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1. Introduction
Normal right submodules and right ideals need not coincide in an arbitrary

near-ring. Berman and Silverman (1) have shown that in a near-ring (N, +, •)
with a two-sided zero (i.e. JC-0 = 0-x = 0, for all xe N) a right ideal is also a
right submodule. If (N, +, •) is in fact a distributive^ generated near-ring,
then all normal right submodules are also right ideals. (See (5).)

T0(G), the near-ring of all transformations from a group (G, +) into itself
which map 0 into 0, is a near-ring with a two-sided zero. In (6) it is shown that
normal right submodules and right ideals coincide if and only if all normal right
submodules are sums of annihilator right ideals.

In this paper we examine the following more general question. Under what
conditions do normal right submodules and right ideals coincide in an arbitrary
near-ring (G, +, •) with a two-sided zero ? In Section 3 we reach the conclusion
that the answer to this question depends more on the particular multiplication •
than on the structure of the group (G, +).

In Section 4 we consider near-rings defined on (Dn, +), the dihedral group of
order In. We show that if (Dn, +, •) is a near-ring with multiplicative identity,
then normal right submodules and right ideals of (Dn, +, •) coincide if and only
if all normal right submodules are annihilator right ideals.

In Section 5 we prove the existence of a near-ring with multiplicative identity
on (Dn, +) where n = 2p,p a prime. In (2) Clay determined all near-rings with
identity on (Z>4, +). We show here that if/? is an odd prime, then there is, up to
isomorphism, a unique near-ring with multiplicative identity on (Dn, +).

2. Definitions
A (left) near-ring is a triple (N, +, •) such that (N, +) is a group, (Â , •) is a

semigroup, and • is left distributive over + .
An ideal H of N is a normal subgroup of (N, +) such that:
(1) (n+fi)m-nmeH for all heH; n,meN
(2) nheHfor all heH; neN.
A right ideal of N is a normal subgroup of (N, +) which satisfies condi-

tion (1). A left ideal of N is a normal subgroup of (N, +) which satisfies
condition (2).
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A right submodule K of N is a subgroup of (N, +) such that k • n e K, for all
k e K, n e N. K is a normal right submodule if, in addition, (K, +) is a normal
subgroup of (iV, +).

Let C be a subset of iV. It is easy to show that

A{C) = {xeN\cx = 0, for all c e C}

is a right ideal of N. Right ideals of this type are called annihilator right ideals
(6).

3. General results
Let (G, +) be a group. If (G, +) contains no proper normal subgroups,

then the only normal right submodules or right ideals of a near-ring with two-
sided zero whose additive group is (G, +) are {0} and G itself. Hence, normal
right submodules and right ideals must coincide in this case.

Now suppose (G, +) is not a simple group. From (6) we note that the struc-
ture of the group (G, +) determines whether or not normal right submodules
and right ideals of T0(G) coincide. This is not the case if we consider an arbitrary
near-ring with a two-sided zero defined on (G, +). Instead, as the following
theorem illustrates, it is the structure of the particular multiplication that
determines whether or not normal right submodules are right ideals.

We use the following notation. Let G be a group and let C be a subset of G.
We denote the complement of C in G by G-C, i.e. G-C = {xeG\x$C}.
ifgeG, then | g | denotes the order of g.

Theorem 3.1. Let (G, +) be a group which contains a proper normal subgroup
H. Then two near-rings, each containing a two-sided zero, can be defined on
(G, +) such that normal right submodules and right ideals coincide in one near-
ring, but not in the other.

Proof. Clearly zero multiplication on (G, +) defines a near-ring (G, +, *)
in which normal right submodules and right ideals coincide.

Now define a binary operation • on G as follows. Choose an element
n e G—H. For all ye G, define n-y = y and x-y = 0 if x # n. Then by
Theorem 1.8 of (3) (G, +, •) is a near-ring. Clearly H is a normal right sub-
module of (G, + , •)• However, H is not a right ideal, since if h is a non-zero
element of H, then

(n + h)n—n-n = —n$H.

Annihilator right ideals play a major role in the study of the structure of
right ideals of near-rings. From (6) every right ideal of T0(G) is the sum of
annihilator right ideals. Also, the significance of annihilator right ideals in
near-rings defined on the dihedral group (Dn, +) of order In was stated in the
introduction. Theorem 3.3 indicates the frequent occurrence of annihilator
right ideals in near-rings with multiplicative identity.
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For easy reference we state the following result from (4):

Lemma 3.2. Let (G, +) be a finite group. If (G, + , *) is a near-ring and
ee G is an identity with respect to *, then \ x \ divides | e \,for all xeG.

