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WITH A SUBMERGED PLANE BARRIER 

ALBERT E. H E I N S 

1. Introduction and formulation of the problem. This is the third in a 
series of problems in the study of surface waves which have been disturbed by 
the presence of a plane barrier and to which a solution may be provided. We 
assume as in part I,1 that the fluid is incompressible and non-viscous, and that 
motion is irrotational. The differential equation to be solved is 

(1.1) V2$ = $ M + $ w + $ „ =0 , 

where $xx denotes a second partial differentiation with respect to x, $yy with 
respect to y, etc. ; $(x,y,z) is the velocity potential of the fluid, and from it 
we may find the components of velocity in the fluid. On a rigid surface, the 
boundary condition is that there be no component of velocity normal to the 
surface. Translated into terms of <ï>, we have $ n = 0, where the subscript n 
denotes outer normal derivative. On a free surface,2 3>n = fi$ where & is a 
physical constant which is positive. The time variation which normally appears 
in <i> has been suppressed by the assumption that it is monochromatic. We 
shall assume, as in part I, that the z variation of $(x,y,z) is harmonic. That 
is, $(x,y,z) = exp (ikz)<j>(xfy) so that equation (1.1) reduces to 

(1.2) 4>xx + 4>yy - W<1> = 0 , 
while the boundary conditions remain unaltered. 

The geometric region over which we wish to solve equation (1.2) is a chan
nel of finite depth a, but infinite in length. Parallel to the floor of the channel 
is a semi-infinite rigid barrier which is b units of length from the floor (b < a). 
In an xyz coordinate system, this figure may be described as follows, 

(i) 3> = 0, — °° < x < °°, — o o < £ < o o : the floor 0f the channel, 
(ii) y = b, x ^ 0, — o° < s < oo : the semi-infinite rigid plane barrier, and 

(iii) y = a, — co < x < <»,— oo < % < oo : the free surface. 
Since the z variation has been suppressed, equation (1.2) is two-dimensional 

and we shall show that the present boundary value problem may be formulated 
as an integral equation of the Wiener-Hopf type. Furthermore, the analytical 
conditions required for the solution of a Wiener-Hopf integral equation are 
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2The constant f$ is defined in Sec. 5 of this paper. 
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satisfied here, and hence we are in a position to solve the integral equation. 
We shall find that the Fourier transform of the unknown function in this 
integral equation provides us with interesting mathematical properties of the 
solution. Because we employ Fourier transform techniques here, we shall 
obtain the desired transform as a by-product of the work. 

One feature which distinguishes this problem from the one treated in part I 
is that we do not have to assume the presence of a two dimensional line source 
to provide a travelling wave solution for x —» — <» or for x —> °°, y > b. We 
shall simply require that for x —» — <», <j>(x,y) be asymptotic to 

[ai exp (ÎKx) + fix exp (—iicx)] cosh p$y/a, K2 = po2/a2 — k2, 

where p0 is the real positive root of the transcendental equation 

p sinh p — afi cosh p = 0. 

For x •—» oo, y > b, we shall assume that <t>(x,y) is asymptotic to 

[ci2 exp (ù'x) + /?2 exp (— in'x)] cosh p'o(a ~" y)/c> 

where c = a — b, and p'0 is the real positive root of3 

p' sinh p' - fie cosh p' = 0, K'2 = p'0
2A2 - k2. 

These asymptotic forms are obtained by considering first the asymptotic form 
of the solution of equation (1.2) when the semi-infinite barrier is not present, 
and second when the semi-infinite barrier extends to negative infinity. The 
main point here is that if we are sufficiently far away from the point x = 0, 
y = b, the above two asymptotic forms present themselves as the bounded 
solutions of two well-known potential problems. In order to insure that we 
obtain the bounded solutions for x—>œ and x—> — °°, we require further that 
K and K be real. The complex exponential notation describes travelling waves 
to the right and the left in the x direction. The convention is that exp (ÎKX) 
represents a travelling wave to the right while the one with the negative sign 
is travelling to the left. We shall find that there exist two sets of linear 
relations between en, a2, fii, and fi2, and thus we can find the amplitude of the 
reflected and transmitted waves to the left and to the right of x — 0. 

