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In this study, we develop an analytical model to predict the turbulent boundary layer
downstream of a step-change in the surface roughness where upstream flow conditions
are given. We first revisit the classical model of Elliott (Trans. Am. Geophys. Union, vol.
39, 1958, pp. 1048–1054), who modelled the velocity distribution within and above the
internal layer with a simple piecewise logarithmic profile, and evolved the velocity profile
using the streamwise momentum equation. Elliott’s model was originally developed for
an atmospheric surface layer, and to make the model applicable to a spatially developing
turbulent boundary layer with finite thickness, we propose a number of more physical
refinements, including adding a wake function to the velocity profile, considering the
growth of the entire boundary layer in the streamwise direction, and using a more realistic
shear stress profile in the momentum equation. In particular, we implement the blending
model (Li et al., J. Fluid Mech., vol. 923, 2021, p. A18) to account for the deviation of the
mean flow within the internal layer from a canonical velocity profile based on the local
wall condition. These refinements lead to improved agreement between the prediction and
the measurement, especially in the vicinity of the rough-to-smooth change.
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Figure 1. Schematic of a turbulent boundary layer over a step change in surface roughness condition. The
roughness transition occurs at x0, and x̂ = x − x0 denotes the fetch downstream of the transition.

1. Introduction

A turbulent boundary layer over a streamwise change in wall roughness can be considered
to be a distillation of flows commonly observed in nature and industry, examples of which
include a surface layer where a forest terrain changes to a prairie, and a turbulent boundary
layer developing on a ship’s hull with patchy biofouling. Understanding the behaviour
of the flow downstream of a step-change in roughness and the ability to model the flow
evolution are beneficial to atmospheric forecasting, as well as drag estimation for better
fuel efficiency.

A schematic of the flow configuration is shown in figure 1. A turbulent boundary
layer develops on a wall, the roughness of which abruptly changes at x = x0. Here, x
represents the streamwise direction and z represents the wall-normal direction. The fetch
on the downstream surface is then denoted as x̂ = x − x0. The flow adapts to the new wall
condition firstly close to the wall, and the affected region (light blue shaded region) widens
farther downstream. This region, where the flow is modified by the new wall condition, is
usually referred to as the internal layer or internal boundary layer (IBL), and its thickness
is denoted by δi. The topic has been reviewed by Garratt (1990), and the application in
meteorology has recently been reviewed by Bou-Zeid et al. (2020). The flow structures
with characteristics of the upstream roughness are considered to persist above the IBL. An
equilibrium layer (EL) can also be defined as the near-wall region where the flow has fully
adapted to the new surface condition, and its thickness is denoted by δe. Traditionally, δe
has been assessed by comparing the mean streamwise velocity profile or shear stress profile
scaled by the local friction velocity with the corresponding profile of the downstream
surface (Rao, Wyngaard & Coté 1974). In this study, we define both IBL and EL using the
mean velocity profile.

Predicting the evolution of the flow downstream of a roughness step change, given
the surface and upstream flow conditions, has attracted great interest in the past few
decades. It has important applications in the site selection of a meteorology measurement
tower, where it is desirable to choose a location at a sufficient distance away from the
change in surface condition to avoid the ‘leading-edge effects’. The tower should also
be submerged in the EL in order to sample the quantities associated with the local wall
condition rather than the remnant of upstream structures. A detailed summary of various
modelling attempts can be found in the work by Savelyev & Taylor (2005). A crude rule
of thumb to estimate the IBL thickness is δi/x̂ ≈ 1/10 and δe/x̂ ≈ 1/200 (Rao et al.
1974). Power-law relationships with a form of δi ∝ x̂α are obtained by empirically fitting
to experimentally or numerically generated data, and the exponent varies from 0.2 to 1
across studies (Rouhi, Chung & Hutchins 2019). Although these relationships are easy to
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Modelling TBL response following a step change of roughness

implement, they are usually obtained from a particular set of surface and flow conditions
and cannot be generalised to others.

There are considerable attempts in the literature to theoretically model the flow response
to a step change in the wall condition, and they can be classified into two major categories
based on the assumptions made. Most of these models are developed in the context of
atmospheric surface layers where the canonical mean velocity profile can be approximated
by a log-law. The first category of theoretical models is established on the diffusion
analogy, which was introduced by Miyake (1965). In this approach, the IBL is assumed
to propagate in the same manner as a passive contaminant, and the growth rate of δi is
proportional to wrms(δi) = (w2)1/2, the vertical diffusion intensity at the interface. That
is,

dδi

dt
= Awrms, (1.1)

where A is a constant and d( · )/d( · ) denotes the total derivative. Using the chain rule, the
left-hand side of the equation can be rewritten as dδi/dt = (∂δi/∂x)(dx/dt) for a steady
state (∂δi/∂t = 0). Assuming dx/dt = U(δi), which is the mean velocity at the interface,
the equation above can be rewritten as

U(δi)
dδi

dx
= Awrms. (1.2)

After relating the wrms term to the friction velocity (upstream or downstream) through an
assumed proportionality in neutrally stratified flow, wrms = CUτ (C is also a constant),
determining the velocity at the interface U(δi) from a logarithmic profile and prescribing
an initial condition of δi|x̂=0, (1.2) can be integrated to obtain the final expression of the
IBL growth. Models with various expressions of the wrms and U(δi) terms were developed
(Jackson 1976; Panofsky & Dutton 1984; Savelyev & Taylor 2001; Bou-Zeid, Meneveau
& Parlange 2004; Yang 2016), and it was also extended to non-neutral stability conditions
(Savelyev & Taylor 2005).

A second group of models assume a form of the recovering mean velocity profile, and
then relate the local wall-shear stress to the growth of the IBL through the streamwise
momentum equation. This approach was established in the seminal study of Elliott (1958),
where a piecewise logarithmic velocity profile with a change in slope across the edge of
the IBL was used. Shear stress, as derived from the slope of the log-law profile through
a ‘mixing-length’ relation, takes the form of a step function, and attempts were made
to eliminate the discontinuity at the edge of the IBL by using a velocity profile integrated
from a shear-stress profile that linearly changes from the downstream value to the upstream
one across the IBL (Panofsky & Townsend 1964). So far in both mean velocity profile
models described, the flow above the IBL remains unmodified from that upstream of the
step change and no streamwise development of the flow in this region is considered. That
is to say, if we denote the upstream velocity profile as U1(z) (where z is the wall-normal
position), then U(z) = U1(z) will hold for all z > δi. Another way of modelling the flow
is to assume that the mean velocity remains constant along a streamline above the IBL,
while within the IBL the acceleration of the mean velocity along the same streamline
is self-similar (Townsend 1965a,b, 1966). The mean velocity profiles constructed by
Elliott (1958) and Panofsky & Townsend (1964) can be incorporated into the Townsend
self-similar framework with streamline displacement.

More recently, it has been recognised that the flow in the IBL has not fully adapted to
the local wall condition, questioning the applicability of an equilibrium log-law profile,
as well as the corresponding mixing-length relation (Antonia & Luxton 1972; Shir 1972;
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Rao et al. 1974; Ismail, Zaki & Durbin 2018; Rouhi et al. 2019). Chamorro & Porté-Agel
(2009) proposed a semiempirical blending model of the recovering mean velocity profile
without further incorporating the streamwise evolution. They considered that after a
rough-to-smooth transition, the mean velocity profile asymptotes to the new smooth-wall
log law at the wall and the upstream rough-wall log law at the edge of the IBL. These two
limiting cases are then blended by a log-linear weight function, representing the gradual
transition from the local smooth-wall log law to the upstream rough-wall counterpart as
z/δi increases. This model of the velocity profile does not assume a constant or linear
distribution of the shear stress in the IBL (as did Elliott (1958) and Panofsky & Townsend
(1964)). The agreement with measurements in the near-wall region is further improved by
prescribing a finite thickness of the EL (Abkar & Porté-Agel 2012; Ghaisas 2020), or using
a log-normal blending function that gives more weight to the smooth-wall profile close to
the wall (Li et al. 2021).

In addition to the two major categories as discussed above, there have also been other
attempts in modelling the flow response to a roughness change. Wood (1982) developed
a simple correlation for the IBL thickness from dimensional analysis. Peterson (1969)
adopted a closure of the turbulent shear stress and solved the continuity, momentum and
turbulent-energy equations numerically. Van Buren et al. (2020) performed a perturbation
analysis on the mean-momentum equation and Reynolds stress transport equation of
a rough-to-smooth change in a pipe flow, and successfully captured the second-order
response in the experimental data.

