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Abstract

Zoonoses are infectious agents that are transmissible between animals and humans. Up to 60% of
known infectious diseases and 75% of emergent diseases are zoonotic. Genomic variation between
homeostatic populations provides a novel window into the effect of environmental pathogens on
allelic distributions within the populations. Genodynamics is a biophysical approach utilizing
developed metrics on biallelic single-nucleotide polymorphisms (SNPs) that can be used to
quantify the adaptive influences due to pathogens. A genomic free energy that is minimized when
overall population health is optimized describes the influence of environmental agents upon
genomic variation. A double-blind exploration of over 100 thousand SNPs searching for smooth
functional dependencies upon four zoonotic pathogens carried by four possible hosts amidst
populations that live in their ancestral environments has been conducted. Exemplars that
infectious agents can have significant adaptive influence on human populations are presented.
One discussed SNP is likely associated with both adaptive and innate immune regulation. The
adaptive response of another SNP suggests an intriguing connection between zoonoses and
human cancers. The adaptive forces of the presented pathogens upon the human genome have
been quantified.

Introduction

The availability of population-based genome sequencing has provided an opportunity for explor-
ing the information dynamics of common variants in the human genome. The data presented in
common databases (e.g., thousand genome project) are typically presumed to maintain allelic
frequencies independent of any subgroups within the data set (Hardy—Weinberg equilibrium)
(Hardy, 1908). Migrations and/or admixing of disparate populations likely temporarily take any
given population out of Hardy—Weinberg equilibrium. Recent developments in evolutionary
biology have modeled the behavior of populations that have been perturbed from homeostasis as
genomic evolution toward fitness peaks (Agozzino et al., 2020). Furthermore, applications of
statistical physics to this field by others (Sella, 2005) have mirrored unitless free energies describing
the evolutionary behaviors of populations. Most such descriptions primarily focus on the
evolution of species via mutations rather than adaptation.

For stable populations, we expect that environmental influences affect the frequencies of
allelic variations. Adaptation ultimately alters the distribution of these frequencies in a manner
that optimizes the overall population health. Zoonoses are particular types of environmental
influences involving pathogens that can infect both humans and other species (Chomel, 2014).
Therefore, zoonoses provide a window into infections shared via common ancestry.

The degree of variation in any set of variables can be mathematically quantified in terms of the
information content which typically has no particular set of units associated with it. Most
bioinformatic explorations examine unitless measures of allelic variance, and often focus on
associations with disease (Uffelmann et al., 2021). Although this is quite useful, such explorations
cannot quantify the degree of ‘pressures’ or ‘forces’ that drive human adaptation. On the other
hand, genodynamics quantifies the information dynamics of common biallelic SNPs as functions
of quantifiable environmental agents. This requires the development of a universal dimensional
unit comparing allelic and genomic ‘energies’, which will be referred to as a genomic energy unit
(GEU). For this reason, genodynamics differs from most approaches of standard bioinformatics.
These units can then be used to quantify allelic potentials and develop a genomic free energy
whose optimization reflects overall population health (Lindesay et al., 2018a).

The original motivation for the development of genodynamics was the quantification of the
adaptive responses of allelic distributions due to environmental influences, absent any focus on
disease. Calculation of the adaptive powers of those influences requires reliable genomic infor-
mation on the adaptation of populations over substantial periods of time. Furthermore, the
response of quasi-homeostatic populations to survivable mutations is evolution, which will not be
discussed in what follows. The quantification of adaptive forces requires that mathematically
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smooth functions can describe the variation of allelic frequencies
due to environmental differences. Once such functions can be
found, the adaptive forces between homeostatic populations due
to the environmental differences can be established in terms of the
gradients of those functions. Furthermore, genodynamics allows
the double-blind explorations of whole population genomes to
discover hitherto unknown associations of specific genomic loci
with environmental pathogens (Lindesay et al, 2018b).

