable in the Total Sample model or the White sample model
using Unadjusted NIHTB-CB scores. Together, these results
reiterate the meaningful and complicated impact of demographic
factors on assessment outcomes. Historically, neuropsychologists
have sought to address cultural disparities by making demo-
graphically adjusted norms. However, such norms are not able to
account for all sociocultural or individual factors (Byrd & Rivera-
Mindt, 2022;Manly, 2005; Rosselli et al., 2022). Nevertheless, when
such norms are used appropriately, they offer greater diagnostic
accuracy (Manly, 2005; Werry et al., 2019) and have been recently
shown to reduce the association between education and cognitive
performance in a racially diverse sample of older adults (Mungas
et al., 2021). The NIHTB-CB norms specifically have been shown
to successfully reduce the impact of demographic variables on
performance (Casaletto et al., 2015); thus, use of the norm
corrected scores provided by NIHTB-CB or within model
demographic correction is suggested.

Limitations and future directions

One limitation of this study is that we were not able to include older
adults over the age of 85 due to a lack of norms in the field for those
above the age of 85. Other studies such as the Advancing Reliable
Measurement in Alzheimer’s Disease and Cognitive Aging Study
are seeking to address this problem by extending the NIHTB
norms to those over the age of 85 (Weintraub et al., 2022). HCs in
our sample were younger by 3 years on average than those
diagnosed with aMCI. This finding is unsurprising as increasing
age in adults is consistently and strongly associated with poorer
performances (Heaton, 2004) as well as a higher risk of cognitive
impairment associated with MCI and all-cause dementia
(Alzheimer’s Association, 2022; Gaugler et al., 2022). Those that
participated in this study with a consensus diagnosis ofMCI all had
amnestic features. Future studies may attempt to recruit larger
numbers of those with a diagnosis of non-amnestic MCI to
examine potential differences. There was an uneven distribution of
sex among HCs and those with aMCI in our study sample, as well
as differences in distribution of sex by race. Future studies may aim
to recruit an equal number of males and females, though this
continues to be an issue in many ongoing longitudinal studies of
cognitive change. Differences were found between models when
stratified by race. For example, although both models using the
B/AA sample were more accurate at identifying those with aMCI
than themodels using theWhite sample, it should be noted that the
B/AA participants were better balanced in terms of the number of
aMCI versus HCs, and theWhite sample demonstrated a restricted
range with small between-group difference on the strongest
discriminating variable (Picture SequenceMemory). It is likely that
these differences also impacted the results of the combined sample
model. Though, the NIHTB-CB norms have been shown to

successfully reduce the impact of demographic variables on
performance (Casaletto et al., 2015), it is unclear to what degree the
differences between racial groups in our study are due to
differences in sample distribution and demographic factors.
Future DFA studies should aim to recruit equal numbers of racial
groups by diagnosis. Further, because the between-group differ-
ence of HCs versus those with aMCI appears small, future studies
should aim to recruit larger sample sizes.

Conclusions

In our study we compared two types of methods using scores
available through NIHTB-CB: a priori adjusted (age, sex, race/
ethnicity, and education) T-scores and unadjusted standard scores
that were corrected for age, sex, race/ethnicity, and education
within the analyses. Our findings indicate that either method can
be used to produce similar results when identifying HCs and those
with aMCI. However, despite the use of normalized scores or
demographic covariates, differences between models when
stratified by race were noted—emphasizing the need to continue
efforts to include underrepresented groups in research seeking to
understand AD and other dementia types. We found that the
White sample models were less successful at identifying those with
aMCI across model type than the B/AA sample. The use of the
norm corrected scores is strongly recommended for use in a
clinical setting, and norm corrected scores or within model
demographic correction are suggested when using NIHTB-CB in
research settings.

Our findings do not provide clear support for use of the
NIHTB-CB as a standalone screener in a clinical setting; however,
NIHTB-CB has relative ease and efficiency of administration when
compared to traditional neuropsychological methods and has been
shown to perform as well as traditional neuropsychiatric test
batteries at classifying aMCI in a clinical setting (Hackett et al.,
2018). Though, further work is needed to optimize computerized
batteries for use in clinical settings. For example, there were
subtests in the NIHTB-CB that provided comparatively little
information in differentiating HCs from those with aMCI, and
some tasksmay be too difficult for cognitively impaired individuals
to complete reliably (Hackett et al., 2018). Further, pairing the
complete or partial NIHTB-CB (a measure with specificity) with a
more sensitive measure like the Montreal Cognitive Assessment
may be helpful (Larner, 2019; Nasreddine et al., 2005), but more
research is needed. In research settings, it will be important to
consider the aims and constraints of the study when determining
whether to use NIHTB-CB (e.g., ease and efficiency of
administration, minimizing false negatives/sensitivity versus
minimizing false positives/specificity).
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