To summarise, Elliott’s original model was formulated for an atmospheric surface layer
with no consideration of the gradual adjustment of the flow in the IBL to the new wall
condition. In this study, we incorporate modifications that make Elliott’s approach valid
for a turbulent boundary layer with finite thickness. The inherent difference between the
current model and Elliott’s original formulation is that we consider a finite thickness of
the total boundary layer, and introduce an additional momentum equation to describe its
spatial growth. The new model is useful for a wide range of engineering applications where
a finite-thickness boundary layer is concerned, such as the flow over patches of biofouling
roughness on a ship’s hull. A series of refinements will be discussed, including reassessing
the assumptions originally made concerning a deep surface layer where δi/δ99 is small, as
well as incorporating the blending velocity profile as detailed in Li et al. (2021).

The streamwise, spanwise and wall-normal directions are represented by x, y and z. The
corresponding time-averaged and fluctuation velocity components are denoted by U, V ,
W and u, v, w, respectively. Quantities upstream and downstream of the rough-to-smooth
transition are distinguished by a subscript ( · )1 and ( · )2, respectively, and the subscript
( · )0 represents quantities at the roughness transition (x = x0 or just prior to it if there is a
jump of that quantity across the roughness transition, see figure 1).

This paper is structured as follows. First, Elliott’s original model is summarised in § 2,
and its numerical implementation is presented in § 3. The model is then evaluated utilising
an experimental dataset covering a wide range of flow parameters (Li et al. 2021) in § 3.1.
Refinements including considering a wake profile, the streamwise growth of the entire
boundary layer, a z-dependent shear stress profile, and the blending velocity profile in the
IBL (as discussed in Li et al. (2021)), are added and compared with the original model in
§ 4. The performance of the new model is assessed in § 5.

2. A brief review of Elliott’s model

In the seminal study of Elliott (1958), a theoretical model predicting the flow recovery from
a step change in the surface roughness was established. The flow condition is illustrated
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Figure 2. (a) Sketch of the flow over a roughness change in the streamwise direction. The IBL is shown by
blue, and the outer layer is shown by red. The control volume used to obtain (2.5) is bounded by the dashed line.
(b) Sketch of the mean velocity profile in Elliott’s model corresponding to the flow condition in (a). The local
inner log-law profile is shown by blue, and the outer log-law profile is shown by red, and a rough-to-smooth
transition (z01 > z02) is assumed in the plot.

in figure 2(a). The incoming flow can be fully described by the roughness length z01
and friction velocity Uτ1 of the upstream surface, while the only information about the
downstream surface is the roughness length z02. Both upstream and downstream surfaces
are assumed to be in the fully rough regime, and the roughness length can be related to the
equivalent sand grain roughness ks by

z0 = ks exp(−κA′
fr), (2.1)

where A′
fr = 8.5 is the fully rough intercept for sand grain roughness (Nikuradse 1950).

An extension of the model is to consider that either the upstream or downstream surface is
fully smooth, and the roughness length will then be related to the viscous wall unit through

z0 = ν

Uτ

exp(−κB), (2.2)

where B is the smooth-wall intercept, Uτ is the local friction velocity and ν is the
kinematic viscosity of air. Here, the constant values are chosen as κ = 0.384, B = 4.17
(Chauhan, Monkewitz & Nagib 2009). In the scenario of a rough-to-smooth transition, the
downstream roughness length z02 is directly related to the local friction velocity, which
can vary significantly with x̂, particularly for x̂/δ0 � 2 (Li et al. 2021).

After the roughness transition at x = x0 (i.e. x̂ = 0), an IBL containing the modified
flow develops on the downstream surface and a local friction velocity Uτ2 evolves with
the growth of the IBL. In this system, the roughness lengths z01 and z02 are known. Here,
Uτ1 is also given and assumed to be constant, therefore, we have Uτ1(x̂) = Uτ1(0) ≡ Uτ0,
to be consistent with previous notations. This leaves two unknowns, δi(x̂) and Uτ2(x̂), as
functions of x̂, the fetch on the downstream surface. Therefore, two equations are required
to close the system and provide solutions of δi and Uτ2.

Elliott approximated the recovering mean velocity profile with a piecewise logarithmic
function (illustrated in figure 2b),

U(z) =

⎧⎪⎪⎨
⎪⎪⎩

Uτ1

κ
ln(z/z01), z � δi

Uτ2

κ
ln(z/z02), z < δi,

(2.3)
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log z
log z02 log z01

U U
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log z
log z01
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log z02
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Figure 3. An illustration of the mean velocity profile (2.3) for (a) z01 > z02 (rough-to-smooth) and (b) z01 <

z02 (smooth-to-rough). The red lines in both panels are the upstream velocity profile, and the blue line is
the velocity profile within the IBL at x̂ = 0. The black dots are a few representative locations of δi farther
downstream and the black dashed lines are the velocity profile within the IBL corresponding to these δi values.

which implicitly assumes that the mean velocity profile within the IBL immediately adapts
to the local wall condition (i.e. that δi = δe). From this expression of the mean velocity
profile, the first equation to close the system rises naturally as the matching condition, i.e.
the two log laws intersecting at z = δi:

Uτ1

κ
ln(δi/z01) = Uτ2

κ
ln(δi/z02). (2.4)

A series of the velocity profiles with various δi values are shown in figure 3.
Considering a control volume which has a streamwise width of dx and is bounded by

the wall and the IBL height (shown by the dashed line in figure 2a), and balancing the
streamwise momentum fluxes across the control surface with the net shear stress applied
on the top and bottom surfaces, a second equation can be obtained,

d
dx

∫ δi

z02

U2(x̂, z) dz − Ui(x̂)
d

dx

∫ δi

z02

U(x̂, z) dz = �τ(x̂)
ρ

, (2.5)

where �τ(x̂) = τ(x̂, δi(x̂)) − τ(x̂, 0). The shear stress at the wall is τ(x̂, 0) = ρU2
τ2(x̂) by

definition, while Elliott assumed that the upper boundary of the control volume resides
within the constant-stress layer which preserves the shear stress of the upstream surface,
i.e. τ(x̂, δi) = ρU2

τ1. Therefore, the net shear stress term can be expressed as �τ(x̂) =
ρU2

τ1 − ρU2
τ2(x̂). The lower bound of the integral, z02, is chosen as the lowest wall-normal

position where the logarithmic U profile is negative according to the mean velocity profile
in (2.3). To simplify the notation, we denote the mean velocity at z = δi as Ui, i.e. Ui(x̂) ≡
U(x̂, δi).

With these two equations (2.4) and (2.5), the system will be closed and the evolution
of Uτ2 and δi can be solved. The growth of δi is driven by the source term, �τ(x̂)/ρ,
which is essentially the difference in the shear stress between the lower and upper control
surfaces. The recovering downstream friction velocity Uτ2(x̂) asymptotes to Uτ1. In fact,
the streamwise evolution of the flow will only terminate when Uτ2 = Uτ1, which is
expected at an infinitely long fetch where δi � max(z01, z02). That is to say, when δi is
infinitely large, in figure 2(b) the velocity profile in the IBL (blue line) will eventually be
parallel with the upstream velocity profile (red line), thus Uτ2 = Uτ1.
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3. Numerical implementation of Elliott’s 1958 model

Elliott (1958) solved the ordinary differential equation (ODE) (2.5) analytically. This
approach is highly dependent on the analytical form of the mean velocity profile and it
can be tedious or even impossible to find an algebraic solution when the functional form
of the mean velocity profile changes. Alternatively, we may consider the integral form of
(2.5). We first consider a change of variable with δi replacing x̂ as the independent variable,
and apply substitutions

G1(δi) =
∫ δi

z02

U(δi, z) dz, G2(δi) =
∫ δi

z02

U2(δi, z) dz (3.1a,b)

to (2.5), resulting in
dG2 (δi)

dx (δi)
− Ui (δi)

dG1 (δi)

dx (δi)
= �τ (δi)

ρ
. (3.2)

Multiplying both sides of the equation by dx(δi) and integrating with respect to G1 and G2
on the left-hand side, and x on the right-hand side gives

x̂(δi) =
∫ G2(δi)

G2(δi(0))

ρ

�τ(δi)
dG2(δi) −

∫ G1(δi)

G1(δi(0))

ρUi(δi)

�τ(δi)
dG1(δi), (3.3)

which is equivalent to (2.5) when �τ is non-zero.
Here in the integral form (3.3), δi rather than x̂ is considered as the independent variable

for computational convenience, provided that dδi/dx̂ /= 0. Thus, Ui will be a function of δi
and the two-dimensional mean velocity field U(x̂, z) will be a function of δi and z instead.
The initial condition of the IBL evolution is δi(0), i.e. δi(0) = δi at x̂ = 0. The choice
of δi(0), provided small, will only lead to a constant displacement in x̂ without changing
the shape of the predicted δi trajectories (see Appendix C). In practice, an array of δi
locations is first generated, which subsequently determines Uτ2(δi) and the mean velocity
profile U(δi, z) using (2.4), the relation from matching the mean velocity profile at δi. The
fetch x̂ corresponding to each δi will then be computed from (3.3) numerically. Compared
with the original solution of Elliott (1958), this approach can easily accommodate velocity
profiles with more complicated functional forms, which will largely serve our intention in
refining the model assumptions. We also note that when presenting the model predictions
graphically, we revert to the previous convention of plotting physical quantities against x̂
to be consistent with the literature. From here on, this model will be referred to as the E58
model.

