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Electron energy loss spectroscopy (EELS) allows identification of atoms present in a sample as well as 

providing detailed information about bonding, distributions and locations of atoms, and their 

coordination numbers and oxidation states [1]. However, the quantitative analysis of EELS data 

typically requires manual labeling of a spectrum using known standards, a process which can be 

challenging when signal to noise ratios are poor or when reliable experimental or theoretical standards 

do not exist. Furthermore, accurate simulation of EEL spectra is often required to infer details of valence 

and local bonding from experimental spectra.  This is especially challenging for transition metal L-

edges, often requiring beyond-DFT methods tailored to treat correlated electronic systems. Machine 

learning models, trained on a broad set of simulated data and experimental standards, capable of 

predicting structural information from EELS spectra are a promising route to mitigate this problem due 

to the increased availability of computational datasets where spectra and structural information have 

been generated [2]. Previous work on this topic has generated models that leveraged these computational 

and experimental datasets and have been successful in extracting structural information from a 

fundamentally similar analysis method, X-ray absorption spectroscopy (XAS), and have also 

significantly accelerated analysis of these spectra [3, 4]. 

 

In this work, we train a machine learning model capable of predicting the Fe valence and Fe-O 

coordination environment of a compound based on its EELS spectrum [2]. To build the model, we 

benchmark simulated Fe L-edge EELS spectra against direct experimental measurements of classes of 

iron containing compounds, using either available FEFF database from the Materials Project [5] or by 

generating our own dataset using the Quanty code base. We augment this simulated dataset with 

common experimental sources of uncertainty, such as detector noise, background subtraction artifacts, 

and energy offsets. This model can be used to significantly accelerate the analysis of EELS spectra of 

mixtures of unknown iron containing compounds, including ones for which there are few theoretical or 

experimental standards available, such as glassy oxides. Additionally, this methodology can, in 

principle, be extended to the analysis of other compounds by expanding the training data [7]. 
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Figure 1. Schematic illustrating the data acquisition and model training pipeline. We first extract 

compounds from the Materials Project with simulated L-edge spectra (top left). We then verify the 

accuracy of these spectra using reference standards from experiments (bottom left) [6]. After verifying 

the accuracy of the simulated data, we augment our training data to better match the spectra that will be 

seen in experiments by adding features such as detector noise and artifacts generated by background 

subtraction (bottom right). After assembling our training set, we build a model to extract features such as 

Fe valence and coordination environment from the L-edge EEL spectrum (top right). To address issues 

such as sparsity of data for particular Fe compounds, such as Fe hydroxides, we increase our training 

data by using the Quanty code base to calculate additional spectra (middle arrow). We then continue this 

cycle until the predictions reach an acceptable level of accuracy.      
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