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On the average value of π(t) − li(t)
Daniel R. Johnston

Abstract. We prove that the Riemann hypothesis is equivalent to the condition ∫ x
2 (π(t) − li(t))dt <

0 for all x > 2. Here, π(t) is the prime-counting function and li(t) is the logarithmic integral. This
makes explicit a claim of Pintz. Moreover, we prove an analogous result for the Chebyshev function
θ(t) and discuss the extent to which one can make related claims unconditionally.

1 Introduction

Let π(x) denote the number of primes less than or equal to x and

li(x) = ∫
x

0

1
log t

dt.

In his celebrated 1859 article, Riemann [21] remarked on the apparent truth of the
inequality

π(x) < li(x),
for all x ≥ 2. In 1903, Schmidt [25, p. 204] showed that such a result would imply
the Riemann hypothesis. However, in 1914, Littlewood [16] managed to prove that
π(x) − li(x) changes sign infinitely often. More precisely, he showed that for some
positive constant c, there are arbitrarily large values of x such that

π(x) − li(x) > c
√

x log log log x
log x

and π(x) − li(x) < − c
√

x log log log x
log x

.

It is an open problem to determine the smallest value of x such that π(x) > li(x).
Large computations have shown that π(x) < li(x) for all x ≤ 1019 [6, Theorem 2] and
that the first sign change occurs before x = 1.4 × 10316 [1, 24].

Although π(x) < li(x) is not true in general, one can ask whether, in a precise
sense, π(x) < li(x) is true on average. Namely, several authors [12–14, 19, 26] assert
that the Riemann hypothesis implies

∫
x

2
(π(t) − li(t))dt < 0, x > x0 ,(1.1)

Received by the editors January 16, 2022; revised March 2, 2022; accepted March 5, 2022.
Published online on Cambridge Core March 14, 2022.
AMS subject classification: 11M26, 11N05.
Keywords: Distribution of primes, prime-counting function, logarithmic integral, Riemann

hypothesis, Riemann zeta function.

https://doi.org/10.4153/S0008439522000212 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439522000212
https://orcid.org/0000-0001-6507-034X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439522000212&domain=pdf
https://doi.org/10.4153/S0008439522000212


186 D. R. Johnston

for some sufficiently large x0. Pintz [19] claims that (1.1) is in fact equivalent to the
Riemann hypothesis and is likely to hold for all x > 2 under such assumptions. Using
explicit bounds on prime-counting functions, we are able to prove this claim.

Theorem 1.1 The Riemann hypothesis is equivalent to the condition

∫
x

2
(π(t) − li(t))dt < 0, for all x > 2.(1.2)

We also prove an analogous result for the Chebyshev function

θ(x) = ∑
p≤x

log p.

Theorem 1.2 The Riemann hypothesis is equivalent to the condition

∫
x

2
(θ(t) − t)dt < 0, for all x > 2.(1.3)

It is natural to ask whether a modification of (1.2) or (1.3) is true unconditionally.
In this direction, we consider the weighted integrals

I1(x , f ) = ∫
x

2
(π(t) − li(t)) f (t) dt and I2(x , f ) = ∫

x

2
(θ(t) − t) f (t) dt

(1.4)

for some choice of function f (t). Given that one has to go quite far to find a value
of t such that1 π(t) − li(t) > 0, one should intuitively take f (t) to be positive and
decreasing as to give more weight to the negative bias for small values of t. In [19], Pintz
considers f (t) = exp(− log2 t/y) for sufficiently large y. However, using an explicit
form of Mertens’ theorems, we show that I1(x , f ) < 0 and I2(x , f ) < 0 for the simpler
and asymptotically larger function f (t) = 1/t2. Analogous results also hold for the
prime-counting functions

ψ(x) = ∑
pm≤x

log p and Π(x) = ∑
pm≤x

1
m

.

Theorem 1.3 Unconditionally, we have

∫
x

2

π(t) − li(t)
t2 dt < 0, ∫

x

2

θ(t) − t
t2 dt < 0,

∫
x

2

Π(t) − li(t)
t2 dt < 0, ∫

x

2

ψ(t) − t
t2 dt < 0,

for all x > 2.

Note that since π(t) < Π(t) and θ(t) < ψ(t), the apparent negative bias of Π(t) −
li(t) and ψ(t) − t is less pronounced than that of π(t) − li(t) or θ(t) − t. In fact,
∫

x
2 Π(t) − li(t) dt and ∫

x
2 ψ(t) − t dt change sign infinitely often (see Lemma 2.8).