Several methods and results will be reviewed in some detail. In
particular, results relating the adaptive influences due to zoonoses
on genomic variation will be emphasized. While performing a
double-blind scan of chromosome 3 for adaptive forces on SNPs
due to quantified ecological agents, only 0.01% of the SNPs have
flagged meaningful relationships. The majority of these flags have
involved zoonotic diseases in mammals, indicating a significant
influence of the shared pathogens on the optimal distributions of
alleles in the populations’ genomes. Two such flags will be dis-
cussed in some detail. The polymorphism rs1010211 is an intron
variant in the gene TRAF2 and NCK Interacting Kinase (TNIK)
that smoothly adapts to the prevalence of zoonotic viruses. TNIK
regulates immune response by activating B cells (which function
in the humoral immunity component of the adaptive immune
system) (Alsufyani and Lindesay, 2022). Several additional SNPs
have indicated particularly interesting possibilities of connections
between zoonoses and certain cancers. For instance, the SNP
rs16864017 is an intron variant that has flagged a simple math-
ematical dependency on rodent zoonotic diseases. This variant is
located in the gene tumor protein P63 regulated 1 (TPRGL1).
Furthermore, current research indicates other possible connec-
tions between zoonoses and cancer. Thus, the potential utility of
this approach beyond the reviewed results will be explored in the
conclusion (Alsufyani and Lindesay, 2023).

Methods and formulation

Genodynamics is a biophysical model that develops adaptive forces
and powers, quantifying the information dynamics of the human
genome. To explore measures that describe genome variation, the
relationship between the information content and entropy is first
developed.

Information and entropy

One of the most useful concepts in the physical sciences is that of

entropy. To parameterize the thermodynamic descriptions of free

energy and entropy (which is related to heat) to statistical physics,

Gibbs developed the formula S = —kg>_P,logP,, which describes
a

the entropy in terms of the statistical probabilities P,. In this
expression, the Boltzmann constant kg has units of energy per
degree Kelvin. However, for general informatics, there are no
inherent units associated with the entropy (i.e., kg —1).

For a population that has completely adapted to environmental
homeostasis, the distribution of genomic variants within that popu-
lation optimizes the overall population health. That population will
maintain this characteristic allelic distribution to promote its con-
tinuing survivability. Genomic variants of particular interest are
single-nucleotide polymorphisms (SNPs). The overwhelming
majority of SNPs are biallelic (i.e., express either of two allelic
variants). The maintained order of the SNP variants can be quan-
tified in terms of its entropy. For biallelic SNPs, the specific entropy
of a given SNP labeled (S) is defined as:
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2
s =— ZPff) logZP(aS), (1)

a=1

where s is the specific entropy of the SNP, and P‘(P is the
probability (which is related or frequency) of the occurrence of
allele a in that population. The entropy is maximum for a com-
pletely stochastic SNP distribution (i.e., a population for which both
alleles occur with equal probabilities), and it is zero for a homo-
genous SNP (i.e., only one allele is found among the whole popu-
lation).

Biological correlations among a vicinity of SNPs manifest within
fixed regions of the genome defined as haploblocks. Haploblocks
are sets of SNPs with relatively few numbers of haplotypes associ-
ated with individuals. These haplotypes are transmitted between
generations and likewise maintain their frequencies within a popu-
lation in homeostasis. However, different populations have differ-
ing haploblock structures. For correlated SNPs in haploblocks, the
haploblock specific entropy s() is defined as:

onH)

s = 5" P 1og, P, )
h

where n") is the number of SNPs in haploblock (H) and Pglm is
the frequency of occurrence of haplotype /4 in the population. The
factor 2" represents the maximum possible number of haplo-
types composed of biallelic SNPs. This identification relates to an
SNP entropy as that of a haploblock containing one single SNP.
As defined, entropy is an additive variable of the state of the
statistical distribution. Therefore, the overall degree of disorder
of the whole genome is quantified by the total sum of the specific
entropies of both linked and non-linked SNPs to obtain the
following:

Sgenome =

Zs(m + Zs“)} , (3)
T 5

Whereas the entropy quantifies the degree of disorder within a
statistical distribution, the information content IC=s,,q; — Sgenome
quantifies the degree of maintained order within the distribution.
The entropy s, represents the maximum possible whole genome
entropy, which for biallelic SNPs is the total number of SNPs in the
genome ngyps. Similarly, the minimum entropy is that of a com-
pletely homogeneous population, resulting in a vanishing entropy.
Thus, the minimum IC is zero and the maximum is s,,,,. It is
convenient to define the normalized information content (NIC) for
the whole genome as:

