ON COVERING OF BALANCED INCOMPLETE
BLOCK DESIGNS

HAIM HANANI

1. Introduction. Given a set E of v elements and given positive integers
k (k < v) and ), we understand by balanced incomplete block design (BIBD)
B[k, \, v] a system of blocks (subsets of E) having % elements each such that
every pair of elements of E is contained in exactly \ blocks.

A necessary condition for the existence of a design Bk, X, ] is known to

be (4)
1) Ao —1) =0 (mod(k — 1)) and M@ — 1) =0 (mod k(kE — 1)).

For k = 3 and 4 and every X and for 2 = 5 and A = 1, 4, and 20 Condition
(1) is also sufficient (4). On the other hand, (1) is known not to be sufficient,
for example, for £ = 5, A = 2 (5) and for 2 = 6 and 7, A = 1 (6).

We say that a set F C E covers a given BIBD B[k, )\, v] if the intersection
of F with every block of B[k, )\, v] is non-empty. A set F covering a given
BIBD Bk, \, v] will be denoted by F(B[k, \, 2]) or briefly by F(B).

H. J. Ryser raised the following problem. Given integers v, k, and \ for which
some Bk, \, v] exists, find the greatest number f(&, A\, v) such that for any
BIBD Blk, A, v] every F(B) has at least f(k, A, v) elements. A set F(B[k, \, v])
having f(k, X\, v) elements will be called minimal. For 2 = 3 Ryser’s problem
is solved here completely (see Theorem 7). In the general case partial results
are obtained.

2. B-systems and T-systems. Most of the definitions and some of the
propositions in this section are taken from (4).

DEerFINITION 1. Given a set E of v elements, let K = {ki, ..., k,} be a finite
set of integers 3 < k; < v (¢ =1,2,...,n),and \ a positive integer. If it is
possible to form a system of blocks in such a way that

(i) the number of elements in each block is some k; € K and

(ii) every pair of elements of E is contained in exactly X blocks,
then we shall denote such a system by B[K, \, 2].

The class of all integers v for which systems B[K, ), v] exist will be denoted
by B(K, \).
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If K = {k} consists of one integer %k only, we shall write B[k, \, 2] and
B(k, \) instead of B[{k}, A, v] and B({k}, \) respectively.
The systems Bk, \, v] are the BIBD’s introduced in Section 1.

DErINITION 2. Given a class of m mutually disjoint sets 7; (z = 0,1, ...,
m — 1) having ¢ elements each, if it is possible to form a system of {2 m-tuples
in such a way that

(i) each m-tuple has exactly one element in common with each of the sets
r:(e=0,1,...,m — 1) and

(ii) every two m-tuples have at most one element in common,
then we denote this system of m-tuples by Tm, t].

The class of numbers ¢ for which systems 7[m, ¢] exist will be denoted by
T (m).

DEerINITION 3. If a system T'[m, t] exists, and if, moreover, there are in the
system at least e subsystems (0 < e < t) each consisting of ¢ mutually disjoint
m-tuples, then we denote such a system by T',[m, t].

The class of all numbers ¢ for which systems T',[m, t] exist will be denoted
by T.(m).

The following propositions are proved in (4).

ProrosiTION 1. If N divides N and if v € B(k, N'), then also v € B(k, \) and
f(k! )‘1 ‘ZJ) < f(k, )\,, 'Z)).

ProrosiTiON 2. If there exists a finite projective plane of order p, then
p € Tpo(p)and p € T(p + 1). Moreover, any two (p + 1)-tuples of T[p + 1, p]

have non-empty intersection.

Remark 1. The condition of Proposition 2 is satisfied if p is a power of a
prime (2, pp. 324-328).