1The first value of t with θ(t) − t > 0 is also expected to be around 10316 (see [20]).
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Thus, unlike as in Theorem 1.3, Theorems 1.1 and 1.2 do not hold if π(t) and θ(t) are
replaced with Π(t) and ψ(t), respectively.

Finally, we show that one cannot do much better than Theorem 1.3 without further
knowledge of the location of the zeros of ζ(s).

Theorem 1.4 Let ω = sup{R(s) ∶ ζ(s) = 0}. If 1/2 < ω ≤ 1 and c < 1 + ω ≤ 2, then

∫
x

2

π(t) − li(t)
tc dt = Ω+(1), ∫

x

2

θ(t) − t
tc dt = Ω+(1),

∫
x

2

Π(t) − li(t)
tc dt = Ω+(1), ∫

x

2

ψ(t) − t
tc dt = Ω+(1).

Here, as per usual, the notation g(x) = Ω+(1) means that there exist arbitrarily
large values of x such that g(x) > 0.

Remark 1.5 Despite the restrictions in Theorem 1.4, it is conceivable that one may
be able to use a slightly (asymptotically) larger weight than f (t) = 1/t2 in Theorem
1.3. For instance, f (t) = log t/t2. Such a result would most likely require the use of an
explicit zero-free region, e.g., [18, Theorem 1] or [8, Theorem 5]. We do not pursue
this here.

2 Useful lemmas

In this section, we list a series of useful lemmas. Most of the following results are
explicit bounds on prime-counting functions which follow directly from existing
results in the literature.

Lemma 2.1 [6, Theorem 2] For all 2 ≤ x ≤ 1019, π(x) − li(x) < 0 and θ(x) − x < 0.

Lemma 2.2 [22, Equations (3.5), (3.6), (3.15), and (3.16)] We have
x

log x
< π(x) < 1.3x

log x
, x ≥ 17,(2.1)

x − x
log x

< θ(x) < x + 0.5x
log x

, x ≥ 41.(2.2)

Lemma 2.3 We have

Π(x) − 1.9x 1/2 < π(x) < Π(x) − x 1/2/ log x , x ≥ 17,(2.3)

ψ(x) − 1.5x 1/2 < θ(x) < ψ(x) − 0.98x 1/2 , x ≥ 121.(2.4)

Proof Let M = ⌊ log x
log 2 ⌋. Then,

Π(x) =
M
∑
m=1

1
m

π(x 1/m) ≤ π(x) + M
2

π(x 1/2) < π(x) + 1.3
log 2

x 1/2 < π(x) + 1.9x 1/2
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by Lemma 2.2. On the other hand,

Π(x) =
M
∑
m=1

1
m

π(x 1/m) > π(x) + 1
2

π(x 1/2) > π(x) + x 1/2

log x
,

as required. The inequalities in (2.4) then follow from equations (3.36) and (3.37) in
[22]. ∎

Lemma 2.4 For all x > 1, we have

li(x) < x
log x

+ 2x
log2 x

.

Proof For x ≥ 1,865, the result follows from [2, Lemma 5.9]. For smaller values of
x, the result follows via simple computations. ∎

Lemma 2.5 We have

−30,000 < ∫
3,000

2
(π(t) − li(t))dt < −29,000,

−140,000 < ∫
3,000

2
(θ(t) − t)dt < −130,000,

−2,900 < ∫
3,000

2
(ψ(t) − t)dt < −2,800.

Proof Follows by directly computing each integral on Mathematica. ∎

Lemma 2.6 Assuming the Riemann hypothesis, ∣∫
x

2 (ψ(t) − t)dt∣ ≤ 0.08x3/2 for all
x ≥ 3,000.

Proof By [12, Theorem 27],

ψ1(x) ∶= ∫
x

2
ψ(t) dt = x2

2
−∑

ρ

xρ+1

ρ(ρ + 1) − x ζ′

ζ
(0) + ζ′

ζ
(−1) −

∞

∑
r=1

x 1−2r

2r(2r − 1) ,

where the sum is taken over all nontrivial zeros ρ = β + iγ of the Riemann zeta
function. First, we note that

�����������
∑

ρ

xρ+1

ρ(ρ + 1)

�����������
≤ x 1+ω∑

ρ

1
γ(γ + 1) ≤ 0.04621x3/2 ,

because ∑ρ 1/γ2 = 0.046209 . . . [3, Corollary 1]. Next, (ζ′/ζ)(0) = log 2π [7, Section
3.8] and (ζ′/ζ)(−1) = 1.985 . . . as computed on Mathematica. Finally,

0 ≤
∞

∑
r=1

x 1−2r

2r(2r − 1) ≤
x
2

∞

∑
r=1

1
x2r =

x
2(x2 − 1) .
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Thus, noting that x2