The formulation of this problem proceeds along the lines which we des
cribed in part I. We may express <j)(x,y) in the strip in terms of an appropriate 
Green's function G(x,y,x',y') and the discontinuity of <j> across the barrier 
x ^ 0, y = b. We find that we can produce the travelling wave solutions with 
a source free </> simply by demanding the mode of excitation which we des
cribed above, so that there is no difficulty in applying Green's Theorem save 
for \x\ very large. The Green's function satisfies an equation of the form (1.1) 
except at the point x = x', y = y''. At this point4 

3In order to formulate the integral equation, this asymptotic form need not be specified so 
definitely. Indeed from the Green's function which we employ, we shall find that <t>(x,y) need 
only grow less rapidly than exp [ — p'\x/a] for x—> °° . With the solution of the integral equa
tion we shall find that <f>(x,y) has the prescribed asymptotic form for x—> °° , y > h. 

4For further details see A. Sommerfeld/'Die Greensche Funktion der Schwingungsgleichung", 
Deutsche Mathematiker Vereinigung, vol. 21 (1912), pp. 309-353. In particular, for a discus
sion of the logarithmic character of the Green's function employed here, see I, p. 735. 
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I x=x'+0 
dy = — 1 and Gu 

\y=y'+o 
dx = — 1. 

As for the boundary conditions in the Green's function, we take 

Gy = 0 when y = 0, — «> < # < °°, 
and 

G^ = ]8G when y = a, — co < x < <». 

We have described this Green's function elsewhere and we simply give it 
here for reference. We have 

G(x,y,x',y') = L 
(pn2+a2£2) (cos pny/a) (cos pny'/a) exp[ - {pn

2+a2&2} *|x—x'|/#] 

n=i (Pn
2-a/5+a2/52)(Pn

2+a2fc2)* 

[coshpo;y/a][cosh poy'/a][po2 — a202][sin K |X—X'| +s in K(X—x')] 

afc(/ta+po2-a202) ' 

where p0 is the real positive root of 

(1.3) p sinh p — /ta cosh p = 0 

while the pn are the positive imaginary roots of equation (1.3). In passing, we 
observe that G{x>y,x',yf) = 0[exp{pi2+a2k2}*(x—x')/a] for x'— x-> œ and 
0[sin K(X —x')] for x — x' —-> oo. 

We have from Green's theorem that 

4>{x,y) = J[G(P,P')<t>n>(P') - 4>{P')G«>(P,P')W, 

where the path of integration is a rectangle with a cut along y = b, x > 0. 
More precisely we follow the sequence of line segments given below in the 
same order. (Here / and h are sufficiently large positive numbers.) 

x = — h to x = /, y = 0; 
y = 0 to y = b - o, x = /; 
x = / to x = 0, y = 6 - 0 ; 
x = 0 to x = /, y = 6 + 0; 
y = 6 + 0 to y = a, x = /; 
x = / to x = — / i , 3/ = a; 
y = a to y = 0, x = — /1. and 

The paths below and above the line y = b, x > 0 are connected by a line 
segment which does not cross the rigid barrier. In view of the boundary 
conditions imposed on G(P}P

f) and <f>{P) we get immediately that 

*(*.?) [<t>(x,b + 0) — <t>(xtb-~ 0)]Gyf(x1y,xf
Jb)dxf 

+ [ai exp (ûx) + 0i exp ( —ZKX)] cosh po^/a 

+ 0[exp (-0iZi)] + 0[exp ( - 01)], 

where 6 and B\ are two positive constants. Clearly then 

https://doi.org/10.4153/CJM-1950-019-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-019-2


WAVES OVER A CHANNEL OF FINITE DEPTH 213 

(1.4) <t>(x,y) = I(xf)Gy>(x,y,x',b) àx' 
Jo 

+ [ai exp (iicx) + fii exp (—iicx)] cosh poy/a, 
when / and h become infinite. I(x) is the discontinuity of <t>(x) across the bar
rier, that is 4>(x,b + 0) — <t>(x,b — 0). Now from the equation (1.4) we may 
form the desired integral equation by noting that 4>y(x,b) = 0 for x ^ 0. Hence 
we have the integral equation 

+ [po/a][ai exp (iicx) + Pi exp (— ikx)]sinh pob/a = 0, x > 0. 

