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When atmospheric storms pass over the ocean, they resonantly force near-inertial waves
(NIWs), internal waves with a frequency close to the local Coriolis frequency f. It has
long been recognised that the evolution of NIWs is modulated by the ocean’s mesoscale
eddy field. This can result in NIWs being concentrated into anticyclones which provide
an efficient pathway for NIW propagation to depth. Here we analyse the eigenmodes of
NIWs in the presence of mesoscale eddies and heavily draw on parallels with quantum
mechanics. Whether the eddies are effective at modulating the behaviour of NIWs depends
on the wave dispersiveness ¢2 = fA%/W¥, where A is the deformation radius and ¥ is a
scaling for the eddy streamfunction. If ¢ > 1, NIWs are strongly dispersive, and the waves
are only weakly affected by the eddies. We calculate the perturbations away from a uniform
wave field and the frequency shift away from f. If ¢ « 1, NIWs are weakly dispersive, and
the wave evolution is strongly modulated by the eddy field. In this weakly dispersive limit,
the Wentzel-Kramers—Brillouin approximation, from which ray tracing emerges, is a valid
description of the NIW evolution even if the large-scale atmospheric forcing apparently
violates the requisite assumption of a scale separation between the waves and the eddies.
The large-scale forcing excites many wave modes, each of which varies on a short spatial
scale and is amenable to asymptotic analysis analogous to the semi-classical analysis of
quantum systems. The strong modulation of weakly dispersive NIWs by eddies has the
potential to modulate the energy input into NIWs from the wind, but we find that this
effect should be small under oceanic conditions.
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1. Introduction

Near-inertial waves (NIWs) play an important role in the global climate system. Being
associated with strong vertical shears, they are prone to shear instabilities, which are an
important driver of upper ocean mixing (for a review, see Alford et al. 2016). As such,
the generation of NIWs is one of the primary mechanisms by which atmospheric storms
induce a deepening of the surface mixed layer. This deepening requires mixing with water
from below, implicating NIWs in the surface ocean heat budget (Jochum et al. 2013).
In the interior of the ocean, NIWs make up a major fraction of the internal wave kinetic
energy (Ferrari & Wunsch 2009; Alford et al. 2016), and it has been hypothesised that NIW
kinetic energy may provide a source of mixing in the deep ocean (Munk & Wunsch 1998).
Near-inertial waves might also extract energy from mesoscale eddies (Xie & Vanneste
2015; Rocha, Wagner & Young 2018) and, hence, play a role in the mesoscale energy
budget.

In-situ observations of NIWs usually lack significant spatial resolution. The spatial
structure of NIWs can generally only be resolved through dedicated field campaigns, for
example, the Ocean Storms experiment (D’ Asaro 1985) or the NISKINe field campaign
(Voet et al. 2024). Despite this, it has become clear that NIW evolution can be strongly
modulated by the presence of mesoscale eddies (e.g. Thomas et al. 2020; Conn, Fitzgerald
& Callies 2024). Given the sparsity of NIW observations, theoretical progress has been
important in understanding the dynamics of NIWs in the upper ocean.

Early work on NIW-eddy interactions was based on ray tracing theory. Kunze (1985)
derived a dispersion relation for NIWs in the presence of a geostrophic background flow.
Throughout this paper, we make the assumption of a barotropic (depth-independent)
background flow. The ray tracing equations for a single (flat-bottom) baroclinic mode
propagating through such a background flow are

dx o dk dw FA%\k|? 'Y
&> _fe %2 - k42, 1.1a—
dr ok’ dr  oax’ ¢ usiety (11a=<)

where x = (x, y) is the ray position, t is time, k is the horizontal wave vector, u is the
background velocity, { = dyv — dyu is the background vorticity and A is the deformation
radius. Here, and throughout the rest of this paper, w refers to the frequency shift of
a NIW away from the local inertial frequency f such that the true frequency is f + .
Based on these equations, Kunze (1985) argued that NIWs would be trapped in regions of
anticyclonic vorticity where the effective frequency is less than the local f. This trapping
arises from the refraction of rays by the background vorticity, i.e. from changes in the
wavenumber vector due to spatial gradients of the ¢/2 term in the dispersion relation.
Concentration of NIW energy into anticyclones has indeed been observed in the ocean
(e.g. Perkins 1976; Kunze & Sanford 1984; Thomas et al. 2020; Yu et al. 2022).