2 = ∫
x

2 t dt + 2,

∣∫
x

2
(ψ(t) − t)dt∣ ≤ x3/2 (0.04621 + log(2π)

x 1/2 + 2 + 1.986
x3/2 + 1

2x 1/2(x2 − 1))

≤ 0.08x3/2 ,

for all x ≥ 3,000. ∎

Lemma 2.7 (Cf. [12, pp. 103–104]) Let Q(x) = Π(x) − li(x), R(x) = ψ(x) − x, and
R1(x) = ∫

x
2 R(t) dt. Then,

Q(x) = R(x)
log x

+ R1(x)
x log2 x

+ ∫
x

3,000
( R1(t)

t2 log2 t
+ 2R1(t)

t2 log3 t
)dt + C ,(2.5)

where

C = Q(3,000) − R(3,000)
log(3,000) −

R1(3,000)
3,000 log2(3,000)

= −0.4351 . . . < 0.

Proof Using integration by parts,

li(x) − li(3,000) = x
log x

+ ∫
x

3,000

dt
log2 t

− 3,000
log(3,000) ,

so that by partial summation,

Π(x) −Π(3,000) = li(x) − li(3,000) + R(x)
log x

− R(3,000)
log(3,000) + ∫

x

3,000

R(t)
t log2 t

dt.

Hence,

Q(x) = R(x)
log x

+ ∫
x

3,000

R(t)
t log2 t

dt + Q(3,000) − R(3,000)
log(3,000) .

A further application of integration by parts then gives the desired result. ∎

Lemma 2.8 Let c ∈ R and define

Π1,c(x) ∶= ∫
x

2

Π(t)
tc dt and ψ1,c(x) ∶= ∫

x

2

ψ(t)
tc dt.

If ω = sup{R(s) ∶ ζ(s) = 0} and c < 1 + ω ≤ 2, then for all δ > 0,

Π1,c(x) − ∫
x

2

li(t)
tc = Ω±(x 1+ω−c−δ) and ψ1,c(x) − ∫

x

2

t
tc dt = Ω±(x 1+ω−c−δ).

Proof We begin with the integral expression [12, Equation (18), p. 18]

log ζ(s) = s∫
∞

1

Π(x)
x s+1 dx , R(s) > 1.
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Using integration by parts,

∫
∞

1

Π(x)
x s+1 dx = ∫

∞

1

dΠ1,c(x)
x s+1−c

= [Π1,c(x)
x s+1−c ]

∞

1
+ (s + 1 − c)∫

∞

1

Π1,c(x)
x s+2−c dx

= (s + 1 − c)∫
∞

1

Π1,c(x)
x s+2−c dx ,

noting that since Π(x) = O(x),

∣Π1,c(x)
x s+1−c ∣ = O (x c−1−R(s) ∫

x

2
t1−cdt) = O(x 1−R(s)) = o(1).

Hence,

log ζ(s) = s(s + 1 − c)∫
∞

1

Π1,c(x)
x s+2−c dx , R(s) > 1.(2.6)

Using an analogous argument with the integral expression [12, Equation (17), p. 18]

− ζ′(s)
ζ(s) = s∫

∞

1

ψ(x)
x s+1 dx , R(s) > 1,

one obtains

− ζ′(s)
ζ(s) = s(s + 1 − c)∫

∞

1

ψ1,c(x)
x s+2−c dx , R(s) > 1.(2.7)

Equipped with (2.6) and (2.7), one can then follow a standard argument
(e.g., [4, p. 80], [12, pp. 90–91]) mutatis mutandis to obtain the desired result. ∎

3 Proofs of Theorems 1.1 and 1.2

We begin with the case where the Riemann hypothesis is false. By Lemma 2.8 with
c = 0, there are arbitrarily large values of x such that ∫

x
2 Π(t) − li(t) dt > Kxκ for

some positive constants K > 0 and κ > 3/2. For such values of x, we then have by
Lemma 2.3 that

∫
x

2
(π(t) − li(t))dt = ∫

17

2
(π(t) − li(t))dt + ∫

x

17
(π(t) − li(t))dt

> −∫
x

17
1.9t1/2 dt + ∫

x

17
(Π(t) − li(t))dt + O(1)

= Kxκ + O(x3/2).

