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The structure of energy fluxes in wave turbulence
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We calculate the net energy per unit time exchanged between two sets of modes in
a generic system governed by a three-wave kinetic equation. Our calculation is based
on the property of detailed energy conservation of the triadic resonant interactions.
In a first application to isotropic systems, we re-derive the previously used formula
for the energy flux as a particular case for adjacent sets. We then exploit the new
formalism to quantify the level of locality of the energy transfers in the example of
surface capillary waves. A second application to anisotropic wave systems expands the
currently available set of tools to investigate magnitude and direction of the energy
fluxes in these systems. We illustrate the use of the formalism by characterizing the
energy pathways in the oceanic internal wavefield. Our proposed approach, unlike
traditional approaches, is not limited to stationarity, scale invariance and strict locality.
In addition, we define a number w that quantifies the scale separation necessary
for two sets of modes to having negligible mutual energy exchange, with potential
consequences in the interpretation of wave turbulence experiments. The methodology
presented here provides a general, simple and systematic approach to energy fluxes in wave
turbulence.
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1. Introduction

Wave turbulence has a six-decade-long successful record in describing inter-scale energy
transfers in nonlinear wave media in geophysics – internal inertia gravity waves (Olbers
1976; Lvov & Tabak 2001), surface gravity waves (Hasselmann 1962; Zakharov &
Filonenko 1967b) and capillary waves (Zakharov & Filonenko 1967a), Rossby waves
(Zakharov & Piterbarg 1988), inertial waves (Galtier 2003), astrophysics – e.g. plasma
(Sagdeev & Galeev 1969; Zakharov et al. 1972) – solid-state physics (Ziman 2001),
acoustic waves (Zakharov & Sagdeev 1970), vibrating plates (Düring, Josserand & Rica
2006) and Bose–Einstein condensates (Nazarenko 2011).
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In addition to a close formal similarity to hydrodynamic turbulence, the large theoretical
relevance of wave turbulence is related to the derivation of non-equilibrium cascade states
known as the Kolmogorov–Zakharov (KZ) solutions (Zakharov, L’vov & Falkovich 1992).
Unlike the ‘dimensional’ Kolmogorov spectrum of three-dimensional (3-D) turbulence,
the KZ spectra are analytical solutions of the equation that represents the main object of
wave turbulence theory, namely the wave kinetic equation (WKE). The WKE describes the
time evolution of the spectral energy density due to the nonlinear resonant energy transfers
between different wave modes.

Non-zero inter-scale energy fluxes are a fundamental feature of wave turbulence that is
still far from being fully understood – see e.g. the recent works Hrabski & Pan (2022) and
Dematteis & Lvov (2021). In geophysical applications, the study of wave turbulence fluxes
dates back to the early 1980s for internal waves (McComas & Müller 1981; Holloway,
Henyey & Pomphrey 1986) and surface gravity waves (Hasselmann & Hasselmann 1981).
Those early studies relied mainly on diffusive approximations of the collision operator,
the right-hand side of the WKE that describes the irreversible modal energy transfers
due to wave–wave interactions. Subsequent improvements of the approximations to flux
computations led to important theoretical and numerical tools that are used up to this
day. For the surface gravity wave problem, the numerical schemes currently employed in
the WAM global model of wave forecasting (Hasselmann & Hasselmann 1985; Resio &
Perrie 1991; Komen et al. 1996; Janssen 2004) use approximations of the main resonant
wave quartets that are responsible for the direct and inverse cascade of energy and wave
action through the wave spectrum. This allows for accurate predictions of the global sea
states, explaining, for instance, the formation of the large oceanic swells from an inverse
cascade process towards the long waves. In the ocean interior, the direct cascade in the
oceanic internal wavefield due to resonant wave triads is modelled by what is called the
fine-scale parametrization of oceanic mixing and dissipation (Gregg (1989), Henyey (1991)
and Polzin, Toole & Schmitt (1995)). The fine-scale parametrization is a fundamental
component of the global models of ocean circulation (Polzin 2009; MacKinnon et al.
2017; Whalen et al. 2020; Musgrave et al. 2022). The scaling of this phenomenological
parametrization is based on the ‘induced diffusion’ approximation of the WKE of internal
waves (McComas & Bretherton 1977). In the fine-scale parametrization framework, a
downscale flux in the internal waves is associated with the production of mixing and
dissipation by the turbulence that is generated when the internal waves overturn and break
due to hydrodynamic instabilities. This mixing allows for bottom dense water to slowly
upwell towards the surface at low latitudes, with major consequences on the meridional
overturning circulation in the ocean (Thorpe 2005; Garabato & Meredith 2022). Both of
these notable examples, oceanic surface and internal waves, require understanding of the
inter-scale fluxes being transferred through a random bath of resonantly interacting waves.
This understanding is important not only for the quantification of the wavefield itself, but
also for the paramount implications of the coupling of these systems with the atmosphere
and other components of the climate system.

The approximation schemes mentioned above make use of uncontrolled, often empirical
approximations. From a theoretical perspective, the computation of energy fluxes from the
collision operator of the WKE is elusive, since the collision operator itself is vanishing in
a stationary state. For the KZ spectra, as explained in Zakharov et al. (1992) and in § 3.1
below, there is an indeterminate expression of the type 0/0 that requires regularization
(using L’Hôpital’s rule). The flux is thus given by the coefficient of the next-order term in
a Taylor series expansion of the collision operator, centred in the KZ exponent (Zakharov
et al. 1992). However, for non-KZ stationary states, which are relevant solutions e.g. in
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anisotropic systems like Rossby waves (Nazarenko 2011) and internal waves (Lvov et al.
2010), in general it is not clear how to calculate the flux from the collision operator.
Moreover, some of the early quantifications of energy transfers failed to notice the key
difference between the energy density time increment and the actual energy flux. The
idea can be explained with the help of a one-dimensional (1-D) example. Let ėp be the
energy density rate of change, and Fp the energy flux, where p is the scalar wavenumber
variable. In general, the energy balance for an infinitesimal interval [p, p + dp] reads
ėp dp = Fp − Fp+dp. A slightly positive ėp could correspond to a negative or positive flux
alike, as long as Fp is a decreasing function of p. When ėp is vanishing instead – which
defines stationary conditions – the flux is constant in p, but its value cannot be determined
from ėp alone. Thus the sign of ėp is quite unrelated to the direction and magnitude of Fp!
This objection was put forward in Holloway (1980), arguing that close to a stationary state,
the small value of ėp has nothing to do with the time scale of the energy pathways, or more
precisely with the ‘residence time’ of energy in the wavefield. This time scale is dictated by
the magnitude of Fp. Even when the difference between the two quantities has been treated
correctly, much more emphasis has been given in the literature to the evaluation of the rate
(ėp in the intuitive example) rather than to the actual flux (Fp). Finally, another remarkable
theoretical need is the generalization of the theory of the fluxes of conserved quantities to
wave systems that are not self-similar, since the bulk of the theory was developed mainly
for scale-invariant spectra (Zakharov et al. 1992; Nazarenko 2011).

To summarize, the existing body of literature is focused on calculating energy fluxes
in stationary isotropic scale-invariant wave turbulence systems. Yet, the kinetic equation
contains a lot of information about wave–wave interactions that is not currently utilized.
Here, we propose a way to calculate energy fluxes that is free of these limitations.

In this work, we focus on the study of three-wave collision operators, and tackle the
problem of quantifying the associated energy transfer between two generic disjoint control
volumes in Fourier space. We introduce a logical operator, namely the characteristic
interaction weight; this weight allows us to extract the flux between the two control
volumes from the collision operator, by singling out those triads of wavenumbers that
participate in a direct energetic link between the control volumes themselves. The
definition of the characteristic interaction weight is based on a fundamental symmetry
of the three-wave collision operators, namely the detailed energy conservation property
(Kraichnan 1959). As a result, any non-vanishing energy fluxes, even in a stationary
state, can be calculated by integration of a well-defined non-vanishing function. We
call this function the transfer integral of the problem. Note that these calculations are
exact: they do not employ any approximation other than the assumption of validity of the
wave kinetic equation. Moreover, self-similarity is not required. Our results establish a
formal wave turbulence parallel to the Kraichnan (1959) computation of energy fluxes for
hydrodynamic turbulence at high Reynolds numbers, versions of which have been used
for different models of turbulence (e.g. see Kraichnan 1975; Rose & Sulem 1978; Eyink
1994).

In our approach, we postulate a governing wave kinetic equation with an inertial range
of scales. In support of this kinetic assumption, we appeal to the current fervent research
towards a rigorous justification of the WKE from the deterministic equations of motion
(Choi, Lvov & Nazarenko 2004; Nazarenko 2011; Lukkarinen & Spohn 2011; Eyink &
Shi 2012; Chibbaro, Dematteis & Rondoni 2018; Onorato & Dematteis 2020; Buckmaster
et al. 2021; Deng & Hani 2021a,b; Banks et al. 2022; Rosenzweig & Staffilani 2022).

The paper is organized as follows. In the remainder of § 1, we set the stage by introducing
the WKE and its relevant properties. Section 2 contains our ‘main statement’ in the
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form of a formula for the computation of energy transfers between two generic control
volumes in spectral space. Its application to isotropic systems is treated in § 3, where the
standard flux formula of isotropic wave turbulence is recovered as a particular case of
the main statement for adjacent control volumes, and the concept of transfer integral is
defined. In § 4, we illustrate the results for the surface capillary wave example, including
a detailed quantification of the locality properties of the system. Section 5 is devoted to
the application to anisotropic systems, followed by a practical illustration for the internal
wave problem in § 6. In § 7, we exploit the transfer-integral formulas derived previously
to calculate the convergence conditions for the energy flux and to define a number w
quantifying the level of locality of the energy transfer. We discuss and summarize our
results in § 8.

1.1. Wave kinetic equation
We start from the WKE of a system with three-wave resonant interactions (Zakharov et al.
1992; Nazarenko 2011):

∂np

∂t
=
∫

Rd×Rd
dp1 dp2J(p; p1, p2), J(p; p1, p2) = R0

12 − R1
02 − R2

01,

where R0
12 = 4π |V0

12|2 f 0
12 δ(p0

12) δ(ω0
12), f 0

12 = n1n2 − np(n1 + n2),

⎫⎪⎬
⎪⎭ (1.1)

and p0
12 = p − p1 − p2, ω0

12 = ωp − ω1 − ω2. The variable np is the d-dimensional
wave-action spectral density at wavenumber p ∈ R

d. For simplicity, we denote pi by its
index i in subscripts and superscripts, and the wavenumber variable p by index 0. Action
can be viewed as the ‘number’ of waves with a given wavenumber. The function ωp is
the linear dispersion relation of the system, taking the positive branch by convention.
Consequently, wave action multiplied by frequency ωpnp is the quadratic spectral energy
density. Note that wavenumbers are vectors in R

d, while frequencies are always positive
scalars. The factor V0

12 is the interaction matrix element (or scattering cross-section)
describing the transfer of wave action among the members of a triad composed of three
wavenumbers p, p1, p2. V0

12 is invariant under permutation of the lower indices 1 and 2,
and therefore so is R0

12. We refer to J(p; p1, p2) as the interaction kernel (or collision
integrand) associated with the given WKE. The right-hand side of (1.1) is then called the
collision integral, a quadratic functional in the action density np. The collision integral
captures the irreversible transfers of action between different modes as the outcome of
nonlinear interactions between triads of wavenumbers in resonance with each other.