Ray tracing is based on the assumption that the NIWs are propagating through a slowly
varying medium. This means that the horizontal scale of the waves has to be much smaller
than the scale of the background mesoscale eddy field. Young & Ben Jelloul (1997, from
hereon YBJ) criticised this spatial scale assumption based on the argument that NIWs are
forced by large-scale storms and so, at least initially, the waves have a much larger scale
than mesoscale eddies. As a remedy, YBJ developed a theory of NIW—eddy interactions
that does not rely on the assumption of a spatial scale separation. This was also partly
motivated by a desire to explain observations from the Ocean Storms experiment (D’ Asaro
et al. 1995), a field campaign that studied the evolution of NIWs in the wake of a large
storm in the North Pacific. A key result of this campaign was that the effect of the

1002 A22-2


https://doi.org/10.1017/jfm.2024.1175

https://doi.org/10.1017/jfm.2024.1175 Published online by Cambridge University Press

Regimes of near-inertial wave dynamics

mesoscale vorticity on the wave evolution was in clear contradiction with predictions from
ray tracing (D’ Asaro 1995).

The YBJ equation describes the evolution of NIWs in the presence of a prescribed
geostrophic eddy field while only assuming a temporal scale separation between the
inertial period and the characteristic time scale of the eddies. For the barotropic
background flow considered throughout this paper, the wave evolution can be split into
baroclinic modes that do not interact, so we consider a single baroclinic mode with NIW
velocity [u, (x, y, 1), vy (x, y, 1)]g(z), where g(z) is the baroclinic mode structure. The YBJ
equation is cast in terms of the variable ¢ = (u,, + iv, e, where the factor e/ removes
oscillations at the inertial frequency and leaves ¢ to describe the slow evolution of the
envelope that modulates the NIWs. For a single mode propagating through a barotropic
background flow, the equation becomes

A i iz _,

oy T )+ 56— —-Vp =0, (12)
where v is the background streamfunction, ¢ = V21 is the background vorticity and
J(a, b) = dra dyb — dya 3,b is the Jacobian operator. The second term describes advection
of the NIW field by the background flow. The third term is known as the ¢-refraction
term and describes refraction of the NIW field by the background vorticity. This term
is necessary to obtain concentration of NIWs into regions of anticyclonic vorticity. The
last term is responsible for wave dispersion. Here and throughout this paper, we set the
meridional gradient of planetary vorticity 8 = 0. The YBJ equation can be modified
to include B by replacing ¢/2 with ¢/2 + By in the refraction term. The B effect has
been proposed to explain the observed equatorward propagation of NIWs in the ocean
(Anderson & Gill 1979; Garrett 2001; Yu et al. 2022), and it can dominate the overall
NIW evolution in regions with weak mesoscale eddies (e.g. D’ Asaro et al. 1995). Because
mesoscale vorticity gradients typically dominate over B however, we here restrict ourselves
to B = 0 for simplicity.

