RECIPROCAL CONVERGENCE CLASSES FOR FOURIER SERIES AND INTEGRALS

A. P. GUINAND

Introduction. The classical result of Plancherel for Fourier cosine transforms of functions f(x) of the class $L^2(0, \infty)$ states that (see (7) for references)

$$g(x) = \lim_{T \to \infty} \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_0^T f(t) \cos xt \, dt$$

converges in mean square to a function g(x) which also belongs to $L^2(0, \infty)$, and furthermore

$$f(x) = \lim_{T \to \infty} \left(\frac{2}{\pi} \right)^{\frac{1}{2}} \int_0^T g(t) \cos xt \, dt.$$

Some years ago in a series of papers (1; 2; 3) on summation formulae I showed that a similar symmetrical theory for narrower classes of functions and ordinary convergence of the integrals can also be developed. The relevant results can be expressed as follows:

THEOREM 1. If f(x) is the integral of its derivative and xf'(x) belongs to $L^2(0, \infty)$, then

$$\lim_{x\to\infty}f(x) = l$$

exists, f(x) - l belongs to $L^2(0, \infty)$, and $f(x) - l = o(x^{-\frac{1}{2}})$

as x tends to +0 or to $+\infty$.

Definition 1. If f(x) is the integral of its derivative and x f'(x) belongs to $L^2(0, \infty)$, and if the limit to which f(x) tends as x tends to infinity is zero, then we say that f(x) belongs to the class $S_1^2(0, \infty)$.

THEOREM 2. If f(x) belongs to $S_1^2(0, \infty)$ then for x > 0

(1)
$$g(x) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_0^{-\infty} f(t) \cos xt \, dt$$

converges, g(x) also belongs to $S_1^2(0, \infty)$, and

(2)
$$f(x) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_0^{\infty} g(t) \cos xt \, dt.$$

Here we use the notation

$$\int_a^{\to\infty} = \lim_{T\to\infty} \int_a^T.$$

Received September 20, 1959.

A. P. GUINAND

That is to say that the class $S_1^2(0, \infty)$ is a subclass of $L^2(0, \infty)$, and that it can be described as a self-reciprocal convergence class for Fourier cosine transformations.

This theory has recently been extended by Miller (5) to cover wider subclasses of $L^2(0, \infty)$ and more general transformations. A disadvantage of Theorem 2 is that, although the result is simple and easily applied, the proof of Theorem 2 is indirect and it uses results from the Plancherel theory.

In the first part of the present paper I show how to find narrower selfreciprocal convergence classes for Fourier cosine transforms, and I give a direct proof of the Fourier inversion formula without using the Plancherel theory for one such self-reciprocal convergence class.

In the second part of the paper I prove analogues of Theorems 1 and 2 for Fourier series. I define a class $S_1^2(0, 2\pi)$ of functions f(x) of period 2π and a class $\sum_{1}^{2} (-\infty, \infty)$ of sequences $\{c_n\}$ $(n = 0, \pm 1, \pm 2, ...,)$ which are reciprocal convergence classes for Fourier series in the sense that:

(i) if f(x) belongs to $S_1^2(0, 2\pi)$ then it has a Fourier series

(3)
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

which converges for $x \not\equiv 0 \pmod{2\pi}$, and $\{c_n\}$ belongs to $\sum_{1} (-\infty, \infty)$;

(ii) if $\{c_n\}$ belongs to $\sum_{1^2}(-\infty, \infty)$ then $\sum_{n=-\infty}^{\infty} c_n e^{inx}$ converges for all $x \neq 0 \pmod{2\pi}$ and defines a function f(x) belonging to $S_1^2(0, 2\pi)$.

PART I: FOURIER INTEGRALS

1. Reciprocal classes and Mellin transforms. If f(x) and g(x) are Fourier cosine transforms connected by the equations (1) and (2), and $\mathfrak{F}(s)$ and $\mathfrak{G}(s)$ are their Mellin transforms then, formally (7, p. 213),

(4)
$$\mathfrak{G}(s) = \mathfrak{R}(s) \mathfrak{F}(1-s)$$

and

$$\mathfrak{F}(s) = \mathfrak{R}(s) \,\mathfrak{G}(1-s),$$

where

$$\Re(s) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \Gamma(s) \cos \frac{1}{2} s \pi,$$

and consequently

(5)

$$\left|\Re\left(\frac{1}{2}+it\right)\right|=1$$

for all real t.

From the L^2 theory of Mellin transforms (7, p. 94) it follows that if f(x) belongs to $L^2(0, \infty)$ then $\mathfrak{F}(s)$ belongs to $\mathfrak{L}^2(-\infty, \infty)$. Hence by (4) and (5) it follows that $\mathfrak{G}(s)$ also belongs to $\mathfrak{L}^2(-\infty, \infty)$ and consequently g(x) belongs to $L^2(0, \infty)$, as required by the Plancherel theory.

A similar argument can be used to show that the class $S_1^2(0, \infty)$ is self-

reciprocal for Fourier cosine transformations. If f(x) belongs to $S_1^2(0, \infty)$ then the Mellin transform of x f'(x) exists and is

(6)

$$\lim_{X \to \infty} \int_{1/X}^{X} xf'(x) x^{s-1} dx$$

$$= \lim_{X \to \infty} \left\{ [x^{s}f(x)]_{1/X}^{X} - s \int_{1/X}^{X} f(x) x^{s-1} dx \right\}$$

$$= -s \mathfrak{F}(s),$$

since the integrated terms vanish for $R(s) = \frac{1}{2}$ by Theorem 1. Hence $s \mathfrak{F}(s)$ belongs to $\mathfrak{L}^2(-\infty, \infty)$ and it follows from (4) and (5) that $s \mathfrak{G}(s)$ also belongs to $\mathfrak{L}^2(-\infty, \infty)$. Then, reversing the above argument, it follows that g(x) belongs to $\mathfrak{S}_1^2(0, \infty)$, as required by Theorem 2.