This is an inhomogeneous integral equation of the Wiener-Hopf type because 

of the limits of integration and the particular x variation of its kernel. 

2. The solution of the integral equation. We first rewrite equation (1.5) 
so that it is defined for all x. To this end we write 

( L 5 ) | I(x')GyAxfi,x'fi)dx' 
I o 

(2.1) 

where 

and 

I(x')Gyy>(x,b,x' ,b)dx' + <t>o(x) = ^(x), 

I(x) = 0 , x < 0; 

yp(x) = 0 , x > 0; 

<t>o(x) = 0 , x < 0, 

= [po/a][ai exp (inx) + 01 exp (— ûx)] sinh pob/a, x > 0. 

Before we attempt to apply Fourier transform techniques to equation (2.1), 
we investigate the nature of the growths of I(x) and \//(x) for x —> oo or x—» — œ 
as the case may be. In the first place, 

I(x) — 0 [exp (zt^'x)], x—* oo. 

As we have remarked, it is not necessary to state this so specifically. For 

r r°° i 
f(x) = O exp {(Pl

2 + d>Wf(x - x')/a}} I(x') dx' » 
LJo J 

which implies the existence of the integral 

I exp { - (p i 2 + a2k2)Hxf/a) I(xf) dx', 
Jo 

and this has been assured by our assumption on I(x). It also implies that 

ip(x) — O [exp (pi2 + a2k2y2x/a], x —» — oo. 

We assume throughout that yf/(x) and I(x) are integrable over any finite interval 
of the x axis and this, of course, is subject to verification with the solution. 
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Having this information, we can make some pertinent statements regarding 
the regions of regularity of the Fourier transforms of I(x), \f/(x) and G(x,b,x',b). 

We first examine the bilateral Fourier transform of the Green's function. 
We have 

g(w,y,y') = G(x,y,0,y') exp (—iwx) dx 

P A t _ [y cosh y (a - y') - 0 sinh y (a - y')] , 
= cosh yy : , y < y , 

7[y sinh ya — 0 cosh ya] 
u , [y cosh y(a — y) — 0sinh y(a — y)\ , 

= cosh yy L —m — — , y > y , 
7[7 sinh ya — $ cosh 7a] 

where 7 = (&2 + ?#2)* and g(wty,yf) is regular in the strip — (pi2+a2k2)*/a 
< Im w < 0. We have already described these calculations and their justi
fication in Part I. We now turn to the study of the transforms of I(x) and yp(x). 

The Fourier transform of I(x) is 

J(w) = exp (—iwx) I(x) dx. 
J 0 

Subject to the verification of the integrability of I(x) in 0 ^ x < L (L > 0), 
we know that J(w) is regular in the lower half plane Im w<0, since I(x) = 
0[exp ( ± iic'x)]. On the other hand, the transform of \[/(x) is 

ro 
¥(«;) ^(x) exp ( — iwx) dxy 

and this is regular in the upper half plane lmw> — (pi2 + a2k2)I/4/a, where 
once again we assume the integrability of \p(x) in — L\ < x < 0 (Li > 0) 
subject to verification. Finally, the transform of <t>o(x) is 

$o(«0 = exp ( — iwx) $o(x) dx, 
0 

and this is regular in the lower half plane Im w < 0. There is, then, a com
mon strip of analyticity between the transforms J(w), ^r(w), $o(w) and 
gyJ/(w1b1b)1 namely — (pi2+a2k2)*/a < Im w < 0, and we are thus permitted 
to take the Fourier transform of equation (2.1) to get 

/o 0\ J(w) y s i n n yb [ysmn yc — & cosh 7c] , , . . N 

(2.2) -̂ —- —-—— — + $0(w) = ^(w). 
[7 sinh ya — 13 cosh 7a] 