Thus, there are arbitrarily large values of x such that

∫
x

2
(π(t) − li(t))dt > 0,

as required. The same reasoning holds for the integral over θ(t) − t using the corre-
sponding bounds for θ(t) in Lemmas 2.3 and 2.8.
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Now, suppose the Riemann hypothesis is true. To show (1.2) and (1.3), it suffices to
consider x > 1019 in light of Lemma 2.1. We begin with the integral over θ(t) − t. By
Lemmas 2.3, 2.5, and 2.6, we have

∫
x

2
(θ(t) − t)dt = ∫

3,000

2
(θ(t) − t)dt + ∫

x

3,000
(θ(t) − t)dt

< −130,000 − ∫
x

3,000
0.98t1/2 dt + ∫

x

3,000
(ψ(t) − t)dt

< −130,000 − 1.96
3
(x3/2 − (3,000)3/2) + 0.08x3/2 − ∫

3,000

2
(ψ(t) − t)dt

< −19,000 − 0.57x3/2 < 0,

as required.
The integral over π(t) − li(t) requires more work. First, we apply Lemmas 2.3, 2.5,

and 2.7 to obtain

∫
x

2
(π(t) − li(t))dt < ∫

3,000

2
(π(t) − li(t))dt + ∫

x

3,000
(π(t) − li(t))dt

< −29,000 − ∫
x

3,000

t1/2

log t
dt + ∫

x

3,000
(Π(t) − li(t))dt

< −29,000 − ∫
x

3,000

t1/2

log t
dt + ∫

x

3,000
(R(t)

log t
+ R1(t)

t log2 t

+ ∫
t

3,000
( R1(u)

u2 log2 u
+ 2R1(u)

u2 log3 u
du))dt,(3.1)

using the notation from Lemma 2.7. Now, by integration by parts and Lemmas 2.5
and 2.6,

∫
x

3,000
(R(t)

log t
+ R1(t)

t log2 t
)dt = R1(x)

log x
− R1(3,000)

log(3,000) + ∫
x

3,000

2R1(t)
t log2 t

dt

≤ 0.08 x3/2

log x
+ 370 + 0.16∫

x

3,000

t1/2

log2 t
dt.(3.2)

Next,

∫
t

3,000
( R1(u)

u2 log2 u
+ 2R1(u)

u2 log3 u
)du ≤ 0.08∫

t

3,000
( 1

u1/2 log2 u
+ 2

u1/2 log3 u
)du

≤ 0.08∫
t

3,000

3
u1/2 log2 u

du.

Since u1/4/ log2 u is increasing for u ≥ 3,000, we then have

0.08∫
t

3,000

3
u1/2 log2 u

du ≤ 0.24 t1/4

log2 t ∫
t

3,000

1
u3/4 du ≤ 0.96 t1/2

log2 t
.
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Thus,

∫
t

3,000
( R1(u)

u2 log2 u
+ 2R1(u)

u2 log3 u
)du ≤ 0.96 t1/2

log2 t
.(3.3)

Substituting (3.2) and (3.3) into (3.1) then gives

∫
x

2
(π(t) − li(t))dt < −28, 630 − ∫

x

3,000

t1/2

log t
dt + 0.08 x3/2

log x
+ 1.12∫

x

3,000

t1/2

log2 t
dt.

(3.4)

Now, using integration by parts,

∫
x

3,000

t1/2

log t
dt = 2

3
x3/2

log x
− 2

3
(3,000)3/2

log(3,000) +
2
3 ∫

x

3,000

t1/2

log2 t
dt ≥ 2

3
x3/2

log x
− 14,000.

(3.5)

Moreover,

1.12∫
x

3,000

t1/2

log2 t
dt ≤ 1.12 x 1/4

log2 x ∫
x

3,000
t1/4 dt ≤ 0.9 x3/2

log2 x
.(3.6)

Applying (3.5) and (3.6), we have that (3.4) reduces to

∫
x

2
(π(t) − li(t))dt < −14,000 − 0.58 x3/2

log x
+ 0.9 x3/2

log2 x
< 0,

as required.

4 Proof of Theorem 1.3

First, we note that, via a simple computation, all four integrals in question are negative
for 2 < x ≤ 200. Thus, we may assume throughout that x > 200.

First, we deal with the integrals involving π(t) and Π(t). By an explicit form of
Mertens’ theorem [22, Equation (3.20)], we have

∑
p≤x

1
p
< log log x + B + 1

log2 x
,(4.1)

where B = 0.2614 . . .. Now, by partial summation and Lemma 2.2,

∑
p≤x

1
p
= π(x)

x
+ ∫

x

2

π(t)
t2 dt > 1

log x
+ ∫

x

2

π(t)
t2 dt.(4.2)

Moreover, by integration by parts and Lemma 2.4,

log log x = ∫
x

e

1
t log t

dt = li(x)
x
− li(e)

e
+ ∫

x

e

li(t)
t2 dt

≤ 1
log x

+ 2
log2 x

− li(e)
e
+ ∫

x

2

li(t)
t2 dt − ∫

e

2

li(t)
t2 dt.