Now the same procedure can be used when $\mathfrak{F}(s)$, instead of being multiplied by -s as in (6), is multiplied by some other suitable function of s. For example, put

$$\Phi(1-s) = \mathfrak{F}(s)/\Gamma(s)$$

and assume that $\Phi(s)$ belongs to $\mathfrak{L}^2(-\infty, \infty)$. Then $\Phi(s)$ is the Mellin transform of a function $\phi(x)$ belonging to $L^2(0, \infty)$. Further $\Gamma(s)$ is the Mellin transform of e^{-x} and consequently the relationship

(7)
$$\mathfrak{F}(s) = \Gamma(s)\Phi(1-s)$$

corresponds to (7, p. 213)

(8)
$$f(x) = \int_0^\infty e^{-xt} \phi(t) dt.$$

From (4) and (7) we have

$$\mathfrak{G}(s) = \mathfrak{R}(s)\Gamma(1-s)\Phi(s)$$
$$= \left\{\mathfrak{R}(s)\frac{\Gamma(1-s)}{\Gamma(s)}\right\} \{\Gamma(s)\Phi(s)\}.$$

Hence, by (5), on $R(s) = \frac{1}{2}$

$$\left|\frac{\mathfrak{G}(s)}{\Gamma(s)}\right| = \left|\mathfrak{K}(s) \frac{\Gamma(1-s)}{\Gamma(s)}\right| \left|\Phi(s)\right| = \left|\Phi(s)\right|$$

and so $\mathfrak{G}(s)/\Gamma(s)$ belongs to $\mathfrak{L}^2(-\infty, \infty)$.

Reversing the argument from (7) to (8) it follows that there is a $\psi(x)$ belonging to $L^2(0, \infty)$ for which

$$g(x) = \int_0^\infty e^{-xt} \psi(t) dt,$$

and we have the following result.

A. P. GUINAND

THEOREM 3. If f(x) is the Laplace transform of a function of $L^2(0, \infty)$, and g(x) is its Fourier cosine transform, then g(x) is also the Laplace transform of a function of $L^2(0, \infty)$.

Let us now make the following definition.

Definition 2. The function f(x) is said to belong to the class $\Lambda^2{h(x)}$ if there exists a function $\phi(x)$ belonging to $L^2(0, \infty)$ such that

$$f(x) = \int_0^\infty h(xt) \,\phi(t) \,dt$$

for all x > 0.

Then Theorem 3 states that the class $\Lambda^2(e^{-x})$ is self-reciprocal for Fourier cosine transformations.

The same type of argument can be used to prove the following more general result.

THEOREM 4. If h(x) belongs to $L^2(0, \infty)$ and has a Mellin transform $\mathfrak{H}(s)$ satisfying

$$\left|\frac{\mathfrak{H}(\frac{1}{2}+it)}{\mathfrak{H}(\frac{1}{2}-it)}\right| = 1$$

for all real t then $\Lambda^2\{h(x)\}$ is a self-reciprocal class of functions with respect to any general transformation of the Fourier type.

For general transformations see (7, ch. VIII).

2. Symmetrical convergence theorems by direct methods. The arguments of § 1 do not prove that the Fourier integrals (1) and (2) converge, and they use the L^2 theory of Mellin transforms. If we consider the class of functions

 $\Lambda^{2}(e^{-\frac{1}{2}x^{2}})$

we can derive a symmetrical convergence theorem for the Fourier cosine transformation by a direct method. The result is:

THEOREM 5. If f(x) belongs to the class

$$\Lambda^2(e^{-\frac{1}{2}x^2})$$

then

(9)
$$g(x) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_0^{-\infty} f(t) \cos xt \, dt$$

converges for x > 0, g(x) also belongs to

$$\Lambda^2(e^{-\frac{1}{2}x^2}),$$

and

(10)
$$f(x) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_0^{\to\infty} g(t) \cos xt \, dt$$

for x > 0. Further, if, for x > 0,

(11)
$$f(x) = \int_0^\infty e^{-\frac{1}{2}x^2 t^2} \phi(t) dt$$

and

$$g(x) = \int_0^\infty e^{-\frac{1}{2}x^2 t^2} \psi(t) \ dt$$

in accordance with Definition 2 then

(12)
$$\psi(x) = \frac{1}{x} \phi\left(\frac{1}{x}\right)$$

almost everywhere.

From Definition 2 there exists a function $\phi(x)$ of $L^2(0, \infty)$ satisfying (11). Hence

(13)
$$g(x) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\infty} f(t) \cos xt \, dt$$
$$= \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\infty} \cos xt \, dt \int_{0}^{\infty} \phi(u) e^{-\frac{1}{2}u^{2}t^{2}} \, du$$
$$= \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\infty} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2}t^{2}} \cos xt \, dt,$$

provided that this formal process can be justified. Now

$$\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\int_{0}^{\infty}e^{-\frac{1}{2}u^{2}t^{2}}\cos xt\,dt=\frac{1}{u}\,e^{-\frac{1}{2}x^{2}/u^{2}},$$

so (13) becomes

(14)
$$g(x) = \int_{0}^{\infty} \phi(u) e^{-\frac{1}{2}x^{2}/u^{2}} \frac{du}{u}$$
$$= \int_{0}^{\infty} \frac{1}{t} \phi\left(\frac{1}{t}\right) e^{-\frac{1}{2}x^{2}t^{2}} dt$$
$$= \int_{0}^{\infty} \psi(t) e^{-\frac{1}{2}x^{2}t^{2}} dt$$

by (12).

We can justify this process by the following three lemmas.

LEMMA 1. If $V_1 \ge V > 0$, y > 0, then

$$\left| \int_{V}^{V_{1}} e^{-\frac{1}{2}v^{2}} \cos yv \, dv \right| \leq \frac{2}{y} e^{-\frac{1}{2}v^{2}}.$$

Proof.

$$\int_{V}^{V_{1}} e^{-\frac{1}{2}v^{2}} \cos yv \, dv = \left[\frac{\sin yv}{y} e^{-\frac{1}{2}v^{2}}\right]_{V}^{V_{1}} + \frac{1}{y} \int_{V}^{V_{1}} v e^{-\frac{1}{2}v^{2}} \sin yv \, dv.$$

Hence

$$\begin{split} \left| \int_{V}^{V_{1}} e^{-\frac{1}{2}v^{2}} \cos yv \, dv \right| &\leq \frac{1}{y} \left(e^{-\frac{1}{2}V^{2}} + e^{-\frac{1}{2}V_{1}^{2}} \right) + \frac{1}{y} \int_{V}^{V_{1}} v e^{-\frac{1}{2}v^{2}} \, dv \\ &= \frac{1}{y} \left(e^{-\frac{1}{2}V^{2}} + e^{-\frac{1}{2}V_{1}^{2}} \right) + \frac{1}{y} \left(e^{-\frac{1}{2}V^{2}} - e^{-\frac{1}{2}V_{1}^{2}} \right) \\ &= \frac{2}{y} e^{-\frac{1}{2}V^{2}}. \end{split}$$