The next task which confronts us is the factoring problem. That is, we ask 
if we can arrange equation (2.2) so that the left side is regular in the lower 
half plane of regularity while the right side is regular in the appropriate upper 
half plane of regularity. To accomplish this, we write 

7 sinh yb [7 sinh yc — 0 cosh yc] L-(w) 

[7 sinh ya — fi cosh y a] L+(w) 
= L(w), 
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where L-(w) is the factor of L(w) which is regular in the lower half plane 
Im w < 0, while L+(w) is that factor of L(w) which is regular in the upper half 
plane Im w > — 0 where 0 is the smallest of the three constants x/6, 
(pi2+ a2k2)^/a1 (P'I2 + c2k2)*/c. Let us suppose that we have carried out this 
factoring explicitly. Then equation (2.2) becomes 

/(w)L_(w) + [po/a][sinh Pob/a] F ^ ± ^ + g l . f + * ~ K ) 1 = L + ( « 0 * M 
Lnw — K) HW + K) J 

(2.3) 

+ [po/a] [sinh p0&/^] <n ( . / ^ - ^ + 0i* ., ,—^—^ . 
L ^(^ — K) i(w + K) J 

The left side of equation (2.3) is now regular in the lower half plane Imw < 0, 
while the right side is regular in the upper half plane I m w > - 0 (0 > 0), 
and both sides are regular in a common strip — 0 < Im w < 0. Hence the 
left side of equation (2.3) is the analytical continuation of the right side and 
both sides are regular everywhere. That is 

(2.4) /(w)L_(w) + [po/a] sinh p,b/a \af + ("} + ^L+\~^] = E(w), 
L t(W — K) l(W + K) J 

and 

(2.5) L+(w)*(w)+[Po/a] sinh p0&/a["ai l L + («) ~ ^+(«0} 
L i(w — K) 

) ! + ( - . ) - i + W n 
H W + K ) J 

where E(w) is an entire function which is yet to be determined. 
The determination of E(w) depends in part on the explicit factoring of L(w). 

In order to do this, we write L(w) in a product representation which exhibits 
its poles and zeros explicitly. Consider first 

00 

7 sinh yb = b(k2 + w2) II [1 + 7*67»V]. 
« = l 

For the sake of convenience we assume k > 0. Then 
CO 

7 sinh 76 = 6(w + ik)(w-ik) II [1 + k2b2/n2w2 + w2b2/n2ir2] 
n= 1 

00 

= &(w + i£)(w — ik) II [{1 + &262/w27r2}^ + iwb/nir] exp ( — iwb/nir) 
rc= 1 

00 

exp (iwb/nir), 
n = 1 

where the exponential factors have been inserted to insure the absolute con
vergence of the infinite products. The term 

00 

Px(b,w) = (w-ik) n [{l + k2b2/n2ir2)y2+iwb/nir] exp {-iwb/mr) 
n— 1 
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is free of zeros in the lower half plane Im w < +&, while the remaining factor 
Qi(b, w) is free of zeros in the upper half plane Im w> — k and P\(b, w) Q\ (b, w) 
= 7 sinh yb. 

We now examine the expression y sinh ya — 13 cosh ya. It has two real 
zeros ya = ±po and a sequence of imaginary zeros y a = =fc ipny n = 1,2, . . . . 
Furthermore for n sufficiently large and positive, pn = nw + 0 (13a/mr). 
We find here that 

00 

7 sinh ya — j8 cosh 7a == — 0 ( 1 — y2a2/p0
2) II [1 + y2a?/pn

2]. 
n= 1 

Upon factoring this as we did the sinh 76, we get 

7 sinh ya — f3 cosh 7a = P2(a,f3, w)Q2(a, 0, w) 
where 

00 

Pa(a, j8,w) = -a2/3(K2-w2)/p0
2 H [{1 + a2£2/pn

2}K + iaw/pn) exp ( - taw/fl») 
n = 1 

is free of zeros in the lower half plane Im w < 0, while Qi(a, 0, w) is free of 
zeros in the upper half plane Im w > -(Pl/a){l+a2k2/Pi2}K Finally, upon 
replacing a by c and therefore pn by p'n , we find the product decomposition 
for 7 sinh yc — 13 cosh 7c. 