3.1. Evaluating the E58 model
We first evaluate the E58 model by comparing the experimental data (Li et al. 2021)
with predictions at matched flow conditions. Two groups of wind tunnel experiments are
designed to separately examine the effect of friction Reynolds number and roughness
Reynolds number on the flow recovery from a rough-to-smooth change. The friction
and roughness Reynolds numbers are defined as Reτ0 ≡ Uτ0δ0/ν and k+

s0 ≡ Uτ0ks/ν,
respectively, and are both evaluated based on conditions over the rough surface just
upstream of the roughness transition. The Group-Re consists of measurements with
varying Reτ0 while holding k+

s0 constant, while Group-ks measurements vary k+
s0 while

holding Reτ0 constant. The same P24 grit sandpaper is used in all cases, ensuring a
constant ks, and the variation in Reτ0 and k+

s0 is achieved by adjusting U∞, the free stream
velocity, and x0, the streamwise length of the sandpaper patch. The magnitude of the
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Reτ0 (×104)

0.5 1.0 1.5 2.0 2.5

k+
s0

0
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δ 0
/k s =

 6
4

δ 0
/k s =

 133
Group-Re

Group-ks

Figure 4. Flow conditions (Reτ0 and k+
s0) at the immediate upstream of the roughness transition of all cases.

All symbols are defined in table 1. The horizontal line is at k+
s0 = 160, and the vertical line is at Reτ0 = 14 500.

The two dashed lines show the cases with matched δ0/ks of 64 and 133. Adapted from Li et al. (2021).

Group-ks

Group-Re

Table 1. Summary of the experimental cases. The friction velocity Uτ0 employed in calculating Reτ0 and k+
s0 is

obtained over the rough fetch just upstream of the rough-to-smooth transition. Note that case Re14ks16 is shared
between Group-Re and Group-ks, therefore its symbol can take either pink or blue colour in the corresponding
group. Adapted from Li et al. (2021).

surface roughness change is denoted by M ≡ ln(z02/z01), where z02 is calculated from the
maximum Uτ2 measured downstream of the transition. Legends and flow conditions of the
cases are summarised in table 1 and the Reτ0–k+

s0 parameter space is shown in figure 4.
For further experimental details of these cases, readers are referred to the paper by Li et al.
(2021).

In the original formulation of Elliott’s model, the incoming flow is a deep surface
layer where neither δ0 nor U∞ (therefore Cf ) is defined. It is also applicable to a flat
plate boundary layer with a finite thickness where δi is only a small fraction of the entire
boundary layer. Based on the dimensional argument, the flow should be independent of δ0
in the limit of small δi/δ0. For a smooth downstream surface, the piecewise mean velocity
profile (2.3) can be rewritten as

U(z) =

⎧⎪⎪⎨
⎪⎪⎩

Uτ1

κ
ln(z/z01), z � δi

Uτ2

(
1
κ

ln(zUτ2/ν) + B
)

, z < δi,

(3.4)
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and the kinematic viscosity of the fluid ν instead of a roughness length z02 is introduced to
the problem. When choosing Uτ0 as the velocity scale and ν/Uτ0 as the length scale, the
incoming flow condition can be fully described by a non-dimensional number k+

s0, provided
that δ0 is large so it does not enter the problem. This implies that for the E58 model,
both Uτ2/Uτ0 and δiUτ0/ν in Group-Re, where k+

s0 is held constant, should collapse to a
single trend despite the changes in Reτ0. The comparison of these theoretical results with
experimental data is discussed below.

3.2. Friction velocity Uτ2

The measured and predicted recovering friction velocity Uτ2 on the downstream surface
is plotted against fetch x̂ in figure 5, using Uτ0 and ν/Uτ0 as the velocity and length
scales, respectively. The Group-Re results are shown in figure 5(a), where a single curve
represents the prediction of the E58 model for all four cases, since Reτ0 (essentially
the outer length scale) was not a parameter in the original model. Over a limited
range of x̂Uτ0/ν < 1 × 105, the measurements follow the prediction closely with no
distinguishable trend with Reτ0. The Group-ks data are presented in figure 5(b), where
a greater drop in the friction velocity downstream is observed with a higher k+

s0. The
good agreement between the data points and the model prediction indicates that such a
dependence on k+

s0 is generally well captured by the E58 model.
However, the zoomed views as shown in figures 5(c) and 5(d) reveal the

under-estimation of the E58 model in the near field (0 < x̂Uτ0/ν < 0.05 × 105). Since the
mean velocity within and above the IBL are modelled by two logarithmic laws, the flow
recovery in the near vicinity of the step change will not be captured correctly by the E58
model due to the deviation from a canonical smooth-wall mean velocity profile as detailed
in Li et al. (2019, 2021). In addition, the adequacy of the model is also expected to drop
when δi exceeds the upper limit of the logarithmic layer (chosen as z/δ99 = 0.15 in this
study), as the E58 model fails to capture the wake region. In figure 5, the data points with
δi/δ99 < 0.15 are shown by solid symbols, while the rest are shown by open symbols. For
all solid symbols, the model prediction follows the measured results closely (excluding the
near field). This good agreement still exists even after δi exceeds 0.15δ99, until it reaches
approximately 0.6δ99 (shown by the symbols with a thick black outline). The model
appears valid for a wider range of δi/δ99 than would be expected. One possible explanation
is that the effects from those factors which are not accounted for in the E58 model, such
as the inclusion of a wake function or the growth of the outer layer downstream, tend to
cancel out. This will be discussed in more detail in § 4. It is also noticed in figure 5(a) that
cases with a higher Reτ0 in Group-Re follow the model prediction for a longer x̂Uτ0/ν,
as a longer x̂Uτ0/ν is required before δi/δ99 reaches 0.6. After δi exceeds 0.6δ99, the
experimentally determined Uτ2/Uτ0 starts to decrease with x̂Uτ0/ν in both groups, in
contrast to the model predictions. For cases in Group-Re, Uτ2/Uτ0 is observed to fan out
and increase with Reτ0 at x̂Uτ0/ν � 1 × 105, which can be broadly explained as follows.
Neglecting the growth in δ99, the asymptotic value of fully recovered Uτ2/Uτ0 can be
written as

Uτ2/Uτ0 =
√

2/Cf − �U+√
2/Cf

. (3.5)

Since k+
s0 is constant in Group-Re, �U+ will also be a constant, while

√
2/Cf increases

with an increasing Reτ0. Therefore, the ratio Uτ2/Uτ0 also increases with Reτ0. A rigorous
theoretical proof of this is detailed in Appendix A.
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Figure 5. Friction velocities on the smooth surface normalised by Uτ0, the friction velocity on the rough
surface versus the viscous-scaled fetch x̂Uτ0/ν for (a) Group-Re and (b) Group-ks. Panels (c) and (d) are the
corresponding magnified view in the near field. The solid lines in all figures are predictions using the E58
model with k+

s0 = 160, while the dashed and dash-dotted lines in (b) and (d) are with k+
s0 = 110 and k+

s0 = 230,
respectively. Data points with δi/δ99 < 0.15 are shown by solid symbols, while the rest are shown by open
symbols. Symbols with a thick black outline are at δi/δ99 ≈ 0.6.

