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Abstract

Convergence in probability and central limit laws of bipower variation for Gaussian
processes with stationary increments and for integrals with respect to such processes
are derived. The main tools of the proofs are some recent powerful techniques of
Wiener/Itô/Malliavin calculus for establishing limit laws, due to Nualart, Peccati, and
others.
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1. Introduction

The theory of bipower, and more generally multipower, variation has been developed out of
questions raised in mathematical finance; for motivation, some first results, and applications,
see [2], [3], [4], [5], [6], [8], [29], [30], [31], and [32]. It is natural, therefore, that initially
the focus was on Brownian semimartingales, for which a rather complete and comprehensive
theory is now available; cf. [10] (see also [9] and [21]). Extensions of the theory to Lévy
processes and Itô semimartingales have been obtained, particularly by Jacod [18] (cf. also [5]),
and applications to finance of such extensions are discussed in [20] and [28].

A further avenue of generalisation is to stochastic integrals with respect to Gaussian processes
having stationary increments. Starting points in this direction are [7] and [14], which treated
the power variation case, providing, in particular, a feasible central limit theorem for inference
on the integrands in question. (As discussed in [7], an important early forerunner of that paper
is a paper by Guyon and Leon [16], in which quadratic variation limit results for stationary
Gaussian processes were derived.) The techniques used there, as well as in the present paper
which considers the bipower case, come from very powerful recent results developed in the
context of Wiener/Itô/Malliavin calculus, especially by Nualart, Peccati, and coauthors; see
[24], [25], and [26] (cf. also [22]). (In fact, we believe that there are no other tools available
that would allow derivation of the conclusions in the present paper.)
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Bipower variation for Gaussian processes with stationary increments 133

The structure of the paper is as follows. In Section 2 we list a number of background results
needed in Appendix A for the proofs of the main results, which are presented in Sections 3
and 4. In Sections 3 and 4 we discuss limit laws of bipower variation for Gaussian processes
with stationary increments and for integrals with respect to such processes, respectively. In
Section 5 we conclude the paper. The proofs are given in Appendix A.

2. Background

In this section we review the basic concepts of the Wiener chaos expansion. In particular,
we present a multiplication formula (Proposition 1) and a multivariate central limit theorem for
a sequence of random variables which admit a chaos representation (Theorem 1). The latter is
based on the theory for multiple stochastic integrals developed in [17], [24], and [26].

Consider a complete probability space (�,F ,P) and a Gaussian subspaceH1 ofL2(�, F , P)

whose elements are zero-mean Gaussian random variables. Let H be a separable Hilbert space
with scalar product denoted by 〈·, ·〉H and norm ‖·‖H. We will assume that there is an isometry,

W : H → H1,

h �→ W(h),

in the sense that
E[W(h1)W(h2)] = 〈h1, h2〉H.

It is easy to see that this map has to be linear.
For any m ≥ 2, we denote by Hm the mth Wiener chaos, that is, the closed subspace of

L2(�, F , P) generated by the random variables Hm(X), where X ∈ H1, E[X2] = 1, and Hm

is the mth Hermite polynomial, i.e. H0(x) = 1 and

Hm(x) = (−1)m exp

(
x2

2

)
dm

dxm

(
exp

(
−x2

2

))
.

Suppose that H is infinite-dimensional, and let {ei, i ≥ 1} be an orthonormal basis of H.
Denote by � the set of all sequences a = (a1, a2, . . .), ai ∈ N, such that all the terms, except
a finite number of them, vanish. For a ∈ �, we set a! = ∏∞

i=1 ai ! and |a| = ∑∞
i=1 ai . For any

multi-index a ∈ �, we define

�a = 1√
a!

∞∏
i=1

Hai
(W(ei)).

The family of random variables {�a, a ∈ �} is an orthonormal system. In fact,

E

[ ∞∏
i=1

Hai
(W(ei))

∞∏
i=1

Hbi
(W(ei))

]
= δaba!,

where δab denotes the Kronecker symbol. Moreover, {�a | a ∈ �, |a| = m} is a complete
orthonormal system in Hm.

Let a ∈ � with |a| = m. The mapping

Im : H
�m → Hm,

∞⊗̃
i=1

e
⊗ai

i �→
∞∏
i=1

Hai
(W(ei)),
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134 O. E. BARNDORFF-NIELSEN ET AL.

between the symmetric tensor product H
�m, equipped with the norm

√
m! ‖ · ‖H⊗m , and the

mth chaos Hm is a linear isometry. Here ‘⊗̃’ denotes the symmetrization of the tensor product
‘⊗’ and I0 is the identity in R.

For any h = h1 ⊗ · · · ⊗ hm and g = g1 ⊗ · · · ⊗ gm ∈ H
⊗m, we define the pth contraction

of h and g, denoted by h ⊗p g, as the element of H
⊗2(m−p) given by

h ⊗p g = 〈h1, g1〉H · · · 〈hp, gp〉Hhp+1 ⊗ · · · ⊗ hm ⊗ gp+1 ⊗ · · · ⊗ gm.

This definition can be extended by linearity to any element of H
⊗m. The element h ⊗p g does

not necessarily belong to H
�(2m−p), even if h and g belong to H

�m. We denote by h⊗̃pg the
symmetrization of h ⊗p g.

Proposition 1. For any h ∈ H
⊗p and g ∈ H

⊗q , we have

Ip(h)Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (h⊗̃rg). (1)

Proof. First, note that
I1(ei) = W(ei).