Despite both ray tracing and the YBJ equation being used in the NIW literature, it
remains unclear how they relate to each other. Ray tracing has been one of the most widely
used tools to interpret observations of NIWs. Ray tracing has had qualitative success in
describing observed features of NIW evolution, however, we are not aware of any rigorous
comparisons between ray tracing predictions and observations. Ray tracing has revealed
aspects of NIW dynamics such as trapping in anticyclones along with an associated
propagation to depth (Jaimes & Shay 2010), stalling in cyclones (Oey et al. 2008) and the
interplay between NIWs and turbulent dissipation (Kunze, Schmitt & Toole 1995; Essink
et al. 2022). Non-standard propagation patterns of NIWs in observations have also been
explained using ray tracing (e.g. Byun et al. 2010; Chen et al. 2013). The YBJ equation
has been used primarily as a tool in theoretical and numerical studies, although there has
been some attempt to make connections with observations. Asselin & Young (2020) used
simulations of the YBJ equation coupled to a quasi-geostrophic mesoscale eddy field to
investigate the sequence of events that lead to the downward propagation of wind-forced
NIWs. Thomas et al. (2020) calculated the NIW wave vector using an expression based on
the YBJ equation. The predictions from YBJ were broadly in agreement with observations.
Conn et al. (2024) directly used the YBJ equation to interpret NIW observations on a
mooring array, showing that it successfully captured the amplitude and phase evolution,
including differences across the mooring array caused by mesoscale vorticity gradients.
Any comparison of the results of these disparate studies is complicated by the different
methods used. A better understanding of the relationship between ray tracing and YBJ
would clarify the physical similarities and differences.
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Further complicating the picture, observations reveal a varied picture of the importance
of the mesoscale vorticity on NIW evolution. During the Ocean Storms experiment,
mesoscale eddies had a muted impact on the NIW field (D’ Asaro 1995), whereas other
observational studies found a strong imprint of mesoscale eddies onto the NIW field. For
example, Thomas et al. (2020) demonstrated that the evolution of the NIW wave vector
was driven by gradients in the mesoscale vorticity during the NISKINe experiment in the
North Atlantic. Extending the original argument by YBJ, Thomas et al. (2024a) argued
that these differences in the impact of mesoscale vorticity could be explained primarily by
differences in the strength of wave dispersion. The stronger dispersion in the Ocean Storms
experiment, they argued, was the result of the forcing projecting onto lower baroclinic
modes, a stronger stratification and weaker eddies. As a result, the effect of refraction by
mesoscale vorticity was suppressed in the Ocean Storms experiment, whereas it was more
pronounced in NISKINe.

In this paper we aim to clarify how ray tracing relates to YBJ dynamics. Given the
widespread use of ray tracing in the literature, we aim to understand the conditions under
which results from ray tracing are accurate. To this end, we consider the YBJ equation in
both a strong- and weak-dispersion regime. We begin by providing a simplified treatment
of the strong-dispersion regime. Next, we show that the ray tracing equations emerge
asymptotically from the YBJ equation in the limit of weak dispersion. Our analysis shows
that the Wentzel-Kramers—Brillouin (WKB) approximation and, thus, ray tracing can be
valid even in the presence of a large-scale forcing, despite the YBIJ critique. The forcing
decomposes into several modes that themselves exhibit small-scale structure. We find
the existence of isotropic and anisotropic modes. The isotropic modes are characterised
by fast variations along streamlines, while the anisotropic modes have weak variations
along streamlines. We discuss the physical processes important in both classes. Finally,
we consider how these regimes might modulate the energy injection into the NIW band by
the winds, finding that such a modulation is likely weak under oceanic conditions.

2. The YBJ equation
2.1. Decomposition into horizontal modes

We begin by non-dimensionalising the YBJ equation. Given the scalings x,y ~ L, y ~ ¥
and 1 ~ L2/ ¥, we obtain the following non-dimensional form of the YBJ equation:
% e+ So - v =0 1)
at ’ 2 2 - '
Here ¢2 = fA%/ W is the wave dispersiveness (assuming f > 0). For readers familiar with
Young & Ben Jelloul (1997), our 2 is equivalent to their Y"~!. We remind the reader
that we have assumed a single baroclinic mode, but ¢ does vary among baroclinic modes
through A. The wave dispersiveness also varies spatially throughout the ocean (figure 1).
We calculate ¢ for the first four baroclinic modes from observations as described in
Appendix A. Except for the high latitudes, the first and second baroclinic modes are
almost entirely in the strongly dispersive regime (e >> 1). Higher baroclinic modes are
to be more weakly dispersive, with & < 1 almost everywhere for mode 4. For a given
baroclinic mode, low-latitude regions are more strongly dispersive, while higher latitudes
and western boundary currents are more weakly dispersive.
Note that (2.1) is a Schrodinger equation. This parallel is made clear if we write (2.1) as
3¢ ’ ¢

