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Abstract

In this paper we prove algebraic generalizations of some results of C. J. K. Batty and A. B.
Thaheem, concerned with the identity a+a”' = 8+ 8~ where o and # are automorphisms
of a C"-algebra. The main result asserts that if automorphisms «, f of a semiprime ring R
satisfy a + ol = B+ /3_1 then there exist invariant ideals U,, U, and U, of R such that
UiﬂUj =0,i#j, U®&U,®U, is an essential ideal, a=f on U, a = ﬂ‘l on U,, and

o’ = ﬂz =a"? on U, . Furthermore, if the annihilator of any ideal in R is a direct summand

(in particular, if R is a von Neumann algebra), then U, @& U, ® U; = R.
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Introduction

Over the last ten years a lot of work has been done on the operator equation
-1 -
(*) ata =B+p

where o and f are x-automorphisms of a von Neumann algebra. We refer
to some recent papers [1, 5] for a detailed discussion on this equation and a
more comprehensive bibliography.

It seems that the culminating results in the series of papers concerning the
equation (*) can be found in the paper [1] of Batty, where the treatment of
this problem was extended from von Neumann algebras to C”-algebras. The
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main result in [1] gives a condition which is both necessary and sufficient for
solution of the equation in C™-algebras, and which produces as corollaries
the necessary conditions which we will establish purely algebraically.

Our work had been motivated by the following two results of Batty
[1; Corollary 3.2, Corollary 3.5]:

THEOREM A. Suppose that x-automorphisms o and B of a C*-algebra
R satisfy (). Then there exist ideals 1,, 1, and 1, of R, each invariant

under o, B, o' and B, such that [N,NnL;=0, ,CI, +1, and, for
every x in R, B(x)—a(x)€l,, B(x)—a '(x) €L, B*(x)-’(x) €L,
B*(x) —a}(x) e .

The next theorem was also proved by Thaheem in [4, 5].

THEOREM B. Suppose that *-automorphisms o and B of a von Neumann
algebra R satisfy (x). Then R=U, & U, ® U,, where U, U, and U, are
von Neumann subalgebras of R, invariant under a and B, such that o = B
on U, a=8" on U,, and ot =p=a"? on U,.

In this paper we will generalize both Theorems A and B. Our methods are
much more elementary than those employed by the other authors. Roughly
speaking, we will show that the presence of analysis in the study of equation
(*) is sometimes superfluous. We will see that Theorem A remains true if R
is an arbitrary semiprime ring, and that Theorem B holds if R is a semiprime
ring in which the annihilator of any ideal is a direct summand. Moreover, if
we no longer insist that U, @ U,® U, is R but rather just a “large piece” of R
(more precisely, an essential ideal), then Theorem B holds in any semiprime
ring R.

In particular, our results imply that the assumption that « and £ preserve
adjoints, which is required in Theorems A and B, can be removed.

We remark that the study of equation (x) is much simpler if one assumes
that ¢ and B commute. It turns out that in this case the presence of the ideal
U, in Theorem B is not necessary (see, for example, [3, 6]). An algebraic
generalization of this result is presented in our forthcoming paper [2].

Preliminaries
We recall a few definitions and easy results. Let R be a ring. Then R

is said to be prime if aRb = 0 implies a =0 or & =0. A von Neumann
algebra i1s prime if and only if it is a factor (that is, its center consists of
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scalar multiples of the identity). If aRa = 0 implies a = 0, then R is
called semiprime. Every C"-algebra R is semiprime (for 0 # aa’a € aRa
if a#0).

REMARK A. Let R be semiprime. Suppose that a, b € R satisfy aRb =
0. Then we also have (bRa)R(bRa) = 0, abRab = 0, baRba = 0, and
therefore bRa =0, ab =0, ba = 0 by the semiprimeness of R. Observe
that the left and the right annihilators of an ideal U of R coincide. It will
be denoted by Ann(U). Note that U N Ann(U) = 0, and that U & Ann(U)
is an essential ideal.