These individual factors enable us to write L-(w) and L+(w) explicitly. 

We have 
L-(w) = exp[x(w)]Pi(bfw)P2(c,p,w)/P2(a,p,w)f 

and 
L+(w) = exp [ x W ] Qi(6, w) Q2(c, 0, w)/6 Q2(a, 0, w). 

The introduction of the exponential factor exp [x(w)] requires some comment. 
We shall presently examine L-(w) for \w\ —> 00, Im w < 0, and L+(w) for 
[ze;| —» 00, Im w > — 0. It will thus be found that L-(w) and L+(w) are of 
exponential order. The factor x(w) will be chosen in such a fashion as to make 
them both of algebraic growth in their respective half planes of regularity as 
\w\ —> °°. 

In order to find the asymptotic form of L-(w) for \w\ —> <», Im w < 0, we 
recall first that 

pn = TIT + f3a/mr a s w - > 00, 
and 

p'n = W7T + f3c/mr as n —> 00. 

Furthermore, we may neglect the terms (ka/pn)
2 relative to unity for \w\ 

sufficiently large. Hence L-(w) is of the order 
OO CO 

II [1 + iwb/nw] exp ( — iwb/mr) II [1 + iwc/nir] exp (—iwc/mr) 
w exp [ x W ] î ^ i - i ^ i 

II [1 +ia^/w7r] exp ( — iaw/nir) 
n= 1 
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But 

1/T(y) = yeyy II [1 + y/n] exp {-y/n). 

Hence L-(w) is of the order 

exp [x(w)]T(iaw/V)/T(ibw/fir)T{icw/V). 

Upon applying the Stirling expansion theorem for the gamma function we 
find that L-(w) is of the order 

w^ exp [x(«0 + iw/ir{a log a — b log b — c log c)] 

for |w| —> oo, Im w < 0. We then choose 

x(w) = — iw/w(a log a — & log 6 — c log c) 
so that 

Z,_(w) = 0(w*) 

for |w| —-> oo, Im w < 0. A similar calculation gives us that L+(w) = 0 (u>~*) 
for |w| —> oo, Imw > — 0, with the same choice for x W - We note, as a 
check, that for |w| —* » , 

L_(w)/L+(w) = 0(w) 

in the strip of regularity, as it should be. 
In order to determine E(w), the entire function of separation, we are required 

to examine the asymptotic forms of equations (2.4) and (2.5). Because we 
anticipated our calculations and inserted x W into the factoring of L(w)> we 
see that E(w) is at best of algebraic order for \w\ —» oo, that is, a polynomial. 
We can say more than this about E(w). For example ty(w) approaches zero 
for \w\ —> oo, Im w > — 0, as a consequence of the Riemann-Lebesgue lemma. 
Since L+(w) = 0(w~*) in this half plane and the remaining terms in equation 
(2.5) are 0(wT"3/2), it follows that E(w) = o(w-*). But since E(w) is an entire 
function, it follows that E(w) is zero in the upper half plane Im w > — 0, 
(w| —> oo. We now examine equation (2.4) and find that E(w) = o(w*), that 
is, E(w) is constant in the lower half plane Im w < 0, \w\ —> oo. From this 
we conclude immediately that E(w) is zero. We have finally 

j , x _ _ Po sinh ppb/a faiL+Qc) fliL+( —K)1 
aiL-(w) L w— K w + K J 

which tells us that J(w) = 0(w~3/2) for |w| —» oo, Im w < 0, and hence that 
<l>+(x) — <t>-(x) = 0(x*), x —» 0+ , that is, <t>+(x) — </>_(x) is integrable in the 
neighbourhood of the origin. Similarly we find that ^(w) = 0{w~^), for 
|w| —» oo, Im w > — 0, so that yp(x) = 0(x~~*), x —> 0~. 

