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Summary

We compute an accurate approximation to the probability of fixation for a beneficial mutation in a
population fluctuating with a stationary distribution of population size. The population dynamics
are described by the theta-logistic model with environmental variance, assuming that the population
size is large enough to ignore demographic variance. We show that stochastic fluctuations of
population size reduce the probability of fixation. However, it is not the magnitude of the
population fluctuations per se that creates this reduction. Only the environmental variance has a
substantial effect on the probability of fixation. The strength of density dependence (or expected
return time to equilibrium) and the functional form of density-regulation, given by the parameter
h in the theta-logistic model, have little effect on the fixation probability. Effective population size
based on harmonic mean population size will therefore underestimate the expected fixation rate of
beneficial mutations in fluctuating populations.

1. Introduction

The classical result of Haldane (1927) that a beneficial
mutation with selective advantage s will reach fixation
with probability approximately equal to 2s, has been
an important contribution to evolutionary theory.
The derivation of this simple result was based on as-
suming a closed population with given constant size
as well as Poisson distributed family size. However, de-
termining probabilities of fixation is a lot more com-
plicated under more realistic assumptions, such as in
models including spatial variation (Whitlock, 2002;
Cherry & Wakeley, 2003; Wakeley, 2003; Taylor,
2008) and fluctuations in population size (Ewens,
1967; Otto & Whitlock, 1997; Phillips, 1997; Pollak,
2000; Campbell, 2003; Lambert, 2006; Parsons &
Quince, 2007). Here we analyse the effect of fluctuat-
ing population size described by a stationary stoch-
astic process. Most real populations often show large
fluctuations due to environmental effects on all indi-
viduals, and the fate of a new beneficial mutation

is mainly determined by the dynamics of the sub-
population with the mutation during the initial sev-
eral generations after it arises. The process describing
the number of mutants is therefore complex, with
stochasticity in the gene transmission as well as tem-
porally correlated noise due to stochastic fluctuations
in population size.

Otto & Whitlock (1997) derived the fixation prob-
ability for a beneficial mutation in a fluctuating popu-
lation. Their derivation and results are, however, based
on the assumption that the sequence of population
sizes through time is known. Hence, although their
theory is stochastic in the sense that it is based on the
classical result of Haldane (1927) with stochastic vari-
ation in gene frequency (random genetic drift), the
population dynamical part of their theory is determi-
nistic. Here we extend this theory by incorporating
stochastic population dynamics. We show that the
expected fixation rate of beneficial mutations depends
primarily on the environmental variance causing
stochastic population fluctuations, rather than the
harmonic mean population size through time. The
classical formula of Wright (1931, 1969) for effective
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population size based on harmonic mean population
size through time is expected to underestimate the
mean probability of fixation when temporal fluctu-
ations are viewed as stochastic rather than deter-
ministic.

Haldane (1927) assumed that family size is Poisson-
distributed withmean 1 for all individuals except those
bearing the mutation, for which the Poisson mean is
1+s. We employ a similar model in which the family
size produced by an adult individual is defined as the
number of offspring surviving to maturity, assuming
that the number of surviving offspring per family is
Poisson-distributed for each genotype. This model
also would apply if all adults of a given genotype pro-
duce large, nearly equal numbers of offspring, which
suffer a high non-selective mortality, leaving an ap-
proximately Poisson distribution of number of sur-
viving offspring per family. Haldane further assumed
a large population size, Ns�1 so that selection is
more important than random drift at intermediate
frequencies of the mutant allele. For a fluctuating
population we accordingly assume that the mean
population size is much larger than 1/s. Otto &
Whitlock (1997) made the same assumption of
Poisson family size and derived the probability ui that
a mutation in generation i will be fixed for a given
sequence of population sizes N1, N2, … . A single
mutation in generation i will have a number of copies
next generation that is Poisson-distributed with mean
l=(1+s)Ni+1/Ni. Hence the total probability that the
mutation will not be fixed is