We will be especially concerned with semiprime rings R in which the anni-
hilator of any ideal is a direct summand; that is, Ann(U)®Ann(Ann(U)) =
for any ideal U of R. Note that every von Neumann algebra has this prop-
erty; namely, the annihilator of any ideal is of the form pR for some central
projection p in R. More generally, the same is true for AW"-algebras.

REMARK B. Let o be an automorphism of a ring R. Suppose that the
ideal I of R is invariant under o and o ' , that is, o maps I onto itself.
One can easily verify that in this case the two-sided annihilator Ann(I) of I
is also invariant under « and o™ '.

The results

We begin our investigation of the equation (x) by considering a somewhat
more general situation where automorphisms «, f and y satisfy a+y =
B+1.

LEMMA 1. Let a, B, y be automorphisms of aring R. If a+y=+1
then
(1) (@~ D)RUB + 1)@ - B))(w)R(a - B)(z) = 0,
(2) (= DxX)RU(+ 1) a— 1) w)R(a—B)(z)=0 forall x,w, ze R.

ProOF. From a— f# =1 -y it follows that

(= B)(x)a(y) + B(x)(a = B)(¥)
= (a— B)(xy) = (1 = y)(xy)
= (1 =p)(x)y + 7)1 = »)(»)
= (a = B)(x)y +7(x)(a = B)(¥).

Thus (a - g)(x)(a = 1)(») + (B - 7)(x)(a = B)(¥) = 0. That is,
() (a=B)x)a-D»)+(a-Dx)a-B)y)=0 forallx,yeR
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since f —y =a— 1 by assumption. Replacing y by yz in (3) we obtain

(a = B)(x)(a - D)(y)a(z) + (a = B)(x)y(a - 1)(2)
+(a—1)(x)(a = B)(¥)a(2) + (a — D(x)B(¥)(a - B)(z) = 0.

By (3) this relation reduces to

(4) (a = B)(x)y(a — 1)(2)
+{a-DX)BYNa—-B)z)=0 forallx,y,z€R.

Replacing y by y(a — B)(w)u in (4) we get

(a = B)(x)yla - B)(w)u(a - 1)(z)
= —(a=1)x)BY)(B(a = B))(w)B(u)(a - B)(2).

But on the other hand, using (4) twice we obtain

(a = B)(x)y{(a - B)(w)u(a — 1)(z)}
= —{(a = B)(x)y(a - )(w)}B(u)(a — B)(2)
= (e = 1)(x)B()(a - B)(w)B(u)(a - B)(2).

Comparing the last two relations we obtain (1). In a similar fashion, by
substituting y(a — 1)(w)u for y in (4), one shows that (2) holds.

COROLLARY 1. Suppose that automorphisms o, B, y of a prime ring R
satisfy a+y=B+1. If a# f and a # 1 then a = By, y = Bo, and
Br=1.

ProoF. From (1) it follows immediately that f(a — 8) = —(a — 8). By
assumption, a— 8 = 1 — y, therefore this relation yields g —a= (1 —y) =
B — By which means that « = #y. Similarly, by (2) we have f{a—1) =
—(a—1); since 1 —a =y — B it follows that ¥y = Ba. According to both
identities, a = By and y = Sa, we are forced to conclude that B2 =1.

REMARK 1. The next simple example illustrates Corollary 1 (compare with
[1; Proposition 2.1]). Let R be an algebra with unit element e, and let b
in R be such that b°> = e. Define the inner automorphism 8 by f(x) =
bxb. Let A be any scalar different from 1 and —1 and define the inner
automorphism y by y(x) = (1—A%)"'(e+Ab)x(e — Ab) . Note that By +7y =
B+1.