1.2. Resonant manifold
Let the dispersion relation of the system be of the form ωp = ω(|p1|, . . . , |pd|),
positive-definite, monotonic in each component, and such that it allows for non-trivial
solution of the three resonant conditions

(I) :
{

p = p1 + p2,
ωp = ω1 + ω2,

(II) :
{

p1 = p + p2,
ω1 = ωp + ω2,

(III) :
{

p2 = p + p1,
ω2 = ωp + ω1.

(1.2a–c)

For instance, limited to power-law dispersion relations ω(p) ∝ |p|α , the condition α > 1
is necessary and sufficient for the existence of solutions to (1.2a–c) (Zakharov et al. 1992).
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Note that the invariance upon permutation of the indices 1, 2 in |V0
12| and f 0

12 allows
us to express the interaction kernel as J(p; p1, p2) = R0

12 − 2R1
02. This, in turn, allows

us in a completely general way to have to deal with only resonance types I (i.e.
the sum interactions) and II (i.e. the difference interactions). To simplify the notation
in the following, let us denote by J (l)(p, p1, p2), with l = I, II, III, the three terms
R0

12, −R1
02, −R2

01, respectively.
In general, the WKE can then be reduced to

∂np

∂t
=
∑

l

∫
Ωl

dΩl J(l), with l = I, II, III, (1.3)

where J(l) is the result of analytical integration of the d + 1 independent delta functions,
and Ωl is a (d − 1)-dimensional representation of the respective branch of the resonant
manifold. Note that each of the resonant conditions in (1.2a–c) can have multiple
independent solutions (cf. § 6), in which case in (1.3), a summation over the independent
solutions of each branch is implied. Once the WKE collision integral is suitably expressed
in the form (1.3), integration over the remaining d − 1 degrees of freedom can be
performed. The integration can be performed either analytically or numerically depending
on the particular situation.

1.3. Detailed energy conservation
We end this introductory section by highlighting a fundamental property of the interaction
kernel. The three-wave resonant interactions in the collision integral (1.1) satisfy detailed
energy conservation (Onsager 1949; Kraichnan 1959; Hasselmann 1966; Rose & Sulem
1978; Eyink 1994).

Property: detailed energy conservation. We define the quantity

Z(pa, pb, pc) = ωaJ(pa; pb, pc) + ωbJ(pb; pa, pc) + ωcJ(pc; pa, pb). (1.4)

Then for any given triad of wavenumbers pa, pb, pc, we have

Z(pa, pb, pc) = 0. (1.5)

A proof is provided in Appendix A. We note that the equality holds in the sense of
distributions, sinceZ(pa, pb, pc) contains delta functions.

The physical meaning of Z(pa, pb, pc) is the amount of energy generated during
the triadic interactions of three wavenumbers. This quantity is zero due to energy
conservation, as ensured by the frequency delta functions. We note that this property
holds for triads of wavenumbers on the resonant manifold (1.2a–c), as well as for triads of
wavenumbers off the resonant manifold.

2. Energy transfer between two disjoint sets of wavenumbers

Equation (1.1) is derived under the assumption that the quadratic energy is a good
approximation of the total energy of the system. The quadratic energy density ωpnp is
preserved exactly by the time evolution of (1.1), representing what is sometimes referred
to as an adiabatic invariant (see e.g. § 8.5.1 in Nazarenko 2011). Mathematically, this
property is enforced by the frequency delta function in the collision integral, which can be
interpreted as the condition of energy conservation in the individual triadic interactions.
This is captured by the property of detailed energy conservation (1.5).
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l = I l = II l = III

χ
(l)
B (p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if p1 ∈ B, p2 ∈ B
ω1

ω1 + ω2
if p1 ∈ B, p2 /∈ B

ω2

ω1 + ω2
if p1 /∈ B, p2 ∈ B

0 otherwise

{
1 if p1 ∈ B

0 if p1 /∈ B

{
1 if p2 ∈ B

0 if p2 /∈ B

Table 1. Specification of the interaction weights in (2.1).

From now on, we will refer to ep = ωpnp simply as the spectral energy density.
After multiplying (1.1) by ωp, the right-hand side contains the energy transfers between
wavenumber p and all possible pairs of wavenumbers p1 and p2 that interact resonantly
with p.

Let us consider A ⊂ R
d and B ⊂ R

d, with A ∩ B = ∅, i.e. two disjoint closed subsets of
the d-dimensional Fourier space. For a given specification of the action spectrum np, we
wish to quantify how much power (energy per unit of time) is transferred instantaneously
from set A to set B. The following statement holds.

Main statement: the net power transferred instantaneously from set A to set B under the
governing resonant dynamics of (1.1) is given by

PA→B = −
∫

A
d pωp

∫
Rd×Rd

dp1 dp2

∑
l

χ
(l)
B (p1, p2)J (l)(p, p1, p2), (2.1)

with l = I, II, III, where χ
(l)
B (p1, p2) is a characteristic interaction weight defined in

table 1.
We give a sketch of the proof.
The structure of the collision integral can be interpreted as follows. Given any

two wavenumbers p1 and p2 in resonance of type l with p, the interaction kernel
J (l)(p, p1, p2) quantifies how much wave-action density (per unit time) is being
transferred instantaneously to p by the three-wave interaction between the wavenumbers
p, p1 and p2. When the term is positive, contributing to an increment of np, wavenumber
p is generated as an output of the interaction. When the term is negative, contributing to
a decrement of np, wavenumber p is absorbed as an input of the interaction. The type of
three-wave interaction (coded by l) and the sign of the contribution are enough information
to ‘build’ the directed energy diagram associated with the triad. Then integrating over all
possible combinations of p1 and p2 provides the net action increment per unit time for
mode p, i.e. the left-hand side ṅp. Multiplying the contribution by ωp allows us to quantify
the net energy increment per unit time for mode p.

Thus a triad of wavenumbers p, p1, p2 on the resonant manifold leads to an
instantaneous change of np to np + ṅp|012 dt, where we define ṅp|012 := J(p; p1, p2)
(index 0 is used here to denote wavenumber p). This increases the energy at p by a quantity
ėp|012 dt = ωpṅp|012 dt. The property of detailed energy conservation (1.5) can now be
written equivalently as either of

ωpṅp|012 + ω1ṅ1|012 + ω2ṅ2|012 = 0,

ėp|012 + ė1|012 + ė2|012 = 0.

}
(2.2)
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The reasoning behind the result (2.1) is the following. First, we express ė1|012 and ė2|012
as a function of ė0|012, quantifying how much of the energy transferred to wavenumber p
comes from p1, and how much from p2. Second, we must consider all possible cases of
whether p1 and p2 are or are not in set B to quantify the energy transferred from set B to
a generic point p ∈ A. The interaction weights χ

(l)
B (p1, p2) appear naturally as a result of

this calculation. Third, an outer integration over all points p ∈ A yields the total energy
transferred from set B to set A per unit time, i.e. an instantaneous power. The key to the
proof, found in Appendix A, is the detailed energy conservation property (1.5).

3. Isotropic systems

3.1. Overview on the theory of energy fluxes
We start here by revisiting the classical arguments for the spectral energy fluxes in wave
turbulence. These arguments appear in Zakharov et al. (1992). Here, we revisit these
arguments to prepare for additional insights into spectral energy transfers that are obtained
by using our formalism. Our first application of (2.1) is to isotropic scale-invariant systems.
We assume a power-law dispersion relation allowing for three-wave resonant interactions
and scale-invariant matrix elements with homogeneity exponent m,

ωp = κpα, α > 1,

∣∣∣V0
12

∣∣∣2 = V2
0 p2m f

(
p1

p
,

p2

p

)
, (3.1a,b)

allowing us to look for general solutions to (1.1) of the form

np = Ap−s. (3.2)

Let us start by reviewing some classical results for the energy fluxes in such systems,
summarized in Chapter 3 of Zakharov et al. (1992). In direct analogy with the local energy
cascades in isotropic turbulence, it is assumed that the interactions are sufficiently local in
Fourier space (Kolmogorov 1941; Kraichnan 1959; Rose & Sulem 1978; Eyink 2005) so
that one can assume a differential continuity equation for the 1-D spectral energy density

∂ep

∂t
= π(2p)(d−1)ωpIp = −∂F

∂p
, (3.3)

where the right-hand side of the WKE is interpreted as minus the divergence of a flux
F. Here, Ip is the collision integral, multiplied by the area of the d-dimensional sphere.
Supposing that there are no energy sources or sinks in an inertial range [ε, M], taking
ε → 0 and M → ∞, and solving for the flux F, one obtains

F( p) = −π

∫ p

0
dp′ (2p′)(d−1)ω′

pIp′ . (3.4)

Interpreting the collision integral as the divergence of a pointwise flux subtends the
intuition that energy transfers happen locally in Fourier space. The underlying reasoning
involves the following steps. Assume a partition of Fourier space into small boxes of width

p. Assume that the time variation of the energy contained in the box between p and
p + 
p, say ė[p,p+
p] is due only to the energy exchanges with its two adjacent boxes.
Call Fp the net power exchanged at p, and Fp+
p the net power exchanged at p + 
p.
Express energy conservation for the box under consideration as ė[p,p+
p] = Fp − Fp+
p.
Now take 
p → 0, and obtain (3.3) by standard transition to a continuum representation.
In turbulence, the conditions on how fast the correlations have to decay for the transfers to
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be sufficiently local are studied in Kraichnan (1959) and Eyink (1994). In wave turbulence,
a transposition of the same arguments leads to the statement that if the collision integral
is convergent, then the interactions are sufficiently local for the differential conservation
picture (3.3) to hold. For this reason, the convergence conditions for the collision integral
in (1.1) are named the ‘locality conditions’ (Zakharov et al. 1992). However, we are also
not aware of a rigorous proof of this fact.