LEMMA 2. If T, x, δ are positive real numbers and $\phi(x)$ belongs to $L^2(0, \infty)$ then

(15)
$$\left| \int_{T}^{\infty} \cos xt \, dt \int_{0}^{\delta} e^{-\frac{1}{2}u^{2}t^{2}} \phi(u) du \right| \leq \frac{2^{\frac{1}{2}} \pi^{\frac{1}{4}}}{xT^{\frac{1}{2}}} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}}.$$

Proof. Consider

(16)
$$\int_{T}^{T_{1}} \cos xt \, dt \int_{0}^{\delta} e^{-\frac{1}{2}u^{2}t^{2}} \phi(u) \, du$$

where $T_1 > T > 0$. Since $\phi(x)$ belongs to $L^2(0, \infty)$ it follows that $\phi(x)$ belongs to $L(0, \delta)$ for any finite δ , and that (16) converges absolutely. Hence (16) is equal to

(17)
$$\left| \int_{0}^{\delta} \phi(u) \, du \int_{T}^{T_{1}} e^{-\frac{1}{2}u^{2}t^{2}} \cos ut \, dt \right|$$
$$= \left| \int_{0}^{\delta} \phi(u) \, \frac{du}{u} \int_{T_{u}}^{T_{1}u} e^{-\frac{1}{2}v^{2}} \cos \frac{xv}{u} \, dv \right|$$
$$\leqslant \frac{2}{x} \int_{0}^{\delta} |\phi(u)| e^{-\frac{1}{2}T^{2}u^{2}} \, du$$

by Lemma 1. By Schwarz's inequality (17) is less than or equal to

(18)
$$\frac{2}{x} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{0}^{\delta} e^{-T^{2}u^{2}} du \right\}^{\frac{1}{2}} \\ \leq \frac{2}{x} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{0}^{\infty} e^{-T^{2}u^{2}} du \right\}^{\frac{1}{2}} \\ = \frac{2^{\frac{1}{2}} \pi^{\frac{1}{4}}}{xT^{\frac{1}{2}}} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}}.$$

Making T and T_1 tend to infinity it follows that the double integral in (15) converges, and (15) follows from (18) if we keep T fixed and make T_1 tend to infinity.

LEMMA 3. If x is real and positive, and $\phi(x)$ belongs to $L^2(0, \infty)$ then

(19)
$$\int_0^{\to\infty} \cos xt \, dt \int_0^\infty \phi(u) e^{-\frac{1}{2}u^2 t^2} du$$

converges and is equal to

(20)
$$\int_0^\infty \phi(u) \ du \ \int_0^\infty e^{-\frac{1}{2}u^2 t^2} \cos xt \ dt.$$

Proof. The inversion of order of integration

$$\int_{\delta}^{\infty} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2}t^{2}} \cos xt \, dt = \int_{0}^{\infty} \cos xt \, dt \int_{\delta}^{\infty} \phi(u) \, e^{-\frac{1}{2}u^{2}t^{2}} \, du$$

is justified by absolute convergence since

$$\begin{split} \int_{\delta}^{\infty} |\phi(u)| du \int_{0}^{\infty} |e^{-\frac{1}{2}u^{2}t^{2}} \cos xt| dt &\leq \int_{\delta}^{\infty} |\phi(u)| du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2}t^{2}} dt \\ &= (2\pi)^{\frac{1}{2}} \int_{\delta}^{\infty} |\phi(u)| \frac{du}{u} \\ &\leq (2\pi)^{\frac{1}{2}} \left\{ \int_{\delta}^{\infty} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{\delta}^{\infty} \frac{du}{u^{2}} \right\}^{\frac{1}{2}} \\ &= \left(\frac{2\pi}{\delta}\right)^{\frac{1}{2}} \left\{ \int_{\delta}^{\infty} |\phi(u)|^{2} du \right\}^{\frac{1}{2}}. \end{split}$$

Also

(21)

$$\int_{0}^{\delta} |\phi(u)| e^{-\frac{1}{2}x^{2}/u^{2}} \frac{du}{u} \leq \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{0}^{\delta} e^{-x^{2}/u^{2}} \frac{du}{u^{2}} \right\}^{\frac{1}{2}}$$

$$= \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{1/\delta}^{\infty} e^{-x^{2}v^{2}} dv \right\}^{\frac{1}{2}}$$

$$\leq \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}} \left\{ \int_{0}^{\infty} e^{-x^{2}v^{2}} dv \right\}^{\frac{1}{2}}$$

$$= 2^{-\frac{1}{2}} \pi^{\frac{1}{4}} x^{-\frac{1}{2}} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} du \right\}^{\frac{1}{2}}.$$

Hence

$$(22) \quad \int_{0}^{\to\infty} \cos xt \, dt \int_{0}^{\infty} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du - \int_{0}^{\infty} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2} t^{2}} \cos xt \, dt$$

$$= \int_{0}^{\to\infty} \cos xt \, dt \int_{0}^{\infty} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du - \int_{0}^{\delta} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2} t^{2}} \cos xt \, dt$$

$$= \int_{0}^{\to\infty} \cos xt \, dt \int_{0}^{\delta} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du - \int_{0}^{\delta} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2} t^{2}} \cos xt \, dt$$

$$= \int_{0}^{\infty} \cos xt \, dt \int_{0}^{\delta} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du - \int_{0}^{\delta} \phi(u) \, du \int_{0}^{\infty} e^{-\frac{1}{2}u^{2} t^{2}} \cos xt \, dt$$

$$= \int_{0}^{T} \cos xt \, dt \int_{0}^{\delta} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du + \int_{T}^{\to\infty} \cos xt \, dt \int_{0}^{\delta} \phi(u) \, e^{-\frac{1}{2}u^{2} t^{2}} \, du$$

$$- \left(\frac{\pi}{2}\right)^{\frac{1}{2}} \int_{0}^{\delta} \phi(u) \, e^{-\frac{1}{2}x^{2}/u^{2}} \, \frac{du}{u} \, du$$