S7VL(L’L' - S(]CTLO7’LC
N]Ogenome = . (4)
Smaz

The NIC as defined varies from zero for any maximally dis-
ordered distribution to unity for any completely homogeneous
distribution. Since it represents a unitless universal measure, the
NIC can be used to compare genomes of widely disparate popula-
tions (even species), prose written in different languages, and even
apples to oranges. For this reason, the NIC can be utilized to
interrogate information from different regions of the genome, as
well as from differing populations. Furthermore, it gives considerable
insight into genomic variations without requiring foreknowledge of
biological function or details of genomic history (Lindesay et al,
2012).
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Information dynamics

Although an in-depth exploration of the informatics of a statistical
distribution can be quite revealing of a multitude of important
characteristics, it lacks the potential to explain the dynamics of
the system being characterized (i.e., how the system changes and
responds to stimuli). Biological groups, in particular, present very
complicated systems with regard to modeling their information
dynamics. For instance, optimizing population health in response
to some environmental pathogens (like malaria and its vectors)
involves the introduction of particular alleles that can affect the
health of an individual in either beneficial or detrimental ways.
However, sometimes for biallelic variants, one allele is highly
advantageous within one extreme environment while the other is
highly advantageous in the other extreme.

To quantify the information dynamics of a system, a universal
dimensional unit has been introduced as a relative measure of how
much of an effect a stimulus has on the system. The dynamic
genomic unit should be associated with the degree of genomic
variation of the shared variants. For genodynamics, the standard
GEU is assigned to environmental agitations that invoke maximum
variation of biallelic SNPs (i.e., alleles with equal frequencies)
among the population for SNPs that are not in linkage
disequilibrium.

Once a universal unit of variation has been ascertained, it can be
used to compare the relative degree of influence of quantifiable
external stimuli on the dynamic system. Genodynamics requires
that genomic stimuli be quantified using a smoothly varying well-
defined value Agjmyius for each stimulus. Once the genomic poten-
tial p, of allele a (which has units of GEUs) is defined, the adaptive
force is then calculated as the gradient down the slope of that
genomic stimulus:

Ot
f a” EV (5)

Genomic potentials will be assigned using guidance provided by
energies and potentials defined in physical sciences. The genomic
potentials should reflect that populations residing in environments
with more vigorous pathogens and stimulants manifest higher degrees
of variation when compared to those populations subject to fewer
stimulants. When quantifying adaptive forces, it is important that the
populations represented by the dynamic variables be in homeostasis
with those environments. Although living systems are very far from
thermodynamic equilibrium, a population in environmental homeo-
stasis likewise displays a robust stability under environmental per-
turbations and fluctuations. In thermodynamics, systems in thermal
equilibrium subject to a uniform external agitation (quantified by the
temperature T) have their Helmholtz free energy F minimized. This
means that this free energy remains unchanged under small fluctu-
ations in quantified stimuli. (i.e., dF=0).

Variations in the Helmholtz free energy are typically expressed
in terms of temperature T, entropy S, pressure P, volume V, and
chemical potentials ; associated with population numbers Nj, as
given by the following:

dF = —SdT—PdV + Y _wdN; (6)

In thermodynamics, the temperature quantifies a universal set
of environmental stimuli that parameterizes the overall degree of
agitation of the system. In analogy, the genomic free energy of a
population in homeostasis with its environment is parameterized
by an environmental potential T that characterizes the overall
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degree of agitation and sustenance by the environment. It will be
assumed that any ‘pressure’ that the population exerts upon the
environment is negligible. For a given population, the genomic free
energy is expressed as follows:

ngwwmc = - Sgenume dTE + Z Ha dNa + Z Hp th: (7)
a h

where u( is the genomic potential of SNP (S) for those SNPs that
are not in linkage disequilibrium, and x(*!) is the genomic potential
of haploblock (H). The genomic entropy of the population is
defined as the size of the population times its specific entropy:
Sgenome=NpopulationXSgenome- 1he dynamic units (GEUs) are carried
by the environmental potential and the genomic potentials, and the
entropy and population numbers N are dimensionless.