DerINITION 4. Let m be a positive integer. We say that t > m, if t =1
or if

n
t= H pjuj’
j=1

where the p; are primes and the a, positive integers satisfying p,2i > m (4
=1,2,...,n).
Further, we say that ¢t > m, if t > m or if ¢t € B(K, \) and

ni
ko= [ pus for every k; € K,
j=1
where the p; ; are primes and the «;,, positive integers satisfying

pi,,““j>m (]———‘ 1,2-,...,111).
Bose and Shrikhande (1) proved the following propositions:
ProrosiTioN 3. If t > m, then t € T,(m) and t € T(m + 1).
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PROPOSITION 4. If t > m, then t € T (m).

3. Covering sets.
THEOREM 1. Let v € B(k, \). Then f(k,\,v) > (v — 1)/(k — 1).

Proof. Suppose f(k, \,v) < (v — 1)/(k — 1). Then there exist a BIBD
B[k, \, 9] and a set F(B) having fewer than (v — 1)/(k — 1) elements. Let
a ¢ F. Consider all the blocks of Blk, A, ] which contain a. Their number is
Mv — 1)/(k — 1). On the other hand, every element of F(B) covers at most
\ such blocks and consequently some of the blocks are not covered.

For k = 3, \ = 1, this theorem has been proved by Fulkerson and Ryser (3).

In the special case when the equality f(k, A\,v) = (v — 1)/(k — 1) holds,
(v — 1)/(k — 1) must be an integer and we shall use k = ¢+ 1, v = qu + 1,
i.e. we shall write f(¢ + 1,\, qu + 1) = u.

THEOREM 2. Let qu + 1 € B(qg + 1, \). A necessary condition for f(q + 1, ),
qu + 1) = u is the existence of a BIBD B[g + 1, )\, u].

Proof. Let E be a set having qu + 1 elements, on whicha BIBD B = B[g + 1,
\, qu + 1] is constructed and let F = F(B). Further, let ¢ € E — F and
G = E — (F\U {a}). By Theorem 1, |F| > u; here |F| denotes the number of
elements of F. If |F| = u, then every block containing @ evidently contains
exactly one element of F and therefore ¢ — 1 elements of G. Denote by 4 C B
the subsystem of blocks of B which contain a. Clearly |4| = Axu. The number
of “mixed’” pairs of elements of E, having one element in F and one in G,
which appear in the blocks of B is N(¢ — 1)u?, and which appear in the blocks
of 4 is A(g — L)u. In B — A we have, accordingly, AN(g — 1)u(u — 1) such
“mixed” pairs. On the other hand, every block of B — 4 has at least one
element in F. Each such block which has also at least one element in G has at
least g “‘mixed’’ pairs. There are, therefore, at most A(¢ — 1)u(u — 1)/¢ such
blocks. The total number of blocks in B — 4 is

_ _Mgu+Dgu  Au(u—1)
1Bl — 4] = (g + 1)g Mt = g+1

and accordingly the number of blocks of B — A4 included in F is at least
Au@w —1) Mg—=Dulw—1)  M(u —1)

g+1 q (g+ 1)g °

This is, however, the exact number of blocks in Bg + 1, \, ] and it can be
attained only if such a BIBD exists.

THEOREM 3. If there exists a projective plane of order p, then a necessary and
sufficient condition for f(p + 1, \, pu + 1) = u is the existence of a BIBD
Blp + 1, N\, ul.

Remark 2. The condition of Theorem 3 is satisfied if p is a power of a prime
(see Remark 1).

https://doi.org/10.4153/CJM-1964-062-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1964-062-x

618 HAIM HANANI

Proof. The necessity follows from Theorem 2. It remains to prove sufficiency.
Let E be a set having pu + 1 elements which we denote by (3,7) (¢ =0,

1,...,p—1;7=0,1,...,u — 1) and (¢). We construct a BIBD

) Blp + 1, \, pu + 1]

as follows: take as blocks the sets {(z,7), (@):2=0,1,...,p — 1}, G =0,
1,...,u — 1), X times each. Further construct a BIBD B[p + 1, A, «] on the
set of integers 0, . .., # — 1 and for each block 8 € B [p + 1, \, #] construct
a system T[p + 1,p] on the sets 7; = {(4,7):2=0,1,...,p — 1}, GEB)

in such a way that {(0, j):7 € B} is one of the (p + 1)-tuples in this system.
The systems T[p + 1, p] complete the construction of (2). By Proposition 2,
the set F = {(0,7): 7=0,1,...,u — 1} covers the BIBD (2).