Now

(23)

$$\begin{split} \left| \int_0^T \cos xt \, dt \int_0^\delta \phi(u) \, e^{-\frac{1}{2}u^2 t^2} \, du \right| \\ &\leqslant \int_0^T dt \int_0^\delta |\phi(u)| \, du \\ &\leqslant T \left\{ \int_0^\delta |\phi(u)|^2 \, du \right\}^{\frac{1}{2}} \left\{ \int_0^\delta du \right\}^{\frac{1}{2}} \\ &= T \delta^{\frac{1}{2}} \left\{ \int_0^\delta |\phi(u)|^2 \, du \right\}^{\frac{1}{2}}. \end{split}$$

Hence, by Lemma 2, (21), (22), and (23)

$$\begin{aligned} \left| \int_{0}^{-\infty} \cos xt \, dt \int_{0}^{\infty} \phi(u) \, e^{-\frac{1}{2}u^{2}t^{2}} \, du \, - \, \int_{0}^{\infty} \phi(u) \, du \, \int_{0}^{\infty} e^{-\frac{1}{2}u^{2}t^{2}} \cos xt \, dt \right| \\ &\leqslant \left\{ T\delta^{\frac{1}{2}} + \frac{2^{\frac{1}{2}}\pi^{\frac{1}{4}}}{xT^{\frac{1}{2}}} + 2^{-\frac{1}{2}}\pi^{\frac{1}{4}}x^{-\frac{1}{2}} \right\} \left\{ \int_{0}^{\delta} |\phi(u)|^{2} \, du \right\}^{\frac{1}{2}}. \end{aligned}$$

This can be made arbitrarily small by choosing T first and then making δ sufficiently small, and Lemma 3 follows.

Proof of Theorem 5. Lemma 3 justifies the result (14). Further $\psi(x)$ belongs to $L^2(0, \infty)$ since

$$\int_0^\infty |\psi(x)|^2 dx = \int_0^\infty \frac{1}{x^2} \left| \phi\left(\frac{1}{x}\right) \right|^2 dx$$
$$= \int_0^\infty |\phi(u)|^2 du.$$

Hence g(x), defined by (9), belongs to $\Lambda^2(e^{-\frac{1}{2}x^2})$. Then repeating the preceding argument

$$\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\infty} g(t) \cos xt \, dt = \int_{0}^{\infty} \frac{1}{t} \, \psi\left(\frac{1}{t}\right) e^{-\frac{1}{2}x^{2}t^{2}} \, dt$$
$$= \int_{0}^{\infty} \phi(t) \, e^{-\frac{1}{2}x^{2}t^{2}} \, dt$$
$$= f(x)$$

since (12) implies that for almost all x

$$\phi(x) = \frac{1}{x} \psi\left(\frac{1}{x}\right).$$

This completes the proof of Theorem 5.

PART II: FOURIER SERIES

3. The class of functions $S_1^2(0, 2\pi)$.

Definition 3. If f(x) is a periodic function of period 2π , is the integral of its

https://doi.org/10.4153/CJM-1961-002-3 Published online by Cambridge University Press

derivative, and $(\sin \frac{1}{2} x) f'(x)$ belongs to $L^2(0, 2\pi)$, then we say that f(x) belongs to the class $S_1^2(0, 2\pi)$.

Definition 4. If f(x) is a periodic function of period 2π , and is such that there exists a function $\phi(x)$ of $L^2(0, 2\pi)$ for which

(24)
$$f(x) = \operatorname{cosec} \frac{1}{2} x \int_0^x \phi(t) dt$$

and

(25)
$$\int_{0}^{2\pi} \phi(t) \, dt = 0,$$

then we say that f(x) belongs to the class $S_1^2[0, 2\pi]$.

These definitions give two ways of characterizing the same class of functions. Properties of this class of functions are given by the following theorem.

THEOREM 6. The classes $S_1^2(0, 2\pi)$ and $S_1^2[0, 2\pi]$ are identical, and all functions f(x) of either class belong to $L^2(0, 2\pi)$. Also $x^{\frac{1}{2}} f(x)$ and $x^{\frac{1}{2}} f(2\pi - x)$ both tend to zero as $x \to +0$.

This result is analogous to results given by **(4)**. To prove the result we use Lemmas 4, 5, and 6.

LEMMA 4. If f(x) belongs to $S_1^2[0, 2\pi]$ then $x^{\frac{1}{2}} f(x)$ and $x^{\frac{1}{2}} f(2\pi - x)$ both tend to zero as $x \to +0$, and f(x) belongs to $L^2(0, 2\pi)$.

Proof. As $x \to +0$, by (24) and Schwarz's inequality

$$|f(x)|^{2} \leq \operatorname{cosec}^{2} \frac{1}{2} x \left\{ \int_{0}^{x} |\phi(t)|^{2} dt \right\} \left\{ \int_{0}^{x} dt \right\}$$
$$= o(x^{-1}).$$

Hence $x^{\frac{1}{2}} f(x) \to 0$ as $x \to +0$. Further

$$f(2\pi - x) = \operatorname{cosec} \frac{1}{2} x \int_0^{2\pi - x} \phi(t) dt$$
$$= -\operatorname{cosec} \frac{1}{2} x \int_{2\pi - x}^{2\pi} \phi(t) dt$$

by (25), and a similar argument shows that $x^{\frac{1}{2}}f(2\pi - x) \rightarrow 0$ as $x \rightarrow +0$. Now let $0 < a < b < 2\pi$, put

$$\phi_1(x) = \int_0^x \phi(t) dt,$$

and suppose that f(x) is real. Then

(26)
$$\int_{a}^{b} \{f(x)\}^{2} dx = \int_{a}^{b} \operatorname{cosec}^{2} \frac{1}{2} x \{\phi_{1}(x)\}^{2} dx.$$

Integrating by parts (26) becomes

$$\left[-2 \cot \frac{1}{2} x \left\{\phi_1(x)\right\}^2\right]_a^b + 4 \int_a^b \cot \frac{1}{2} x \ \phi(x) \phi_1(x) \ dx.$$

As $a \to +0$ and $b \to 2\pi - 0$, this is

$$o(1) + 4 \int_{a}^{b} \cos \frac{1}{2} x \, \phi(x) f(x) \, dx$$

$$\leqslant o(1) + 4 \left\{ \int_{a}^{b} \cos^{2} \frac{1}{2} x \, |\phi(x)|^{2} \, dx \right\}^{\frac{1}{2}} \left\{ \int_{a}^{b} |f(x)|^{2} \, dx \right\}^{\frac{1}{2}}$$

$$\leqslant o(1) + 4 \left\{ \int_{0}^{2\pi} |\phi(x)|^{2} \, dx \right\}^{\frac{1}{2}} \left\{ \int_{a}^{b} |f(x)|^{2} \, dx \right\}^{\frac{1}{2}}.$$