The genomic energy of a homeostatic population should be an
additive variable of state that depends on the genodynamic vari-
ables in Eq. (7). Each SNP potential is the population average of the

two allelic potentials in that SNP, x5 = Zﬂé”Pff). Likewise, the
a

haploblock potential (") is the population average of its haplotype

potentials. The population stability condition requires that the size of
AF genome  _ s
AN =0 ). Recognizing that the

number of alleles a in the population is the frequency of that allele
times the size of the population N'S) = POIN . usion Eq. (7) becomes:

a

dFyenome = |:SyenomedTE + ZZ ,u(us) dpgs) + Z E H;‘H> dPLH):|
S a H h
Npopulation + [ZZ ,Lll(ls) PEIS) + Z E ﬂ;,H)PE,H):| deopulatmn-
§ a H hn

the population is stable (i.e.,

(8)

The population stability condition then implies that the popu-
lation averaged SNP potentials and block potentials sum to zero
over the whole genome (%)) + (4@y=0. This condition
inherently incorporates Hardy—Weinberg equilibrium (Lindesay
et al, 2013; Alsufyani, 2019). The population thus maintains its
allelic distribution throughout generations.

For a dynamic population, the allelic potential of a particular
SNP should scale with the environmental potential. Differences
between allelic potentials should reflect the frequencies of occur-
rence in an additive manner. These characteristics are incorporated
in the dimensionless form:

S S S
1“512) _ﬂt(ﬂ) - _ lOg PEIZ) (9)
Ty 2P

This expression clearly vanishes when each probability is 1. As
mentioned before, in this case of maximum variation, the allelic
potential of each allele is assigned the value p=1 GEU. This
requires that each potential take the following form:

uS = (= Tg) — Tglog,PS. (10)

A lower allelic potential is thus assigned to the allele that is
more frequent (i.e., more conserved within the population). If the
allele is homogenous throughout the population (i.e., PEZS ) =1) then
that conserved allele is said to have a fixing potential given by
Wizing = R — T'g. Similarly, the haplotype potential has the following
form:

u;f") :(Q—TE)n(H) —TElognglH). (11)
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The development of potentials with units allows modeling of the
dynamics beyond just statistical informatics about the population as
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Table 1. Environmental potentials of the examined populations

a whole. Furthermore, one can perform meaningful comparisons of Population Te

the effect of an influence on differing populations with shared SNPs. PEL 1.108
Performing the population averages on the genomic potentials c
from Eqs. (10) and (11), the population stability condition then LM 1.125
determines the environmental potential T'p: FIN 1.125
il P, 1l KHV 1.106
— (@ S)y 4 (el M)y _ g Te= Hnsnps _ 1 X

ug{mame (M > <"L > nsNps — Sg(zno’mc N[Cg(znomﬁ JPT 1.108
(12) TSI 1122
where ngnp; is the total number of SNPs on the genome. This MSL 1.237
form is analogous to the thermodynamic temperature of statistical CHB 1.108
physics in that more homogenous populations have lower envir- Bs L110

onmental potential. :
YRI 1.195

The data associating genomic variance with biological functions
(e.g., genome wide association studies) often link phenotypes with
individual SNPs. However, alleles that are in linkage disequilibrium
mathematically manifest a maintained collective distribution defin-
ing a particular haplotype in a haploblock. Such collections of SNPs
therefore have decreased entropy, which is reflected through
lowered genomic potentials. It is therefore advantageous to distrib-
ute a haploblock’s potential pY) among its constituent SNPs. The
haploblock potential has been distributed using the following cri-
teria (Lindesay et al., 2018a):

« if an allele is homogenous throughout the population, its dis-
tributed SNP potential is the same as the fixing potential

pff]) =[— T'g (equivalent to a non-linked SNP);

o the distributed SNP potentials are additive and sum to the

haploblock potential (u))=3" ugH);
5

o the haploblock potential is distributed among the SNPs pro-
portionate with the degree of allelic variation within each
given SNP.