Theorem 2 and the necessity of (1) for the existence of BIBD’s imply the
following corollary.

CoROLLARY 1. Let qu + 1 € B(q + 1, ). A necessary condition for f(q + 1,
Ngu+ 1) =uisA(u— 1) =0 (mod ¢g) and Mu(u — 1) = 0 (mod (¢ + 1)g).

In those instances in which Condition (1) is also sufficient for the existence
of the respective BIBD’s (4), Theorem 3 and Remark 2 imply the following
corollary.

COROLLARY 2. If p = 2 0r3orif p = 4and N\ = 1, 4, or 20, then a necessary
and sufficient condition for f(p + 1, X, pu + 1) = u is M — 1) = 0 (mod p)
and Mu(u — 1) =0 (mod (p + 1)p), and more specifically:

for p=2, A=1 u =1 or 3 (mod 6),
=2 u = 0o0r1 (mod 3),
AN=3 u =1 (mod 2),
=6 any i,

p=3 rx=1 u =1 o0r4 (mod 12),
A=2 u =1 (mod 3),
A=3 u=0o0r1 (mod 4),
A=26 any u,

p=4 r=1 u =1 o0r5 (mod 20),
A=4 u=0o0r1 (mod 5),
A=20 anyu.

DEFINITION 5. Let E be a set with v elements; ¢ and \ are positive integers;
v € B(g 4+ 1, \). Let F(B) be a minimal set covering a given BIBD B[q + 1,
\, 2] and having f(¢ 4+ 1, \, v) = 7 elements. Further, let .S be a subset of E
having s elements and let |S /M F| = o. Suppose that it is possible to construct
a system of blocks (subsets of E) in such a way that

(i) the number of elements in each block is ¢ + 1,

(ii) every (unordered) pair of elements such that one of them is in E and
the other in £ — S is contained in exactly A blocks, and
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(iii) pairs of elements of S do not appear at all.
Then we shall denote such a system by Blg + 1, A, o|s].

If, moreover, the set F covers this system B[g + 1, A, »|s], then we shall
write f(g 4+ 1, \, 9|s) = nlo.

ProposITION 5. Let E be a set of v elements and S be a subset of s elements.
Further, let v € B(g+ 1,\), s € B(g+ 1,\) and let F(Blg+ 1, \,9]) be a
minimal set covering Blg + 1, \, 9] and having f(q + 1, \,v) = n elements, o
of them in S. If Blg + 1, \, s] C Blg + 1, \, v, then Blq + 1, \, v|s] exists and
f(q + 1, A, YJIS) = "]l“-

Proof. Construct BIBD B[g 4 1, \, v] on E in such a way that its subdesign
Blgq + 1, \, s] should be on .S and omit all the blocks of this subdesign.

Let p be a power of a prime and let ¢ 3> p or ¢ > p + 1. Further, let u, s,
and o be non-negative integers, ¢ < s. Then the following theorems will be
proved.

THEOREM 4. If Blp + 1, \, pt + s|s] exusts, f(p + 1, \, pt + s|s) =t + oo
and w € B(p + 1, \), then ptu + s € B(p + 1, \) and f(p + 1, A, ptu + s)
<L tu—+ o

THEOREM 5. If Blp + 1, ), p% + s|s] exists, f(p + 1, \, p¥ + s|s) = pt + oo
andu +1 € B(p + 1,1),thenptu + s € B(p + 1, N andf(p + 1, \, ptu + s)
<Ltu—+o.