When locality holds, the expression for the instantaneous energy flux (3.4) is valid in
general, in both stationary and non-stationary conditions. The wave turbulence theory
of scale-invariant spectra (Zakharov et al. 1992) focuses on the stationary solutions to
(1.1). These can be equilibrium (F = 0) or non-equilibrium (F = const.) solutions, i.e.
the Rayleigh–Jeans (RJ) and the Kolmogorov–Zakharov (KZ) solutions, respectively. The
KZ spectrum can be obtained dimensionally or via the Zakharov–Kraichnan conformal
transformations (Zakharov & Filonenko 1967a; Zakharov et al. 1972), and we have

nRJ
p = Ap−α, nKZ

p = Ap−s0, with s0 = m + d. (3.5)

A paradox (only apparent) has to be solved: a constant flux F /= 0 must result from
integrating a vanishing integrand in (3.4)! It is convenient to switch to ω space using
the dispersion relation as the change of variables, by defining

Iω = π(2p)d−1
(

dω

dp

)−1

Ip, so that Iω = ωσ−2(V0A)2 I(s), (3.6)

where I(s) is a non-dimensional integral that vanishes in the stationary states, and σ =
2(m + d − s)/α. Now (3.4) reads

F(ω) = −
∫ ω

0
dω′ ω′Iω′ = −ωσ (V0A)2 I(s)

σ
. (3.7)

At the KZ solution (3.5), we have σ = 0, and therefore an indeterminate form 0/0.
This indeterminate form is then regularized by Taylor-expanding I(s) to first order, or
equivalently by using l’Hôpital’s rule. We thus obtain

F = −(V0A)2 dI
ds

∣∣∣∣
s=s0

, (3.8)

where the locality conditions ensure that dI/ds|s=s0 is finite, with the property that the flux
is positive if s0 > α, i.e. the KZ spectrum is steeper than the equilibrium spectrum. The
solution does not exist if s0 < α. Moreover, note that F is independent of ω, consistently
with stationarity and corresponding to a constant downscale energy flux in the wave
turbulence inertial range.

3.2. Application of the main statement (2.1) to isotropic systems
Using integration variables in ω space, in isotropic conditions (1.1) simplifies to

∂np

∂t
= vp

pd−1

∫ ∞

0
dω1

(
J(I)(ωp;ω1, ωp − ω1) + 2J(II)(ωp;ω1, ω1 − ωp)

)
,

where J(I)(ωp;ω1, ω2) = R0
12, J(II)(ωp;ω1, ω2) = −R1

02,

and R0
12 = 4πκ3(1−d)/α (ωω1ω2)

(d−1)/α

vpv1v2

|V0
12|2 f 0

12

d

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.9)

We have used the notation vp = ∂ω/∂p, and 
d is defined by angle integration of the
wavenumber delta function given space isotropy, with the dimensions of a wavenumber to
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The structure of energy fluxes in wave turbulence

the dth power. We assume a scale-invariant solution

np = Aω−x
p . (3.10)

Using these variables, saying that the interaction kernel J(ωp;ω1, ω2) has homogeneity
exponent γ0 − 2x, the KZ solution has exponent x = (γ0 + 3)/2, and the RJ solution has
exponent x = 1.

By formula (2.1), given A and B as two disjoint closed subsets of Fourier space (spanned
by ω ∈ R

+), the instantaneous power delivered from A to B amounts to

PA→B = −2d−1π

∫
A

dω′ ω′
∫ ∞

0
dω1

(
χ

(I)
B (ω1) J(I)(ω′;ω1, ω

′ − ω1)

+ 2χ
(II)
B (ω1) J(II)(ω′;ω1, ω1 − ω′)

)
, (3.11)

where the dependence on ω2 in the interaction weight is constrained implicitly by ω2 =
ω′ − ω1 in the first line and by ω2 = ω1 − ω′ in the second line. Let us choose A = [0, ω],
B = [ω, +∞] to make a concrete calculation in a specific case, noting that in principle
this corresponds to the computation in (3.7). As represented in figure 1(b), this choice of
sets leads to the major simplification

χB(ω1) = Θ(ω1 − ω), (3.12)

where Θ(·) denotes the Heaviside step function. Moreover, as also shown in
figure 1(a), the resonant manifold is such that J(I)(ω;ω1, ω1 − ω′) = 0 for ω1 > ω′, and
J(II)(ωp;ω1, |ω′ − ω1|) = 0 for ω1 < ω′. Thus from (3.11) we obtain

P[0,ω]→[ω,+∞) = −2dπ

∫ ω

0
dω′ ω′

∫ +∞

ω

dω1 J(II)(ω′;ω1, ω1 − ω′). (3.13)

We are going to derive (3.7) analytically from (3.13), showing that the main statement (2.1)
in § 2 encompasses the standard theory of energy fluxes as a particular case. This proof
relies on the detailed conservation property (1.5), from which we see that

ωa J(ωa;ωb, ωc) + ωb J(ωb;ωa, ωc) + ωc J(ωc;ωa, ωb) = 0 (3.14)

for any triad of wavenumbers p, p1, p2. An independent proof by construction for the
isotropic case is given in Appendix B. We suggest that the reader examines this proof for
an intuitive graphical interpretation of detailed conservation that relies on the symmetries
of the resonant manifold.

3.3. Proof of the standard flux formula (3.7)
Property: vanishing self-interactions. The following property holds:∫ ω

0
dω′

∫ ω

0
dω1 J(ω′, ω1, |ω′ − ω1|) = 0, (3.15)

This follows directly from detailed conservation, as shown in Appendix A.
The meaning of this property is that the integral (3.15) quantifies the flux from [0, ω]

to [0, ω], i.e. self-interactions that amount to no net transfer of energy. This leads to the
following important corollary of the main statement (2.1).

Property: Retrieving the standard flux formula for isotropic systems. The standard flux
formula (3.7) that is used to calculate the energy flux in isotropic wave turbulence is a
direct consequence of (2.1) (main statement) and (3.15).
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00

B

p2 ≤ p′ + p1

p2 ≥ |p1 – p′|

A

A

B

I

1
1 if type III

1 if type II

0 if type III

0 if type II
χB = 

χB = 0 

χB = 

χB = 

II

II

I

II

III

I: ω′ = ω1 + ω2

II: ω1 = ω′ + ω2

III: ω2 = ω′ + ω1

III

III

ω′
ω2

if type I

ω1

ω2

ω1

ω′ω′

ω′

ω
ω

ω ω

(b)(a)

ω′
ω2

if type I
ω′
ω2

Figure 1. (a) Representation of the resonant manifold in the ω1–ω2 space for triads involving wavenumbers ω′,
ω1, ω2. Here, ω demarcates the separation between sets A and B (dashed red lines). The three resonant branches
are represented as the three solid red lines labelled I, II, III. The shaded area denotes the region satisfying the
wavenumber delta function condition, for a value α > 1. (If α < 1, then this area becomes disjoint from the
frequency condition lines, and there are no resonances.) (b) The values of the characteristic interaction weight
χB→ω′ in the different regions, as given by the main statement (2.1). Highlighted by a red rectangle are the
relevant cases for each region, due to the interaction type present in that region. Exploiting the symmetry
with respect to the main diagonal and considering only ω2 ≤ ω1 (below the dashed black line), it is clear that
χB→ω′ = Θ(ω1 − ω).

Proof . Equation (3.13) is derived directly from (2.1), in the particular case of isotropic
systems and adjacent control intervals A = [0, ω], B = [ω, +∞]. Exercising the freedom
to add zero (i.e. (3.15)) to (3.13), we obtain

P[0,ω]→[ω,+∞) = −2d−1π

∫ ω

0
dω′ ω′

[∫ +∞

ω

dω1 J(ω′, ω1, |ω′ − ω1|)

+
∫ ω

0
dω1 J(ω′, ω1, |ω′ − ω1|)

]

= −2d−1π

∫ ω

0
dω′ ω′

∫ +∞

0
dω1 J(ω′, ω1, |ω′ − ω1|)

=
∫ ω

0
dω′ ω′Iω′ = F(ω), (3.16)

which concludes the proof of validity of the usual flux formula (3.7) starting from the main
statement (2.1). �

As highlighted in (3.16), note that the classical flux expression F(ω) (3.7) contains a
self-interaction contribution in the interval [0, ω]. This contribution is vanishing due to
(3.15). Moreover, (3.7) requires regularization at the KZ solution (see (3.8)). Equation
(3.13) is free of such limitations. We elaborate on these points in § 4 by considering surface
capillary waves.

3.4. Quantifying locality: the transfer integral
In order to explore the full potential of the main statement (2.1), let us introduce a slight
generalization of (3.13). Performing the outer integration up to a smaller frequency ω̃ < ω

allows us to express the power that from the interval [0, ω̃] is delivered instantaneously to
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The structure of energy fluxes in wave turbulence

[ω, +∞):

P[0,ω̃]→[ω,+∞) = −2dπ

∫ ω̃

0
dω′ ω′

∫ +∞

ω

dω1 J(II)(ω′;ω1, ω1 − ω′). (3.17)

This is the wave turbulence analogue of (6.4) in Kraichnan (1959). Recalling that the
collision kernel has homogeneity exponent γ0 − 2x, with a change of variables Ω = ω′/ω,
we obtain

P[0,ω̃]→[ω,+∞) = (V0A)2 ωy+1
∫ ω̃/ω

0
dΩ T(Ω), (3.18)

where y = γ0 + 2 − 2x, with the following.
Definition: transfer integral.

T(Ω) := −2dπ(V0A)−2 Ωy
∫ +∞

Ω−1
dξ J(II)(1; ξ, ξ − 1) (3.19)

is the transfer integral of the problem.
The transfer integral is a non-dimensional function that captures the inter-scale

‘structure’ of the energy transfers between two disconnected regions of Fourier space.
In particular, it quantifies the direct transfer by a given frequency (smaller than ω) to all
frequencies larger than ω. The integral of T(Ω) up to ω̃/ω gives the distant-transport
power exchanged between the two regions [0, ω̃] and [ω, +∞). Because of the scale
invariance of the problem, T(Ω) is defined uniquely no matter the chosen values of ω̃

and ω. It has to be computed only once, and then the boundaries of the two sets enter the
problem as the upper integration boundary and as the scaling factor in (3.18).

Using the power P between adjacent sets, by using (3.10)–(3.18), we are able to express
the Kolmogorov constant of the problem (Zakharov et al. 1992) as a function of the transfer
integral itself, for the KZ solution:

nKZ
p = κK

√Pω−xKZ , κK =
(

V0

∫ 1

0
T(Ω) dΩ

)−1

. (3.20)

This inter-scale decomposition of the Kolmogorov constant is one of the important
implications of the main statement (2.1).

How fastP[0,ω̃]→[ω,+∞) tends to zero as ω̃/ω → 0 describes how ‘local’ or ‘diffuse’ the
energy cascade is (Kraichnan 1959). This scaling is going to be dictated by the asymptotics
of T(Ω), and allows us to improve the binary notion of locality (i.e. local/non-local)
towards a more quantitative description. How wide should the separation between forcing
and dissipation regions be in order to have an inertial range sufficiently disconnected
from direct interaction with the boundaries? The transfer integral T(Ω) provides a key
perspective to tackle this type of question, as will be illustrated in the following sections.