1xui= g
1

k=0

lk

k!
exl(1xui+1)

k=ex(s+1)(Ni+1=Ni)ui+1 (1)

(Ewens, 1967; Otto & Whitlock, 1997). Haldane’s re-
sult appears by assuming all population sizes equal,
Ni=N, and ui=u, in which case the solution is ap-
proximately u=2s for a small s. With changing popu-
lation size eqn (1) can be solved iteratively for a given
sequence Ni, but only as a function of the unknown
initial probability u1. For cyclic populations, however,
the formula defines probabilities of fixation by the fact
that ui takes the initial value after one cycle. Hence,
computing ui+c as a function of u1, where c is the cycle
length, and solving numerically u1=u1+c gives the
complete solution. Also for populations approaching
a limiting size, the probabilities can be found utilizing
the probability at equilibrium, which is the same as
for constant population size (Otto & Whitlock, 1997).

If a single mutation produces k copies in the next
generation, the factor (1xui+1)

k in eqn (1) is based
on the assumption that future contributions from
these alleles are independent. This is a realistic as-
sumption if the future population sizes are known.
However, with stochastic population fluctuations
this assumption of independence is no longer valid.

Environmental stochasticity driving the fluctuations
in population size exerts the same impact on all in-
dividuals with the mutant gene, violating the as-
sumption of independence among the branching
processes for copies from the original mutation.

This paper focuses on deriving an accurate ap-
proximation to the probability of fixation for fluctu-
ating populations described by a stationary Markov
process. For such populations the probability of
fixation of a beneficial mutation at population size
N must depend on N only, because the Markov as-
sumption ensures that all properties of the future
population depend only on the initial population size.
To derive these probabilities P(A|N)=u(x), where A
denotes the event of fixation and x=ln(N/K ) is the log
of the initial population size scaled by the carrying
capacity K, we first consider the probability of fix-
ation conditioned on all future population sizes. How-
ever, our primary goal is not the computation of the
probability u(x), which is conditioned on the popu-
lation size at mutation, but rather the expected prob-
ability and rate of fixation for mutations averaged
over the stationary distribution of population sizes.
The expected probability of fixation, denoted ū, will
only depend on the population dynamical parameters
and the selective advantage s. Using the theta-logistic
model (Gilpin & Ayala, 1973), we explore how the
environmental variance and the strength and form of
density-regulation influence the expected probability
and rate of fixation of beneficial mutations.

2. Model

(i) Formulation and general solution

Writing Ni=(Ni, Ni+1, …) the recurrence formula of
Otto & Whitlock (1997) takes the form

1xP(AjNi)=ex(s+1)(Ni+1=Ni)P(AjNi+1): (2)

This conditional model assumes known future popu-
lation sizes. Taking the expectation on both sides with
respect to the distribution of Ni+2 conditioned on
Ni+1 yields

1xP(AjNi,Ni+1)=ENi+2 jNi+1
ex(s+1)(Ni+1=Ni)P(AjNi+1,Ni+2):

(3)

Conditioned on Ni+1 the fixation probability P(A|
Ni+1, Ni+2) is a stochastic variable because it is a
function of the unknown sequence of future popu-
lation sizes Ni+2, and the right-hand side of eqn (2)
is its moment generating function with argument
x(s+1)(Ni+1/Ni). Numerical calculations show that
its variance is quite small and could be set to zero to
give a rough first-order approximation. However, a
better approximation can also easily be obtained by
including the variance of P(A|Ni+1, Ni+2) conditioned
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onNi+1. This second-order approximation for eqn (2)
would be the exact solution if P(A|Ni+1, Ni+2) was
normally distributed and is generally an accurate ap-
proximation if the variance of this variable is small.
Although P(A|Ni+1, Ni+2) depends on the unknown
future expressed by Ni+2 it is likely to have a small
variance (later exemplified by numerical solution in
Fig. 2). Writing t=x(s+1)(Ni+1/Ni) and introducing
the scaled log population size xi=ln(Ni/K), we then
have

1xP(AjNi,Ni+1)=etu(xi+1)+t2s2(xi+1)=2, (4)

where u(xi+1)=EP(A|Ni+1, Ni+2)=P(A|Ni+1) and
s2(xi+1)=var[P(A|Ni+1, Ni+2)]. The expectation as
well as the variance here refer to the distribution of
Ni+2 conditioned on Ni+1.