THEOREM 6. If B[p + 1, \, p(p + 1)t + s|s] exusts,
fo+ 1,500 + Dt +sls) = (p + 1t + oo,
and if, further, u € B(p +1,1), u = 0 (mod(p + 1)) and the BIBD B[p + 1,

1, u] contains a family A of w/(p + 1) mutually disjoint blocks, then
ptu+s € B+ 1,N)and f(p + 1, )\ ptu 4+ 5) < tu + 0.

Remark 3. With respect to the conditions on # in Theorem 6 in the case
p = 2 we note that if # =3 (mod 6), then the other conditions are auto-
matically satisfied.

Proof of Remark 3. We have to show that there exists a BIBD B[3, 1, u]
containing #/3 mutually disjoint blocks.

Let E be a set having # = 3(2w + 1) elements, which we denote by (4, §)
(2=0,1,2;7=0,1,...,2w). The BIBD B3, 1, «] is formed by the blocks

10,7, 4,7, 2,7} G=0,1,...,2w) which are mutually disjoint and by
the blocks
{G+1,7, 6+, 06— o)} (6=0,1,2;,7=0,1,..., 2w,
a=1,2,...,w).

All the numbers appearing in parentheses should be taken modulo the
number of values which the variable in the given place may take. In the given
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case the number in the first place is taken (mod 3) and in the second place

(mod 2w + 1).

Proof of Theorem 4. Let E be a set having ptu + s elements which will be
denoted by
(4, 7, b) G=01...,p—1;7=0,1,...,¢t—1;h=0,1,..,u — 1)

and (4,7) (r =0,1,...,s5 — 1) and let S be a subset of £ composed of the
elements (4,7) (r =0,1,...,s — 1). On the set E we construct a BIBD

3) Blp + 1, \, ptu + 5]
as follows:

(i) Ontheset Eq = S\ {(3,7,0):2=0,1,...,p—1;5=0,1,...,t— 1}
construct a BIBD B[p 4 1, \, pt 4 s] in such a way that it is covered by the
set Fo =S5"U {(0,7,0):7=0,1,...,¢t — 1}, where S’ is a subset of S having

¢ elements.
(ii) On each of the sets

E,=SY{Gjhk:t=01...,p—1; j=01,...,t—1}

th=1,2,...,u—1)
construct a system B{p 4 1, A, pt + s|s] in such a way that it is covered by
the set
F,=S8U{0,4,h):7=0/1,...,¢t— 1} r=12,...,u—1).

(iii) Construct BIBD B[p + 1, A, #] on the set of the integers {£} = {0, ...,
u — 1}. For every block 8 € B[p + 1, \, #] construct a system T*[p + 1, p]
on thesets r,* = {(¢,h): 2 =0,1,...,p — 1} (& € B) in such a way that the
set {(0, h): & € B} should be one of the (p + 1)-tuples of the system. Further,
for every (p + 1)-tuple v € T*[p + 1, p] construct a system I7[p + 1,¢] on
the sets 7, = {(4,7,h):7=0,1,...,¢t — 1} ({4, B) € 7).

The BIBD (3) is obtained by taking the blocks of the design formed in (i)
and of the systems formed in (ii) and the (p + 1)-tuples of the systems
T[p + 1,1] formed in (iii).

Clearly, the set F=S"\U{(0,7,k): j=0,1,...,t—1; h=0,1,...,
u — 1} covers the BIBD (3).

Proof of Theorem 5. Let E, S, and S’ be the sets defined in the proof of
Theorem 4.