Dividing by

$$\left\{\int_a^b |f(x)|^2 \, dx\right\}^{\frac{1}{2}}$$

and taking the limit as $a \to +0$, $b \to 2\pi - 0$, we have

$$\left\{\int_{0}^{2\pi} |f(x)|^2 dx\right\}^{\frac{1}{2}} \leqslant 4 \left\{\int_{0}^{2\pi} |\phi(x)|^2 dx\right\}^{\frac{1}{2}},$$

and hence f(x) belongs to $L^2(0, 2\pi)$, as required. If f(x) is complex the result follows by splitting into real and imaginary parts.

LEMMA 5. If f(x) belongs to $S_1^2(0, 2\pi)$ then $x^{\frac{1}{2}}f(x)$ and $x^{\frac{1}{2}}f(2\pi - x)$ both tend to zero as $x \to +0$, and f(x) belongs to $L^2(0, 2\pi)$.

Proof. By Definition 3 there exists a function $\psi(x) = \sin \frac{1}{2}x f'(x)$, belonging to $L^2(0, 2\pi)$, such that

(27)
$$f(\pi) - f(x) = \int_x^{\pi} \operatorname{cosec} \frac{1}{2} t \,\psi(t) \, dt.$$

Suppose that $f(\pi) = 0$ and consider the behaviour of f(x) as $x \to +0$. Choose $0 < \delta < \pi$ so that

$$\int_0^{\delta} |\psi(t)|^2 \, dt \leqslant \epsilon.$$

Then for $0 < x \leq \delta$

$$\begin{split} |f(x)| &\leq \int_{\delta}^{\pi} \operatorname{cosec} \frac{1}{2} t |\psi(t)| dt + \int_{x}^{\delta} \operatorname{cosec} \frac{1}{2} t |\psi(t)| dt \\ &\leq \int_{\delta}^{\pi} \operatorname{cosec} \frac{1}{2} t |\psi(t)| dt + \left\{ \int_{x}^{\delta} |\psi(t)|^{2} dt \right\}^{\frac{1}{2}} \left\{ \int_{\delta}^{x} \operatorname{cosec}^{2} \frac{1}{2} t \, dt \right\}^{\frac{1}{2}} \\ &\leq \operatorname{cosec} \frac{1}{2} \delta \int_{0}^{\pi} |\psi(t)| dt + \epsilon^{\frac{1}{2}} (2 \cot \frac{1}{2}x - 2 \cot \frac{1}{2}\delta)^{\frac{1}{2}}. \end{split}$$

Hence as $x \to +0$

$$\begin{aligned} x^{\frac{1}{2}}f(x) &= O(x^{\frac{1}{2}}) + O(\epsilon^{\frac{1}{2}})(x \cot \frac{1}{2}x - x \cot \frac{1}{2}\delta)^{\frac{1}{2}} \\ &= O(x^{\frac{1}{2}}) + O(\epsilon^{\frac{1}{2}}) \\ &= o(1) \end{aligned}$$

since $x \cot \frac{1}{2} x \rightarrow 2$ as $x \rightarrow 0$.

A similar argument also shows that $x^{\frac{1}{2}}f(2\pi - x) \to 0$ as $x \to +0$. Now suppose that $0 < a < \pi$, and that f(x) is real, and put

$$f_1(x) = \int_0^x f(t) dt.$$

Hence $f_1(x) = o(x^{\frac{1}{2}})$ as $x \to +0$. Also

$$|f(x)| = \left| \int_{x}^{\pi} \operatorname{cosec} \frac{1}{2} t \,\psi(t) \,dt \right|$$

$$\leq \left\{ \int_{x}^{\pi} |\psi(t)|^{2} \,dt \right\}^{\frac{1}{2}} \left\{ \int_{x}^{\pi} \operatorname{cosec}^{2} \frac{1}{2} t \,dt \right\}^{\frac{1}{2}}$$

$$\leq \left\{ \int_{0}^{\pi} |\psi(t)|^{2} \,dt \right\}^{\frac{1}{2}} \left\{ 2 \cot \frac{1}{2} x \right\}^{\frac{1}{2}},$$

whence $f_1(x)$ is bounded for the whole interval $(0, \pi)$.

Now let $0 < a < \pi$ and consider

$$\int_{a}^{\pi} |f(x)|^{2} dx = \int_{a}^{\pi} f(x) dx \int_{x}^{\pi} \operatorname{cosec} \frac{1}{2} t \psi(t) dt$$
$$= \left[f_{1}(x) f(x) \right]_{a}^{\pi} + \int_{a}^{\pi} f_{1}(x) \operatorname{cosec} \frac{1}{2} x \psi(x) dx.$$

As $x \to \pi - 0$, $f_1(x)$ is bounded and $f(x) \to f(\pi) = 0$, and as $x \to +0$

$$f_1(x)f(x) = o(x^{\frac{1}{2}})o(x^{-\frac{1}{2}}) = o(1).$$

Hence

(28)
$$\int_{a}^{\pi} \{f(x)\}^{2} dx = o(1) + \int_{a}^{\pi} f_{1}(x) \operatorname{cosec} \frac{1}{2} x \psi(x) dx$$
$$\leqslant o(1) + \left\{ \int_{a}^{\pi} \left| f_{1}(x) \operatorname{cosec} \frac{1}{2} x \right|^{2} dx \right\}^{\frac{1}{2}} \left\{ \int_{a}^{\pi} |\psi(x)|^{2} dx \right\}^{\frac{1}{2}}.$$

Now

$$f_{1}(x) = \int_{0}^{x} f(t) dt$$

= $\int_{0}^{x} dt \int_{t}^{\pi} \operatorname{cosec} \frac{1}{2} u \psi(u) du$
= $\int_{0}^{x} \operatorname{cosec} \frac{1}{2} u \psi(u) du \int_{0}^{u} dt + \int_{x}^{\pi} \operatorname{cosec} \frac{1}{2} u \psi(u) du \int_{0}^{x} dt$
= $\int_{0}^{x} u \operatorname{cosec} \frac{1}{2} u \psi(u) du - x f(x)$

by (27). Hence

(29)
$$f_1(x) \operatorname{cosec} \frac{1}{2} x = \operatorname{cosec} \frac{1}{2} x \int_0^x u \operatorname{cosec} \frac{1}{2} u \psi(u) \, du - x \operatorname{cosec} \frac{1}{2} x f(x).$$

Now

 $2 \leqslant x \operatorname{cosec} \frac{1}{2}x \leqslant \pi$

for $0 \le x \le \pi$. Hence $x \operatorname{cosec} \frac{1}{2}x \psi(x)$ belongs to $L^2(0, \pi)$, and by Lemma 4 (30) $\operatorname{cosec} \frac{1}{2}x \int_0^x u \operatorname{cosec} \frac{1}{2}u \psi(u) du$

belongs to $L^2(0, \pi)$.