The form of the distributed SNP potential that satisfies these criteria
is given by the following:

(H) _ (H) (H) s
Hg " = Wiy +[H ne Y W ]|: _:|, (13)
S fized fized ZS/ Ps/

where Py is the minor allele frequency of SNP S'. The haploblock
has an increased degree of maintained order when compared to that
of the individual SNPs. Therefore, each SNP manifests a binding
potential given by the following:

s H s
SgizLding = “’fS' /- <“‘<)>’ (14)

which is negative, thereby lowering the SNP potential. The
)

nding
distribution of the block potential to the individual alleles a within
the SNP,

definition of a binding potential séz then also allows the

ung) = “S{s) + ggzs’i’)rzdirLg’ (15)

which is likewise lowered due to the collective behavior of the alleles.

« Population-based values of environmental potentials:

Finally, the calculation of the various genomic potentials of a given
population requires a determination of the overall degree of the
environmental agitation of each population characterized by Tf.
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Prior investigations have indicated that the information content of
the whole genome is very closely reflected by that of chromosome
3 (Alsufyani, 2019), which has therefore been used to calculate T for
the various populations. Furthermore, the predictions of genody-
namics most accurately describe adaptive forces for those population
that have remained in environmental homeostasis for many gener-
ations. For this reason, data from populations presently residing
within their ancestral geographical regions were selected. The popu-
lations examined include Peruvian in Lima, Peru (PEL), Colombian
in Medellin, Colombia (CLM), Finnish in Finland (FIN), Kinh in Ho
Chi Minh City, Vietnam (KHV), Japanese in Tokyo, Japan (JPT),
Toscani in Italy (TSI), Mende in Sierra Leone (MSL), Han Chinese in
Beijing (CHB), Iberian populations in Spain (IBS), and Yoruba in
Ibadan, Nigeria (YRI). The environmental parameters here exam-
ined include virus, bacteria, helminth, and protozoa as zoonotic
pathogens as well as chiroptera, primates, rodentia, and soricomor-
pha as zoonotic hosts. The calculated environmental potentials T for
each population are indicated in Table 1 (Alsufyani, 2019).

Evidence of adaptive forces

Examples of data-based insights into the genomic response to
infectious agents transmitted via zoonoses will next be reviewed.
Simple functional forms were fitted to the genomic potential versus
environmental parameter data. Only quadratic forms for the gen-
omic potentials or forms representing simple direct functions of the
frequencies of allelic occurrence were flagged if the fit satisfied a cut-
off criterion. A flagged data set was required to have a root mean
squared (RMS) deviation of the data points from the fitted curve of
less than 10% of the maximum variation in the potentials. Further-
more, only functional forms that were monotonic in either or both
of the alleles were flagged.

Viral zoonotic pathogens

The variant rs1010211 (with common alleles T and C) flagged for
an adaptive dependency due to viral pathogen among bats, carni-
vores, hoofed mammals, moles, primates, rodents, and shrew (Han
etal., 2016). The functional behaviors of the SNP potential and that
of its alleles are demonstrated in Figure 1.

In the figures, the vertical axes represent the respective genomic
potentials in units of GEUs, and the horizontal axes are expressed in
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Figure 1. (a) The correlation between the single-nucleotide polymorphism (SNP) rs1010211 and richness pattern of viral pathogens. (b) The correlation between allele C of
rs1010211 and richness pattern of viral pathogens. (c) The correlation between allele T of rs1010211 and richness pattern of viral pathogens (Alsufyani and Lindesay, 2022).
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Figure 2. The map of the TRAF2 and NCK Interacting Kinase (TNIK) locus. Chromosome 3 has 199 million base pairs. The gene containing the flagged single-nucleotide polymorphism
(SNP), TNIK, extends from 171,058,414 to 171,460,408. The SNP rs1010211 is at locus 171,413,851 (Alsufyani and Lindesay, 2022).

units of viral richness. As defined in the data source (Han et al.,
2016),

‘Richness: the number of unique species within a particular
geographic area; richness is a count-based metric for quantifying
diversity, which contrasts with other metrics, such as functional
trait diversity (the different types of traits represented within a
geographic area) or genetic diversity.’