i _Hp, H=-V2_iJy, )+

s 22a.b
a1 2 2 (2.2a.,b)
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Figure 1. Wave dispersiveness 2 = | f|A2/¥ plotted throughout the ocean for the first four baroclinic modes,
with the deformation radius A estimated from hydrography and the streamfunction magnitude ¥ from altimetry.
The equatorial band is blocked out because the mean flow amplitude cannot be estimated with confidence there.

The operator H is known as the Hamiltonian operator. While the presence of first
derivatives in the Hamiltonian stemming from advection may be unfamiliar to some,
such terms arise in quantum mechanics when describing a charged particle in a magnetic
field. This analogy to quantum mechanics was pointed out by Balmforth, Llewellyn Smith
& Young (1998) and we will exploit it here extensively. Rocha et al. (2018) also used
this analogy to derive the equivalent of Ehrenfest’s theorem for NIWs, while Danioux,
Vanneste & Biihler (2015) explained the concentration of NIWs into anticyclones via the
analogue of quantum conservation laws. While we are setting 8 = 0 in this paper, we note
that the quantum analogue to 8 #= 0 is known as the ‘“Wannier—Stark ladder’, where the
potential due to the mesoscale vorticity modulates a linear ramp due to 8 (Balmforth &
Young 1999).
The operator H is Hermitian, i.e.

/ ¢*Hp d>x = / (Hp)*¢ d°x (2.3)

for sufficiently regular functions ¢ and ¢ so it has real eigenvalues. We also assume H
is compact so that the eigenmodes form a complete orthonormal basis. Let p label the

eigenmodes gZA),L (x,y) and associated eigenvalues w,, of the operator H,

Hoy = wpdp. (2.4)
The field ¢ can then be expanded in the eigenmode basis as
Py, )= ap(Ou(x.y), 2.5)
n
1002 A22-5
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Vorticity ¢

0 T 27

Figure 2. Dipole vorticity with an anticyclone in the upper left corner and a cyclone in the lower right corner.
The contours depict the streamfunction with positive values denoted by solid lines and negative values denoted
by dashed lines.

where a, (1) is the projection of ¢ onto the eigenmode <13,L. The coefficients ay (¢) then
evolve according to

da,,
dt

Therefore, the eigenvalue w, represents the frequency shift of the mode away from f.
The total dimensional NIW frequency is hence given by f(1 + Ro w,,), where Ro = ¥/ fL?
is the Rossby number. Furthermore, because the eigenvalues are real and the modes are
orthogonal, the kinetic energy of the waves is conserved.

We consider this problem on a doubly periodic domain with size 21 x 2m. This is
intended to represent a local view of an ocean that is filled with a random sea of eddies.
The solutions we calculate are perfectly periodic and extend across all eddies. In reality,
of course, the background field is not perfectly periodic and this causes the solutions to
become localised in certain regions. Therefore, the solutions we calculate on the 21 x 27t
should be thought of similarly.

As a key example in this paper, we consider a 27 X 2w domain that contains a dipole
vortex given by (figure 2; cf. Asselin et al. 2020)

= —lwpay, 0 ayu(t) = ay(0)exp(—iwyt). (2.6)

¥ = 1 (sinx —siny). (2.7)

The analysis below is general, however, and can be applied to more general background
flows.

2.2. Numerical calculation of eigenvalues and eigenmodes

For most choices of the background flow v, analytical solutions for the eigenfunctions
of H do not exist and numerical solutions are required. Solving the eigenvalue equation
numerically requires us to discretise the operator H. The discrete eigenfunction is
expressed as a vector, and the problem reduces to finding the eigenvalues of a finite matrix.
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The operator H is Hermitian and so it is desirable for any discrete representation of H
to also be Hermitian. A fourth-order central finite difference scheme for the Laplacian
term preserves this property. More care is required for the advection operator, for which
we use the enstrophy-conserving scheme from Arakawa (1966) to preserve the Hermitian
nature of the operator and guarantee that the eigenvalues of the matrix are real. Having real
eigenvalues ensures that the conservation of NIW kinetic energy is respected in the discrete
system. The exact method of numerically solving the eigenvalue problem is detailed in
Appendix B.