Substituting (29) in (28) and using Minkowski's inequality we have

$$\begin{split} \int_{a}^{\pi} \{f(x)\}^{2} dx &\leq o(1) + \left[\left\{ \int_{a}^{\pi} \left| \operatorname{cosec} \frac{1}{2} x \int_{0}^{x} u \operatorname{cosec} \frac{1}{2} u \psi(u) du \right|^{2} dx \right\}^{\frac{1}{2}} \\ &+ \left\{ \int_{a}^{\pi} \pi^{2} |f(x)|^{2} dx \right\}^{\frac{1}{2}} \right] \times \left\{ \int_{a}^{\pi} |\psi(x)|^{2} dx \right\}^{\frac{1}{2}} \\ &\leq o(1) + \left[\left\{ \int_{0}^{\pi} \left| \operatorname{cosec} \frac{1}{2} x \int_{0}^{x} u \operatorname{cosec} \frac{1}{2} u \psi(u) du \right|^{2} dx \right\}^{\frac{1}{2}} \\ &+ \pi \left\{ \int_{a}^{\pi} |f(x)|^{2} dx \right\}^{\frac{1}{2}} \right] \times \left\{ \int_{0}^{\pi} |\psi(x)|^{2} dx \right\}^{\frac{1}{2}} \end{split}$$

since we know that (30) and $\psi(x)$ both belong to $L^2(0, \pi)$. That is,

(31)
$$\int_{a}^{\pi} |f(x)|^{2} dx \leq A + B\left\{\int_{a}^{\pi} |f(x)|^{2} dx\right\}^{\frac{1}{2}}$$

where A and B are constants independent of a. Now unless f(x) vanishes almost everywhere in $(0, \pi)$ we can find an a_1 and a k such that $0 < a_1 < \pi$ and

$$\left\{\int_{a_1}^{\pi} |f(x)|^2 dx\right\}^{\frac{1}{2}} > k > 0.$$

From (31)

$$\left\{ \int_a^\pi |f(x)|^2 dx \right\}^{\frac{1}{2}} \leqslant A \left\{ \int_a^\pi |f(x)|^2 dx \right\}^{-\frac{1}{2}} + B$$
$$\leqslant \frac{A}{k} + B$$

for $a < a_1$. Hence

$$\left\{\int_0^\pi |f(x)|^2 \, dx\right\}^{\frac{1}{2}} \leqslant \frac{A}{k} + B$$

and f(x) belongs to $L^2(0, \pi)$. Combining the above with a similar argument for the interval $(\pi, 2\pi)$ we find that f(x) belongs to $L^2(0, 2\pi)$.

https://doi.org/10.4153/CJM-1961-002-3 Published online by Cambridge University Press

If $f(\pi)$ is not zero the above argument shows that $f(x) - f(\pi)$ belongs to $L^2(0, 2\pi)$, so f(x) belongs to $L^2(0, 2\pi)$.

Lastly, if f(x) is complex the result of Lemma 5 follows by splitting into real and imaginary parts.

LEMMA 6. The classes $S_1^2(0, 2\pi)$ and $S_1^2[0, 2\pi]$ are identical.

Proof. With $\phi(x)$ and $\psi(x)$ as in Lemmas 4 and 5 we have

(32)
$$f(x) = \operatorname{cosec} \frac{1}{2} x \int_0^x \phi(t) \, dt = f(\pi) - \int_x^\pi \operatorname{cosec} \frac{1}{2} t \, \psi(t) \, dt.$$

By differentiation

$$\phi(x) = \sin \frac{1}{2}x f'(x) + \frac{1}{2} \cos \frac{1}{2}x f(x)$$

and

$$\psi(x) = \sin \frac{1}{2} x f'(x)$$

almost everywhere in $(0, 2\pi)$. Hence

(33)
$$\phi(x) = \psi(x) + \frac{1}{2} \cos \frac{1}{2} x f(x)$$

almost everywhere in $(0, 2\pi)$.

Now if f(x) belongs to $S_1^2[0, 2\pi]$ this means that $\phi(x)$ belongs to $L^2(0, 2\pi)$, and, by Lemma 4, so does f(x). Hence from (33) $\psi(x)$ also belongs to $L^2(0, 2\pi)$; that is, f(x) belongs to $S_1^2(0, 2\pi)$.

Conversely if f(x) belongs to $S_1^2(0, 2\pi)$ then by Lemma 5 it also belongs to $L^2(0, 2\pi)$ and $\psi(x)$ belongs to $L^2(0, 2\pi)$. Hence from (33) $\phi(x)$ also belongs to $L^2(0, 2\pi)$. Also by (32)

$$\int_0^x \phi(t) \, dt = \sin \frac{1}{2} x f(x).$$

By Lemma 5 $x^{\frac{1}{2}}f(2\pi - x) \rightarrow 0$ as $x \rightarrow +0$. Hence

$$\int_{0}^{2\pi} \phi(t) dt = \lim_{x \to +0} \left\{ \sin \frac{1}{2} (2\pi - x) f(2\pi - x) \right\}$$

= 0.

That is, f(x) belongs to $S_1^2[0, 2\pi]$, and this completes the proof of Lemma 6. Combining Lemmas 4, 5, and 6 we have Theorem 6.

We also require the following result to connect $S_1^2(0, 2\pi)$ with Fourier Series in § 5.