One way of formulating the stationary time series
Ni is to specify the distribution of the scaled popu-
lation size in the next generation y=ln(Ni+1/K) given
the value x=ln(Ni/K) the current generation, say
f(y|x). Then, multiplying eqn (4) by f(y|x) and in-
tegrating over y yields

1xu(x)=
Z

ex(s+1)eyxxu(y)+(s+1)2 e2(yxx)s2(y)=2f(yjx)dy: (5)

This equation for the unknown function u(x) can be
used to find the first-order approximation, setting
s2(x) to zero and adopting the fixed point method.
We then substitute the kth approximation for u(x),
say uk(x), on the right side giving 1xuk+1(x) on the
left, starting with Haldane’s (1927) result for a con-
stant population u0(x)=2s and computing subse-
quently m1(x), m2(x), … approaching the solution of
eqn (5). To find the more accurate second-order
approximation we introduce the second moment
of 1xP(A|Ni+1, Ni+2), n(x)=s2(x)+[1xu(x)]2. The
same argument as the one used in the derivation of
eqn (5), starting by squaring both sides of eqn (1),
then yields

n(x)=
Z

ex2(s+1)eyxxu(y)+2(s+1)2 e2(yxx)s2(y)f(yjx)dy: (6)

Equations (5) and (6) can now be solved jointly for
u(x) as well as s2(x) by calculating both integrals
based on the kth approximation for u(x) and s2(x),
giving on the left-hand side the (k+1)th approxi-
mation for u(x) and n(x), and hence also for s2(x). The
iterations can be initiated by choosing u0(x)=2s and
s0
2(x)=0.

(ii) The theta-logistic model

A population dynamical model must now be specified
to derive f(y|x). A flexible model describing a wide
range of types of density regulation, magnitude of
stochasticity and expected return times to equilibrium

is the theta-logistic model (Gilpin & Ayala, 1973;
Diserud & Engen, 2000; Lande et al., 2003). Writing
DN for the annual change in population size, the de-
terministic form of the model is

DN=r0N 1x
N

K

� �h
" #

=r1N 1x
Nhx1

Khx1

� �
,

where r0 is the growth rate at N=0. However, the
model ismore flexible if we consider the lowest possible
population size to be 1 writing the formula as the ex-
pression on the right-hand side, where r1=r0(1xKxh)
(Diserud & Engen, 2000) is the growth rate at N=1.
Choosing r1 as a free parameter and varying h then
defines a number of well-known population models.
For h=1 we recover the classical logistic model, while
the limit obtained as h approaches zero is a linear
expression in lnN, often called the Gompertz model.
As h approaches infinity we arrive at a model with
a ceiling at K and no density-regulation below this
value. Finally, for h=x1 the model is linear in the
population size N. Alternatively, the model may be
formulated on the log scale as

D lnN=r1 1x
Nhx1

Khx1

� �
:

For small or moderate fluctuations in the population
size, these models are approximately equivalent be-
cause DlnNBDN/N. The stochastic formulation on
the log scale takes the form

D lnN=r1(t)x r̄1
Nhx1

Khx1
,

where r1(t) is the growth rate at time t fluctuating be-
tween years with mean r̄1 (May, 1973, 1974; Turelli,
1977; Engen et al., 1998; Lande et al., 2003). For large
populations the demographic stochastic component
of r1(t), due to within year variation in vital rates be-
tween individuals, can be ignored by the law of large
numbers and the only stochastic components are
those generated by fluctuations in the environment
producing approximately a constant environmental
variance se