3. The strong-dispersion limit

The limit € >> 1 is known as the strong-dispersion limit. Young & Ben Jelloul (1997)
showed that in this limit, the solution to the YBJ equation becomes proportional to
the streamfunction . They additionally showed that frequency shifts away from f are
proportional to the domain-averaged kinetic energy of the mesoscale flow. These same
results can be derived by considering the eigenvalue problem posed above; see (3.8) and
(3.11) for the result. In our framework, we can additionally derive information about the
next-order perturbations to the NIW field; see (3.15) and (3.16) below.
When ¢ is large, we split the operator H into two parts, i.e.

H=¢’HO + gD, (3.1)

where HO = —%Vz and HD = %; —iJ(¥, -). Because €2 >> 1, this implies that HV is
a small correction to 2H®, and perturbation theory can be used to solve this system. We
expand both ¢, and w in powers of %

o0 o0
b= P, wp=e) e Mo (3.2a,b)
n=0 n=0

At O(£2) the eigenvalue problem is

© 30 _ 020
HY¢,” =w, ¢, , (3.3)
where qg,(lo) is the eigenfunction of the unperturbed problem with eigenvalue a)fto).

We assume the domain is doubly periodic and goes from O to 27 in x and y. The solution

is

Il
>

where u is a two-dimensional vector with integer components, such that the eigenfunctions

are plane waves in x and y.

o =emr, ) = (3.4a.b)

3.1. The leading-order mode

Near-inertial waves are forced by atmospheric storms, which have a much larger horizontal
scale than mesoscale eddies and can be idealised as a uniform forcing. We assume that the
result of this forcing is the excitation of a constant non-zero ¢. The projection of this initial
condition onto a given mode can thus be found by integrating that mode across the domain.
For plane waves, a domain integral will vanish unless g = 0, such that a uniform forcing
will only project onto the ¢ = 0 mode in the unperturbed case. We begin by focusing on
that case to obtain expressions for the perturbations to its spatial structure as well as its

1002 A22-7
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frequency shift. A small part of the forcing, however, projects onto modes with u # 0 and
we will return to these higher modes below.

The leading-order solution for w =0 is ¢(O) =1 and a)(()o) =0, and there is no
modulation of the waves by the mesoscale eddy ﬁeld. To obtain this modulation, we must
go to higher order. At O(e"), the eigenvalue problem is

H(O)qg(()l) +]_1(1)(13(()0) (O)¢(1) 1)¢(0). (3.5)
With a)(()o) =0 and the advection term in H" vanishing when acting on d3(()0) =1, this
reduces to
1 § 1
v 200 + 2 =" (3.6)

The two terms on the left vanish when 1ntegrated over the doubly periodic domain, so we

conclude that w(()l) =0.
There is, however, a correction to the eigenfunction at this order, determined by

V2 = vy (3.7)
With periodic boundary conditions, the solution to this is
1
b = v. (38)

where we have assumed that v is defined such that it has zero domain average. This
recovers the expression for ¢ from YBJ. The structure of the mesoscale eddy field is

imprinted onto the waves by the 8*2%1) term. Because the modulation is by the real
streamfunction v, only the NIW amplitude is modulated by mesoscale eddies. The NIW
field remains in phase across the domain.