Theorem 3.3. Let (G, +) be a finite group of composite order. Suppose G
contains two non-zero elements x andy such that \x\ # \y\. Then any near-ring
(G, + , ) with multiplicative identity must contain a proper annihilator right ideal.

Proof. Let e be the multiplicative identity of (G, +, •)• Let q be a prime
divisor of the order of G and let g e G such that \g \ = q. Note that q is a
proper divisor of | e |, since G contains two non-zero elements of different order.
Let A = {z e G \ gz = 0}. Then A is an annihilator right ideal of (G, +, •)•
The element qe e A, so A # {0}, and since e is a multiplicative identity, A # G.

Clearly, if G is a />-group of composite order, for some prime p, then G is
not simple. Hence as an immediate corollary of Theorem 3.3 we obtain the
following result of (4).

Corollary 3.4. A simple group of composite order cannot be the additive group
of a near-ring with identity.

4. Ideal and submodule structure of near-rings with identities on dihedral groups

The dihedral group (£>„, + ) , n>2, is a group of order 2n generated by two
elements e and b which satisfy the relations ne = 0,2b = 0, b+e = (n- Y)e+b.
In this section we examine normal right submodules and right ideals of near-
rings defined on (/)„, + ) . We consider only near-rings with multiplicative
identity.

Using Lemma 3.2, the following result is immediate.

Proposition 4.1. If n is an odd integer, then (£>„, + ) cannot be the additive
group of a near-ring with multiplicative identity.

Hence, we restrict our attention to dihedral groups (£>„, + ) , where n is an
even integer. Since the order of every element of Dn must divide the order of a
multiplicative identity, we can assume without loss of generality that the
multiplicative identity of a near-ring (Dn, + , •) is e.

The next result follows immediately from Theorem 1.1 of (3).

Lemma 4.2. Let (Dn, +, •) be a near-ring and let x, ye Dn. Then | JC -3̂  |
divides \y\.

Note that every element of (Dn, + ) of the form me+b, 1 ̂  m ^ «, has order 2.

Proposition 4.3. If (Dn, + , •) is a near-ring with multiplicative identity e,
then Ox = x-0 = 0,for all x e Dn.

Proof. That r O = 0, for all xe Dn, follows from the definition of (left)
near-ring. We show Ox = 0.
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Clearly, 0{me) = 0, for all m, 1 ^ m ^ n. Then 0-b = 0(me+b), l g m | n .
Hence it suffices to show that 0-6 = 0.

By Lemma 4.2 the order of 0-b must divide 2. Since (e+0b)(e+0b) = e,
then by Lemma 4.2, n must divide the order of e+Ob. Hence either Ob = 0 or
06 = (n/2)e. Since 0(06) = 0b, then 06 = 0.

Proposition 4.4. 7/" (/)„, + , •) is a near-ring with multiplicative identity,
then n = 2p, where p is a prime number.

Proof. Let r = led, where c> 1, rf> 1. Suppose that (Z>r, + , •) is a near-
ring with multiplicative identity e. Let X = {xe Dr \(ce)x = 0}. Then X is a
right ideal of (X>r, + , •) and Jf # {0}, since 2de e X

By Lemma 4.2, | 2de • b | divides 2. Hence 2de • b is either 0, cde, or me+b, for
some integer m,0<m ^ r. We examine these three possibilities.

If 2deb = 0, then 2de(e+b) = 2de. Then by Lemma 4.2, \2de\ = 2 and
hence c = 2. Thus (ce)(de -b) = 0,sodebeX. Consider the element de-b. By
Lemma 4.2, | de• b | divides 2. If de-b — 0, then de(e+b) = fife, which is a contra-
diction to Lemma 4.2. Similarly de-b # c<fe. ]f deb = me+b for some w,
0<m | r, then me+b e X and so ce\{m + l)e+b~\ = ce, which is a contradiction
to Lemma 4.2. We have reached a contradiction for every possible value for
de-b. Hence, 2fife-6 ^ 0. Also 2de-b # me+b, for any m, since from above,
me+b if; X.

If 2cfe • 6 = cde, then 2de(e+b) = 2cfe+«fe. Then by Lemma 4.2 12de+cde |
divides 2 and hence it follows that c = 2. Thus ce[fife(e+6)] = 0, so de(e+b) e X
But then, using arguments similar to the above, we reach a contradiction for
every possible value for de(e+b). Hence, 2de-b ^ cde.

So we have eliminated all possible values of 2deb. This contradiction tells
us that (Dr, +) cannot be the additive group of a near-ring with multiplicative
identity.