3.3. The IBL height δi

As mentioned in § 2, Uτ2 and δi are coupled through the assumed mean velocity profile
in Elliott’s model. The mean velocity profile is modelled by a piecewise logarithmic
function, with a slope proportional to Uτ2 below δi, and Uτ0 above δi. Here we examine
the validity of this assumption by reconstructing the inner logarithmic profile as U+

log =
(1/κ) ln(z+) + B, where + denotes an inner normalisation with the local Uτ2. The
comparison between the experimentally measured U+ and predicted inner log region U+

log
is shown in figure 6. Elliott’s IBL height δi is defined as the wall-normal location where
U+ − U+

log = 0, or where the smooth-wall logarithmic profiles intersect the measured
mean velocity profile, as represented by the black crosses, and we will denote it by δi,log.
This definition is essentially dependent on the local Uτ2 value rather than the shape of
the measured mean velocity profiles below δi. If the mean velocity profile is the same as
assumed by Elliott, then δi,log should coincide with the profile-based δi results. Figure 6
shows two additional profiles based estimates of δi. The circles show δi determined from
the variance profiles following the approach in Li et al. (2021), while the solid pink symbol
with the black outline shows δi estimated from U versus z1/2 profile following Antonia
& Luxton (1971). Both profile-based estimates are in good agreement with each other
(despite a small systematic difference), while both are much lower than δi,log which is
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shown by the open pink symbol. A comparison of the δi values within the logarithmic
region is shown in figure 7. Note that the method to compute Elliott’s δi,log is only expected
to perform well within the logarithmic region: when δi,log enters the wake region, the
intersecting location will remain as the upper limit of the logarithmic region regardless
of the shape of the profile. Therefore, only δi,log < 0.15δ99 are shown in figure 7. In both
Group-Re and Group-ks, δi,log is systematically higher than the δi calculated following
our current approach. This observation reiterates our previous conclusion that the mean
flow within the IBL has not yet fully recovered to a canonical smooth-wall profile, and it
also provides some useful clues in refining Elliott’s original model. In fact, δi,log can be
approximated by the following empirical equation at least in the near field:

δi,logUτ0

ν
≈ δiUτ0

ν
+ �δ+

i . (3.6)

The additive constant �δ+
i ≈ 500 is obtained based on empirical observation, and it

appears to apply within the range of Reτ0 and k+
s0 available in this study, which may be

interpreted as a constant level of deviation from the canonical smooth-wall state. It is
not clear whether this additive constant will change in the case of extreme Reτ0 or k+

s0
values. Future work is required to fully address this question. The predicted IBL thickness
is also included in figure 7. The E58 model predicts that the viscous-scaled IBL thickness
δiUτ0/ν will grow slightly faster with a higher upstream k+

s0, as shown in figure 7(b). The
comparison with the E58 model suggests that for the range of k+

s0 investigated here, we
would struggle (within experimental error) to see any difference in the development of δi in
the Group-ks experimental data. If k+

s0 effects on the growth rate of δi are to be investigated,
a much larger variation of k+

s0, or perturbation strength M will be required. As shown in
figure 7, the E58 model under-predicts δi,log, suggesting the necessity in improving the
assumptions in the E58 model. However, it is noted that the model predictions are closer
to the δi values determined from variance profiles, although these two quantities have
different physical meaning.

4. Finite-thickness boundary layer: a refined model

Elliott (1958) originally considered a thick surface layer where the total boundary layer
thickness is irrelevant in the problem and the mean velocity profile can be modelled by
a logarithmic law over the entire range of z to predict the quantities of interest. In most
engineering applications, however, the boundary layers have a finite thickness and the
growth of the IBL may be affected when it exceeds the logarithmic layer and enters the
wake region (figure 8). In this section, we adapt the E58 model to accommodate such
scenarios with a focus on the outer layer behaviour.

In particular, we continue within the framework of Elliott, which is to satisfy the
streamwise momentum equation by adjusting the local length and velocity scales in
an assumed velocity profile. However, the form of the assumed velocity profile and
momentum equation(s) need to be modified for a finite-thickness boundary layer (FTBL).
First, the mean velocity profile deviates from the logarithmic law in the outer layer,
which can be modelled by a wake function (§ 4.1). Second, alongside the growth of the
IBL, the thickness of whole boundary layer also increases spatially, modifying Uτ1, the
local friction velocity scale of the outer layer (§ 4.2). Finally, the constant-stress layer
assumption is not applicable beyond the logarithmic layer, and in § 4.3 we replace it with
a more realistic wall-normal shear-stress distribution which decreases to 0 at the edge of
the boundary layer. This model will be denoted as FTBL. Further, the deviation of the
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Figure 6. (a,c,e) Comparison between U+ (empty triangles), the viscous-scaled mean velocity profile
downstream of the step change, inner logarithmic profile U+

log = (1/κ) ln(z+) + B (solid blue line) and outer
logarithmic profile (solid red line) for case Re07ks16. Panels (b,d, f ) show the difference between U+ and U+

log
at streamwise locations corresponding to (a,c,e), respectively. Black ‘+’ symbols represent the wall-normal
position where U+ − U+

log = 0, circles represent δi computed using the variance-profile-based approach
detailed in Li et al. (2021), and the triangles with a thick black outline represent δi defined as the inflection
point in the U versus z1/2 profile (Antonia & Luxton 1971).

mean velocity profile from the log-law in a recovering internal layer can be modelled by
the blending function, as introduced by Li et al. (2021), and this variation of the model
(introduced in § 4.4) will be denoted as FTBL-B.
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Figure 7. Comparison of δi determined using the current variance-profile-based approach (solid symbols) and
δi,log, the wall-normal position where U+ − U+

log = 0 (empty symbols) for (a) Group-Re and (b) Group-ks
cases. The solid lines in both columns are predictions using the E58 model with k+

s0 = 160, while the dashed
and dash-dotted lines in (b) are with k+

s0 = 110 and k+
s0 = 230, respectively.

x0

x

z

x̂ = x – x0

δi (x̂) Uτ2(x̂), z02
Uτ1(x̂), z01

1

2

δc (x̂)

3

Figure 8. Schematic of the IBL with a finite outer layer height δc(x̂) that grows in the streamwise direction.
The flow direction is from left to right. A step change from rough to smooth is currently depicted in the figure,
but the FTBL model is also applicable to other scenarios (e.g. smooth-to-rough or rough-to-rougher). The
control volumes are delineated by thick dashed borderlines.

4.1. Wake function
We first introduce an additional variable, δc, as a representation of the boundary layer
thickness, and adopt the expression of the wake function given by Jones, Marusic & Perry
(2001),

W(η) = − 1
3κ

η3 + Π

κ
[2η2(3 − 2η)], (4.1)

where η ≡ z/δc. The mean velocity profile has zero gradient at z = δc, and typically δc ≈
1.2δ99 for a smooth-wall turbulent boundary layer at a moderate Reynolds number. Here,
Π = 0.56 (corresponding to a Coles wake strength of Πc = 0.42, as reported by Marusic
et al. (2015) from data obtained in the Melbourne High Reynolds Number Wind Tunnel).
To summarise, the mean velocity profile is modified as

U(z) =

⎧⎪⎪⎨
⎪⎪⎩

Uτ1

κ
ln
(

z
z01

)
+ Uτ1W

(
z
δc

)
, for z � δi,

Uτ2

κ
ln
(

z
z02

)
+ Uτ2W

(
z
δc

)
, for z < δi.

(4.2)
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Here we assume that the internal and outer boundary layers (below and above δi) perceive
the same overall boundary layer thickness δc, and the mixing of both logarithmic profiles
in (4.2) with the free stream flow occur at the same distance from the wall (approximately
0.15δc). This can be justified, at least in the limits: close to the roughness change
where δi → 0, the contribution from the wake function to the internal velocity profile is
negligible, and the outer layer remains unchanged from the incoming boundary layer. Very
far downstream of the roughness change where δi → δc, the boundary layer has almost
fully adapted to the new surface condition, and the expression (4.2) reduces to a profile in
equilibrium with the local wall conditions.

The velocity matching condition at z = δi consequently becomes

U(δi) = Uτ1

κ
ln
(

δi

z01

)
+ Uτ1W

(
δi

δc

)
= Uτ2

κ
ln
(

δi

z02

)
+ Uτ2W

(
δi

δc

)
. (4.3)

4.2. Streamwise evolution of the outer layer
In contrast to the E58 model, we introduce δc, the thickness of the entire boundary layer
(§ 4.1), which grows with x̂, and Uτ1 is no longer treated as a constant. Therefore, two
more unknowns δc(x̂) and Uτ1(x̂) are added to the problem, and two more equations are
required to close the system. A refined schematic of the problem is shown in figure 8.

We assume that the evolution of the outer layer is not directly affected by the presence
of the IBL. The outer-layer friction velocity Uτ1(x̂) can be determined by ensuring that the
mean velocity profile satisfies the boundary condition of U = U∞ at z = δc:

U∞
Uτ1

= 1
κ

ln
(

δc

ks

)
+ A′

FR + 2Π

κ
W(1). (4.4)

Note that now both Uτ1 and δc are functions of x̂ and their values will change in the
streamwise direction as the outer layer evolves. We can also introduce the von Kármán
momentum integral equation of the entire boundary layer (control volume 1© in figure 8),

dθ

dx̂
= U2

τ2
U2∞

, (4.5)

where θ = ∫ δc
z02

(U∞ − U)U/U2∞ dz is the momentum thickness of the entire boundary
layer. The momentum integral equation can be rearranged and further integrated with
respect to θ as

x̂ =
∫ θ(δi)

θ(δi(0))

U2∞
U2

τ2
dθ. (4.6)

These two equations (4.4) and (4.6), together with (2.4) and (3.3) which govern the flow
within the IBL, can fully determine the four unknowns (Uτ2, δi, Uτ1 and δc) of the system.