We now also seek the leading non-zero correction to the eigenvalue, for which we go up
another order. The eigenvalue equation at 0(8_2) is

22 A (1 o 2 1 1 2 0
With a)(()o) = w(()l) 0 and J(v, ¥) = 0, this 51mp11ﬁes to
2 2
1V + Ly vy = o). (3.10)
The first term on the left vanishes under domain integration. Integrating the second term

on the left by parts yields
/ s
o) = 3.11)

0 /d2

The leading-order frequency shift is 8_2(1)(()) Given that £~2 « 1, the frequency shift
away from f is suppressed substantially, even compared with the small frequency shift
assumed from the outset. Re-dimensionalising the expression results in

| [vur s

2 _

Wy = 3.12
Y= -gm [ G2
This agrees with the YBJ result for the dispersion relation in the strong-dispersion regime,

indicating that the frequency shift is proportional to the average kinetic energy of the eddy
field.
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3.2. Higher-order modes

We now return to the higher modes with g # 0. These modes are degenerate to leading

order. For example, the modes (1, 0), (—1,0), (0,1) and (0, —1) all have a)(o) 2
Degenerate perturbation theory is necessary to calculate the first-order correctrons to
the eigenvalues and eigenfunctions (e.g. Sakurai & Napolitano 2020). To obtain these
corrections, we proceed naively with the calculation. We will run into a contradiction that
motivates us to choose a different basis set than was chosen in (3.4a,b). To those familiar
with degenerate perturbation theory, this may seem unnecessary, but we believe it to be
more pedagogical.
We again start from the O(¢°) equation, which now reads

HodD + H19 = D3 + DGO, (3.13)

Multiplying this equation by ¢>(O)* with both v and p labelling one of the modes in the
degenerate group, and integrating over the domain results in

/¢<0>* <0)) B P = w(l)/¢(0)* 0) 42y /é&o)*qugl(LO) Ex. (G.14)

Using integration by parts, the Hy on the left can be swapped for w, @ Because the
modes are degenerate to this order, the left-hand side vanishes. Furthermore, using the
orthonormality of the eigenfunctions, the corrections to the eigenvalues are determined by

0P8y = — / o H 1§ dx. (3.15)

42
We have now arrived at our contradiction. The left-hand side of this equation is diagonal,
whereas the right-hand side is not necessarily so. In (3.4a,b) we chose a basis for

the unperturbed eigenfunctions: {e*, e~ e, e ™} for |u| = 1. The key to degenerate
perturbation theory is to choose a basis of the degenerate space to avoid this contradiction.
It is clear that the correct basis must diagonalise H;, which our original choice does not.

To proceed, we calculate the right-hand side of (3.15) in the original basis. This results in
a4 x 4 matrix. We diagonalise this matrix and find the corresponding linear combination
of the original basis functions that diagonalises Hj. The corresponding eigenfunction
corrections can be found by solving the screened Poisson equation obtained from the
first-order equation (3.13). Rearranging, we have

(Ho— &®) 30 = (o — 1) 30, (3.16)

where the ¢(0) should be in the basis diagonalising H;. If H identically vanishes in this
subspace, the degeneracy must be lifted at the next order, as in the example below.

3.3. Dipole flow solutions
We now consider the specific example of the dipole flow (2.7). Numerical solutions
for ¢ =2 show that a uniform initial condition projects strongly (98.5% of the

energy) onto the $o mode (figure 3). There is a small but negative frequency shift
of wg = —0.03104. This agrees excellently with the predicted frequency shift from

(3.11) of a_zw(()Z) = 312 = —0.03125. Additionally, there is weak horizontal structure that
aligns with the streamfunction as expected. The root-mean-squared error between the
1002 A22-9
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Real part of eigenfunction ¢
Figure 3. Numerical solution to the eigenvalue problem (2.4) with ¢ = 2 for the dipole flow. A uniform forcing
primarily projects onto the mode shown on the left, with the mode with the second-highest projection shown

on the right only making up less than 2 % of the energy. The eigenvalues w and projection fractions (of energy)
are shown in the panel titles. Vectors show the corresponding NIW velocities.

numerical elgenmode and the analytical eigenmode ¢(0) + 8_2¢(1) =142y is 1 %.
The agreement is excellent despite € not being partlcularly large.
For the dipole flow, the right-hand side of (3.15) is zero for all combinations of basis

functions of the a)(o) l subspace. Therefore, there are no first-order frequency shifts,