3. The determination of <t>(x, y). In order to determine tf>(x, ;y), we write 
equation (1.4) in Fourier integral representation. Upon doing this, we get 
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(3.1) *(*,,) = 1 
27T J 

exp (iwx)J(w)gV'(w,y, b) dw 

+ [ai exp (ûx) + Ŝi exp (—ûx)] cosh poy/a, 

where r is a contour drawn in the strip of regularity — 0 < Im w < 0. We 
have two representations for g(w,y,b) depending on whether y > b or y < b. 
The path r is closed, for x > 0, by a semi-circle passing between the poles on 
the positive imaginary axis and the radius of the circle is then allowed to 
become infinite. Because of the growth of gV'(w,y,b) and J(w) in the upper 
half plane this is a legitimate closing of the contour T. These details are des
cribed adequately by many authors and we shall not pursue the matter 
further. For x < 0, a similar closing is performed in the lower half plane. 

We have then three representations for <t>(x,y) depending on whether x ^ 0, 
0 ^ y ^ a; x^ 0, 0 ^ y ^ b) or x^- 0, b ^ y ^ a. We determine these 
from equation (3.1) by a direct evaluation of the residues and the appropriate 
form of the Green's function. For x ^ 0 , O ^ y ^ a w e have 

(3.2) (f>(x,y) = [ai exp (ûx) + jSi exp (— ûx)] cosh p0y/a 

- pa sinh poft/a E C X P ( i W X ) ["aiL+(K) + frL+(-K)1 
w L-(w) L W— K W + K J 

x (sin pnb I a) (cos pny/a)pn (pn2+a2P2) _ 
wa\Pn

2 + p2a2 - a202) 

The summation with respect to w is over the sequence 

w = - i(Pn
2 + a2k2tla, (n = 1, 2, . . .). 

For x ^ 0, 0 ^ y ^ b we have 

(3.3) ^ , y ) = - P - ° S i n h h Poft/a y ToiL+Oc) j8iL+( —JC)1 
a w L w — K w + K J 

[~(cos w 7r;y/ô) exp (imx;)l 

L wb(-)nL+(w) J 
inh ppb/a faiL+Qc) , fliL+( —ic)"| < 

L_i_(i&) L i i — K ik -\- K J 
— Pos*nh Po&/a ["fli^+W , /?iL+( —fc)lexp ( — 2fex;) 

aL+(ik) L ik — K ik -\- K J 2ikb 

In equation (3.3) the summation with respect to w is the sequence 

w = i(k2 + nV/ft2)*, (» = 1, 2, . . .)• 

Finally for x ^ 0, & ^ y ^ a, we have 
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(3 4) 6(x y) = P»s]aii P<J>/a f[ a*L+(K) + fti-M-*)"] exp (JK'X) 

a ILx'—K K'+K J L+{K') 

raiL+JK) _ < 3 I Z + ( - K ) " | exp (-in'x)\ (pV-ff2c2) coshp'0(b-y)/c 

L K' + K K' -K J L+(-K') ) K'C 'c(0c - /3V + pV) 

_ po sinh p06/a y, exp (iwx) ( axL+(ic) ffiZ,+( — K) 

a w Z.+(w) I w — K W — K 

y.{cos p'n(b - y)/c) {pâ + pV} 

ew(pV - /32c2 + /Sc) 

} 

where now the summation with respect to w is on the sequence 

w = i{fe2+PVA2}K (n = 1 ,2 , . . . ) . 

Let us now examine the convergence of the infinite series in equations (3.2), 
(3.3) and (3.4). In equation (3.2), the general term of the infinite series is of 
the order 

(exp nirx/a)(sm mrb/a)(cos mry/a)/n/2
1 n > > 1, 

so that the series in (3.2) converges absolutely for x ^ 0, 0 ^ y ^ a. For 
equation ,(3.3) we have for the order of the general term 

(cos niry/b) exp ( — nwx/b)( — )n/nz/\ n > > 1, 

while for equation (3.4) we have 

exp { — n-Kx/c) cos [mr(y — fy/cl/n^, n > > 1, 

so that the infinite series converge absolutely for x^ 0 and 0 ^ y ^ b or 
b ^ y ^ a as the case may be. From the order of the general term we may 
deduce the behaviour of <fr(x,y) in the neighbourhood of x = 0, y = b. Let us 
take equation (3.2) first. We write for abbreviation r2 = x2 + (y — b)2. Then 