4. Isotropic illustration: surface capillary waves

4.1. Application of the main statement (2.1): transfer integral and the Kolmogorov
constant

Let us consider the problem of surface capillary waves in isotropic conditions (Pushkarev
& Zakharov 2000), for which d = 2. This system has a dispersion relation with α = 3

2 ,
allowing for three-wave resonances. After writing the equation in frequency variables and
averaging over the angles in p space as in (3.9), the interaction kernel has homogeneity
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Figure 2. (a) Values of the non-dimensional collision integral I(x) as a function of the spectral exponent x in
the locality interval. The two zeros are the RJ and KZ solutions, indicated by magenta and red vertical lines,
respectively. (b) Energy flux normalized by its scaling in ω, as a function of x. The plot shows perfect agreement
between the numerical evaluation of the standard flux formula and our formula. Moreover, note that the latter
does not need to be regularized at the KZ solution because it does not contain an indeterminate form 0/0,
and the result is identical to the regularization by l’Hôpital’s rule. (c) We represent the metrics introduced in
(4.1a,b) to characterize how local the energy transfers are. All solutions are local for x ∈ [5/6, 5], intended as
having an integrable collision operator. However, locality as quantified by (4.1a,b) is stronger for small values
of x, increasing as x → 5 (where Ω5 % → 0).

exponent γ0 − 2x, with γ0 = 8
3 . Therefore, the stationary states of the system, in the

form np = Aω−x, are the RJ equilibrium spectrum with x = 1, and the KZ spectrum with
x = (γ0 + 3)/2 = 17

6 . The convergence conditions of the collision integral determine the
locality interval [ 5

6 , 5], which includes both stationary solutions. For the explicit form of
the WKE, we refer the reader to Pushkarev & Zakharov (2000). We perform the analytical
calculations of the locality conditions in Appendix C. These calculations are not new
per se, as they are implied in Pushkarev & Zakharov (2000). Since we were not able to
find these calculations in the literature, we included them here. In figure 2(a), we show a
numerical evaluation of the non-dimensional collision integral I(x), vanishing in the two
stationary states. In figure 2(b), we show the numerically calculated energy flux between
two adjacent sets. This is done in two ways, according to (3.7) and (3.13), showing perfect
agreement between the two as proven analytically in (3.16). With the precision adopted,
the numerical value so obtained at the KZ solution via (3.13) is identical to the value
from the regularization formula (3.8), up to a relative error of the order of 1/1000. Via
the inversion (3.20), this value relates directly to the Kolmogorov constant of the capillary
wave problem (Pushkarev & Zakharov 2000). In the most up-to-date estimates, a direct
comparison with the measured flux finds an agreement within a factor around 1.5–2 from
numerical simulations of the equations of motion (Deike et al. 2014b; Pan & Yue 2014;
Pan 2017), and within a factor of approximately 3–4 from experiments (Deike, Berhanu &
Falcon 2014a).

Note that the new formula (3.13) can be applied throughout the locality interval,
including at the KZ solution, because it does not contain an indeterminate form ‘0/0’,
as discussed above. Moreover, the decomposition of the power in terms of the transfer
integral (3.19) is now available also for the KZ solution. We point out that the integrand
of the regularization formula (3.8), containing a logarithmic function, is not equivalent to
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The structure of energy fluxes in wave turbulence

the transfer-integral decomposition (3.19). Indeed, only the latter can be used to quantify
locality and distant-transport scalings.

4.2. Metrics of locality and distant transport
We next exploit the formalism of § 3.4 to decompose the energy flux based on the relative
separation of the frequencies involved in the transport. We define the quantities Ω5 % and
Ω50 % as∫ Ω5 %

0
dΩ T(Ω) := 0.05

∫ 1

0
dΩ T(Ω),

∫ Ω50 %

0
dΩ T(Ω) := 0.5

∫ 1

0
dΩ T(Ω).

(4.1a,b)

The first quantity measures the length of the tail of the transfer integral that contains
5 percent of the total energy transfer. This quantity therefore indicates how far apart two
regions in Fourier space have to be for their mutual interactions to be negligible. We define
‘negligible’ to be five per cent of total flux of energy. The second quantity is the median
threshold of the transfer integral: half of the energy flux is exchanged within this threshold
range, and the other half is exchanged from further than this threshold. Figure 2(c) shows
the dependence of Ω5 % and Ω50 % on the spectral exponent x. The median Ω50 % is always
quite close to 1, with a minimum around the KZ solution where Ω50 % � 0.7. However,
the tail metric Ω5 % is decreasing from a value around 0.5 in the neighbourhood of the RJ
solution, and tends to zero as x → 5. In particular, at the KZ solution we have Ω5 % � 0.2.
This means that frequencies that are separated by up to more than half a decade are still
giving a relevant contribution to direct energy transport in the KZ stationary state!

The details of the transfer integral calculations are shown in figure 3, for three different
values of x: 4.5, 17

6 and 0.9. Figures 3(a,c,e) show the magnitude of the interaction kernel.
In the first two cases, the type I contributions are positive and the type II negative,
corresponding to a direct cascade. In the final case, the signs are exchanged, corresponding
to inverse cascade for x < 1.

The singularity in 1 for large values of x behaves like |ω1/ω − 1|−x+3. With the two
integrations in (3.17), the convergence condition must be x < 5, retrieving the infrared
(IR) locality condition. This implies that the transfer integral is dominated by an integrable
singularity T(Ω) � (1 − Ω)−x+4 for Ω → 1, when x > 4.

The scaling of the interaction kernel for ω1/ω 
 1 is given by (ω1/ω)−x−1/6 for x � 1,
and by (ω1/ω)−x−1/3 for x 
 1. For the transfer integral T(Ω) to converge, it must have
−x − 1/6 < −1, which gives the familiar ultraviolet (UV) locality condition x > 5/6.
Notice the proximity of the case x = 0.9 to this limit scaling in figure 3(e). By (3.19), this
implies an asymptotic scaling T(Ω) � Ω4−x for Ω � 1. This will be discussed further in
§ 7.

Let us use this result to estimate the asymptotic scaling of the distant-transport power:

P[0,ω̃]→[ω,+∞) =
∫ ω̃/ω

0
T(Ω) dΩ ∼

(
ω̃

ω

)5−x

, as
ω̃

ω
→ 0. (4.2)

For the KZ solution, x = 17/6, this yields P[0,ω̃]→[ω,+∞) ∼ (ω̃/ω)13/6.
Thus the energy cascade at the KZ stationary solution of capillary waves can be

considered quite strongly local; moreover, the energy transport for spectra that are steeper
than KZ becomes more and more diffuse, while for whiter spectra, it becomes more and
more local (cf. figure 2). Around equilibrium, x � 1, the scaling decay is (ω̃/ω)23/6.
The analysis presented here suggests a viable approach to quantifying how far from the
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Figure 3. Interaction kernel and transfer integral for three different values of x. All plots are in log-log scale.
The three solutions here represented are ‘local’: the interaction kernel is integrable. The limiting scalings of
the three locality conditions IR, UV1 and UV2 (cf. § 7) are represented by the black dashed lines.

dissipation and forcing regions one should be in order for direct energy transfers with the
boundaries to be fairly negligible. Taking Ω5 % as a reasonable (albeit arbitrary) cutoff
for a notion of ‘negligibility’, for KZ we would obtain at least a factor of 5 of separation
from each boundary. A criterion of this sort would exclude approximately 1.4 orders of
magnitude (half on each side) from being a part of an inertial range fairly independent
of both the forcing and the dissipation regions. For surface capillary waves, which are
constrained on scales from 0.5 mm to 17 mm, there are approximately 2.3 orders of
magnitude of available frequencies, which is not much larger than 1.4. We refer the reader
to § 7 for further discussion.

These and similar quantifications of fluxes and associated level of locality are applicable
directly to any wave turbulence system. They open the possibility to an analysis of energy
transfers that goes beyond the mere stationary states to explore transients, boundary effects
and a scale-by-scale decomposition of the energy transfer contributions.

5. Anisotropic systems

5.1. Overview on the theory of energy fluxes
A direct extension to anisotropic systems of the theory of energy fluxes reviewed in § 3.1 is
possible, in scale-invariant and stationary conditions. It consists of the use of generalized
Zakharov–Kraichnan–Kuznetsov conformal transformations (Kuznetsov 1972) to find
generalized KZ solutions (Zakharov et al. 1992; Nazarenko 2011). Each of these solutions
corresponds to the stationary cascade solution of one of the positive-definite conserved
quantities of the WKE. In principle, each of these positive invariants also corresponds to
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The structure of energy fluxes in wave turbulence

an independent equilibrium solution. However, at variance from the isotropic case, these
types of equilibrium and non-equilibrium stationary solutions are not the only possible
stationary solutions, but only particular ones. In the case of 3-D systems with two effective
independent dimensions, there are two families of an infinite number of equilibrium and
non-equilibrium solutions, respectively represented by the points of two 1-D curves in
the two-dimensional (2-D) plane of possible power-law exponents. Physical examples are
the Rossby/drift waves, where there are three positive collision invariants and three KZ
solutions (Balk, Zakharov & Nazarenko 1990; Nazarenko 2011), or the internal gravity
waves, where there is one known collision invariant (the energy) and one corresponding
KZ solution (Pelinovsky & Raevsky 1977; Lvov & Tabak 2001). Another remarkable
recent application is found in Galtier (2006) and in David & Galtier (2022) to the
problem of inertial electron magnetohydrodynamics in plasma physics. One subsequent
necessary step in the theory is the verification that these stationary solutions correspond
to a convergent collision integral, i.e. that they are local. For internal gravity waves, for
instance, there is only one local stationary solution that is found numerically (Lvov et al.
2010) and is different from the KZ solution.

The calculation of the fluxes for the anisotropic KZ solutions leads to a regularization
similar to (3.7)–(3.8). Here, we make use of simple-minded dimensional analysis to
illustrate its properties. For concreteness, we will use the example of horizontally isotropic
internal gravity waves. In the hydrostatic approximation, the scale-invariant dispersion
relation and matrix elements read (Olbers 1976; Lvov & Tabak 2004)

ωp = γ
k
m

,

∣∣∣V0
12

∣∣∣2 = V2
0 k2μk m2μm f

(
k1

k
,

k2

k
,

m1

m
,

m2

m

)
, (5.1)

where γ and V0 are dimensional constants, and k and m are the magnitudes of the (2-D)
horizontal and (1-D) vertical wavenumbers, respectively. Moreover, we have μk = 3/2
and μm = −1/2. In an inertial range where no external forcing or dissipation is present,
we look for general stationary solutions for the action density of the form

np = Ak−am−b. (5.2)

Let us study energy propagation in the positive quadrant for k–m, by defining the
horizontally averaged wave action n(k, m) = 4πknp and energy e(k, m) = ωpn(k, m). The
standard use of the differential conservation equation for energy yields

∂e(k, m)

∂t
= 4πkωpIp = −∂Fk(k, m)

∂k
− ∂Fm(k, m)

∂m
, (5.3)

where the dependence on time is implicit, Ip is the collision integral, and Fk and Fm are
the horizontal and vertical components of the energy flux in k–m space. Using (5.1)–(5.2),
from dimensional analysis we obtain

kωpIp = (V0A)2k6−2am−2b I(a, b), (5.4)

where I(a, b) is the non-dimensional collision integral that vanishes in the stationary
states. Let us plug this into the right-hand side of (5.3). We follow similar reasoning as for
(3.7) in the isotropic case. Let us assume that Fk = Fk(m) and Fm = Fm(k) – a posteriori,
the KZ solution is found to enjoy this property. Under this assumption, we integrate in k
from 0 to k to obtain the horizontal component of the flux, and in m from 0 to m to obtain
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the vertical component. We obtain

Fk = −4π(V0A)2 k7−2am−2b

7 − 2a
I(a, b), Fm = −4π(V0A)2 k6−2am1−2b

1 − 2b
I(a, b).