4.3. Shear-stress correction
In a turbulent boundary layer, the total shear stress τ is contributed by the wall-normal
gradient in the mean flow and the Reynolds shear stress:

τ+ = dU+

dz+ − uw+. (4.7)

The first term only dominates in the viscous sublayer, and the contribution is mainly
from the Reynolds shear stress (the second term) above the buffer region. In the limit
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Figure 9. Shear stress normalised by the friction velocity at the wall and plotted against the wall position
normalised by Jones’ boundary layer thickness. The coloured symbols are multiwire hot-wire data obtained
from turbulent boundary layers developed on a sandpaper roughness (Morrill-Winter et al. 2017). The black
empty symbols are direct numerical simulation (DNS) data of a smooth-wall boundary layer (Schlatter & Örlü
2010). The thick blue line is (4.8) and the horizontal dashed line is at τ+ = 1.

of asymptotically high Reynolds numbers, a constant-stress layer forms in the logarithmic
region with τ+ remaining at unity as determined by the equations of motion (Tennekes
& Lumley 1972, p. 54). This assumption is adequate in the E58 model, posed for the
atmospheric surface layer, because δi remains in the logarithmic layer throughout the
evolution and Reynolds numbers are typically very high. However, the validity of this
assumption diminishes when a finite-thickness turbulent boundary layer is considered.
In the wake region, the Reynolds shear stress is observed to decrease significantly to
0.5τw at z ≈ 0.5δc (Antonia & Luxton 1972; Schlatter & Örlü 2010; Morrill-Winter et al.
2017). Shear stress data from both experiments and DNS of spatially developing canonical
boundary layers are summarised in figure 9. Both rough-wall and smooth-wall boundary
layer data with a wide range of Reτ and k+

s are included. Here τ+ decreases steadily from
1 in the near-wall region to 0 in the free stream. The approximation of a constant stress,
i.e. τ+ = 1, is reasonable for z/δc < 0.15, while the deviation from this approximation is
significant above the logarithmic region. A good collapse of the data at various Reynolds
numbers is observed under the current scaling. We then fit a third-order polynomial

τ+ = p1

(
z
δc

)3

+ p2

(
z
δc

)2

− (1 + p1 + p2)
z
δc

+ 1 (4.8)

(which is constrained to τ+ = 1 at z = 0 and τ+ = 0 at z/δc = 1) to the data in the range of
0.1 < z/δc < 1, and the fitting parameters are found to be p1 = 1.9971 and p2 = −3.0789.

Here we propose a modification of the term �τ2, which is the difference between the
shear stress at the top and bottom surfaces of control volume 2© in figure 8, by replacing
the stress at z = δi with the aforementioned empirical fit (4.8) that captures the decrease
of the shear stress in the wake region. The shear-stress difference �τ2 becomes

�τ2 = ρU2
τ1

[
p1

(
δi

δc

)3

+ p2

(
δi

δc

)2

− (1 + p1 + p2)
δi

δc
+ 1

]
− ρU2

τ2. (4.9)

In the rough-to-smooth case, as δi/δc increases from 0 to 1, the sign of �τ2 changes
from positive to negative with a zero-crossing point in between, which will cause a
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division-by-zero issue in (3.3). To circumvent this problem, we consider a control volume
bounded by z = δi and z = ∞ ( 1© in figure 8), rather than the one between z = 0 and
z = δi employed by Elliott to derive (2.5). In place of (3.3), the following momentum
equation of control volume 1©, which is obtained by subtracting (4.6) from (2.5), is used
in the evolution:

− d
dx

∫ ∞

δi

U2(x̂, z) dz + (
U∞ − Ui(x̂)

) d
dx

∫ δi

z02

U(x̂, z) dz

+ U∞
d

dx

∫ ∞

δi

U(x̂, z) dz = �τ1(x̂)
ρ

. (4.10)

Here,

�τ1 = ρU2
τ1

[
p1

(
δi

δc

)3

+ p2

(
δi

δc

)2

− (1 + p1 + p2)
δi

δc
+ 1

]
, (4.11)

which will remain positive until δi = δc.
After eliminating x̂ from the integral form of (2.5) and (4.6), the equations reduce to

−
∫ G4(δi)

G4(δi(0))

1
�τ1

dG4 +
∫ G1(δi)

G1(δi(0))

U∞ − Ui

�τ1
dG1

+ U∞
∫ G3(δi)

G3(δi(0))

1
�τ1

dG3 − U2∞
ρ

∫ θ(δi)

θ(δi(0))

1
U2

τ2
dθ = 0 (4.12)

and

G3(δi) =
∫ ∞

δi

U(δi, z) dz, G4(δi) =
∫ ∞

δi

U2(δi, z) dz. (4.13a,b)

This together with (4.3) and (4.4) form a system of three equations, which are the
governing equations of the FTBL model. For a given δi, the corresponding δc, Uτ1 and
Uτ2 can be solved numerically using the Newton–Raphson method (Atkinson 1989, p. 58).
The Newton–Raphson approach is coded in MATLAB. The only two input parameters
required from the user are Reτc0 and k+

s0 for non-dimensional predictions. Additionally,
the free stream velocity U∞ and equivalent sand grain roughness ks are needed to retrieve
dimensional predictions. The MATLAB program is validated by comparing its results
with those obtained from an alternative method. With a simpler piecewise logarithmic
velocity profile, the system of ODEs (4.3), (4.4) and (4.10) can be analytically expressed
and solved numerically in Mathematica. Both programs are available as supplementary
materials available at https://doi.org/10.1017/jfm.2022.731. These two methods produce
the same predictions, as shown in figure 10.

Here onwards, we will continue to use the Newton–Raphson approach because it allows
choices of more sophisticated velocity profiles such as the blending profile. In figure 11,
the predictions from the FTBL model of both rough-to-smooth and smooth-to-rough
cases are compared with those of the E58 model. As shown in figure 11(a), for both
surface arrangements, the FTBL model results in a slower growth of δi, potentially
as a consequence of the shear-stress correction. At matched friction and roughness
Reynolds numbers, the IBL growth is more rapid following a smooth-to-rough change
than a rough-to-smooth one. This agrees qualitatively with the experimental observation
of Antonia & Luxton (1971, 1972), who attributed the slow growth of δi in the
rough-to-smooth case to the fact that it is a relaxation process. Figure 11(b) shows the
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Figure 10. Results obtained by solving the integral equations using Newton–Raphson method and by solving
the system of ODEs directly in Mathematica. The parameters of the rough-to-smooth change are matched to
case Re14ks16 with ks1Uτ0/ν = 160 and Reτc0 = 16 500.
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Figure 11. Comparison of the predicted (a) IBL height δi and (b) friction velocity Uτ2 from the E58 and FTBL
models. For both rough-to-smooth and smooth-to-rough cases, max(ks1, ks2)Uτ0/ν = 160 and Reτc0 = 16 500.
The flow conditions of the rough-to-smooth case are matched to case Re14ks16.

predicted Uτ2 for both models and surface arrangements. The overshoot in Uτ2 following
a smooth-to-rough change and the undershoot in Uτ2 following a rough-to-smooth one as
well as the subsequent recovery are captured by both models. The FTBL model predicts a
slightly lower Uτ2 compared with the E58 model for both surface configurations.

The predicted skin-friction coefficient Cf ≡ 2U2
τ2/U2∞ is shown in figure 12(b).

Following Baars et al. (2016) and Sridhar (2018), the expected Cf of a turbulent boundary
layer on a homogeneous wall with the same roughness as the downstream surface can be
estimated as

Cfe = 2
(
ln (Reθ ) /0.38 + 3.7 − �U+)−2

, (4.14)

where �U+ is the Hama function of the downstream roughness. Cfe is shown by
the grey lines in figure 12(a). Here Cf undershoots Cfe in the rough-to-smooth case
and overshoots Cfe in the smooth-to-rough one, before the difference between the two
becomes insignificant at x̂/δ0 ≈ 20. Downstream of this location, Cf decreases with
increasing x̂ in both cases. The calculation terminates when δi reaches δc, however, for
the rough-to-smooth case, the growth of δi in the far field is sensitive to the fit in (4.8).
By using a slightly different pair of coefficients (p1 = 2.06 and p2 = −3.12), as shown by
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Figure 12. Predictions of the FTBL model with prescribed flow conditions of max(ks1, ks2)Uτ0/ν = 160 and
Reτc0 = 16 500. The dotted green line represents the rough-to-smooth case with slightly modified coefficients
of p1 = 2.06 and p2 = −3.12 in the shear-stress profile (4.8). (a) Skin-friction coefficient Cf of the downstream
surface plotted against x̂/δ0. The light grey lines are the corresponding asymptotic values of the downstream
surface, estimated using (4.14). (b) The IBL thickness δi normalised by the local boundary layer thickness δc,
plotted against streamwise fetch x̂ normalised by the boundary layer thickness at the roughness transition.

the dotted line in figure 12(b), the ratio δi/δc plateaus around 0.8 at large x̂/δ0 instead of
reaching 1. However, such differences are relatively inconsequential. At k+

s0 ∼ O(102) and
Reτc0 ∼ O(104) as in the present study, when δi/δc � 0.8, the flow has largely recovered
to the undisturbed state of the downstream surface, so the exact location of the IBL is
not important. The distinction between the IBL and the outer layer in the mean velocity
profile is very small, and it is nearly impossible to distinguish from the measurement
noise in an experimental dataset. For the smooth-to-rough case, on the other hand, a small
perturbation in the coefficients does not make any significant changes in the predicted δi
trajectory.