Since we are interested in near-rings with multiplicative identity, from now on
(Dn, + ) will denote a dihedral group where n = 2p, p a prime, and (Dn, +, •)
will denote a near-ring with multiplicative identity e on the above group.

The following lemma is routine.

Lemma 4.5. The only proper normal subgroups of(Dn, +) are
A = {0, 2e, 4e, ..., (n-2)e, b, 2e+b, ..., (n-2)e+b),
B = {0, 2e, 4e, ..., (n-2)e, e+b, 3e+b, ..., (n-l)e+b},

and subgroups of the group generated by e.

Hence, the only candidates for proper normal right submodules of a near-
ring (Dn, +, •) with multiplicative identity are A, B, and proper subgroups of the
group generated by e.

Let C = {0, 2e, 4e, ..., (n-2)e).

Proposition 4.6. C is a right submodule of(Dn, +, •) if and only ifn = 4.
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Proof. By Lemma 4.2 | 2e-6 | divides 2. Hence 2e-b is either 0, (n/2)e, or
me+b, for some integer m, 0<m ^ n.

Suppose n = 4. If 2e-£ = /ne+i, then

0 = [(2e)(2e)]-6 = 2e(2e-6) = 2e(me+b) # 0.

This contradiction shows that lebeC. It follows easily that C is a right sub-
module.

Now suppose n / 4 . If 2eb = 0, then 2e(e+b) = 2e. But this is a contra-
diction, since | 2e | does not divide 2. Hence, 2e-b$C,so C is not a right sub-
module.

We consider the two cases, n = 4 and n = 2q, q an odd prime, separately.
We show if « = 2#, # an odd prime, then normal right submodules and right
ideals of a near-ring with multiplicative identity on (£>„, +) will always coincide.
However, if (Z)4, + , •) is a near-ring with multiplicative identity, normal right
submodules and right ideals coincide if and only if all normal right submodules
are annihilator right ideals.

First we consider the case n = 2q, q an odd prime. Throughout we assume
(Dn, +, •) is a near-ring with multiplicative identity e. Let F = {0, qe).

Proposi t ion 4 . 7 . F is a right ideal of(Dn, +, -),n = 2q.

Proof. Clearly .Fis a normal subgroup of (£>„, +). Let

X={xeDH\2e-x = 0}.

Then X is a right ideal and Fez X. Since 2e is an element of all non-zero normal
subgroups of {Dn, +) which contain F as a proper subgroup, but 2e £ X, then
F = X.

Proposition 4.8. Either A or B, but not both, is a right submodule, and in
particular, an annihilator right ideal of(Dn, +, •), n = 2q.

Proof. A and B cannot both be right submodules, since by Proposition
4.6, C = AnB is not a right submodule.

Let X = {x e Dn | yx = 0, for all y e Dn such that \y\ = 2}. Then X is a
right ideal of {Dn, +, •) and CczX. Since C is not a right submodule, C *£ X.
Hence, either X = A or X = B.

Combining Lemma 4.5 and Propositions 4.6, 4.7, 4.8, we see that the only
normal right submodules of (Dn, +, •) are either A and For B and F. Hence we
obtain the following theorem.

Theorem 4.9. Normal right submodules and right ideals of (D2q, +, •)
coincide. In addition all right ideals are annihilator right ideals.

Now consider near-rings on (D4, +). Again we will assume that (D4, + , •)
denotes a near-ring with multiplicative identity e. In Proposition 4.6 we showed
that C is a right submodule of (D4, + , •)• Now we show that both A and B are
also right submodules.
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Proposition 4.10. A is a normal right submodule of(D4, +, •)•

Proof. From Lemma 4.5 we already know that A is a normal subgroup of
(Z>4, +) . We show that A is a right submodule.

Let m e {0, 2}. Since C is a right submodule, me-x e CczA, for all x e DA.
By Lemma 4.2, \{me+b)-b | divides 2. If(me+b)b = te+b, where t is an odd
integer, then (me+b)(e+b) is an odd multiple of e, contradicting Lemma 4.2.
Hence (me+b)-be A. It follows easily that (me+b)-xe A, for all xe Z>4.

The proof of the next result is analogous.

Proposition 4.11. B is a normal right submodule of(DA, +, •).

Inspection of the normal subgroups A and B yields the following.

Lemma4.12. IfxeA-B,thene+xeB-A. IfyeB-A,thene+yeA-B.
Lemma 4.13. Suppose both A and B are right ideals of (Z>4, + , •)• Let

xeA-B,yeB-A. Then

(1) (e+x)xeAnB
(2) (e+x)yeB-A
(3) (e+y)yeAnB
(4) (e+y)xeA-B.