(5.5a,b)

Using the generalized Zakharov–Kraichnan–Kuznetsov transformations, one finds that the
generalized KZ solution is the particular one for which the above denominators vanish
(Lvov & Tabak 2001), setting aKZ = 7/2, bKZ = 1/2, the Pelinovsky–Raevsky spectrum
(Pelinovsky & Raevsky 1977). Because for this solution also the numerators vanish, in
analogy with (3.8), one can regularize the 0/0 indeterminate form by l’Hôpital’s rule to
obtain (Zakharov et al. 1992)

FKZ
k = 2π(V0A)2m−1 ∂I

∂a

∣∣∣∣
(a0,b0)

, FKZ
m = 2π(V0A)2k−1 ∂I

∂b

∣∣∣∣
(a0,b0)

. (5.6a,b)

Notice that the KZ solution is the particular case for which the k-component is
independent of k, i.e. Fk = Fk(m), and the m-component is independent of m, i.e. Fm =
Fm(k). This spectrum is known to be non-local (Lvov et al. 2010). In particular, the point
(7

2 , 1
2) in the a–b plane exhibits divergences at both high and low wavenumbers. These

divergences can also be seen from (5.6a,b): integrating the flux along any boundary in
k–m space yields a logarithmic divergence both at low wavenumbers (k → 0, m → 0) and
at large wavenumbers (k → ∞, m → ∞). Thus (5.6a,b) can be written only in a formal
way, but in practice they have no meaning. It was shown in Lvov et al. (2010) that there is
only one stationary solution that is local, with spectral exponent values a = 3.69, b = 0.
However, for this non-KZ stationary solution, (5.3) is merely stating that the divergence of
the flux is zero. Therefore, it is possible to determine only the direction of the flux, but the
magnitude of the flux of energy remains undetermined. This is shown in Appendix D.

6. Anisotropic illustration: internal gravity waves

6.1. Definition of the problem
Here, we illustrate an application of (2.1) to the anisotropic problem of internal gravity
waves (Olbers 1976; Caillol & Zeitlin 2000; Lvov & Tabak 2004). This is non-trivial in
several ways, involving: (i) physically motivated control volumes in Fourier space with
a geometry that is more interesting than simple rectangles in k–m space; (ii) a relevant
stationary spectrum that is not a KZ solution (the solution a = 3.69, b = 0); (iii) a
renowned spectrum (the Garrett–Munk spectrum) that is not stationary under the wave
kinetic equation evolution; (iv) decomposition of the fluxes in terms of transfer integrals
allowing us to quantify the level of locality. Each of these points could not be analysed fully
by the standard wave turbulence theory of energy fluxes summarized in § 5. These results
were obtained intuitively in Dematteis & Lvov (2021) and Dematteis, Polzin & Lvov
(2022). Here, we provide firm mathematical justification for results of such a type, study
locality of internal wave interactions, and analyse the celebrated Garrett–Munk spectrum.

The boundaries in spectral space are defined naturally for internal waves. The
frequency ω takes values in the interval [ f , N], where f and N are the inertial and
buoyancy frequencies, respectively. These two frequencies give the minimal and maximal
frequencies (f � N) of the problem, with the inertial range between them. The vertical
wavenumber m takes values in [mmin, mmax], where mmin = 2π/H, mmax = 2π/h, with
H and h being the ocean depth and the vertical scale past which internal waves become
unstable due to shear instability. Let us assume that the box A = [ f , N] × [mmin, mmax]
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Figure 4. Representation of the 2-D Fourier space for the anisotropic internal-wave problem: (a) in
horizontal–vertical wavenumber k–m coordinates; (b) in frequency–vertical wavenumber ω–m coordinates.
The streamlines represent the energy flux vector field and are drawn from (D1a,b) for the stationary solution
a = 3.69, b = 0. Equation (D1a,b) is determined up to an arbitrary factor C, but this nonetheless allows
us to know the flux direction (thus the streamlines). The change of coordinates from the k–m to the ω–m
representation is given by the dispersion relation (5.1). The quantities Ph and Pv are computed rigorously in
(6.1a,b). The computations in this paper are performed in k–m space, although the physical boundaries are
defined naturally in ω–m space. This figure illustrates the equivalence between the two representations.

is the inertial range, and for m > mmin and ω > N, strong turbulence acts as an idealized
sink. Suitable energy sources will indeed be necessary at the bottom and left boundaries
of the ‘inertial box’ A, in order for an energy cascade to be sustained in time. The
inertial box A is shown in figure 4, in both k–m space and ω–m space. The change of
variables between the two spaces is prescribed by the dispersion relation (5.1). In figure 4,
we also show the streamlines of the energy flux obtained by dimensional arguments in
Appendix D, namely (D1a,b), for the stationary state with a = 3.69, b = 0. These lines
give a sense of the need for a source at low frequencies and low wavenumbers for energy
to be delivered to the whole inertial box. We use A as our input control volume. For the
output control volume, B, we consider two possibilities: either Bh = {(ω, m) : ω > N} or
Bv = {(ω, m) : m > mmax}. In the first case, the power PA→B defines the quantity Ph,
the instantaneous power transferred ‘horizontally’ through the boundary denoted as BC
in figure 4. In the second case, PA→B defines the quantity Pv , the instantaneous power
transferred ‘vertically’ through the boundary denoted as CD. The powers Ph and Pv are
calculated rigorously in the next subsection using the main statement (2.1).

6.2. Application of the main statement (2.1) and transfer integrals
Applying (2.1), we obtain (Dematteis & Lvov 2021)

Ph =
∫ mmax

mmin

dmFh(m), Pv =
∫ (N/γ )mmax

(f /γ )mmax

dkFv(m), (6.1a,b)

where

Fh(m) = N2

g
(V0A)2

(
N
γ

m
)7−2a

m−2b
∫ 1

f /N
dK Th(K), (6.2)

Th(K) = − 4π

(V0A)2 K6−2a
∫

dξ1 dξ2
∑

l

χ
(l)
K (ξ1, ξ2) J(l)(ξ = 1, μ = 1; ξ1, ξ2) (6.3)
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and

Fv(k) = N2

g
(V0A)2k6−2am1−2b

max

∫ 1

mmin/mmax

dM Tv(M), (6.4)

Tv(M) = − 4π

(V0A)2 M−2b
∫

dξ1 dξ2
∑

l

χ
(l)
M (ξ1, ξ2) J(l)(ξ = 1, μ = 1; ξ2, ξ2). (6.5)

Here, J(l)(ξ = 1, μ = 1; ξ1, ξ2) denotes the six resonant branches of the interaction kernel
corresponding to the triad of non-dimensional horizontal wavenumbers ξ = 1, ξ1 = k1/k,
ξ2 = k2/k, and vertical wavenumber μ = 1. The six resonant conditions determine the
values of μ1 = m1/m and μ2 = m2/m. The characteristic interaction weights χ

(l)
K (ξ1, ξ2)

are defined by the rules in table 1, takingBh = {ξ : ξ > K−1}, with K−1 > 1. The weights
χ

(l)
M (ξ1, ξ2) are defined likewise by taking Bv = {μ : μ > M−1}, with M−1 > 1, where

the condition μ > M−1 is applied to the non-dimensional vertical wavenumbers μ1 and
μ2 found as solution of the lth resonant branch.

Using similar equations, it was shown in Dematteis & Lvov (2021) and Dematteis
et al. (2022) that both the scaling and the prefactor of the total calculated power are
in order-of-magnitude agreement with the observational fine-scale parametrization of
oceanic turbulent production (Polzin et al. 2014), up to a factor 1.5 difference. In a loose
sense, these calculations are equivalent to evaluating the Kolmogorov constant for the
internal wave problem, i.e. expressing the explicit theoretical relationship between the
energy flux and the spectral energy density.

6.3. Metrics of locality and distant transport
The methodology developed in this paper allows us not only to compute the fluxes of
energy, but also to analyse the locality of interactions. In relation to their isotropic version
(3.18)–(3.19), indeed the expressions (6.1a,b)–(6.5) feature one extra integration along the
boundaries of the 2-D inertial box. The quantities Fv(k) and Fh(m) are energy fluxes per
unit of k and m, respectively. Thanks to scale invariance, their dependence on k and m
is given by the scaling relations in (6.2) and (6.4). Therefore, to study level of locality
of the interactions, it is sufficient to study Fv(k = 1) and Fh(m = 1), whose structure is
expressed in terms of the transfer integrals Th and Tv in (6.3) and (6.5). This is represented
in figure 5. For both Th and Tv , the further from the boundary at K = 1 or M = 1, the
more non-local (i.e. with large-scale separation) the contribution to the energy transfer.
The dashed coloured lines at the right of each plot indicate the analytical leading orders
(integrable singularities) from the IR region of the resonant manifold. The scalings on the
left side are given by the UV leading orders, multiplied by the factor in (6.3) and (6.5).
The shaded areas indicate the leftmost and rightmost contributions to the total flux, in
a percentage amount indicated in the figure. Two different spectra in the form (5.2) are
studied below (Lvov et al. 2010).

(i) a = 3.69, b = 0 (stationary state of the internal WKE).
For the horizontal transport, despite having the rightmost 50 % coming from the
[0.7, 1] interval (i.e. the median is approximately 0.7), the heavy tail implies that
approximately 12 % of the power Ph is transferred directly from modes that are
smaller than the left boundary of the inertial box, i.e. ω < f – if we take N/f =
40, then we obtain a realistic oceanic aspect ratio. Since there are no waves at
ω < f , this is not possible. Nevertheless, it indicates that the horizontal transfer
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Figure 5. Transfer integrals of internal gravity waves for (a) horizontal transport (6.3), and (b) vertical
transport (6.5). For the power-law spectrum (5.2), the stationary solution has exponents a = 3.69, b = 0, and
the scale-invariant limit of the Garrett–Munk spectrum has exponents a = 4, b = 0.

is highly non-local – even though the spectrum is ‘local’ in terms of convergence
of the collision integral. Even the lowest frequencies in the system are connected
energetically with the dissipation region at high frequency in a non-negligible way.
For the vertical transport, the situation is much more local. The median is around 0.8,
and the rightmost 5 % of the energy transfer comes from the left of approximately
0.2. Because a realistic range of vertical scales varies by a factor of the order of 200,
a factor 5 of distance from the boundary at mmax is relatively quite small. Thus the
vertical transport is highly local.

(ii) a = 4, b = 0 (scale-invariant limit of the Garrett–Munk spectrum).
The horizontal transport power is marginally divergent, due to a K−1 singularity
as K → 0. Therefore, it is not meaningful to indicate percentage metrics of the
contribution.
The vertical transport is highly local, more so than for the stationary spectrum.
Approximately 95 % of the total power Pv comes from the region within a factor
3 from the dissipation boundary.