The contribution from each refinement introduced so far in §§ 4.1–4.3 is detailed in
Appendix D. Different choices of the wake function and shear-stress profile have also been
considered, and they are found to only modify the prediction slightly without changing the
Reτ0 or k+

s0 trends.

4.4. Recovering flow in the IBL
So far, the mean velocity profile within the IBL has been modelled by a logarithmic law
with a slope determined by the local friction velocity Uτ2(x̂). The non-equilibrium effect
of the flow within the IBL, i.e. the deviation from the logarithmic profile (Antonia &
Luxton 1972; Li et al. 2019; Rouhi et al. 2019), is not considered. In this section, we
would like to make further improvements by incorporating the blending velocity profile
formulated by Li et al. (2021), which provides a better representation of the adjusting
mean velocity profile for rough-to-smooth transitions.

We first improve the mean velocity representation in the near-wall region with a Musker
profile. The full velocity profile can be expressed as

U(z) =

⎧⎪⎪⎨
⎪⎪⎩

Uτ1

κ
ln
(

z
z01

)
+ Uτ1W

(
z
δc

)
, for z � δi,

Uτ2U+
Musker

(
zUτ2

ν

)
+ Uτ2W

(
z
δc

)
, for z < δi,

(4.15)
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where U+
Musker stands for the Musker profile (composite velocity profile excluding the wake

function) as used by Chauhan et al. (2009) (the expression of the Musker profile is detailed
in Appendix B). By assuming that both profiles must simultaneously match at z = δi, we
also get

U(δi) = Uτ1

κ
ln
(

δi

z01

)
+ Uτ1W

(
δi

δc

)
= Uτ2U+

Musker

(
δiUτ2

ν

)
+ Uτ2W

(
δi

δc

)
. (4.16)

If we consider the lower bound of the logarithmic region as 100 wall units, then for a
flow with Reτ ∼ O(105), the viscous sublayer and buffer layer together will only take up
0.1 % of the entire boundary layer thickness. Despite the negligible effect on the predicted
results, the inclusion of the Musker profile is useful to facilitate the direct comparison
of the mean velocity profiles between the model prediction and experiments. Using the
Musker profile also permits further modifications to the velocity profile within the IBL to
model the non-equilibrium effect to be detailed below.

We account for the non-equilibrium behaviour of the mean flow within the IBL by
replacing the mean velocity profile (4.2) with a blending model as formulated empirically
by Li et al. (2021). The recovering mean velocity profile is constructed from blending
canonical smooth-wall and rough-wall boundary layer velocity profiles,

U+ = U+
S E + U∗+

R (1 − E), (4.17)

where E is given by an error function in the IBL, and set to 0 to recover the rough-wall
profile above it,

E(z+;μ, σ) =

⎧⎪⎨
⎪⎩

1
2

[
1 − erf

(
ln(z+) − μ√

2σ 2

)]
, for z < δi,

0, for z � δi

(4.18)

with the parameters modelled as

μ = ln(δ+
i ) − μ0, μ0 = 0.7 and σ = 1.0. (4.19a–c)

The EL thickness, δe, can be readily derived from E. For instance, by setting a threshold
at E = 0.99 (i.e. roughly 1 % difference between U+ and U+

S ), an EL thickness of
δe = 0.05δi results, and a threshold at E = 0.95 leads to δe = 0.1δi. These are in good
agreement with previous δe definitions based on the mean velocity or shear-stress profiles
in numerical studies (Shir 1972; Rao et al. 1974; Rouhi et al. 2019).

Here, δ+
i is the viscous-scaled IBL thickness as determined from the ‘kink’ in the mean

velocity or variance profile. In § 3.3, we have previously shown that as the mean flow
within the IBL deviates from a canonical smooth-wall profile, δi determined directly from
the ‘kink’ in the measured profile is consistently lower than δi,log, which is defined as the
wall-normal location where the assumed equilibrium smooth-wall mean velocity profile
scaled with the local Uτ2 intersects the outer-layer mean velocity profile. If the mean
velocity in the IBL is the same as that of a canonical smooth-wall boundary layer, then
δi = δi,log, as in the case with all the model predictions we have made so far. From this
point on, the recovering flow in the IBL is modelled by a blending velocity profile, and we
must distinguish the difference between δi and δi,log, which according to figure 7 can be
approximately modelled as a constant shift when scaled by Uτ0:

δi,logUτ0

ν
= δiUτ0

ν
+ �δ+

i . (4.20)

The constant shift is chosen as �δ+
i = 500 as discussed in § 3.3.
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Figure 13. A comparison of the predicted (a) δi, IBL thickness; (b) Uτ2, friction velocity at the downstream
surface from FTBL and FTBL-B models with experimental data. The parameters of the rough-to-smooth
change are matched to case Re14ks16 with ks1Uτ0/ν = 160 and Reτc0 = 16 500.

In summary, in the blending velocity model described above, there are three empirically
determined parameters, namely �δ+

i (see § 3.3), μ0 and σ (see Li et al. 2021). Here for
the FTBL-B model, we use (�δ+

i , μ0, σ ) = (500, 0.7, 1.0) as determined in the previous
study, and compare the predictions with the results of the FTBL model in figure 13. The
FTBL-B model predicts slightly higher δi and Uτ2 compared with the FTBL model, and
the effect of the blending velocity profile is most pronounced in the Uτ2 close to the
rough-to-smooth change. Overall, the FTBL-B model offers a small improvement in the
agreement with experimental data (shown by the symbols in figure 13).

5. Comparison with the experimental data

Finally, the performance of the FTBL-B model is tested by comparing the model
prediction with the experimentally obtained data in this section. To draw a direct
comparison with the experimental results, a prediction is made for each case using the
same Reτ0 and k+

s0 as in the experiments.
Figure 14 shows the comparison between the mean velocity profiles measured

experimentally (symbols), and those predicted by the E58 model (grey solid lines) and
the FTBL-B model (black solid lines). Case Re21ks16 is shown here as an example, and
qualitatively similar results are observed in all other cases. Despite an obvious absence of
the wake in the outer layer as well as an inner profile in the buffer region and below, the
E58 model also does not capture the velocity profile in the logarithmic region close to the
roughness transition (see figure 14a,b). The FTBL-B model has an improved agreement
with the measured profile compared with the original one. The relative error shown in
figure 14(c,d) highlights the improvement by the FTBL-B model especially in the near-wall
and wake regions. We would like to note that the predictions of the original and refined
models are tested against the experimental dataset acquired in this study, which has also
been used to obtain the coefficients in the blending model of the mean velocity profile. For
future works, a wider range of experimental data from various sources and flow conditions
is necessary to further evaluate the performance of the refined model.

The performance of the E58 and FTBL-B models can be further assessed by comparing
the predicted parameters. The IBL thickness δi is shown in figure 15. The δi extracted
from the measured profiles are shown by symbols, while the predictions using the E58 and
FTBL-B models are shown by black and coloured curves, respectively. The same legend
will be adhered to in the following figures. The prediction of the FTBL-B model is close
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Figure 14. (a,b) Mean velocity profiles normalised by the local Uτ2 for case Re21ks16. The experimental
data are shown by the symbols, while the thick black and grey lines represent the FTBL-B and E58 models,
respectively. Panels (c,d) show the relative error in U/Uτ2 predicted by FTBL-B (thick black lines) and E58
(grey lines) models, with the experimental data as the baseline. Panels (a,b,c,d) are at x̂/δ0 = 0.1, 0.2, 0.8 and
3.5, corresponding to x̂Uτ0/ν = 2200, 4400, 18 000 and 75 000, respectively.

to the results of the E58 model but now captures well the dependence on the friction
Reynolds number, which was absent in Elliott’s original formulation. In figure 15(a), both
the experimental data and the FTBL-B model show that for a higher Reτ0, a higher δiUτ0/ν
is observed in the far field, and the FTBL-B model prediction approximates that of E58
with increasing Reτ0. This is expected, because the dependence on Reτ0 primarily results
from the inclusion of the wake function in the FTBL-B model, and at a higher Reτ0 the
logarithmic region is wider and the assumptions in the E58 model are valid for a longer
fetch. Similar to the prediction from the E58 model, the slight increase of δi with k+

s0 is
also reflected in the prediction from the FTBL-B model as shown in figure 15(d). We lack
the range of k+

s0 to see the trend of δi with k+
s0 in the current experiments.