THEOREM 7. The class $S_1^2(0, 2\pi)$ is identical with the class of functions f(x) of period 2π which can be expressed in the form

(34)
$$f(x) = \frac{1}{1 - e^{-ix}} \int_0^x \chi(t) \, dt,$$

where $\chi(x)$ belongs to $L^2(0, 2\pi)$ and

(35)
$$\int_{0}^{2\pi} \chi(t) dt = 0.$$

A. P. GUINAND

Proof. By (24), (25), (34), and (35) we require that

(36)
$$\frac{1}{1 - e^{-ix}} \int_0^x \chi(t) \, dt = \operatorname{cosec} \frac{1}{2} x \int_0^x \phi(t) \, dt$$

where

$$\int_{0}^{2\pi} \phi(t) \, dt = \int_{0}^{2\pi} \chi(t) \, dt = 0$$

and $\phi(x)$ and $\chi(x)$ belong to $L^2(0, 2\pi)$. Now (36) gives

(37)
$$\int_{0}^{x} \chi(t) dt = 2i e^{-\frac{1}{2}ix} \int_{0}^{x} \phi(t) dt$$

and hence

(38)
$$\chi(x) = 2i e^{-\frac{1}{2}ix} \phi(x) + e^{\frac{1}{2}ix} \int_0^x \phi(t) dt$$

almost everywhere in $(0, 2\pi)$. If $\phi(x)$ belongs to $L^2(0, 2\pi)$, so does

$$\int_0^x \phi(t) \, dt,$$

and hence from (38), $\chi(x)$ belongs to $L^2(0, 2\pi)$. A similar argument shows that $\phi(x)$ belongs to $L^2(0, 2\pi)$ if $\chi(x)$ does.

Finally if we put $x = 2\pi$ in (37) we have

$$\int_{0}^{2\pi} \chi(t) \ dt = -2i \int_{0}^{2\pi} \phi(t) \ dt$$

Hence the vanishing of either of these integrals implies the vanishing of the other.

4. The class of sequences $\sum_{1^2} (-\infty, \infty)$

THEOREM 8. If $\{c_n\}$, (n = 0, 1, 2, ...,) is a sequence of complex numbers such that the series

$$\sum_{n=1}^{\infty} n^2 |c_n - c_{n+1}|^2$$

is convergent, then

(i) c_n tends to a finite limit l as $n \to \infty$, and

(39) $c_n - l = o(n^{-\frac{1}{2}}),$

(ii) the series

$$\sum_{n=0}^{\infty} |c_n|^2$$

converges.

Proof of (i). If m > n > 1 then

(40)
$$|c_n - c_m| = \left| \sum_{r=n}^{m-1} (c_r - c_{r+1}) \right|$$
$$\leqslant \left\{ \sum_{r=n}^{m-1} r^2 |c_r - c_{r+1}|^2 \right\}^{\frac{1}{2}} \left\{ \sum_{r=n}^{m-1} r^{-2} \right\}^{\frac{1}{2}}$$
$$= o(n^{-\frac{1}{2}}).$$

Hence, by the principle of convergence, c_n tends to a finite limit l as $n \to \infty$, and making $m \to \infty$ in (40) we have (39).

LEMMA 7. If $\{a_n\}$, (n = 1, 2, 3, ...,) is any sequence of complex numbers and N a positive integer then

$$6 \sum_{n=1}^{N-1} n^2 |a_n - a_{n+1}|^2 + 2N |a_N|^2 \ge \sum_{n=1}^N |a_n|^2.$$

Proof of Lemma 7. We have

$$6n^{2}|a_{n} - a_{n+1}|^{2} + (2n+1)|a_{n+1}|^{2} = (2n^{2} - 2n)|a_{n} - a_{n+1}|^{2} + \{2n|a_{n} - a_{n+1}| - |a_{n+1}|\}^{2} + 2n\{|a_{n} - a_{n+1}| + |a_{n+1}|\}^{2} \ge 2n\{|a_{n} - a_{n+1}| + |a_{n+1}|\}^{2} \ge 2n|a_{n}|^{2}$$

since $2n^2 - 2n \ge 0$ for all integers *n* and

$$|a_n - a_{n+1}| + |a_{n+1}| \ge |a_n|.$$

Hence

$$6n^{2}|a_{n} - a_{n+1}|^{2} + 2(n+1)|a_{n+1}|^{2} - 2n|a_{n}|^{2} \ge |a_{n+1}|^{2},$$

and the lemma follows on summing over n = 0, 1, 2, ..., N - 1.

Proof of (ii). If we put $a_n = c_n - l$ then by (39) $N|a_N|^2$ tends to zero as $N \to \infty$. Hence

$$6 \sum_{n=1}^{\infty} n^2 |c_n - c_{n+1}|^2 \ge \sum_{n=1}^{\infty} |c_n - l|^2$$

and the latter series converges.

Definition 5. If $\{c_n\}$, $(n = 0, \pm 1, \pm 2, ...,)$ is a sequence of complex numbers such that

$$\sum_{n=-\infty}^{\infty}n^2|c_n-c_{n+1}|^2$$

converges, and if the limits to which c_n tends as $n \to \pm \infty$ are both zero, then we say that the sequence $\{c_n\}$ belongs to the class $\sum_{1}^{2}(-\infty, \infty)$.

5. The convergence of Fourier series for $S_{1^2}(0, 2\pi)$.

THEOREM 9. If $\{c_n\}$ belongs to the class $\sum_{1} (-\infty, \infty)$ then the series

(41)
$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$

converges for all x not congruent to zero modulo 2π , and its sum defines a function f(x), belonging to $S_1^2(0, 2\pi)$, of which (41) is the Fourier series.

Proof. Consider the series

(42)
$$\sum_{n=1}^{\infty} c_n e^{inx},$$

and put

$$n(c_n-c_{n+1}) = \chi_n.$$

Then

$$c_n = (c_n - c_{n+1}) + (c_{n+1} - c_{n+2}) + \dots$$

= $\sum_{r=n}^{\infty} \frac{\chi_r}{r}$.