As a special case of Corollary 1 we obtain an extension of [1; Corollary
3.3].
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COROLLARY 2. Suppose that automorphisms o and B of a prime ring R
satisfy a+a”! =ﬂ+,3—l. If a# B and o # ﬂ_l then o’ =ﬂ2 =a 2.
PrOOF. We have aff + o! B= ﬂ2 + 1; now apply Corollary 1.
LEMMA 2. If automorphisms a and B of a semiprime ring R satisfy
a+ta =B+ 87", then
-1 2 2
(5) (=B )x)R(e" - B)y)=0 forallx,yeR,

(6) (a—B)x)R(@ - B )»)=0 forallx,yeR.

PrOOF. We have af + o B = ﬂz + 1. Therefore Lemma 1 implies that
(@B — DRI + D(ap - B))w)R(ap - p7)(z) = 0

forall x, w, z€ R. Since B is onto we then also have
(7) (a=B"HYX)R((B*+1)(a—B))(w)R(a~B)(z) =0 forall x,w, z e R.
We have
Bla=B)+@-B) = (B ~a Y +(a-p =a-pa” = ("= )",
therefore it follows from (7) that
8)  (a—B Hx)R(’ - B)y)R(a—B)(z) =0 forallx,y,z€R.

The range of a? - ﬂ2 is contained in the range of a — f; indeed, we have
o’ ~ ﬂz =a(a+ a_l) - BB+ ﬂ_l) =(a—-B)a+ a_l). Hence (8) yields

-1 2 2 YY)
(=B )x)R(a" - B)¥)R(a" - B

But then (5) holds by the semiprimeness of R. Noting that et +a? =

B 24 B =2 and then using the analogous approach as in the proof of (5), one

2

J(z)=0 forallx,y,zeR.

proves (6).

LEMMA 3. If automorphisms o and B of a semiprime ring R satisfy
a+a ' = B+ B, then a commutes with ﬂz and B commutes with
2
a .

PRrROOF. Let us show that « commutes with ,82. The initial hypothesis
yields

(9) ala—B)=(a-B)B"".
By (6) it follows that
(a(a - B))(x)a(R)(a(a’ = B3))(») =0 forallx,yeR.
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In view of (9) this relation implies that
(a — B)(X)R( - af™?)(y) =0 forall x,y € R.
Substituting a(y) for y in {(6) we obtain
(a— B)(x)R(e’ - B *a)(»)=0 forall x,y € R.
Comparing the last two relations we get

(10) (a— B)(x)R(af™ > — B 2a)(») =0 forallx,yeR.

Multiply the identity o + a_1 = ﬂ B ' from the left by B and from
the right by a thenweget ﬂa —ﬂ a=a-f. Smce a—ﬁ—ﬂ "ot
and since B =a’+a? ﬂ , it follows that = Yo —ﬂa2 = ﬂ_za.

Consequently
2

aB - B la=(a- BB -a).

Therefore (10) implies that
(@™ = B ) »IR(@B ™" — B)(») = 0

for every y € R. But then aﬂ_z = ﬂ’za since R is semiprime. Thus
o and /32 commute. For the sake of symmetry we omit the proof of the
commutativity of o? and B.

COROLLARY 3. Let R be a semiprime ring with unit element and contain-
ing the element 1/2. If inner automorphisms o, B of R satisfy a +o =

B+ B 1 then they commute.

ProOOF. Let a, b € R be such that a(x) = axa”' and B(x)= bxb™!
assumption, axa~ ' +a 'xa = bxb' + b~ 'xb forall xe R. In partlcular,

2a=bab™ +b7'ab. Multiplying from the right by b we obtain
(11) 2ab=ba+b 'ab’.

By Lemma 3, a and ﬂ2 commute. Hence ab® = cbha for some ¢ in the
center of R. By (11) we then have 2ab = (1 + c)ba. Since R contains the
element 1/2 it follows that ab = ¢, ba, where ¢, is an invertible element in
the center of R. But then « and § commute.

REMARK 2. The case where commuting automorphisms «, f of a semi-
prime ring R satisfy o + o= B+ 8 ~! is considered in our paper [2]. In
particular, it was shown that if R is prime of characteristic not 2 then either
a=Bora=4 -1 Combining this with Corollary 3 we obtain the following
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result which generalizes [3; Corollary 2.1]: Let R be a prime ring with unit
element and containing the element 1/2. If inner automorphisms «, f of
R satisfy a+a ' =B+ B_l then either a = 8 or a= B_l .