The local friction velocity Uτ2 on the downstream smooth wall is shown in figure 16.
Similar to the previous figure, here we use coloured symbols to represent Uτ2 measured
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Figure 15. Profile-based IBL thickness δi obtained from experimental measurements (symbols) and FTBL-B
model predictions (coloured lines). Symbols and colours are defined in table 1. Predictions using the E58
model are shown by the black lines; dashed, solid and dot–dashed lines correspond to k+

s0 = 111, 160 and 230,
respectively. Note that the relationship between δi and δi,log for the blending model is given by (4.20). The
Group-Re and Group-ks cases are shown in (a,b), respectively, while (c,d) are the zoomed views of (a,b) in the
vicinity of the step change. The error bar on selected data points shows the change in δi with a ±10 % variation
in the threshold used to determine δi from the streamwise change of the variance profile (Li et al. 2021).

experimentally, black and coloured curves for predictions by the E58 and FTBL-B model,
respectively. Close to the roughness transition, Uτ2 predicted using the refined model is
higher than that of the original model, leading to an improved agreement between the
experimental data and prediction in the near field for both Group-Re and Group-ks. This
is particularly noticeable in the zoomed views given in figure 16(c,d). This improvement
is mainly contributed by the refinement of �δ+

i very close to the step change (where the
fetch is a few hundred viscous units), while the non-equilibrium effect described by μ0
is the predominant factor in the intermediate range (where the fetch is ∼ O(104) viscous
units). At large x̂ in figure 16(a), Uτ2 predicted by the FTBL-B model also approaches that
by the E58 model as Reτ0 increases. As shown by the Group-ks results in figure 16(b,d),
the effect of k+

s0 on Uτ2 is much stronger than that on δi, and the decrease of Uτ2/Uτ0 with
increasing k+

s0 is clearly visible in both model predictions and experimental data.
The outer quantities, δ99 and Uτ1 are shown in figure 17. Note that although we use δc

(the boundary layer thickness following the definition of Jones et al. (2001) in the refined
model), here we present the results of δ99 interpolated from each predicted profile to allow
an easier comparison with the experiments. In the E58 model, δ99 (or any form of the
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Figure 16. The friction velocity, Uτ2, on the downstream smooth wall obtained from experimental
measurements (symbols), E58 model predictions (black lines) and FTBL-B model predictions (coloured lines).
Legends are the same as in figure 15. The Group-Re and Group-ks cases are shown in (a,b), respectively, while
(c,d) are the zoomed views of (a,b) in the vicinity of the step change.

boundary layer thickness) is absent and Uτ1 is assumed to be equal to Uτ0 at all streamwise
locations, so here we only show the coloured lines (predictions from the FTBL-B model)
in the figure to compare with the experimental results. The growth of δ99 becomes less
aggressive after the roughness transition compared with a rough-wall turbulent boundary
layer (Li et al. 2021). As shown in figure 17(a,b), the growth of δ99 is well captured by
the refined model in both Group-Re and Group-ks. The outer-layer friction velocity scale
Uτ1 is shown in figures 17(c) and 17(d). The symbols represent Uτ1 computed from the
measured turbulence intensity profiles with an assumed outer-layer similarity, following
the method detailed in Li et al. (2021). Despite the good agreement between the predicted
and measured δ99, the experimentally observed decrease of Uτ1 with an increasing x̂ is
much faster than the predicted trend from the model. For instance, at x̂Uτ0/ν = 1.5 × 105,
the measured Uτ1 for case Re21ks16 has decreased by 3 % compared with its upstream
value while the prediction shows less than 1 % drop. For a given δc, the measured Uτ1
appears to be lower than the results computed using the outer-layer relationship (4.4). We
speculate that a high rough-wall Uτ1 cannot be sustained by the low near-wall production
when the flow in the IBL is being replaced by smooth-wall structures. In future work, a
new relationship other than (4.4) may be required to account for the decay of Uτ1 in the
streamwise direction.
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Figure 17. Comparison of δ99 and Uτ1 obtained from experimental data and predicted by the E58 and FTBL-B
models. The experimental data are shown by the corresponding symbols while the model predictions are shown
by lines.

6. Conclusions

In this study, we numerically restate Elliott’s (1958) classical model of the mean velocity
evolution in the streamwise direction after a roughness transition, and provide further
refinements of the model by considering more physically realistic assumptions for a
developing turbulent boundary layer. The major findings are summarised below.

On the basis of Elliott’s original model, we consider several refinements, including
adding a wake function to the logarithmic velocity profile, modelling the decay of the shear
stress when δi exceeds the constant-stress layer, modelling the streamwise evolution of the
outer layer with two additional governing equations, and replacing the inner log-law profile
with the blending model to account for the non-equilibrium behaviour in the IBL. After
implementing these refinements, an improved agreement between the model prediction
and the experimental data is observed. So far, the FTBL-B model has only been tested
against the present experimental dataset. Comparison with a wider range of datasets from
various sources is required in future works.

Compared with the original E58 model which is intended for a deep surface layer,
the refinements developed here make the model more suitable for a spatially developing
turbulent boundary layer with a finite thickness. Some refinements, including the
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consideration of a wake profile, the shear stress profile and the streamwise growth of the
entire boundary layer thickness, can also be applied to smooth-to-rough transitions. The
blending mean velocity profile has only been tested in the rough-to-smooth case, although
in the future the validity of the concept can be explored in other roughness heterogeneity
scenarios.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.731.
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Appendix A. Friction velocity ratio Uτ2/Uτ0 far downstream of a rough-to-smooth
change in a finite-thickness turbulent boundary layer

This appendix details a theoretical analysis of the aforementioned far-field behaviour
which is not captured by Elliott’s model. We continue using Uτ2 and Uτ0 to denote
the friction velocities of the smooth-wall and rough-wall boundary layers, respectively,
although in the following derivation we assume that these two boundary layers are in
quasiequilibrium with the local surface condition (rather than in the recovering state as
discussed above). The boundary layer thicknesses on the smooth wall and rough wall are
denoted by δ and δ0, respectively. Note that δ is larger than δ0 due to the growth of the
boundary layer downstream of the step change. The two boundary layers are assumed to
share the same wake function W(z/δ) (or W(z/δ0) on the rough wall). Here U+∞ for a
canonical smooth-wall turbulent boundary layer can be expressed as

U∞
Uτ2

= 1
κ

ln
(

δUτ2

ν

)
+ B + 2Π

κ
W(1), (A1)

while its rough-wall counterpart is

U∞
Uτ0

= 1
κ

ln
(

δ0Uτ0

ν

)
+ A′

FR − 1
κ

ln(k+
s0) + 2Π

κ
W(1). (A2)

Therefore, the friction velocity ratio is

Uτ2

Uτ0
=

1
κ

ln
(

δ0Uτ0

ν

)
+ A′

FR − 1
κ

ln(k+
s0) + 2Π

κ
W(1)

1
κ

ln
(

δUτ2

ν

)
+ B + 2Π

κ
W(1)

=
1
κ

ln
(

δ0Uτ0

ν

)
+ A′

FR − 1
κ

ln(k+
s0) + 2Π

κ
W(1)

1
κ

ln
(

δ0Uτ0

ν

)
+ 1

κ
ln
(

Uτ2

Uτ0

)
+ 1

κ
ln
(

δ

δ0

)
+ B + 2Π

κ
W(1)

. (A3)
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For Group-Re cases, k+
s0 is held constant. Therefore, we can define two constants

C0 = A′
FR − 1

κ
ln(k+

s0) + 2Π

κ
W(1), (A4)

C = B + 2Π

κ
W(1), (A5)

and two non-dimensional quantities

U∗
τ2 = Uτ2

Uτ0
, (A6)

δ∗ = δ

δ0
. (A7)

Also note that Reτ0 ≡ Uτ0δ0/ν, thus (A3) can be rearranged to

F(U∗
τ2, Reτ0, δ

∗) = U∗
τ2

(
1
κ

ln Reτ0 + 1
κ

ln U∗
τ2 + 1

κ
ln δ∗ + C

)
− 1

κ
ln Reτ0 − C0 = 0.