Constructa BIBD B[p + 1,1, u + 1]on theset {h,a:h =0,1,...,u — 1}.
For every block g* € B[p + 1,1, u + 1] which contains the element «,
denote 8’ = 8*¥ — {a}. Let B¢’ be one of the sets 8. On the set

SU{GLB):e=0,1,...,p—1;7=0,1,...,t —1;h € B}
construct a BIBD
4) Blp + 1, \, p + 5]

https://doi.org/10.4153/CJM-1964-062-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1964-062-x

BALANCED INCOMPLETE BLOCK DESIGNS 621

in such a way that it is covered by the set S’ \U {(0,7,4):7 =0,1,...,¢t — 1;
h € By'}. For every set 8/ # By construct in the same way a system

5) Blp 4+ 1, \, p% + s|s]

ontheset S\U {(4,7,h):4=0,1,...,p—1;,7=0,1,...,t —1;h € g'}.

For every block 8 € B[p + 1, 1, # + 1] which does not contain the element
a proceed as in (iii) of the proof of Theorem 4 taking A = 1.

A BIBD B[p + 1, \, ptu + s] consists of the blocks of BIBD (4) and
systems (5) and of the (p + 1)-tuples of the systems T[p + 1, t] formed in
(iii) of the proof of Theorem 4, taken A times each. This BIBD is covered by
theset F=S"U {0,7,h):7=0,1,...,t —1;h=0,1,...,u — 1}.

Proof of Theorem 6. Let E, S, and S’ be the sets defined in the proof of
Theorem 4.

Construct a BIBD B[p + 1, 1, u] satisfying the conditions of the theorem.
Let By’ € A be a block of this BIBD. On the set S\U {(¢,7,h):7=0,1,...,
p—1;7=0,1,...,t —1; b € B¢’} construct a BIBD

) Blp+1,\p( + Dt + 5]

covered by the set S"\U {(0,7,%): j=0,1,...,t —1; h € 8/}. For every
other block 8 € 4, 8’ # B¢ construct on the set

SU{G,7,h):i=0,1,...,p—1;7=0,1,...,t —1;h € g},
a system
™ Blp + 1, \, plp + 1)t + sis]

covered by the set S'\U {(0,7,k):7=0,1,...,¢t —1;h € §'}.

For every block 8 € B[p + 1,1, u], 8¢ A, proceed as in (iii) of the proof
of Theorem 4, taking A = 1.

A BIBD B[p + 1, \, ptu + s] consists of the blocks of BIBD (6) and
systems (7) and of the (p 4+ 1)-tuples of the systems T[p + 1,¢] formed in
(iii) of the proof of Theorem 4, taken A times each. This design is covered by
the set F=S"U{0,4,4):5=0,1,...,t —1;h=0,1,...,u — 1}.

4. The case p = 2. In this case, Condition (1) is known to be necessary
and sufficient for the existence of corresponding BIBD’s (4). It follows that
BIBD BJ[3, A, 7] exist

for A =1, or 5 (mod 6) if and only if ¥ = 1 or 3 (mod 6),
" AN=2,0rd4 (mod6)” ” " " w=0o0rl (mod3),
” A =3 (mod 6) o " "y =1 (mod 2),

” A =0 (mod 6) and for every v > 3.

Regarding minimal covering sets of such designs, we prove the following
theorem.
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THEOREM 7. For every \, if v € B(3, \), then

1w —1), ifv =3 (mod 4), or if v = 1 (mod 4)

and A = 0 (mod 2),
1w+ 1), ifv=1 (mod 4) and A = 1 (mod 2),
27, if v =0 (mod 2).

Proof. 1t follows from Corollary 2 and Proposition 1 thatf(3, A, v) = 1(v — 1)
if and only if v = 3 (mod 4) orv = 1 (mod 4) and A = 0 (mod 2). By Theorem
1, it remains to be proved that f(3,\, ) < i( + 1) and f(3, \,v) < 3v for
v =1 (mod 4) and v = 0 (mod 2), respectively.