Let us exploit the transfer integrals to define the distant-transport fluxes, neglecting the
dimensional prefactors

Fh,[0,ω̃]→[ω,+∞) ∝
∫ ω̃/ω

0
dK Th(K),

Fv,[0,m̃]→[m,+∞) ∝
∫ m̃/m

0
dM Tv(M).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.6)

For horizontal transport, we know the analytical scaling Th(K) ∝ K3−a as K → 0 (cf.
figure 5a). This means that we have Fh,[0,ω̃]→[ω,+∞) ∝ (ω̃/ω)4−a as ω̃/ω → 0. This
shows that the flux for the Garrett–Munk spectrum is marginally divergent (logarithmic
divergence), and that the stationary spectrum has a very weak decay with scaling
(ω̃/ω)0.31. For vertical transport, we use the numerical scalings shown in figure 5(b).
These imply for Fv,[0,m̃]→[m,+∞), a scaling (m̃/m)1.69 for the Garrett–Munk spectrum,
and a scaling (m̃/m)1.45 for the stationary spectrum.
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We end the section by showing that even when a solution is mathematically non-local,
a regularization takes place if one considers physical cutoffs. For the high wavenumber
limit of the Garrett–Munk spectrum, indeed a fairly plausible oceanic condition (Pollmann
2020; Le Boyer & Alford 2021; Thakur et al. 2022), the integral defining the horizontal
energy flux has a logarithmic divergence (considering an idealized zero minimal
frequency). However, real physical systems have boundaries and other constraints that
imply natural lower and upper cutoffs in Fourier space. For instance, oceanic internal
waves cannot oscillate at frequencies lower than the Coriolis frequency f . Imposing this
lower cutoff by hand, the horizontal flux in (6.6) is given by

Fh,[ f ,ω̃]→[ω,+∞) ∝
∫ ω̃/ω

f /ω
dK K3−a ∝ 1

4 − a
ω̃4−a − f 4−a

ω4−a . (6.7)

For a given frequency ω̃ > f , the flux is finite and continuous in a, with
lima→4± Fh,[ f ,ω̃]→[ω,+∞) = |log( f /ω)|. For a � 4, the contribution to the flux from
[ f , ω̃] is concentrated around ω̃. As a → 4−, the contribution becomes less and less
concentrated in ω̃. For a > 4, the contribution becomes more concentrated in f than in
ω̃, and increasingly so as a increases. Since the non-locality and boundary dependence
are smooth functions of a, and the transition is continuous in a = 4, it is clear that
interpreting this threshold as a sharp definition of physical realizability/non-realizability
is quite fictitious. For a physical system with a finite available range of scales, highly
non-local spectra will indeed show strong dependence on the boundaries, as (6.7)
demonstrates. If the forcing is varying strongly in time, for instance, this will correspond to
transient forcing-driven conditions, with the system being influenced highly by the forcing
variability at the lower boundary of Fourier space. However, it may still be of fundamental
importance to quantify the associated energy fluxes: the energy fluxes associated with
highly non-local and transient spectra of internal waves play a crucial role for the oceanic
circulation and climate at large (Polzin et al. 2014).

7. Integrability conditions and locality of energy transport

Here, we consider the conditions for a finite energy transfer and discuss their consistency
with the standard locality conditions of wave turbulence (Zakharov et al. 1992). Moreover,
we suggest a way to quantify the locality properties of a wave turbulence spectrum.

Consider a generic isotropic system with distant-transport power described by
(3.18)–(3.19). Defining f (ξ) = J(II)(1; ξ, ξ − 1), assume the following definitions for the
scaling exponents γ0, γ1, γ2, y:

J(II)(k; k1, k1 − k) = kγ0−2x f
(

k1

k

)
, y = γ0 + 2 − 2x,

f (ξ) ∝ ξγ2−x as ξ → +∞, f (ξ) ∝ (ξ − 1)γ1−x as ξ → 1+.

⎫⎪⎬
⎪⎭ (7.1)

For the distant-power (3.18) to be finite for any ω̃ ∈ [0, ω], we have to impose the
integrability of T(Ω) defined by (3.19), in the integration domain [0, ω]. Setting the
prefactor to unity for simplicity, we recall that

P[0,ω]→[ω,+∞) = ωy+1
∫ 1

0
dΩ T(Ω), T(Ω) = Ωy

∫ +∞

Ω−1
dξ f (ξ). (7.2a,b)

Integrability for Ω → 1, due to double integration, gives the Zakharov et al. (1992) IR
condition

x < γ1 + 2. (7.3)
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The structure of energy fluxes in wave turbulence

Integrability of f (ξ) for ξ → +∞ gives the Zakharov et al. (1992) UV condition (UV1)

x > γ2 + 1. (7.4)

Now, we have a third condition from integrability of T(Ω) for Ω → 0. This is also a UV
condition (UV2), and reads

x < 2 + γ0 − γ2. (7.5)

For a scale-invariant spectrum np = Aω−x, the instantaneous power exchanged between
the sets [0, ω] and [ω, +∞) is finite if and only if the three conditions (7.3) (IR), (7.4)
(UV1) and (7.5) (UV2) are fulfilled simultaneously. This result needs to be compared
with the standard locality conditions of wave turbulence theory (Zakharov et al. 1992;
Nazarenko 2011), which consist of (7.3) (IR) and (7.4) (UV1). Let us use the example
of the capillary wave system, where we have γ1 = 3, γ0 = 8/3, γ2 = −1/6 for x <

1, and γ2 = −1/3 for x > 1. We provide a detailed calculation of these scalings in
Appendix C. The three convergence conditions give x < 5, x > 5/6, x < 5, respectively.
The three conditions are represented by the three black dashed lines in figure 3. As we see,
for the case of capillary waves, the third condition is identical to the first one, showing that
the integrability interval computed by imposing a finite energy transport is fully consistent
with the usual locality conditions. Therefore, for the wave turbulence spectrum of any
wave turbulence system to be truly local, all of these three locality conditions need to be
individually checked and verified.

Using the quantities defined in § 4.2, we propose the definition of a non-dimensional
number that quantifies the width of direct energy transport in Fourier space:

w = − log10 Ω5 %, (7.6)

in units of orders of magnitude. This quantity is a measure of the inter-scale width
of the resonant interactions. If, for example, this quantity tends to zero, then it means
that the interactions are highly local. If this quantity is comparable to the range of
scales that are physically available, then there cannot exist an inertial range of scales
where the interactions are sufficiently independent of the boundaries. This quantity
diverges for spectra outside the locality interval. Using the power-law tail scaling T(Ω) ∼
cΩ1+γ0−γ2−x as Ω → 0, and the definition (4.1a,b), we obtain the estimate

w = (x − 2 − γ0 + γ2) log10

(
0.05

c
(2 + γ0 − γ2 − x)

∫ 1

0
T(Ω) dΩ

)
. (7.7)

In the examples illustrated in this paper (cf. figures 3 and 5), we have w � 0.3 near
equilibrium, and w � 0.7 at the KZ solution of surface capillary waves. For the horizontal
transport of internal waves, we have w � 2.1 for the stationary solution, and w → ∞ for
the Garrett–Munk scale-invariant limit (logarithmic divergence). For vertical transport, we
have w � 0.7 for the stationary solution and w � 0.5 for the Garrett–Munk spectrum of
internal waves. We can see that w is finite if x is in the locality interval. However, its value
can vary from close to zero, when transport is highly local, to fairly large values, even if the
spectrum is ‘local’ (see e.g. horizontal transport for internal waves in § 6). The estimate of
w can be important for understanding how wide the inertial range of wave turbulence must
be in the experiments, in order to become independent of the boundaries.
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8. Discussion

We introduced (2.1) for systematic computation of any inter-scale energy transfers in
a system governed by a WKE with three-wave resonances. For isotropic systems, in
§ 3 we showed rigorously that the formula encompasses the standard formula (3.7) for
the energy flux as a particular case of adjacent control volumes in Fourier space (cf.
(3.16)). Using the property of detailed energy conservation (3.14), we showed that the
standard flux formula contains a vanishing part corresponding to self-interactions (cf.
(3.15)). The new formula always allows us to compute inter-scale energy fluxes as integrals
of non-zero quantities, also in the stationary states – except, naturally, for equilibrium
states for which the interaction kernel is vanishing. This provides a general way to
obtain the Kolmogorov constant for a three-wave system. In the isotropic case, it is an
alternative route to the KZ regularization (3.8) (cf. figure 2). For anisotropic systems, this
paves the way to the computation of energy fluxes, including their prefactors, as shown
in § 6.2.

We have formalized the theoretical framework that descends from (2.1) with particular
emphasis on the definition of the transfer integral (cf. (3.19), (6.3) and (6.5)). The transfer
integral is a decomposition with respect to the scale separation of the instantaneous energy
transfers between a mode and a control volume in Fourier space. Using this formalism,
we reframed the so-called locality conditions of wave turbulence explicitly in terms of
convergence conditions of the energy transfer. In § 7, we showed that the IR and UV
convergence conditions for the collision integral, (7.3)–(7.4), are not sufficient to ensure
convergence of the energy flux. A third condition (7.5) must be imposed. For the capillary
wave turbulence, the third condition appears to be redundant.

Via the transfer integral, we are able to express the power exchanged between distant
control volumes in Fourier space and the scaling of the power as a function of the
scale separation (cf. (4.2) and (6.6)). This is an important effective metric for the
quantification of the locality level of energy transport (Kraichnan 1959), which goes
beyond establishing a binary local/non-local status of the system. To this end, we have
defined a non-dimensional number w, the interaction width in Fourier space. Given a
closed set of modes B in Fourier space, the number w quantifies how far away from set
B one has to move in order to include the 95 % fraction of the total power transferred to
B via resonant interactions. Equivalently, w quantifies the distance in Fourier space past
which the farthest (i.e. most scale-separated) 5 % of the contribution to the energy transfer
to B is confined. The width w is thus defined naturally in terms of a definite integral of the
transfer integral. The 5 % threshold is chosen arbitrarily as a means to roughly establish
a negligibility threshold. Moreover, to emphasize the meaning of scale separation of the
energy transfer, we defined w in logarithmic scale. As an example, consider B as the set
of all the modes larger than a value k. A value w = 1 would mean that 95 % of the energy
transferred to B from modes smaller than k comes from the interval [k/10, k], and 5 %
comes from [0, k/10]. According to our definition, the ‘width’ of the energy transfer would
then be of one order of magnitude, or a factor of 10.