00 

Y, exp (nwx/'a) (sin nwb/a) (cos mry/a)/n/2 = 0 ( 1 + fl/2) 
n = 1 

for x —> 0"", y —» Z>. That is, 0(x,y) is bounded and its derivative with respect 
to r becomes infinite in such a fashion that r<j>r is finite, indeed zero, for r —•> 0. 
A similar remark may be applied to the cases x —»0+, y —> b~ and x —-> 0 + , 
y —• &+. Hence this application of Green's theorem in the neighbourhood of 
the point x = 0, y = b is justified. Since the series expansions in equations 
(3.2), (3.3), and (3.4) converge both uniformly and absolutely in the regions 
given above, it is a simple matter to find their asymptotic forms. For example, 
for x —• — oo, 0 ^ y ^ a, <t>(x,y) is asymptotic to 

[cosh poy/a][ai exp (ÏKX) + 0i exp (—ûx)]. 

The next term in the expansion is 0[exp {pi2 + a2k2}*x/d\. For x—> oo, 
0 ^ y ^ 6, <t>(x,y) = 0 [exp (--&x)], while for x —> oo, b ^ y ^ c, 
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<t>(Xy y) = 0 [a2 exp (IKX) + 02 exp (—iic'x)]. 

It is clear, then, that one can take the unilateral Fourier transforms of <t>(x,y) 
for positive x, as long as I m w < 0. Finally, we can show that since the 
integral in equation (3.1) is uniformly convergent with respect to both x 
and ; y f o r 0 ^ 3 > ^ a , — œ < x < co, it defines a continuous function of x 
and y in this region. Hence the three representations of ^(x.y) which we 
have are continuous across the line x = 0. 

4. Reflection and transmission properties of the barrier. If we examine 
equation (3.4) for x —» oo, we find that the only bounded term is 

— sinhp h [\aiL+^ -L fcM-«)1exp (u'x) 
a ° a IL K' - JC K' + K J L + ( K ' ) 

["ttiL+W 0iL+(-«)"1exp (~JK'X)\ {cosh P ^ ^ ^ A H P ' O 2 - P2c2} 

We have here the required linear relations between ai, a2, ]8i and 02. For 
example 

a 2 _ Po(sinh po&/a)(p/o2 - 0V) ["a^M*) |8iL+(-fc)"| 1 

and 
0 __ Po(sinh po&/a)(p/o2 - /3V) ["aiL+(K) ffiL+(-ic)"| 1 

Now ai is the amplitude of the wave incident upon the barrier, so that 0i is 
the amplitude of the wave reflected from the barrier for x < 0. Hence, if we 
require, for example, that no wave be incident from the right, that is 02 = 0, 
then a2 is the amplitude of the wave transmitted to the right. In this case 
the reflection coefficient on the left is r\ = j8i/ai, while the transmission 
coefficient on the right is t\ = a2/ai. On the other hand, if there is no wave 
reflected to the left, then ai = 0, and the reflection coefficient on the right is 
r2 = 02/182, while the transmission coefficient on the left t2 — j3i//32. 

It is not difficult to give Y\, r2, t\ and h in terms of ky fi and the ratio c/a. In 
the first place, since L+(/c) is the conjugate of L+( — K), we have 

(K +/C) 

where ci = arg L + ( K ) . Similarly 

r2 = exp ( — 2ia2) 
K + K 

where <72 = arg £+(*')• Furthermore 

__ (po sinh pç>b/a){pf<? — P2c2) L+(K) 4*ac 
1 ~ (PV - 0V + 0c) L+ (*')(*' + K) (aVo2 - C2PO2) ' 

https://doi.org/10.4153/CJM-1950-019-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-019-2


WAVES OVER A CHANNEL OF FINITE DEPTH 221 

while 

h = 
a(Kf - K)cKf(p'o2 - Pc2 + Pc) L+( - *') 

po(sinh p0b/a)(pfo2 — pc2) L+( — K) 