Proof. Since A is a right ideal, then (e+x)x—x = (e+x)x—exeA. But
x e A, so {e+x)x e A. From Lemma 4.12 (e+x) e B and hence (e+x)x e B.
Therefore, (e+x)x e AnB. Since y e B—A and (e+x)y—y e A, then

(e+x)y<EB-A.

The proofs of (3) and (4) are analogous.

Proposition 4.14. If both A and B are right ideals of(D4, + , •), then both A
and B are annihilator right ideals.

Proof. LetxeA-B. Then by Lemma 4.13, (2e+x)(e+x)eAnB = {0,2e},
so x[(2e+x)(e+xy] = 0. Let Y = {y e i)4 | [x(2e+x)~]y = 0}. Using Lemma
4.12, we can show that x-x # 0, and hence x(2e+x) ¥= 0. Then Fis a proper
right ideal and e+xe Y. Hence Y = B, so B is an annihilator right ideal.

Similarly, A is an annihilator right ideal.
If both A and B are right ideals of (D4, + , •)» then AnB = C is also a right

ideal. In addition we have the following result.

Proposition 4.15. If both A and B are right ideals of(D4, +, •), then C is an
annihilator right ideal.

Proof. C = {x e D4 | yx = 0, for a l l j e i ) 4 such that | j | = 2}.

Combining Propositions 4.14 and 4.15, we obtain:

Theorem 4.16. Normal right submodules and right ideals of (D4, +, •)
coincide if and only if all normal right submodules are annihilator right ideals.
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We will need the following result in Section 5.

Proposition 4.17. Let n = 2p, p a prime. If A, B, or C is a right ideal of a
near-ring (Dn, +, •) with multiplicative identity, then it is also a left ideal.

Proof. It is easy to show that if C is a right ideal, then it is also a left ideal.

Assume A is a right ideal. Let y e A and let x e Dn—A. Then x = e+- z,
where z e A. Since A is a right ideal, (e+z)y—eye A. But — eye A, so
xy = (e+z)y e A. Hence A is also a left ideal.

Similarly, if B is a right ideal, then B is also a left ideal.

5. Existence of near-rings on dihedral groups
In (2) Clay showed that there are seven non-isomorphic classes of near-rings

with multiplicative identity on the dihedral group (£>4, +). These seven classes
of near-rings are listed in Table 3 of (2). Normal right submodules and right
ideals coincide in the near-rings in Classes 2, 4, and 7. However, there exists a
normal right submodule which is not a right ideal in each near-ring in Classes
1, 3, 5 and 6.

In this section we show the existence of a near-ring with multiplicative
identity on (Dn, +), where n = 2q, q an odd prime. Thus, we need to define a
binary operation * on £>„ such that * is left distributive over +. Using Clay's
terminology, we call such an operation * a multiplication. From (3), if (G, +)
is an arbitrary group, then * is a multiplication on G if and only if there exists
a function / from G into the endomorphisms of G such that x*y = f{x){y) for
all x,yeG.

By Proposition 4.8 either A or B must be a right submodule of a near-ring
on (/>„, +). First consider the case when A is a right submodule. We wish to
define an associative multiplication • s on (Z>n, + ) such that e is an identity for - f

and A is a right submodule of (£>„, +, • f). Denote the endomorphisms which
define • f by/(x), for all x e Dn. These endomorphisms must satisfy the follow-
ing criteria.

Since e is to be an identity for • f, then/(x)(e) = x, for all x e Dn,f(e)(b) = b,
and /(0) is the zero endomorphism. Since A is to be a right submodule, then
from the proof of Proposition 4.8 we see that every element of A annihilates
every element in Dn of order 2. Hence f(me+b)(b) = 0, for all m, 1 ̂  m ^ n,
and f(qe)(b) = 0. Clearly,/(e),/(me+b), and f(qe) extended to all of Dn are endo-
morphisms. In order to have a multiplication on (Dtt, +), we need only define
f(me)(b), for all m, \<m<n,m^ q, in such a way that f(me) extended to all of
Dn is also an endomorphism.

Lemma 5.1. Let r be an even integer. If A is a right submodule of a near-ring
(Dn, +, -),n = Iq, then me(re + b) = [(q + m)e~](re+b),for all m, 1 ^ m ^ n.

Proof. Let [(q+m)e'](re+b) = x. Since
(2e)x = (2e)l(q+m)e'](re+b) = 2me(re+b),
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then 2e\me(re+b)—x] = 0. Hence me(re+b)-xeF= {O,qe}. But A is also
a left ideal by Proposition 4.17, so both x and me(re+b) are elements of A.
Therefore, x = me(re+b).