The SNP potential plotted in Figure la indicates a positive
adaptive force of about +0.06 GEU’s/viral zoonosis unit with a
relative RMS uncertainty of 0.065. Figure 1b indicates a direct
positive adaptive force on the C allele of about 0.04 GEU’s/viral
zoonosis unit with relative RMS of 0.056. This allele becomes nearly
homogeneous for the populations residing within regions of highest
viral zoonoses. In contrast, the T allele plotted in Figure 1c encoun-
ters a negative adaptive force of more than —0.2 GEU’s/viral
zoonosis unit with relative RMS uncertainty of 0.031. This func-
tional form indicates a direct genomic reaction via the frequency of
occurrence of this allele within the population. It should be noted
that this SNP is not in linkage disequilibrium for any of the
populations considered.

The intron variant rs1010211 lies within the TNIK gene, which
is a component of the adaptive immune response. This ancestral

https://doi.org/10.1017/50033583524000039 Published online by Cambridge University Press

variant is common in zoonotic mammals (TRAF2 and NCK inter-
acting kinase, 2023). TNIK is evolutionarily conserved among
amphibians, aves, mammalia, and ray-finned fishes. More than
197 organisms share orthologs retaining the function of human
TNIK. This gene also regulates cell division and cell death (Shkoda
etal, 2012). TNIK activates B-cells, which function in the humoral
immunity component of the adaptive immune system (Murphy
and Weaver, 2016), producing specialized antibody molecules that
then serve as B-cell receptors (Alberts et al., 2002). Recently, TNIK
has been found to be a regulator of effector and memory T cell
differentiation by inducing a population of undifferentiated mem-
ory T cells (Jaeger-Ruckstuhl et al., 2020). Therefore, the fact that
this variant responds to viral zoonotic adaptive forces is thus
confirmed by biophysical quantification.

The TNIK gene map is illustrated in Figure 2.

TNIK is a member of the germinal center kinase (GCK) family
(Yu etal., 2014). Germinal centers are transient structures within B
lymphocytes that adapt their antibody genes during the immune
response to an infection (Natkunam, 2007). These centers play a
crucial role in the adaptive humoral immunity component that
generates matured B cells, producing effective antibodies against
infectious agents. They also play a role in the production of durable


https://doi.org/10.1017/S0033583524000039

(a) rs16864017 Relative RMS =0.046
uT

PEL

Rod

Daniah Alsufyani

(b) rs16864017 Relative RMS =0.081
ucC
FIN
1.0+
0.5}
0.0+ ! Rod
2 4
I PE

Figure 3. (a) The dependence of allele T of rs16864017 upon richness pattern of rodent pathogens. (b) The dependence of allele C of rs16864017 upon richness pattern of rodent

pathogens.
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Figure 4. The map of the tumor protein P63 regulated 1 (TPRG1) locus. Chromosome 3 has 199 million base pairs. The gene containing the flagged single-nucleotide polymorphism
(SNP), TPRGL, extends from 188997227 to 189325304. The SNP rs16864017 is at locus 189146927.

memory B cells (Yin et al., 2012). It should be noted that GCKs are
also involved in innate immune regulation.

Rodents zoonotic pathogens

The intron variant rs16864017 (with common alleles T and C)
flagged an adaptive dependency due to rodent zoonoses. The
adaptive behaviors of the alleles are demonstrated in Figure 3.

In the figures, the vertical axes represent the respective genomic
potentials in units of GEUs, and the horizontal axes are expressed in
units of zoonotic richness in rodents.

The T allele in Figure 3a experiences a positive adaptive force
of about 0.12 GEU’s/rodent zoonosis unit, with relative RMS
deviation of 0.046. The collective linked behavior of this allele
displays a highly favorable genomic potential for the populations

https://doi.org/10.1017/50033583524000039 Published online by Cambridge University Press

most exposed to these pathogens. On the other hand, the C allele
plotted in Figure 3b is most conserved for the populations that
are least exposed to these pathogens, displaying a negative adap-
tive force of about —0.17 GEU’s/rodent zoonosis unit, with
relative RMS uncertainty of 0.081. This indicates that the
increased presence of rodent zoonosis negatively affects the
favorable distribution of the C allele among the population. It
should be noted that this SNP is in linkage disequilibrium for all
of the populations considered. This suggests a collective bio-
logical function shared between this set of SNPs in linkage
disequilibrium.