Hence

(43)
$$\sum_{n=1}^{N} c_n e^{inx} = \sum_{n=1}^{N} e^{inx} \sum_{r=n}^{\infty} \frac{\chi_r}{r}$$
$$= \sum_{\tau=1}^{N} \frac{\chi_r}{r} \sum_{n=1}^{r} e^{inx} + \sum_{r=N+1}^{\infty} \frac{\chi_r}{r} \sum_{n=1}^{N} e^{inx}$$
$$= \sum_{\tau=1}^{N} \frac{\chi_\tau}{r} \left\{ \frac{e^{i(\tau+1)x} - 1}{e^{ix} - 1} \right\} + \sum_{\tau=N+1}^{\infty} \frac{\chi_r}{r} \left\{ \frac{e^{i(N+1)x} - 1}{e^{ix} - 1} \right\}$$

Now

(44)

$$\sum_{\tau=N+1}^{\infty} \left| \frac{\chi_{\tau}}{r} \right| \leq \left\{ \sum_{\tau=N+1}^{\infty} |\chi_{\tau}|^2 \right\}^{\frac{1}{2}} \left\{ \sum_{\tau=N+1}^{\infty} r^{-2} \right\}^{\frac{1}{2}}$$
$$= o(N^{-\frac{1}{2}})$$

since the series

$$\sum_{r=1}^{\infty} |\chi_r|$$

converges by hypothesis. Hence by (43), if $x \neq 0 \mod 2\pi$

$$\sum_{n=1}^{N} c_n e^{inx} = \frac{1}{e^{ix} - 1} \sum_{r=1}^{N} \frac{\chi_r}{r} \{ e^{i(r+1)x} - 1 \} + o(N^{-\frac{1}{2}}),$$

2

and the series on the right is absolutely convergent. Hence the series (42) converges, and

(45)
$$\sum_{n=1}^{\infty} c_n e^{inx} = \frac{1}{e^{ix} - 1} \sum_{r=1}^{\infty} \frac{\chi_r}{r} \{ e^{i(r+1)x} - 1 \}.$$

Since the series (44) converges the series

 $\sum_{r=1}^{\infty} \chi_r e^{irx}$

converges in mean square to a function $\chi(x)$ belonging to $L^2(0, 2\pi)$, and is the Fourier series of this function. Hence, by the Fourier series integration theorem (6, p. 419),

$$\int_0^x \chi(t)dt = -i \sum_{r=1}^\infty \frac{\chi_r}{r} (e^{irx} - 1),$$

and in particular

$$\int_0^{2\pi} \chi(t) dt = 0.$$

Hence by (45)

(46)
$$\sum_{n=1}^{\infty} c_n e^{inx} = \frac{i}{1 - e^{-ix}} \int_0^x \chi(t) dt + \sum_{r=1}^{\infty} \frac{\chi_r}{r}.$$

By Theorem 7 it follows that (46) is a function of the class $S_1^2(0, 2\pi)$. A similar argument for negative *n* shows that the whole series (41) converges for $x \neq 0 \mod 2\pi$, and that its sum is a function of the class $S_1^2(0, 2\pi)$.

Since $S_{1^2}(0, 2\pi)$ is a subclass of $L^2(0, 2\pi)$ the series (41) must be the Fourier series of its sum.

THEOREM 10. If f(x) belongs to the class $S_1^2(0, 2\pi)$ then it has a Fourier series

$$\sum_{n=-\infty}^{\infty} c_n e^{inz}$$

which converges to f(x) for all x not congruent to zero modulo 2π , and the sequence $\{c_n\}$ belongs to the class $\sum_{1} (-\infty, \infty)$.

Proof. By Theorem 6 the function f(x) belongs to $L^2(0, 2\pi)$. Hence it has a Fourier series

(47)
$$f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

for which c_n tends to zero as $n \to \pm \infty$.

By Theorem 7 there exists a function $\chi(x)$ of $L^2(0, 2\pi)$ such that

(48)
$$f(x) = \frac{i}{1 - e^{-ix}} \int_0^x \chi(t) \, dt$$

and

$$\int_0^{2\pi} \chi(t) \ dt = 0.$$

Hence if

 $\chi(x) \sim \sum_{r=-\infty}^{\infty} \chi_r e^{irx}$

then $\chi_0 = 0$ and

$$\sum_{r=-\infty}^{\infty} |\chi_r|^2$$

converges. By the Fourier series integration theorem and (48)

$$f(x) = \frac{1}{1 - e^{-ix}} \sum_{r = -\infty}^{\infty} \frac{\chi_r}{r} \left(e^{irx} - 1 \right).$$

Hence

(49)
$$f(x) (1 - e^{-ix}) = \sum_{r=-\infty}^{\infty} \frac{\chi_r}{r} e^{irx} - \sum_{r=-\infty}^{\infty} \frac{\chi_r}{r}$$

since both of these series converge absolutely. Now

$$f(x) (1 - e^{-ix}) \sim (1 - e^{-ix}) \sum_{n = -\infty}^{\infty} c_n e^{inx}$$
$$= \sum_{n = -\infty}^{\infty} (c_n - c_{n+1}) e^{inx}.$$

By (49) and the uniqueness theorem for Fourier series of functions of $L^2(0, 2\pi)$ it follows that for $n \neq 0$

$$\frac{\chi_n}{n}=c_n-c_{n+1}.$$

Hence the series

$$\sum_{n=-\infty}^{\infty} n^{2} |c_{n} - c_{n+1}|^{2} = \sum_{n=-\infty}^{\infty} |\chi_{n}|^{2}$$

converges, and therefore the sequence $\{c_n\}$ belongs to the class $\sum_{1} (-\infty, \infty)$, as required.

By Theorem 9 the series (47) converges for $x \neq 0 \mod 2\pi$ to a function of $S_{1^2}(0, 2\pi)$ which must therefore be equal to f(x) almost everywhere. From (34) functions of $S_1^2(0, 2\pi)$ are continuous for $x \neq 0 \mod 2\pi$, so the sum of the series (47) must be equal to f(x) for all such x.

References

- 1. A. P. Guinand, Summation formulae and self-reciprocal functions, I, II, Quart. J. Math. (1), 9 (1938), 53-67, and (1), 10 (1939), 104-118.
- On Poisson's summation formula, Ann. Math. (2), 42 (1941), 591-603.
 General transformations and the Parseval theorem, Quart. J. Math. (1), 12 (1941), 51 - 56.
- 4. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge, 1934), 239-246.
- 5. J. B. Miller, A symmetrical convergence theory for general transforms, Proc. London Math. Soc. (3), 8 (1958), 224-241.
- 6. E. C. Titchmarsh, The Theory of Functions (Oxford, 1939).
- 7. An introduction to the theory of Fourier integrals (Oxford, 1948).

University of Saskatchewan