We have also shown that the link between w and the standard notion of locality and
non-locality is quite direct: for a local spectrum w is finite, whereas for a non-local
spectrum, w is infinite. For local spectra, the value of w gives an indication on the
range of scales that is necessary if one hopes to observe a wave turbulence cascade.
This opens the possibility of estimating theoretically the width of the transition region
between the inertial range and the dissipation and forcing regions (cf. §§ 4.2 and 6.2),
improving the current understanding of the realizability conditions of KZ spectra. We
believe quantifications in this vein to be relevant for experiments of wave turbulence,
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where the range of available scales is limited, and it is important to evaluate whether
the scale separation between the forcing and the dissipation regions is sufficiently large for
the onset of an in-between inertial range (Deike et al. 2014a; Hassaini et al. 2019; Davis
et al. 2020; Monsalve et al. 2020; Rodda et al. 2022). In the examples considered in this
paper, we have obtained values of w of approximately 0.3 near equilibrium and 0.7 at the
KZ solution for the surface capillary waves. For internal waves, there are two directions
for energy transfers: horizontally, we have w � 2.1 for the stationary solution and w → ∞
for the Garrett–Munk scale-invariant limit (logarithmic divergence); vertically, we have
w � 0.7 for the stationary solution and w � 0.5 for the Garrett–Munk spectrum of internal
waves.

For the isotropic example of surface capillary waves, where there are approximately
two orders of magnitude of total available frequencies, our results imply that for the KZ
solution, an independent inertial range should have approximately a factor of 5 separation
between both the forcing and the dissipation regions. Therefore, one is likely to observe
a proper wave turbulence solution associated with the KZ solution over a window of less
than a decade of width in the frequency domain.

Then the more complex anisotropic example of oceanic internal waves was chosen
to show the potential of applicability of our method based on the main statement
(2.1). In particular, the method expands our capability to calculate energy fluxes in
several ways: (i) for stationary solutions that differ from the KZ solution (as shown for
the solution a = 3.69, b = 0); (ii) for non-stationary transient solutions (as shown for
the scale-invariant regime of the Garrett–Munk spectrum); (iii) for solutions that are
mathematically non-local, but after regularization by a physical cutoff are associated with
a finite energy flux that is important to quantify (albeit with strong dependence on the
cutoff itself; this was also shown for the Garrett–Munk spectrum); (iv) the method applies
also to systems that do not satisfy scale invariance.

In summary, we have the following.

(i) We have calculated the amount of energy exchanged between two disjoint sets of
wavenumbers in Fourier space. This amount is given by the main statement in § 2
and (2.1).

(ii) We have re-derived the classical formula (3.7) for the flux of energy in
scale-invariant isotropic systems. The classical formula needs to be regularized for
the KZ stationary state by l’Hôpital’s rule, as it has a 0/0 indeterminacy.

(iii) Our formalism applies to a more general case: non-scale-invariant, not isotropic, not
necessarily stationary cases. The formula for the energy fluxes does not need to be
regularized as it is a well defined integral of a non-zero quantity.

(iv) Our formalism allows us to characterize the level of locality of a system, by use of
what we defined as the transfer integral.

(v) We therefore introduced the number w, (7.6), which characterizes how many orders
of magnitude of separation in Fourier space are necessary for two sets of modes to
not be exchanging energy directly.

(vi) The values of w calculated in this paper show that a fair amount of ‘teleportation’
in Fourier space is present also in applications where the transport is traditionally
considered fully local. We believe that the estimate of w is important for the
interpretation of wave turbulence experiments.

(vii) The example of surface capillary waves was used to illustrate the application of the
main statement (2.1) and the formalism of the transfer integral to a well-known wave
turbulence problem.
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(viii) We have shown how the transfer integral relates to the Kolmogorov constants of
wave turbulence (cf. (3.20)). This equation reveals the ‘inter-scale structure’ of the
Kolmogorov constant.

(ix) We have applied our formalism to the anisotropic problem of the internal waves in
the ocean.

In conclusion, the formalism presented here allows quantification of instantaneous
energy fluxes for wave turbulence systems dominated by three-wave resonant interactions.
Our formalism does not require stationarity, scale invariance, or strict fulfillment of the
locality conditions. The possible applications of our formalism include the improvement
and development of a first-principles understanding of many geophysical wave systems,
with possible far-reaching implications for weather and climate prediction.
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Appendix A

A.1. Proof of the detailed energy conservation property (1.5)
Using the definition in (1.1), we have

Z(pa, pb, pc) = ωa (Ra
bc − Rb

ca − Rc
ab) + ωb (Rb

ca − Rc
ab − Ra

bc) + ωc (Rc
ab − Ra

bc − Rb
ca)

= (ωa − ωb − ωc)Ra
bc + (ωb − ωc − ωa)Rb

ca + (ωc − ωa − ωb)Rc
ab. (A1)

Since Ra
bc contains δ(ωa − ωb − ωc), Rb

ca contains δ(ωb − ωc − ωa) and Rc
ab contains

δ(ωc − ωa − ωb), each of the three terms vanishes identically (indeed, in the sense of
distributions), proving (1.5).

A.2. Proof of the main statement (2.1)
In the following, we provide a proof of the main statement (2.1) in three steps.

A.2.1. Step 1
Consider a triad of type I with two wavenumbers p1 and p2 interacting to generate p, for
which (2.2) holds. This relation has a meaning of energy conservation restricted to the
particular triad p, p1, p2 (or detailed energy conservation). Note that for the action rate of
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wavenumber p we have

ṅp|012 = J(p; p1, p2) = R0
12 − R1

02 − R2
01 = R0

12, (A2)

since R1
02 and R2

01 are vanishing for ωp = ω1 + ω2. For the action rate of wavenumber p1
we have

ṅ1|012 = J(p1; p, p2) = R1
02 − R0

12 − R2
01 = −R0

12 = −ṅp|012. (A3)

Finally, for the action rate of wavenumber p2, we have

ṅ2|012 = J(p2; p, p1) = R2
01 − R0

12 − R1
02 = −R0

12 = −ṅp|012. (A4)

Therefore, x amount of action with energy ω1x interacts with x amount of action with
energy ω2x, producing x amount of action with energy ωpx = (ω1 + ω2)x. Equivalently,
of the energy supplied to wavenumber p, a fraction ω1/ωp comes from wavenumber p1,
and a fraction ω2/ωp comes from wavenumber p2.

A.2.2. Step 2
In order to quantify how much of the fraction of the energy being transferred to
wavenumber p through a resonant triad (p, p1, p2) comes directly from set B, we introduce
the weight function χ

(l)
B→p(p1, p2). We need to classify all of the possible interactions and

define the weight function χ
(l)
B→p(p1, p2) consistently with detailed energy conservation.

(i) Type I (p = p1 + p2)
(a) J (I)(p, p1, p2) > 0

The four possible configurations analysed below are depicted in figure 6(a). The
weight quantifies what fraction of the energy transferred to p comes from set B.

i. p1 ∈ B, p2 ∈ B: all of the energy going to p comes from B, and therefore
χ

(I)
B→p(p1, p2) = 1.

ii. p1 ∈ B, p2 /∈ B: of the energy going to p, only the fraction contained in p1
comes from B, and therefore χ

(I)
B→p(p1, p2) = ω1/ωp = ω1/(ω1 + ω2).

iii. p1 /∈ B, p2 ∈ B: as in the previous case, but exchanging the indices 1 and 2,
therefore χ

(I)
B→p(p1, p2) = ω2/ωp = ω2/(ω1 + ω2).

iv. p1 /∈ B, p2 /∈ B: none of the energy going to p comes from B, and therefore
χ

(I)
B→p(p1, p2) = 0.

(b) J (I)(p, p1, p2) < 0
The four possible configurations analysed below are depicted in figure 6(b).
Since the resulting contribution to np is negative, the weight quantifies what
fraction of the energy lost from wavenumber p is transferred to set B.

i. p1 ∈ B, p2 ∈ B: all of the energy lost from p is transferred to B, and therefore
χ

(I)
B→p(p1, p2) = 1.

ii. p1 ∈ B, p2 /∈ B: of the energy lost from p, only the fraction contained in p1 is
transferred to B, and therefore χ

(I)
B→p(p1, p2) = ω1/ωp = ω1/(ω1 + ω2).

iii. p1 /∈ B, p2 ∈ B: as in the previous case, but exchanging the indices 1 and 2,
therefore χ

(I)
B→p(p1, p2) = ω2/ωp = ω2/(ω1 + ω2).
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p p

p

p1 p1

p1

p2 p2

p2

B

B

p p

p1 p1

p2 p2

B

B

B

p

p1

p2

B
p

p1

p2B

p

p1

p2

B

(b)(a)

Figure 6. Diagrams associated with the triadic type I ‘sum’ interactions (p = p1 + p2) for a point p ∈ A,
depending on the sign of the contribution and on whether p1 and p2 are in set B: (a) J (I)(p, p1, p2) > 0, (b)
J (I)(p, p1, p2) < 0.

iv. p1 /∈ B, p2 /∈ B: none of the energy lost from p is transferred to B, and
therefore χ

(I)
B→p(p1, p2) = 0.

Note that in cases (a) and (b), the values taken by the weight in the four sub-cases
i, ii, iii, iv are respectively the same, independent of whether the contribution is
positive or negative. These weights are summarized in table 1.

(ii) Type II (p = p1 − p2)
(a) J (II)(p, p1, p2) > 0

The four possible configurations analysed below are depicted in figure 7(a). The
weight quantifies what fraction of the energy transferred to p comes from set B.
Notice that wavenumbers p and p2 are ‘generated’ by a decay of wavenumber
p1, but there is no net energy exchange between p and p2.

i. p1 ∈ B, p2 ∈ B: all of the energy going to p originates from point p1, which is
in set B, and therefore χ

(II)
B→p(p1, p2) = 1.

ii. p1 ∈ B, p2 /∈ B: as above, again all of the energy that is transferred to p
originates from point p1 ∈ B, and therefore χ

(II)
B→p(p1, p2) = 1.

iii. p1 /∈ B, p2 ∈ B: all of the energy that is transferred to p originates from point
p1 /∈ B, and therefore χ

(II)
B→p(p1, p2) = 0.

iv. p1 /∈ B, p2 /∈ B: none of the energy going to p comes from B, and therefore
χ

(II)
B→p(p1, p2) = 0.

(b) J (II)(p, p1, p2) < 0
The four possible configurations analysed below are depicted in figure 7(b).
Since the contribution is negative, the weight quantifies what fraction of the
energy lost from wavenumber p is transferred to set B. Again, notice that
wavenumbers p and p2 interact together to ‘generate a wave’ of wavenumber
p1, but there is no net energy exchange between p and p2.

i. p1 ∈ B, p2 ∈ B: all of the energy lost from p ends up being transferred to p1,
which is in set B, and therefore χ

(II)
B→p(p1, p2) = 1.

ii. p1 ∈ B, p2 /∈ B: as above, again all of the energy lost from p ends up being
transferred to p1 ∈ B, and therefore χ

(II)
B→p(p1, p2) = 1.
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p
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p2
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p
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p1

p2

B

(b)(a)

Figure 7. Diagrams associated with the triadic type II ‘difference’ interactions (p = p1 − p2) for a point p ∈ A,
depending on the sign of the contribution and on whether p1 and p2 are in set B or not: (a)J (II)(p, p1, p2) > 0,
(b) J (II)(p, p1, p2) < 0.

iii. p1 /∈ B, p2 ∈ B: all of the energy that is lost from p is transferred to p1 /∈ B,
and therefore χ

(II)
B→p(p1, p2) = 0.

iv. p1 /∈ B, p2 /∈ B: none of the energy lost from p is transferred to B, and
therefore χ

(II)
B→p(p1, p2) = 0.