,(L]) =0, and the degeneracy is not lifted at this order. Performing the same procedure
that led to (3.15) on the second-order equation yields

1 [ R
0P8y = o3 / SV H 1) dx. (3.17)

For our trial basis consisting of the four plane waves, we solve the screened Poisson

equation (3.16) for the corresponding é,(tl). This is tedious but doable because the
right-hand side is just a sum of sines and cosines. The equation for the second-order
frequency shift can be diagonalised, and this time the eigenvalues are not zero and

the degeneracy is lifted. We find for a)( ) the values %, —%, —% and — 96, only

the first of which corresponds to an elgenfunctlon that the forcing projects onto at

this order. The leading-order eigenfunction of that mode is ¢(O) — (figure 3).

The eigenvalue & w(O) + sfza)ff) = 1.99739 is again in excellent agreement with the

numerical elgenvalue of 1.99729.

In this regime, the horizontal structure in the waves primarily arises due to ¢>(1)
which is suppressed by O(s~2). There is also horizontal structure due to modes with
i =0, but these are projected onto weakly; the fraction of the variance accounted for
by such a mode is O(e~*) (Sakurai & Napolitano 2020). As such, the wave potential
energy, which depends on horizontal gradients in the wave field, is also suppressed.
Xie & Vanneste (2015) associated the generation of wave potential energy with a sink
of the background eddy kinetic energy in a process known as stimulated generation.
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Given the weak generation of horizontal structure, stimulated generation is weak in the
strong-dispersion regime.

4. The weak-dispersion limit

The limit & < 1 is known as the weak-dispersion limit. Because &> multiplies the
highest-order derivative in the eigenvalue equation, the limit ¢ — 0 is a singular
perturbation problem. Before addressing the general problem, we build intuition with
two simple examples. These examples suggest that there are two classes of modes. One
class is characterised by waves that vary slowly along the streamlines of the background
flow and more rapidly across streamlines; they are captured by an anisotropic scaling of
the wavenumber with €. The other class has even faster variations in both directions and
requires an isotropic scaling. We develop a uniformly valid approximation that captures
both of these classes.

4.1. Parallel shear flow

We begin with an example of a parallel shear flow in which the streamfunction v is a
function of x only. The symmetry in y means the problem reduces to a one-dimensional
eigenvalue problem. Balmforth er al. (1998) considered this problem for a specific example
of a shear flow that can be solved in closed form. Zhang & Xie (2023) considered the
limits of strong and weak dispersion for the same mean flow. Here, we address how
the weak-dispersion limit can be analysed for a general parallel shear flow and apply the
procedure to the example flow from Balmforth ez al. (1998). Our goal is to calculate the
structure of the eigenmodes and their corresponding eigenvalues. We begin by introducing
the WKB method from which the two scalings arise. For the anisotropic scaling, the key
result is (4.8); for the isotropic scaling, the equivalent result is (4.12).

We assume that the streamfunction i (x) is periodic on the domain [—m, t]. The
eigenvalue problem (2.4) reduces to

, .
25— 9 L Lh s
SV — v 3y © ~6 = wj. @.1)

where ¢ = V2 and v = 3,y are both functions of x only, and we have suppressed the
label on the eigenmode. The coefficients are independent of y, which motivates the ansatz
dA> = @ (x)e™. Given that the domain has width 27 in y, the wavenumber m must be an
integer. With this ansatz, we are left with the one-dimensional eigenvalue problem

LY L 3 P 4.2)
—— mv + = = wd. .
2 dx? 2 2

This is the Schrodinger equation of a particle in one-dimensional potential, with the
bracketed term playing the role of the potential (Balmforth et al. 1998).