We now come to the main result of this paper.

THEOREM 1. Let a and B be automorphisms of a semiprime ring R such
that a+a” ' = B+ B_l . Then there exists ideals U, , U, and U; of R such
that

i) u,n Uj =0, i#j,and U @U,®U; is an essential ideal of R. More-
over, if the annihilator of any ideal in R is a direct summand (in particular,
if R is a von Neumann algebra), then U, & U, ® U; = R,

(ii) U, are invariant under o, B, o' and g7,

(iil) a= g on U,
(iv) a=8"" on U,,
) a2=ﬂ2— =2 on U,

REMARK 3. In [5] Thaheem constructed an example of automorphisms «
and B satisfying ata = B+p ~! on a von Neumann algebra R but there
is no decomposition of R for which « = # on the one part and o = ﬂ_l
on the other part. Thus the presence of an ideal U, in Theorem 1 is really
necessary. In Thaheem’s example the algebra R was not prime. We do not
know whether the equation a+a” ' =8+ ,8_1 has any nontrivial solutions
in prime rings (in the sense that a # f and a # _1) . In order to find such
a solution one can assume that o’ = ,32 =a? (Corollary 2) and that «,
are not both inner (Remark 2).

ProOF OF THEOREM 1. Let U, be an ideal of R generated by all
(a2 - ﬂ_z)(x), x € R. Weset V =Amm(l,) and U, = Ann(V). By
Remark A we have Uy NV =0 and U, & V is an essential ideal. From
Lemma 3 we see that the mapping o — ﬂ_z commutes with a, £, o !
and ,B_l . Simple calculations show that this implies that U, is invariant
under a, B, o' and ﬂ_l . But then, by Remark B, the same is true for
ideals V' and U, .

Take u, € U, . Since U, is invariant under o and g, (a— B)(u,) lies in
U, . However, from Lemma 2 (and Remark A) it follows that the range of
a—f liesin Ann(U;) =V . Since U, NV =0 we then have a(u,) = B(u,).
Thus we have proved (iii).

Let ¥, be an ideal of R generated by all (ﬂ2 - ﬂ_2)(v), veV. Of

course, ¥, C V. We define U; = Ann(V)) NV and U, = Amn(U;) N V.
Since U, C Ann(U;,), we have U, N U, = 0. Next, since U, and U, are

https://doi.org/10.1017/51446788700036958 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036958

36 Matej BreSar [8]

contained in V', we also have U,nU, =0 and u,nl, = 0. Let us show
that the ideal W = U, @ U, ® U, is essential. We have to show that

Ann(W) = Ann(U,) N Aon(U,) N Ann(U;)
is equal to zero. Since U, = Ann(U;) NV, we have
Ann(W)nV = Ann(U,) N Ann(U,) N U, = 0.

Hence Ann(W) C Ann(V). But on the other hand we have Ann(W) C
Ann(U,). Since Ann(V)N Ann(U,) = Ann(V @ U,) = 0 (namely, the ideal
V @ U, is essential) it follows that Ann(W) = 0. That is, W is essential.

Assume that the annihilator of any ideal in R is a direct summand. Then
U @&V = R. We want to show that U, ® U, = V. By assumption, Ann(V))
is a direct summand. Thus R = Ann(V,)® Z for some ideal Z of R. Since
v, C vV, we have

Z = Ann(Ann(¥})) C Ann(Ann(V')) = Ann(U,) = V.

Thus Z is contained in V. Pick v € V. There exist elements w € Ann(},)
and z € Z such that v = w + z. We claim that w € U; and z € U,.
Since z€ Z C V', we also have w € V. Thus w € Ann(V;)NV = U;. The
ideal U, is contained in Ann(V)), therefore Z = Ann(Ann(V})) € Ann(U,).
Hence z € Ann(U;) NV = U, . With this we have proved that U, e U, =V,
and, therefore, U, ® U, ® U; = R. The proof of (i) is thus complete.