2 in r1(t) between years. For this model r̄1 is
the mean growth rate on the log scale at small popu-
lation sizes (N=1) called the stochastic growth rate
(Lande et al., 2003). Again writing x and y for the
value of ln(N/K) in two sequential generations, we
have var(y|x)Bse

2, and

E(yjx)=x+c(1xehx)=h (7)

for hl0 and (1xc)x for h=0. The parameter c is
the strength of density regulation defined as r̄1h/
(1xKxh)= r̄0h for hl0 and r̄1/lnK for h=0. The
expected return time to equilibrium defined by May
(1974) for this model is T=1/c.
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Finally, the change in log population size between
generations can often be approximated by a normal
distribution. These assumptions then specify f(y|x) as
the normal distribution with the mean given by eqn
(7) and constant variance se

2, which we apply in the
recurrence relations for the fixed point iterations de-
fined by eqns (5) and (6).

(iii) Mean fixation rate

The rate of production of new mutations is pro-
portional to the population size. Writing g(x) for the
stationary distribution of the scaled log population
size, the distribution of population size given that
a mutation occurs (M) must be proportional to ex,
that is,

h(xjM)=exg(x)=

Z
ezg(z)dz: (8)

Hence, for a random beneficial mutation with selec-
tive advantage s the probability of fixation is ū=
bu(x)h(x|M)dx.

Although the stationary distribution is known for
the theta-logistic model based on the diffusion ap-
proximation (Diserud & Engen, 2000), more accurate
values for the fixation probability for our model with
discrete generations can be found numerically by
using the fixed point method also for g(x), calculating
the (k+1)th approximation as gk+1(x)=b f(x|y)r
gk(y)dy, which converges quickly. Figure 1 shows
examples of g(x) as well as h(x|M).
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Fig. 1. Stationary distributions of the scaled log population size g(x) (solid line) and the scaled log population size at
mutation h(x|M) (dashed line) for two values of the environmental variance se

2 in the theta-logistic model. The other
parameters are h=1 and c=0.2.
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Fig. 2. The approximation to the unconditional
probability of fixation (solid lines) u(x) for a mutation at
population size N, where x=ln(N/K). Dashed lines show
u(x) plus or minus one standard deviation s(x). The
environmental variance is se

2=0.1 in the upper panel and
0.01 in the lower. Other parameters are s=0.02, h=1 and
c=0.2. Dotted horizontal lines show the exact probability
of fixation (0.03896B0.04=2s) for a constant population
size.
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For the Gompertz model with h=0, the population
process is a simple first-order autoregressive time
series and the stationary distribution f(x) is normal
with zero mean and variance u=se

2/(2cxc2). The
population size then has a lognormal stationary dis-
tribution with coefficient of variation CV=

ffiffiffiffiffiffiffiffiffiffiffiffi
eux1

p
.

When hl0 the mean population size in the next gen-
eration may be linearized at x=0 to give the ap-
proximation E(y|x)B(1xc)x. Accordingly, the above
normal distribution can also be used as an approxi-
mation for the stationary distribution in non-linear
models defined by hl0.

(iv) Fixation rate at a given population size

Since u(x) is the probability of fixation for a single mu-
tation at scaled population size x, the rate of fixation
for mutations at population size N is R(x)=2mNu(x).
Here 2m is the genomic mutation rate for beneficial
mutations, and we assume that the product of the per
locus mutation rate and the population size is small
enough to render unlikely any interference among
beneficial mutations that could occur if multiple mu-
tations simultaneously segregate at a single locus or
among tightly linked loci. For a constant population
size K, the fixation rate is approximately R0=4sKm.
Accordingly, for population size N=K ex, we define
the scaled fixation rate R(x)/R0=u(x)N/(2sK), which
measures the reduction in fixation rate due to

stochastic fluctuations in population size, relative to
the fixation rate for a constant population of size
N=K.