Let v = 1 (mod 4). Forv € B(3, 1), i.e. forv = 1 or 9 (mod 12), we prove
in (13)-(15) that (3, 1, ) < 3(@ 4+ 1). For v = 5 (mod 12), i.e. v € B(3, 3),
we prove in (16)—(17) that f(3, 3, v) < (v + 1). On account of Proposition 1,
the case v = 1 (mod 4) will be herewith exhausted.

We begin by proving some formulae for particular values of .

€] f(3,3,5) = 3.

Denote the elements of a set E by () ( =0,1,2,3,4) and form BIBD
BJ3, 3, 5] from the blocks

{(@), ¢+ o), @+ 2a)} (2=0,1,2,3,4;a =1, 2).
The set F = {(0), (1), (2)} covers this design.
9) f(3,1,9) = 5.
Elements: (¢,j) (¢ =0,1,2;7=0,1,2).

Blocks: {(0,7), (1,7, @, N} { @7+ 1), (6,7 +2), ¢+ 1,5)]}.
Covering set F = {(0, 0), (0, 1), (0, 2), (1, 0), (2,0)}.

(10) £(3,1,13) = 7.

Elements: () (¢ =0,1,...,12).
Blocks: {(?), G+ 1), G+ 4)}; {(d), ¢+ 2), ¢+ 7)}.
Covering set I = {(0), (2), 4), (8), (9), (10), (12)}.

(11) B[3, 1, 21|9] exists and £(3, 1, 21|9) = 11/5.

Put in Theorem 4 s = 3,0 =2, =3, A =1, u = 3 and apply (9). The
construction of blocks in Theorem 4 shows that B[3, 1, 9] C B[3, 1, 21] and,
by Proposition 5, (11) is proved.

(12) BI[3, 3, 17|5] exists and f(3, 3, 17|5) = 9|3.

By Proposition 5 it suffices to construct BIBD’s B[3, 3, 5] and B[3, 3, 17] such
that B[3, 3, 5] C B(3, 3, 17] and that F(B[3, 3, 17]) has nine lements, three
of which cover the BIBD B[3, 3, 5]. To construct such a B3, 3, 17], take
the elements and the blocks of (8); further, take the elements (¢, j, &), (z = 0, 1;
j=0,1;h = 0,1, 2) and form the blocks:

N\ 0) =
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{(), G,0,k), G, L,k +v)} (v=0,1,2) 3 times;
{B+¢€),0,7,h), A,j+ ¢k)} (¢=0,1) 3 times;
{(1+1)]+€yh)v (t’])h'*‘l)y (11]vh+2)} (€=0, 1),
{Gj+40), G+ 1L,5h+1), 6+ 1,7,k+2)].

Covering set F = {(0,4,4), (v):7=0,1;A=0,1,2;y =0, 1, 2}.

(13) Ifv=10r9 (mod 24), then f(3,1,v) < (v + 1).

Put, in Theorem 5, s=¢=1,t=2, A=1, =0 or 2 (mod 6) and
apply (9).
(14) If v = 13 (mod 24), then f(3,1,v) < 3(v + 1).

Put, in Theorem 6, s = ¢ = 1,2 =2, A = 1, » = 3 (mod 6) and apply (10).
(15) If v = 21 (mod 24), then f(3, 1,v) < (@ + 1).

Put, in Theorem 6,s = 9,0 = 5,f =2, = 1, u = 3 (mod 6) and apply (11).
(16) If v = 5 (mod 24), then f(3,3,v) < 3(v + 1).

Put, in Theorem 4, s = ¢ = 1,4 =2, A = 3, # = 1 (mod 6) and apply (8).
an If v = 17 (mod 24), then f(3,3,v) < 3(v + 1).

Put, in Theorem 6, s = 5, ¢ = 3, t =2, A\ = 3, » = 3 (mod 6) and apply
(12).

Letv = 0 (mod 2). For v € B(3, 2), that is, for v = 0 or 4 (mod 6) we prove
in (24)-(26) that f(3,2,7) < % and for » = 2(mod 6) we prove in (27)
that f(3, 6,2) < %v. By Proposition 1, this proves our theorem. As in the
previous case, we begin by considering some special values of v.