Since a, B, a”' and B~' commute with ﬂz - B'Z (Lemma 3), and
since all these automorphisms leave V' invariant, it follows easily that V] is
also invariant under «, §, o' and B -t Using Remark B we see the same
is true for the ideal U; = Ann(¥}) N V. Similarly we argue about the ideal
U, . Thus (ii) is proved.

Let us prove (iv). Given v € V', we have az(v) - ﬂ—z('u) € V since V
is invariant under o’ and ﬂ_z. But on the other hand, (a2 - /)’_2)(1)) is
contained in U, . Since U,NV =0 it follows that az(v) = ﬂ_z(v) . Lemma
2 then yields

(@— B HYX)RB - B )w)=0 forallxeR,veV.

This means that the range of a — ﬂ‘l is contained in Ann(¥)). Since (a -
B~ )u,) € U, if u, € U,, and since U, NAnn(¥,) = U, NAnn(¥,) NV =
U,nU, =0, it follows that a(u,) = B~ (u,).

It remains to prove (v). Pick u; € U;. On the one hand we have
(/?2 - ﬂ_z)(u3) € U,, and on the other hand, by the definition of V|,
(B* ~ B~*)(u;) € V,. However, U, NV, =V NnAnn(¥,) NV, =0, and hence
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ﬂz(u3) = ﬂ_z(u3). We have proved that o’ = g7°

on U; C V. With this (v) is proved.

In the case that the annihilator of any ideal of R is a direct summand,
we see from Theorem 1 that the range of « — 8 is contained in the ideal
I, = U, ® U,, the range of o — ,B_1 is contained in I, = U, ® U;, and the
union of the ranges of o’ — ﬂ2 and o’ — ﬂ_z is contained in I, = U, @ U, .
This result is in accordance with Theorem A. With the aid of Lemmas 2 and
3, even if we do not assume that the annihilator of any ideal of R is a direct

summand, it is not difficult to prove the following generalization of Theorem
A.

on V , and therefore also

THEOREM 2. Let a and B be automorphisms of a semiprime ring R such
that o+ o~ ' = B+ B~'. Then there exists ideals I,, I, and 1, of R, each
invariant under o, o', B and ﬂ_l , Such that 1, n1,nI; =0, ; C L[N,
and, for each x in R,

B(x)-a(x) €],  B(x)-a ' (x) €L,

Bx)-d(xel,, px)-a (x)el,

ProOOF. Let J be an ideal of R generated by all (a2 - ﬂ"z)(x) , XER,
and set I, = Ann(J). From Lemma 2 we see that (a — #)(x) € I, for every
X € R. Since the mapping o? - ,3'2 commutes with «, S, o ! and [3_1
(Lemma 3) it follows that J is invariant under «, £, o' and ﬂ_l . But
then Remark B tells us that the same is true for the ideal I, .

We introduce L to be an ideal of R generated by all (a2 - ﬂz)(x) , XE€R,
and let I, = Ann(L). Similarly as above one deduces that the range of
o — ,B‘l is contained in I,, and that L and I, are invariant under o, §,
o' and ﬂ—l .

The union of the ranges of o’ — ﬂ"z and o’ — ﬂ2 is certainly contained
in the ideal I, = J 4+ L. Of course, I, is also invariant under o, £, o

and ﬂ_l. Next,

L[NNI, =Anm(J)NAnn(L)N(J + L)=Ann(J +L)N(J+L)=0
by Remark A. From o’ — g% = a(a+a™ )= B(B+B7") = (a—B)(B+B") we
see that the range of o’ ﬂ2 is contained in the range of a— f§. Therefore, L

is contained in I, . Similarly we see that J is contained in I,. Consequently
I, is contained in I, +1,. The proof of the theorem is complete.
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