(4.3)
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Substituting (4.2) and (4.3) into (4.1) gives

∫
x

2

π(t) − li(t)
t2 dt < 2.5

log2 x
+ B − li(e)

e
− ∫

e

2

li(t)
t2 dt < 3

log2 x
− 0.62 < 0,

(4.4)

as desired. For the integral involving Π(t), we then note that by Lemma 2.3,

∫
x

2

π(t) − li(t)
t2 dt = ∫

200

2

π(t) − li(t)
t2 dt + ∫

x

200

π(t) − li(t)
t2 dt

> −0.59 + ∫
x

200

Π(t) − 1.9t1/2 − li(t)
t2 dt

= −0.59 + ( 3.8√
x
− 3.8√

200
) + ∫

x

2

Π(t) − li(t)
t2 dt

− ∫
200

2

Π(t) − li(t)
t2 dt

> ∫
x

2

Π(t) − li(t)
t2 dt − 0.56 + 3.8√

x
.

Substituting this into (4.4) then gives

∫
x

2

Π(t) − li(t)
t2 dt < −0.06 − 3.8√

x
+ 3

log2 x
< 0.

We argue similarly for the integrals involving θ(t) and ψ(t). In particular, we have
[22, Equation (3.23)]

∑
p≤x

log p
p
< log x + E + 1

log x
,

where E = −1.332 . . .. Then, by Lemma 2.2,

∑
p≤x

log p
p
= θ(x)

x
+ ∫

x

2

θ(t)
t2 dt > 1 − 1

log x
+ ∫

x

2

θ(t)
t2 dt

and

log(x) = ∫
x

1

1
t

dt = ∫
x

2

t
t2 dt + log 2.

Therefore,

∫
x

2

θ(t) − t
t2 dt < E − 1 + log 2 + 1.5

log x
< −1.63 + 2

log x
< 0,(4.5)

as required. The corresponding result for ψ(t) then follows similar to before by
applying Lemma 2.3 to (4.5). In particular, we have that

∫
x

2

ψ(t) − t
t2 dt < −0.83 − 3√

x
+ 2

log x
< 0.
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5 Proof of Theorem 1.4

The result for the integrals involving Π(t) and ψ(t) follows immediately from Lemma
2.8. For the integral involving π(t), we first note that by Lemma 2.8, for any choice of
δ > 0, there exist arbitrarily large values of x such that

∫
x

2

Π(t) − li(t)
tc dt > Kx 1+ω−c−δ ,

for some positive constant K > 0. For such values of x, we then have by Lemma 2.3
that

∫
x

2

π(t) − li(t)
tc dt = ∫

17

2

π(t) − li(t)
tc dt + ∫

x

17

π(t) − li(t)
tc dt

> −∫
x

17
1.9t1/2−c dt + ∫

x

17

Π(t) − li(t)
tc dt + O(1)

> −∫
x

17
1.9t1/2−c dt + Kx 1+ω−c−δ + O(1).(5.1)

The integral in (5.1) satisfies

∫
x

17
1.9t1/2−c dt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O(x3/2−c), c < 3/2,
O(log x), c = 3/2,
O(1), 3/2 < c < 1 + ω.

Thus, if we take any choice of δ < ω − 1/2 when c ≤ 3/2, and δ < 1 + ω − c when 3/2 <
c < 1 + ω, we have

∫
x

2

π(t) − li(t)
tc dt > 0

for arbitrarily large values of x as required. The same reasoning holds for the integral
over (θ(t) − t)/tc using the corresponding bounds for θ(t) in Lemmas 2.3 and 2.8.

6 Discussion and further work

The general idea in this paper was to consider averaged versions of arithmetic func-
tions in order to gain insight into biases occurring in number theory. The functions
π(t) − li(t) and θ(t) − t, in particular, exhibit an apparent negative bias, and our
results reflect this.

There are many other biases occurring in number theory, and it would be interest-
ing to consider averaged versions of these. For example, we have:
(a) The bias in Mertens’ theorems [5, 15].
(b) The Chebyshev bias for primes in arithmetic progressions [10, 23].
(c) The bias of λ(n) and related functions [11, 17].

One could also attempt to extend our results to more general number fields. In this
direction, it is worth noting that Garcia and Lee [9] recently proved explicit versions of
Mertens’ theorems for number fields. Using Garcia and Lee’s results could thus allow
one to generalize Theorem 1.3, whose proof followed directly from an explicit version
of Mertens’ theorems in the standard setting.
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