3. Results

The proposed fixed point method for the joint sol-
ution of u(x) and s2(x), based on eqns (5) and (6) with
initial conditions u0(x)=2s and s0

2(x)=0, converges
for relevant values of the parameters c, h and se

2.
Examples of the function u(x) plus or minus one stan-
dard deviation s(x) are shown in Fig. 2. The results
agree with Otto & Whitlock’s (1997) findings in the
sense that the probability of fixation is larger for
populations that are expected to grow (x<0) than
for those expected to decrease (x>0). For mutations
at equilibrium the probability of fixation is usually a
little smaller than the probability 2s of fixation at
constant population size.

In Fig. 3, we show a simulation of N/K for a sto-
chastic logistic model together with the probabilities
of fixation scaled by 2s, u(x)/(2s). This graph is
qualitatively similar to Otto & Whitlock’s (1997)
Fig. 4, showing the fluctuations of the cyclic snowshoe
hare population over a period of 20 generations
(Krebs et al., 1995) together with probabilities of fix-
ation fluctuating in an opposite way, assuming de-
terministic cyclic fluctuations. We see from Fig. 3 that
the unconditional probability, that is, the probability
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Fig. 3. Simulation of the theta-logistic process scaled by the carrying capacity (solid line) with parameters se
2=0.01,

c=0.2, and h=1 (logistic model). Unconditional probabilities of fixation scaled by 2s, that is, u(x)/(2s), evaluated for the
population size each generation (dashed line). The selection coefficient for the new beneficial mutation is s=0.02.
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of fixation only conditioned on the population size at
mutation and averaged over the future stochastic
population fluctuations, also fluctuates opposite to
the scaled population size.

Figures 2, 4 (upper panel) and 5 (upper panel) show
how the environmental variance (Fig. 2), the return
time to equilibrium (Fig. 4) and the form of density-
regulation defined by h (Fig. 5) affect u(x). The overall
message from these examples is that changing T=1/c
and h has surprisingly small effects except at very
small population sizes. Linearizing the theta-logistic
model at equilibrium gives the first-order autoregres-
sive model with stationary variance of ln(N/K) equal
to se

2/(2cxc2). Hence, in Fig. 4 the stationary distri-
bution of x=ln(N/K) has standard deviations of
approximately 0.1 for T=1 and 0.22 for T=10, which
implies that the probability of fixation is almost un-
affected by T for this magnitude of variation in x. The
same argument holds for the effect of changing h.

Figures 4–6 show examples of reduction in fixation
rate measured by R(x)/R0=u(x)N/(2sK) as functions
of the scaled log population size for different values of
the environmental variance se

2 (Fig. 6), the return time
to equilibrium T=1/c (Fig. 4, lower panel) and the

shape of the density-regulation h (Fig. 5, lower panel),
respectively. Increasing se

2 causes a substantial re-
duction in the scaled fixation rate for all population
sizes, whereas the effects of T and h are quite small,
especially for scaled population sizes x=ln(N/K) in
the range (x0.5, 0.5), corresponding to a population
size N in the range (0.61K, 1.65K).
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Fig. 5. The probability of fixation u(x) (upper panel) and
the scaled probability of fixation u(x)N/(2Ks) as functions
of the scaled log population size x=ln(N/K) for different
values of h. Other parameters are se

2=0.01, c=0.2 and
s=0.02.
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Fig. 6. The scaled fixation rate u(x)N/(2sK) as a function
of the scaled log population size x for different values of
the environmental variance se

2. Other parameters are T=5
(c=0.2), h=1 and s=0.02.
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as functions of the scaled log population size x=ln(N/K)
for different values of mean return time to equilibrium
T=1/c. Other parameters are se

2=0.01, h=1 and s=0.02.
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In Fig. 7, we show how the mean probability of
fixation for a random beneficial mutation ū (averaged
over the stationary first-moment distribution h(x|M))
depends on se

2, c and h for realistic ranges of these
parameters. This confirms that the only substantial
influence arises from the environmental variance, an
increase of which reduces the probability of fixation.
Interestingly, we see indirectly that the stationary
variance of the population fluctuations, which is ap-
proximately u=se

2/(2cxc2) for the scaled log popu-
lation size, is not by itself important. Figure 7 shows
practically no influence of c even if a change in c leads
to a large change in u. On the other hand, an in-
crease in the environmental variance substantially de-
creases the mean fixation probability. The practical
conclusion from these findings is that short-term
fluctuations in population size between generations
produced by se

2 are much more important than the
long-term stationary fluctuations in population size
itself (Figs 6 and 7).