As ¢ is small, WKB analysis can be used to find approximations to the eigenvalues and
eigenfunctions (e.g. Bender & Orszag 1999). In WKB theory the field @ is expanded as

@ (x) = exp é > 8IS, (4.3)
Jj=0
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where § <« 1 is a scaling parameter that we are yet to determine. Substituting this into
(4.2) yields

o0

2 o 2 2.2
€ 1 -dS; 1 .d=S; e“m e
) st w44
2 | 82 ZO dx +3Z ae | Tty =e @9

If we assume that m ~ O(1), both the refraction term and the advection terms are
0O(1), and they must be balanced by a dispersion term of the same order. Requiring the
lowest-order dispersion term to be O(1) implies that § = ¢, and the O(1) equation becomes

dSo {
_E(dx) +mv—|—§—a). 4.5)

By writing ¢! dSo/dx = ik, this equation is analogous to the dispersion relation (1.1a—c)
specialised to this parallel shear flow. The function Sy is found to be

So(x) = £+/2i / ' \/ w—mu(x') — % dx’ (4.6)

and determines the leading-order phase variations of the solution. One can additionally
show (Bender & Orszag 1999, (10.1.12)) that the next-order solution is

1 ¢
S1(x) = 1 In (a) mv 2), “.7)
which determines the leading-order amplitude modulation of the solution.

This asymptotic expansion is valid away from regions where the integrand above is
zero. These are known as turning points of the problem and exist if w < max(mv + ¢/2).
The associated eigenfunctions are referred to as bound states. Near turning points,
w — mv — £ /2 can be approximated by a linear function of x, and solutions to (4.5) are
given by Airy functions. The Airy function solutions must be asymptotically matched to
the solutions away from the turning points. This yields an integral constraint from which
the eigenvalues w can be determined. The problem as formulated above is the classic
two-turning point problem, and the asymptotic matching procedure is well documented
(e.g. Bender & Orszag 1999, (10.5.6)). The resulting condition for w, often referred to as
a quantisation condition, is

gf\/‘” m()_&d (H%)n, withn=0,1,..., (4.8)
X0

where x¢ and x; are the turning points. The projection of a uniform forcing onto these
modes can also be calculated asymptotically. The domain integral of a mode is dominated
by contributions from the turning points (e.g. Bender & Orszag 1999, (10.4.24)).

If o > max(¢/2 + mv) then there are no turning points. The corresponding eigenmodes
are referred to as free states, and the quantisation condition is replaced by

f \/a) mv(x)—&dx_bwt withn=0,1.... 4.9

Note the lack of a half-integer shift that for bound states arises from the Airy behaviour
near turning points. The lack of turning points in the free states also means (4.6) is valid
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across the entire domain. Because the eigenfunctions of these free states are oscillatory
in the entire domain, a uniform forcing projects only weakly onto them, and we do not
discuss them any further. We also note that the discretisation of the free states is due to the
periodic domain; they would be replaced by a continuum of modes in an infinite domain,
while the bound states would remain discrete.

Under this scaling, the WKB modes are anisotropic. We assumed m ~ O(1), which
means that the modes’ phase varies in y on a length scale O(1). In contrast, the
leading-order phase variations in x come from e~ 18 and, therefore, occur on a scale O(¢).
The phase varies slowly along streamlines and rapidly across streamlines. This makes
refraction and advection come in at the same order as cross-streamline dispersion.

An alternative would be to choose the scaling m ~ O(¢~2). Repeating the WKB ansatz
requires a choice of 8§ = &2 and @ ~ O(¢~?) in order to end up with an equation of a
similar form to (4.5):

1 /dSo\* e&*m?
—3 (d_)?> —I—S;n + &2my = w. (4.10)

With the scaling given above, each term is O(1). We can solve for Sp and the corresponding
quantisation condition for bound modes:

X )
So(x) =j:\/§is/ \/ — 8;" — mo (') d¥, 4.11)
X 2.2
‘/—5/1\/0)—8’" —mv(x)dx:(n—l—l)n. (4.12)
& Jx 2 2

These modes are isotropic. The phase variations in y occur on a scale O(g?), which is the
same as in x because phase variations in x now come from & ~2Sy. This makes advection
and