(18) 73,2,4) = 2.

Elements: () ( = 0,1, 2, 3).
Blocks: {(7), ¢ 4+ 1), (Z + 2)}.
Covering set F = {(0), (1)}.
(19) f@3,2,6) = 3.

Elements: (7,7) (=0,1;7=0,1,2).
Blocks: {(0,0), (0, 1), (0,2)};
10,7, 0,7, L,j+n} &==x1);{1,7), 0,7 —1), 0,7+ 1)}
Covering set F = {(0,7):7 =0, 1, 2}.
(20) f3,6,8) = 4.

Elements: (¢,7) (¢ =0,1;7=0,1,2,3).

Blocks: {(0,7), (0,7 + 1), (0,7 + 2)} twice;

G+ 1,7, @47, 6,7 +n} @==x1);

{0,7), (1,7, 1,7+ 2)} twice;

{(Orj)y (1:.7 + 2)! (1’] + 77)} (77 = :*:1) twice.
Covering set F = {(0,7):7=0,1, 2, 3}.
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(21) £(3,6,14) = 7

Elements: (4,7) (¢+=10,1;7=0,1,...,6).

Blocks: {(0,4), (0,7 + 1), (0,7 4+ 3)} 5 times;
(0,7, L,j—v),1Lji+m} (=123) 4 times;
{(I’J)v (01] - 7)’ (0)] + 7)} (7 =1,2,3);
{(Ov])v (1’.7)’ (1,]+5)} 6=12...,6).

Covering set F = {(0,7):7=0,1,...,6}.

(22) B3, 6, 8[2] exists and £(3, 6, 8|2) = 4[1; cf. (20).

Elements: (#) (h=0,1) and (s,5) (¢=0,1;7=0,1,2).
Blocks: {(0), (4,7), (2,7 4+ 1)} 3 times;
{@), 0,79, L,i+v} (=0,1,2) twice;
{C+ 1,7, @0, Git+n}l @==xl).
The pair {(0), (1)} does not appear.
Covering set F = {(0), (0,7):7 =0,1, 2}.

(23) B[3, 2, 10|4] exists and f(3, 2, 10|4) = 5|2.
Apply Proposition 5 in the same way as in (12). Take the elements and

blocks of (18). Further, take the elements (z,7) (# =0,1; § =0,1,2) and
form the blocks:

{G+1,0), (G 1), G2)}; {0), 4,7, @7+ D}
{(1)’ (/Lv 0)1 (7') 7’)} (77 = :bl)y

{(l)y (O) 77)1 (1» 7])} (77 = :bl),

{(2), (0,0), (1,0)} twice;

{@), (1), 0+ 1,2)} twice;

{@3), 0,m), A,m} = =x1);

{3), 4,0), G+ 1L} (= =xl).

Covering set F = {(0), (1), (0,7):7 = 0,1, 2}.

(24) If v = 0 or 4 (mod 12), then (3, 2, v) < 3v.

Put, in Theorem 4, s=0¢=0,t=2, A=2, =0 or 1 (mod 3) and
apply (18).
(25) If v = 6 (mod 12), then f(3, 2, v) < 3.

Put, in Theorem 6,s = ¢ = 0, = 1, A = 2, » = 3 (mod 6) and apply (19).
(26) If v = 10 (mod 12), then f(3, 2, v) < 1v.

Put, in Theorem 6,s =4, ¢ =2, ¢ =1, A =2, « = 3 (mod 6) and apply
(23).
@27 If v = 2 (mod 6), then (3, 6,v) < 2v.

Forv = 8, see (20); for v = 14, see (21). For v > 14 substitute in Theorem 4
s=2,0=1,t=3,A=6, u > 3 and apply (20) and (22).
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