As a further illustration we consider the Gompertz
model (h=0) with an exactly lognormal stationary
distribution. In Fig. 8 this distribution is kept con-
stant while varying the strength of density regulation
c and the environmental variance se

2 so that u=se
2/

(2cxc2) of log population size and the CV=
ffiffiffiffiffiffiffiffiffiffiffiffi
eux1

p

of the population size N are kept constant. Figure 8
shows ū plotted against return time to equilibrium
T=1/c (lower panel) as well as against se

2 (upper
panel) for realistic parameter ranges. There is a de-
crease in ū up to about 25% relative to the maximum
value for the chosen parameter intervals although the

stationary distribution remains unchanged. Figure 8
(upper panel) also shows the approximation for ū
based on using the harmonic mean Ne, that is, the
exact value of the probability of fixation for a con-
stant population size multiplied by 2Ne/N, whereN is
the mean population time through time. It appears
that this approximation underestimates ū for large
values of CV.

4. Discussion

Ewens (1967) considered a model where the popu-
lation size cycles deterministically and showed that
such fluctuations decreased the probability of fixation
for a beneficial mutant. This result was later confirmed
by Otto & Whitlock (1997), who concluded that fix-
ation is more likely if the mutation occurs during in-
crease than during decrease in population size. This
was supported by a logistic diffusionmodel of Lambert
(2006) with only demographic stochasticity. He found
that fixation probabilities were larger than Haldane’s
(1927) result 2s for constant populations if mutations
occurred below the carrying capacity and were smal-
ler above. This result was confirmed by Parsons &
Quince (2007) using a logistic type of birth and death
process for the total population size. On the other
hand, in a population with immediate return to equi-
librium, Campbell (2003) found that fixation prob-
abilities could be larger than for constant population
size. Cyclic fluctuations were also dealt with by Pollak
(2000), who found, in accordance with Otto &
Whitlock (1997), that the probability of fixation was
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Fig. 7. The mean fixation probability ū for a random mutation as a function of one of the parameters se
2 (solid line),

h (dashed line), and c (dotted line), keeping the others constant. The baseline parameters are se
2=0.01, h=1 and c=0.2.

Ranges of parameters shown in the graph are [0.001,0.1] for se
2, [x0.5,1.0] for h and [0.1,1.0] for c. The CV in population

size ranges from 0 to approximately 0.8 in the graph, the thick solid horizontal line being the probability of fixation
0.03896B2s=0.04 for a constant population size.
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approximately proportional to the inverse of popu-
lation size 1/N at mutation, provided that smultiplied
by the cycle length was small.

Many populations undergo fluctuations over long
periods of time which often can be realistically de-
scribed by a stationary stochastic process. Here, we
have used the theta-logistic population model, as-
suming population sizes are large enough for demo-
graphic stochasticity to be ignored. This model is
flexible, covering a wide range of possible types of
population fluctuations, including large fluctuations
of large populations generated by a fluctuating en-
vironment. Themodels of Lambert (2006) and Parsons

and Quince (2007), on the other hand, have only
demographic stochasticity defined through the inde-
pendent birth and death of individuals and will
therefore have a CV in total population size that ap-
proaches zero as the carrying capacity increases.
Fluctuating environments that affect all individuals in
the population in the same way generate stochastic
dependence between individuals that leads to a more
complicated dynamics than under demographic sto-
chasticity alone.