We are then left with the task of providing the magnitude and phase of 
L+(ZLK) and L + ( ± K ' ) . In the first place 

I M ± *)i2 = 
while 

Hence 

| L + ( ± K ' ) | 2 = 

Qfo + Po2 -/32a2)(a2pV - po2c2) 

2ap'o2(p0
2 - /32a2) sinh 2p0bfa 

2â{p'<? - pc2) 

L+(±K) 

p'oVoW - PoV)(j8c + pV - Pc2) 

2 (0c + P V - pc2)(Pa + po2 - pa2)(a2p'0
2 - PoV)2 

4c3a(p0
2 - pa2)(p'0

2 - pc2) sinh2
 Po6/a 

From this we see that 

and 

*2 

2 I c J Ipo2 - 02a2/ (pV + Pc - pc2) 

= 2/c' f c Y JPQ2 ~ ^ 2 l K / P V + fr - g2^2lK 

Po U i I p ' o 2 - ^ 2 / \p 0
2 + / f o - 0 2 a 2 j 

exp i((ri — 0-2) 
K + K' 

exp i((7i — 0-2) 

K + K' 

The phase angles <n and ci are given by the following infinite series 
00 

0"i = IL {arc sin Ka/{pn
2 — po2}K — Ka/W} 

n— 1 

00 

— X {ar"C S m KC/{p'r? — P02}y2 — KC/flT} 
n= 1 

00 

— X) {a r c s m
 K&/{^2^"2 ~ Po2}^ — nb/mr] 

n= 1 

— arc sin &a/p0 {a log a — b log b — c log c}, 
7T 

00 

<r2 = S {arc sin ic'a/{pn
2 — p'o2}^ — K'a/W} 

« = 1 

00 

— X) {a r c s m K-'C/{P r? — PQ2YA — K'C/MT] 

n= 1 

00 

— X) {arc sin /c'è/{n27r2— p'o2}K — Krb/mr\ — arc sin kc/p'o 
n= 1 

{a log a — 6 log & — c log c\ . 
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It is clear that the nth term in any of the above infinite series is 0(1/» 3) , so 
that the series all converge. It is not difficult to calculate these series as 
functions of k and p. 

5. A reciprocity theorem. We have shown how en, a2, Pi and p2 can be 
used to define the various reflection and transmission coefficients. Let us 
observe that <l>(x,y) is complex and in order to obtain a real solution we merely 
have to take either the real or imaginary parts of 

exp (ikz + ift)<j>(x,y), 

where fig = f2 and g is the acceleration of gravity in appropriate units. Now, 
in complex form we may show that a relation exists between the magnitudes 
of ai, a2, Pu and /32. We start with Green's theorem. If <f>*(Xjy) denotes the 
conjugate of <t>{x,y)y then 
(5.1) J J [ 0 V V - d>*V2<i>]dA = J f o 0 * n - 4>*4>n]ds'9 

where the area is the region we have described in sec. 1. That is, it is a rec
tangle of length L+Li and width a with a horizontal cut parallel to the x 
axis as we have described. The left side of equation (5.1) vanishes since 
V2<f> — k2<f> and V2<£* = k2<j)*. Further, because of the boundary conditions on </> 
and <£*, there are no contributions to the line integral along the rigid barriers 
or the free surface. Finally since there are no sources, we have 

[ 0 0 * * — <t>*<t>x]x udy + [<M>*x-4>*4>*]x-Ldy = 0. 

But, if we choose L and L\ sufficiently large and positive, we have that the 
integral at x = — L\ is 

2Ac[|ai|! 

2ÎK 

\m 
t*2 r 

cosh2 (poy/a)dy 

cosh2{p'0(& ~y)/c) dy 

+ 0 [exp (-6L)] + 0[exp ( - OLi)] = 0. 

Hence when L and L\ —* oo, we have simply that 

KaUatf - {p^W + pa - PW] = K ^ [ ] a 2 l 2 - \p2\
2} [ P V + pc - P2c2] # 

Ptf p2a2 PV P2c2 

Upon substituting in the expressions we found for a2 and p2 in terms of ai and 
a2 we find that the above relation is identically satisfied. 
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