The intron variant rs16864017 lies within the gene TPRG1. The
TPRGI1 gene map is illustrated in Figure 4.

This gene is differentially expressed in tumor tissues and has
been reported to be involved in the regulation of the immune
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response (Liu et al., 2019). TPRG1 has orthologs in several chord-
ates, which includes all mammals (and specifically rodents) (Tumor
Protein p63 Regulated 1, 2023). Knockdown (i.e., temporarily dis-
abling or weakening the expression) of this gene has been found to
suppress inflammation in rats with cystitis (bladder inflammation),
as well as reduce cell proliferation and migration of human primary
glandularis cells (Hong et al., 2022). It should be noted that several
human infections are known to be due to exposure to the urinary
and/or respiratory aerosols of rodents (e.g., Hantavirus, Staphylo-
coccus aureus, Streptococcus pneumoniae) (Williams et al., 2008).
TPRGI has been found to stimulate inflammatory responses (Liu
et al, 2019). The expressions of this immune-related gene have also
been correlated with early tumor recurrence (Wang et al., 2021).
The allele-specific expression (ASE) of TPRGI has been identified
as having tumor-specific expression within the cancer genome atlas
as well as in biological evaluation (Th et al, 2020). Furthermore, the
ASE in this gene has been found to be specific to human papillo-
mavirus (HPV) positive tumors (Rusan et al., 2015; Kelley et al.,
2017; Corces et al., 2018). TPRG1 was also found to be differentially
expressed in HPV-associated oropharyngeal squamous cell carcin-
oma (Th et al., 2020) and breast cancer (Savci-Heijink et al., 2019).
It is possible that tumorigenesis is associated with chromosomal
rearrangement of TPRG1 in normal lipoma tissues (Wang et al,
2010). Finally, it has been suggested that the antisense strand of this
gene TPRG1-ASI is involved in the suppression of liver cancer
growth (Choi et al., 2021).

Conclusion

Populations in environmental homeostasis seem to be accurately
described in a manner analogous to physical systems in thermal
equilibrium, as described using thermodynamics. In particular, the
optimization of overall population health can be used to

Table of abbreviations

Symbols Definition
s The specific entropy of the SNP.
s(H) The specific entropy of the haploblock
Sgememe Overall degree of disorder of the whole genome.
P(GS) The probability (or frequency) of the
occurrence of allele a in that population.
GEUs Genomic energy unit.
L@ The normalized information content
(NIC) for the whole genome.
Te Environmental potential.
il 1 GEU.
fized fixing potential.
g Genomic potential of allele a.
u® The genomic potential of SNP ().
u® The genomic potential of haploblock (H).
AF genome The genomic free energy.
g;zmm The binding potential.
Py The minor allele frequency of SNP S'.
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characterize the unique distribution of allelic variants within a
population satisfying Hardy—Weinberg equilibrium over several
generations. In this review, the utility of genodynamics for dis-
covering and quantifying the effects of environmental factors on
human adaptation has been explained and exemplified. Zoonoses
represent a particular class of environmental pathogens that are
shared with other species. A positive adaptive force on the C allele of
the SNP variant rs1010211 due to viral zoonoses shared within the
same taxonomic class has been quantified. The flagged SNP, which
is not in linkage disequilibrium, is an intron variant in the gene that
is a component of the adaptive immune response. Furthermore, an
interesting adaptive response to rodent zoonotic pathogens on the
intron variant rs16864017 is indicative of a possible infectious agent
linked to cancer. This SNP is in a gene that is differentially
expressed in tumor tissues and is involved in the regulation of the
immune response. These results are examples that demonstrate the
potential of using genomic information dynamics to understand
and describe how environmental factors (including infectious
agents) shape the landscape of the human genome.
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