The accurate approximation to the probability of
fixation derived here is the ‘unconditional ’ prob-
ability, conditioned only on the population size at
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Fig. 8. The upper panel shows the mean fixation probability ū plotted against the environmental variance se
2 for the

Gompertz model with h=0 (solid lines). For each CV in population size T (and c=1/T) changes with se
2 so that u=se

2/
(2cxc2) is kept constant, that is, the stationary distribution is the same along each line. Only values of se

2 corresponding to
1<T<1000 are used. Dotted lines show the corresponding values obtained by using the harmonic mean, that is, the exact
value for a constant population, which is 0.03896 multiplied by Ne/N, where Ne is the mean of 1/N andN is the mean of N
in the stationary distribution. The lower panel shows the same mean fixation probability ū plotted against T=1/c.
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mutation. This is rather different from the probability
used by Ewens (1967) and Otto & Whitlock (1997),
which is conditioned on all future population sizes.
Nevertheless, the results are rather similar. We find a
large reduction in fixation probability at population
sizes above average at the time of mutation (x>0), as
these are expected to decrease towards the mean size.
Considering the stochastic variation in population
size for different models, exemplified by a simulation
in Fig. 3, we also see that the variation in population
size is large enough for the fixation probabilities to
change considerably through time. The shape of
these curves for unconditional probabilities is ap-
proximately proportional to 1/N, implying a nearly
exponential function of x. This is typically the form of
the curves shown in Fig. 2 and Figs 4–5 (upper panels)
although the shape changes with the population dy-
namical parameters, especially the environmental
variance se

2. Deviation from proportionality to 1/N
is seen most clearly from Figs 6 and 8 showing the
scaled fixation rates, as these should be constant
functions of x if u(x) is proportional to 1/N so that
u(x)N is constant.

If all individuals are equally prone to mutate, it is
realistic to assume that mutations are more likely to
arise in large populations, or more precisely, the
probability of a single mutation is proportional to
population size. Hence, the population size at mu-
tation does not have the stationary distribution of the
population process, but rather the so-called first-
moment distribution multiplied by N and then scaled.
For the scaled log population size x, the distribution,
correspondingly, has to be multiplied by ex. Integrat-
ing the fixation probabilities u(x) over this distri-
bution leads to the mean fixation probability for a
random mutation ū with advantage s. In this model
the mean fixation probability ū is rather insensitive to
substantial changes in the form of the density-
regulation and the return time to equilibrium (Fig. 7).
The most important parameter is the environmental
variance se

2 (Fig. 7) rather than the variance of the
stationary distribution of population size itself. This
occurs because the number of descendants of a ben-
eficial mutation during the first few generations after
it originates is crucial for its fate, as pointed out by
Crow & Kimura (1970) and Phillips (1997). Short-
term variation in population size is therefore of great
importance, and is mainly determined by the en-
vironmental variance.

These conclusions are further illustrated in Fig. 7.
The environmental variance is of the order of 0.01
for most populations, corresponding to a standard
deviation of

ffiffiffiffiffiffiffiffiffi
0�01

p
=0�1 for fluctuations in the popu-

lation growth rate between generations (Lande et al.,
2003). With this environmental variance we see that
large changes in CV caused by differences in c pro-
duce quite small changes in ū, while changes in CV

produced by differences in se
2 create much larger

changes in ū.
It is commonly argued that long-term genetic drift

and fixation probabilities are determined by the ef-
fective population size Ne approximated by the har-
monic mean population size N through time (Wright
1931, 1969; Waples, 2006). Crow & Kimura (1970)
claimed that the mean probability of fixation is ap-
proximately 2s(Ne/N). As increasing the amplitude of
population fluctuations tends to produce a smaller
harmonic mean, the mean fixation probability of a
beneficial mutation should then decrease with in-
creasing population fluctuations. We see from Fig. 8
that this is correct, but ū may still be sensitive to
changes in environmental variance se

2 when Ne/N is
kept constant. This occurs because the fixation of a
new mutant depends heavily on its fate during the first
several generations after its origination. Thus mean
fixation probabilities may depend rather strongly on
se
2 even if the stationary distribution of population

size and the harmonic mean are kept constant.
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