From number theory (7) we know that since q is a prime, then q has a primi-
tive root, say h. Then 0, h, h2, ..., hq~1 are all distinct modulo q. Hence every
integer m, I ^ m ^q—1, can be written as a power of h. Since • s must be
associative, once f(he)(b) is denned, then f(hre)(b) is uniquely determined for all
r, 1 ̂  r g,q— 1. Using Lemma 5.1, it follows that f(me)(b) is uniquely deter-
mined for all m, 1 g TW g n. Hence the definition of • f depends only upon the
value off(he)(b).

Since be A, a left ideal, then f(he)(b) eA. It is routine to prove that f(he)
will extend to an endomorphism of Dn if and only if f(he)(b) = xe+b, for some
integer JC, 1 £j x ^ n. Hence there are at most q near-rings definable on (£)„, +)
with e as multiplicative identity and A as right submodule. Now we show there
are exactly q such near-rings.

Theorem 5.2. Let xeA — C. Define f(he)(b) = x. Let • f be the multiplica-
tion on Dn determined by f (he) as stated above. Then (Dn, + , • j) is a near-ring.

Proof. It suffices to show that • f is an associative operation. Choose inte-
gers u, v, 0 ^ u,v<n. Then u = 0, q, hr, or hr+q(mo& n), for some r, and v = 0,
q, hs, or As+<jr(mod n), for some J. By considering all possible cases, it is easy
to show that (ue • fve) • fb = ue- f(ve • fb). Since b annihilates all elements of order
2, if either c or d is of order 2, then (c-fd)-fb — c-s(d-sb) = 0. Hence
(z-fy)-fb = z-f(yfb) for all y, z e Dn.

Since e is an identity for • f, then (z-ry)-se = z ' / j-^e) for all y,zeDn. It
follows that • y is associative.

By Theorem 5.2 there are q distinct near-rings with multiplicative identity e
and normal right submodule A. Using Theorem B of (2) and the automorphisms
af:Dn-*Dn defined by a^e) = e and cct(b) = ie+b, for all odd integers i,
1 ^ i ^ n — 1, we obtain # distinct near-rings with multiplicative identity e and
normal right submodule B. Hence there are a total of n distinct near-rings on
(Dn, +) with multiplicative identity e. Now we show that all of these n near-
rings are in fact isomorphic.

Lemma 5.3. Let (Dn, + , •), n = 1q, be a near-ring with multiplicative
identity e and normal right submodule A. Then there exists a unique even integer
k,0^k^n-l, such that he(ke+b) = ke+b.

Proof. Since the subgroup generated by e is not a proper right submodule,
then heb = me +b for some integer m, 1 ̂ m^n. Since q is prime, there
exists a unique integer s, 0 ^ s ^ q— 1, such that (h—\)s = (n—m)(mod q).
Since q is an odd prime, then exactly one of s or s+q is even. Let k represent
this even integer. Then either he(ke+b) = ke+b or he(ke+b) = (k+q)e+b.
Since ke+b e A, which is a left ideal by Proposition 4.17, then he(ke+b) = ke+b.
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Uniqueness of k follows from uniqueness of s.

Theorem 5.4. There is, up to isomorphism, a unique near-ring with multiplica-
tive identity e on (£>„, +), n = 2q.

Proof. Let (Dn, + , •/) be the near-ring with multiplicative identity e and
normal right submodule A, defined by f(he)(2e+b) = 2e+b. By the remark
preceding Lemma 5.3 it suffices to show that any other near-ring (Dn, +, • g)
with multiplicative identity e and normal right submodule A is isomorphic to
(Dn, +, •/)•

By Lemma 5.3 there exists a unique even integer k, 0 :g k<n, such that
he-g(ke+b) = ke+b. Define an automorphism fi:Dn-*Dn by 0(e) = e and
P(2e+b) = ke+b. By Theorem B of (2) the set of endomorphisms

defines a near-ring N isomorphic to (Dn, +, -f). But fi°f(he)°fl~l = g(he), so
N=(Dn, +,-„).

These n near-rings all have multiplicative identity e. Using the automorphism
<5 defined by 6{e) = me, m odd, m ^ q, and 8(b) = b, we obtain a near-ring with
me as multiplicative identity. Hence, for all odd integers m, 1 g m ^ n,
m jt q, there exist n distinct near-rings with multiplicative identity me. So there
are exactly n(n/2 — 1) distinct near-rings with multiplicative identity on (/>„, + ),
but all of them are isomorphic.

Added in Proof: John Krimmel has also (independently) observed that there
is, up to isomorphism, a unique near-ring with multiplicative identity on
(£>„, +), n = 2q.
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