(A8)

For a prescribed δ∗ (which is approximately equivalent to a given fetch), the dependence
of U∗

τ2 on Reτ0 can be studied using the chain rule. Equation (A8) is differentiated with
regard to Reτ0 while δ∗ is held constant:

0 = ∂F
∂Reτ0

+ ∂F
∂U∗

τ2

dU∗
τ2

dReτ0
. (A9)

The derivative is solved as

dU∗
τ2

dReτ0
=

1
κReτ0

(1 − U∗
τ2)

1
κ

ln Reτ0 + 1
κ

ln U∗
τ2 + 1

κ
ln δ∗ + C

, (A10)

which is positive as U∗
τ2 � 1. This indicates that U∗

τ2 increases with Reτ0 in the far field,
in good agreement with the measurements shown in figure 5(a).

The dependence of U∗
τ2 on δ∗ for a constant Reτ0 can be obtained via a similar approach.

The derivative is found as

dU∗
τ2

dδ∗ =
−U∗

τ2
κδ∗

1
κ

ln Reτ0 + 1
κ

ln U∗
τ2 + 1

κ
ln δ∗ + C

, (A11)

indicating a decreasing trend in U∗
τ2 as δ∗ increases. This agrees with the observation that

in the far field, U∗
τ2 decreases with x̂Uτ0/ν in each case in figure 5(a).

949 A7-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.731


Modelling TBL response following a step change of roughness

Appendix B. Modified Musker mean velocity profile

We adopt the expression of the inner mean velocity profile of a smooth-wall turbulent
boundary layer proposed by Chauhan et al. (2009). The Musker inner profile is given by

U+
inner = 1

κ
ln
(

z+−a
−a

)
+ R2

a(4α − a)

[
− a

R

√
(z+−α)2 + β2

z+−a

+ α

β
(4α + 5a)

(
arctan

(
z+−α

β

)
+ arctan

(
α

β

))]
, (B1)

with α = (−1/κ − a)/2, β = √−2aα − α2 and R =
√

α2 + β2. For consistency with
the logarithmic law constants κ = 0.384 and B = 4.17, a is chosen as −10.3061. To
account for the undershoot for the indicator function z+(dU+/dz+) at around z+ ≈ 50,
an exponential term is added to the original expression (Monkewitz, Chauhan & Nagib
2007):

U+
inner(modified) = U+

inner+
exp[− ln2(z+/30)]

2.85
. (B2)

Appendix C. Initial condition

The initial condition is chosen as δi(0) = max(z01, z02). This is the smallest value δi can
take without resulting in a negative U or Uτ2. The initial value of Uτ2 is determined
subsequently via (2.4). It is possible to start the evolution with a higher δi at x̂ = 0 and a
few examples are shown in figure 18(a,b). This figure shows the evolution of δiUτ1/ν as
a function of x̂Uτ1/ν, computed using the numerical implementation of Elliott’s model as
described in (3.3)–(3.1a,b). A piecewise log profile as depicted in figure 2(b) is used in the
calculation.

Rough-to-smooth and smooth-to-rough cases are shown in figures 18(a) and 18(b),
respectively. The line colours, red, orange, green and blue correspond to increasing δi(0).
A higher δi(0) will lead to a higher δi farther downstream. If we choose the red line with
δi(0) = max(z01, z02) from figure 18(a,b) as the baseline case, and shift the other three
lines downstream until the first point in each line falls on top of the red line, we can see an
almost perfect collapse for the remaining part of the curves. This scenario is presented in
figure 18(c,d). In other words, using a different starting point of δi(0) does not change the
shape of the predicted δi versus x̂ curve: it is essentially equivalent to displacing the curve
in x by a certain amount. To demonstrate this analytically, we consider two different initial
values δi1(0) and δi2(0) and compute the corresponding fetch x̂1 and x̂2 following (3.3):

x̂2(δi) =
∫ δi

δi2(0)

ρ

�τ(ξ)
G′

2(ξ) dξ −
∫ δi

δi2(0)

ρUi(ξ)

�τ(ξ)
G′

1(ξ) dξ

=
(∫ δi1(0)

δi2(0)

+
∫ δi

δi1(0)

)
ρ

�τ(ξ)
G′

2(ξ) dξ −
(∫ δi1(0)

δi2(0)

+
∫ δi

δi1(0)

)
ρUi(ξ)

�τ(ξ)
G′

1(ξ) dξ

=
∫ δi1(0)

δi2(0)

ρ

�τ(ξ)

[
G′

2(ξ) − Ui(ξ)G′
1(ξ)

]
dξ + x̂1(δi). (C1)
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Figure 18. Predicted IBL thicknesses δi using (2.3) and (3.3) for (a) rough-to-smooth and (b) smooth-to-rough
cases. Panels (c,d) show the same data as in (a,b) but with the abscissa shifted by �x̂ (see (C2) for the analytical
expression) for each curve. Line colours red, orange, green and blue correspond to δi(0)/ max(z01, z02) =
1, 10, 20 and 26, respectively. Note that δi(0)/ max(z01, z02) = 26 is approximately δi(0)/ max(ks1, ks2) = 1.
For both rough-to-smooth and smooth-to-rough cases, max(ks1, ks2)Uτ1/ν = 160.

Therefore, �x̂, the shift in x̂ required for the two predictions with different initial
conditions to match can be expressed as

�x̂ = x̂2(δi) − x̂1(δi) =
∫ δi1(0)

δi2(0)

ρ

�τ(ξ)

[
G′

2(ξ) − Ui(ξ)G′
1(ξ)

]
dξ. (C2)

With δi1(0) and δi2(0) as the upper and lower limits of the integral being constants, it is
apparent that �x̂ is also a constant (for any value of δi, and therefore for any x̂ location).

Appendix D. Model variations

The predicted results with refinements detailed in §§ 4.1–4.3 are summarised in figure 19.
We compare the predicted δiUτ0/ν and Uτ2/Uτ0 of the original E58 model with
those after accumulatively introducing each refinement. The wake refinement (§ 4.1) is
labelled as ‘Π ’, the growing outer layer (detailed in § 4.2) is labelled as ‘δc(x̂)’ and the
shear-stress correction (§ 4.3) is labelled as ‘τ ’. For the rough-to-smooth case shown in
figure 19(a,c), including a wake function (‘Π ’) leads to a lower δiUτ0/ν and a higher
Uτ2/Uτ0. After introducing the growth of δc(x̂) (‘Π + δc(x̂)’), this effect is cancelled
in the near field (x̂Uτ0/ν � 1.5 × 105), but the predicted δiUτ0/ν continues to grow
rapidly and overshoots the result from the E58 model. Finally, after incorporating the
shear-stress correction (‘Π + δc(x̂) + τ ’, equivalent to FTBL), the predicted δiUτ0/ν
follows a similar trend as that of case Π , while Uτ2/Uτ0 is lower than that of E58. For the
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Figure 19. Comparison of the predictions from Elliott’s original model (‘E58’ as in the legend), the refined
model with the a wake function (‘Π ’), with both wake and a δc that evolves in the streamwise direction (‘Π +
δc(x̂)’), and finally with shear-stress correction on top of both wake and growing δc refinements (‘Π + δc(x̂) +
τ ’). Panels (a,c) are for the rough-to-smooth case and (b,d) are for the smooth-to-rough case. Panels (a,b)
are the IBL thickness and (c,d) are the ratio between the downstream and upstream friction velocity. The
coloured dot on each curve marks the location where δi = 0.15δc, representing the onset of the wake region.
For both rough-to-smooth and smooth-to-rough cases, max(ks1, ks2)Uτ0/ν = 160 and Reτc = 16 500. The flow
conditions of the rough-to-smooth case are matched to case Re14ks16.
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Figure 20. Predictions of the E58 and FTBL models, and the modified FTBL model with alternative wake
and shear-stress profiles. Panel (a) is the IBL thickness and (b) is the friction velocity ratio. We obtained δi by
thresholding the streamwise variation in the variance profiles (Li et al. 2021), and the error bars in (a) show the
change in δi when this threshold is varied by ±10 %. The error bars in (b) are the estimated repeatability of the
present OFI measurement (Li et al. 2019).
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smooth-to-rough case in figure 19(b,d), ‘Π ’ refinement lowers both δiUτ0/ν and Uτ2/Uτ0,
and the combination ‘Π + δc(x̂)’ makes δiUτ0/ν even lower. However, by including the
shear-stress correction (‘Π + δc(x̂) + τ ’), δiUτ0/ν is brought back to a similar trend as
that of ‘Π ’. To summarise, after incorporating the refinements detailed in §§ 4.1–4.3,
the predicted δiUτ0/ν and Uτ2/Uτ0 are found to be lower than that of E58 in both
rough-to-smooth and smooth-to-rough cases.

Figure 20 shows the predictions of the FTBL model with alternative choices of the
wake and shear-stress profiles. Here, we substitute (4.1) with a sine-squared wake function
(Coles 1956) with cubic correction to ensure a zero velocity gradient at the edge of the
boundary layer, and (4.8) with a simple cosine function as τ+ = [cos(πη) + 1]/2. These
different choices of the exact forms have little influence on the model predictions.
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