Again, in cases (a) and (b), the values taken by the weight in the four sub-cases i,
ii, iii, iv are respectively the same, independent of the contribution being positive or
negative. In particular, the weight is independent of the location of wavenumber p2,
as summarized in table 1.

(iii) Type III (p = p2 − p1)
Upon permutation of the indices 1 and 2, the situation is identical to type II
resonances, as summarized in table 1.

In all cases, the weight χ
(l)
B→p(p1, p2) is expressed solely as a function of p1 and p2,

independent of p. Thus the dependence on p can be dropped from the notation, indicating
the characteristic interaction weight simply by χ

(l)
B (p1, p2) in table 1.

A.2.3. Step 3
Integrating the interaction kernel multiplied by the weighting function χB over all
possible combinations of p1 and p2, we obtain the total energy density time increment
of wavenumber p corresponding to direct outflow of energy from set B:

PB→p = ωp

∫
Rd×Rd

dp1 dp2

∑
l

χ
(l)
B→p(p1, p2)J (l)(p, p1, p2). (A5)

This expression is valid for all p ∈ A, for a given closed set A such that A ∩ B = ∅.
Performing an outer integration over all p ∈ A, we obtain the total instantaneous net flow
of spectral energy density per unit time (in short, the power) from B to A:

PB→A =
∫

A
dpPB→p. (A6)
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By energy conservation, this equals the opposite of the power from A to B:

PA→B = −PB→A = −
∫

A
dpPB→p. (A7)

Using (A5), this finally proves (2.1).

A.3. Proof of (3.15) (vanishing self-interactions)
Consider any three given frequency values ωa, ωb, ωc, such that ωc < ωb < ωa < ω, with
ωa = ωb + ωc. In the double integration (3.15), ω′ and ω1 can take the three values ωa, ωb
and ωc in six different combinations:

(i) ω′ = ωa, ω1 = ωb and ω′ = ωa, ω1 = ωc, giving 2ωa J(ωa;ωb, ωc);
(ii) ω′ = ωb, ω1 = ωa and ω′ = ωb, ω1 = ωc, giving 2ωb J(ωb;ωa, ωc);

(iii) ω′ = ωc, ω1 = ωa and ω′ = ωc, ω1 = ωb, giving 2ωc J(ωc;ωa, ωb).

Thus the contribution to the integral (3.15) from the triad ωa, ωb, ωc is given by

2 [ωa J(ωa;ωb, ωc) + ωb J(ωb;ωa, ωc) + ωc J(ωc;ωa, ωb)] = 0, (A8)

a vanishing contribution by the detailed conservation property (3.14). Since this is true for
any arbitrary choice of ωa, ωb, ωc, (3.15) follows.

Appendix B. Detailed conservation for isotropic systems

Property: detailed conservation for isotropic wave turbulence. Any triad of wavenumbers
p, p1, p2 on the resonant manifold is internally conservative, i.e. it satisfies

ωa J(ωa;ωb, ωc) + ωb J(ωb;ωa, ωc) + ωc J(ωc;ωa, ωb) = 0. (B1)

Proof . Consider three fixed values of frequencies ωa > ωb > ωc satisfying the resonance
condition – because they are positive, the only possibility is that ωa = ωb + ωc. Since ωa
is the largest frequency, we have ωa J(ωa;ωb, ωc) = ωa J(I)(ωa;ωb, ωc) = ωaRa

bc, using
the definitions in (3.9). Graphically, this condition is shown in figure 8 as the red points
on branch I of the resonant manifoldMa built on ωa. One point has horizontal coordinate
ω1 = ωb and vertical coordinate ω2 = ωc, and the other is symmetric with respect to the
main diagonal. The same solutions can be represented as the yellow points on branches
II and III of the resonant manifold Mb built on ωb. Because of symmetry, for each
of these points we have ωb J(ωb;ωa, ωc) = ωb J(II)(ωb;ωa, ωc) = −ωbRa

bc. Analogous
reasoning allows us to express the contribution from the two resonant solutions onMc as
ωc J(ωc;ωa, ωb) = ωc J(III)(ωc;ωa, ωb) = −ωcRa

bc. Notice that all three cases have two
independent solutions, which can be accounted for as the same solution (in the region
ω1 > ω2) by reflection along the main diagonal and multiplication by factor 2.

Putting the above expressions together, we obtain

ωa J(ωa;ωb, ωc) + ωb J(ωb;ωa, ωc) + ωc J(ωc;ωa, ωb)

= (ωa − ωb − ωc) Ra
b,c = (ωa − ωa) Ra

b,c = 0, (B2)

which proves detailed conservation for isotropic systems. �
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IIb

IIc
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ω2

Figure 8. Representation of the resonant solutions of wavenumbers pa, pb, pc, such that pa = pb + pc
and ωa = ωb + ωc. In the ω1–ω2 space, there are six solutions, two for each of the resonant manifolds
corresponding to ω = ωa, ω = ωb and ω = ωc.

Appendix C. Ultraviolet and infrared integrability conditions for capillary waves

Starting from the expression (27) in Pushkarev & Zakharov (2000), and assuming a
power-law solution n(ω) = ω−x, we write the non-dimensional collision operator of the
isotropic (after angle-averaging) capillary wave problem as

I(x) =
∫ 1

0
S0

12f 0
12/
2 dξ − 2

∫ +∞

1
S1

02f 1
02/
2 dξ, (C1)

where

S0
12 = (ξ(1 − ξ))4/3

[(
1 + 1 − ξ4/3 − (1 − ξ)4/3

2ξ2/3(1 − ξ)2/3

)
(ξ(1 − ξ))1/3

−
(

1 − 1 + ξ4/3 − (1 − ξ)4/3

2ξ2/3

)
ξ1/3

(1 − ξ)2/3 −
(

1 − 1 − ξ4/3 + (1 − ξ)4/3

2(1 − ξ)2/3

)
(1 − ξ)1/3

ξ2/3

]
,

S1
02 = (ξ(ξ − 1))4/3

[(
1 + −1 + ξ4/3 − (ξ − 1)4/3

2(ξ − 1)2/3

)
ξ1/3

(ξ − 1)2/3

−
(

1 − 1 + ξ4/3 − (ξ − 1)4/3

2ξ2/3

)
ξ1/3

(ξ − 1)2/3 −
(

1 − −1 + ξ4/3 + (ξ − 1)4/3

2ξ2/3(ξ − 1)2/3

)
(ξ(ξ − 1))1/3

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C2)


2 = 1
2

√
4ξ4/3|ξ − 1|4/3 − (1 − ξ4/3 − |ξ − 1|4/3)2 (C3)

and

f 0
12 = (ξ(1 − ξ))−x − (ξ−x + (1 − ξ)−x),

f 1
02 = (ξ − 1)−x − ξ−x(1 + (ξ − 1)−x).

}
(C4)
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C.1. Ultraviolet condition
We first consider integrability of (C1) as ξ → ∞. One can check the following asymptotics
as ξ → ∞: S1

02 ∼ 25
36ξ4/3, 
2 ∼ ξ2/3. Moreover, for x < 1 and x � 1, we have that f 1

02 ∼
3(1 − x)ξ−x−5/6. Using these results, we obtain

S1
02f 1

02/
2 ∼ 25
12

ξ−x−1/6, as ξ → +∞, (C5)

which is integrable at +∞ if x > 5/6. This determines the value γ2 = −1/6 that we use in
(7.4) in § 7. However, for x > 1, the correct asymptotic scaling for the spectrum-dependent
term is f 1

02 ∼ xξ−x−1, resulting in a different value γ2 = −1/3 that has to be used in (7.5).

C.2. Infrared condition
Let us now consider the limit as ξ → 1. We notice that the integrand enjoys reflection
symmetry in the interval [0, 1] with respect to its centre 1/2. Therefore, we can
equivalently consider integration in the interval [1/2, 1], multiplying the first integral in
(C1) by a factor 2. As ξ → 1−, we pose t = 1 − ξ , and we have as t → 0+ that

2S0
12f 0

12/
2 � 2
(

25
36

t8/3 − 35
27

t10/3 − 25
54

t11/3
)

t−x
(

xt + 1
2

x(x + 1)t2
)

t−2/3. (C6)

Likewise, as ξ → 1+, we pose t = ξ − 1, and we have as t → 0+ that

−2S1
02f 1

02/
2 � −2
(

25
36

t8/3 − 35
27

t10/3 + 25
54

t11/3
)

t−x
(

xt − 1
2

x(x + 1)t2
)

t−2/3.

(C7)

Both expressions have to be integrated in the t → 0+ limit. There are exact cancellations
between the two, and the lowest-order terms that do not cancel exactly provide the
finite-point singularity

2S0
12f 0

12/
2 − 2S1
02f 1

02/
2 � 25
108

x(3x − 1)t4−x, as t → 0. (C8)

The corresponding infrared integrability condition is x < 5. Notice that if we are looking
at the scaling of the singularity as ξ → 1+, as it is done in (7.2a,b), then there is no
cancellation and the leading order is O(t3−x), resulting in the value γ1 = 3 to be used in
(7.3). Because of double integration in the alternative method of § 7, this leads to the same
infrared integrability condition x < 5.

Appendix D. Limitations of the dimensional approach in anisotropic systems

Notice that the KZ solution is the particular case for which the k-component is independent
of k, i.e. Fk = Fk(m), and the m-component is independent of m, i.e. Fm = Fm(k).
However, for a general stationary solution for which Fk = Fk(k, m), Fm = Fm(k, m), (5.3)
is merely stating that the divergence of the flux is zero. Therefore, this approach determines
the direction of the flux. The magnitude of the flux of energy remains undetermined.
Expanding on ideas from Dematteis et al. (2022), we use (5.3)–(5.4) and stationarity, with
the same dimensional ansatz in (5.5a,b), to find a self-consistent closure for the energy
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flux. For any stationary solution with power law determined by (a, b), the energy flux
inherits the following form (Dematteis et al. 2022):

Fk(k, m) = (1 − 2b)Ck7−2am−2b, Fm(k, m) = (2a − 7)Ck6−2am1−2b, (D1a,b)

for an arbitrary constant C. One can check directly that the energy flux (D1a,b) is
divergence-free and satisfies the dimensional constraints of (5.3)–(5.4). However, the value
of C cannot be determined by (5.3). (Notice that the KZ spectrum is the only case for which
(D1a,b) is singular, i.e. identically zero, and must be replaced by (5.6a,b) instead.)

The above calculation illustrates the need to quantify the energy flux for stationary
spectra that are not a KZ solution, such as the stationary solution a = 3.69, b = 0, since
the constant C remains to be determined.
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