Let a ∈ � with |a| = p and q = 1. Owing to the linearity of Ip, it suffices to consider the case
in which h = ⊗̃∞

i=1e
⊗ai

i and g = ej . It holds that

Ip

( ∞⊗̃
i=1

e
⊗ai

i

)
I1(ej ) =

∞∏
i=1

Hai
(W(ei))W(ej ).

Assume that j is an index such that aj = 0. Then
∞⊗̃
i=1

e
⊗ai

i ⊗̃1ej = 0

and
∞∏
i=1

Hai
(W(ei))W(ej ) = Ip+1

( ∞⊗̃
i=1

e
⊗ai

i ⊗̃ej

)
;

so we have

Ip

( ∞⊗̃
i=1

e
⊗ai

i

)
I1(ej ) = Ip+1

( ∞⊗̃
i=1

e
⊗ai

i ⊗̃ej

)
+ pIp−1

( ∞⊗̃
i=1

e
⊗ai

i ⊗̃1ej

)
.

Now assume that aj �= 0. Then we obtain the identity
∞⊗̃
i=1

e
⊗ai

i ⊗̃1ej = aj

p

∞⊗̃
i=1

e
⊗a′

i

i

with a′
i = ai if i �= j and a′

j = aj − 1. Furthermore,

∞∏
i=1

Hai
(W(ei))W(ej ) =

∞∏
i=1, i �=j

Hai
(W(ei))(Haj +1(W(ej )) + ajHaj −1(W(ej )))

= Ip+1

( ∞⊗̃
i=1

e
⊗ai

i ⊗̃ej

)
+ pIp−1

( ∞⊗̃
i=1

e
⊗ai

i ⊗̃1ej

)
,
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Bipower variation for Gaussian processes with stationary increments 135

since the Hermite polynomials verify that

Hn+1(x) = xHn(x) − nHn−1(x).

Hence, relationship (1) is true for q = 1. The general formula follows by induction through
the lines of the proof of Proposition 1.1.3 of [23].

Remark 1. Note that if we take h = e
⊗p
i and g = e

⊗q
i then we obtain the well-known identity

Hp(W(ei))Hq(W(ei)) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Hp+q−2r (W(ei)).

Now, let G be the σ -field generated by the random variables {W(h) | h ∈ H}. Any square-
integrable random variable F ∈ L2(�, G, P) has a unique chaos decomposition

F =
∞∑

m=0

Im(hm),

where hm ∈ H
�m (see [23, p. 13] for more details).

Finally, we present a multivariate central limit theorem for sequences of functionals Fn ∈
L2(�, G, P).

Theorem 1. Consider a sequence of d-dimensional random vectors Fn = (F 1
n , F 2

n , . . . , F d
n ),

such that Fk
n ∈ L2(�, G, P) and

Fk
n =

∞∑
m=0

Im(hk
m,n),

where hk
m,n ∈ H

�m. Assume that the following conditions hold.

(i) For any k = 1, . . . , d, we have

lim
N→∞ lim sup

n→∞

∞∑
m=N+1

m! ‖hk
m,n‖2

H⊗m = 0.

(ii) For k, l = 1, . . . , d, we have

m! lim
n→∞ ‖hk

m,n‖2
H⊗m = �m

kk,

m! lim
n→∞〈hk

m,n, h
l
m,n〉H⊗m = �m

kl, k �= l,

and
∑∞

m=1 �m = � ∈ R
d×d .

(iii) For any m ≥ 1, k = 1, . . . , d, and r = 1, . . . , m − 1,

lim
n→∞ ‖hk

m,n ⊗r hk
m,n‖2

H⊗2(m−r) = 0.

Then we have
Fn − h0,n

d−→ Nd(0, �) as n → ∞, (2)

where ‘
d−→’ denotes convergence in distribution, and, for any natural number N and

k = 1, . . . , d,

lim
n→∞ E

[( N∑
m=1

Im(hk
m,n)

)4]
= 3

( N∑
m=1

�m
kk

)2

. (3)
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136 O. E. BARNDORFF-NIELSEN ET AL.

Proof. Under conditions (ii) and (iii), the weak convergence (2) of the vector

(Im1(h
1
m1,n

), Im2(h
2
m2,n

), . . . , Imd
(hd

md,n))

is shown in [26] (moreover, these authors proved that (2) implies (3)). Under the additional
condition (i), this result can be extended to general multivariate sequences Fn with square-
integrable components (see [7]).

3. Asymptotic theory for bipower variation of Gaussian processes with stationary
increments

We consider a Gaussian process (Gt )t≥0, defined on a filtered complete probability space
(�, F , (Ft )t≥0, P), with centred and stationary increments. The variance function R of the
increments of G is defined as

R(t) = E[|Gs+t − Gs |2], t ≥ 0. (4)

In this section we study the asymptotic behaviour of the bipower variation processes

V (G; p, q)nt = 1

nτ
p+q
n

[nt]∑
i=1

|�n
i G|p|�n

i+1G|q, p, q ≥ 0,

where �n
i G = Gi/n − G(i−1)/n and τ 2

n = R(1/n) = E[|�n
i G|2], using the multiplication

formula (1) and the central limit theorem discussed in the previous section. For this purpose,
we introduce the representation

|x|p =
∞∑

m=0

ap,mHm(x), (5)

where the Hm are Hermite polynomials as defined in Section 2.
In order to give a statement about the asymptotic behaviour of the bipower variation process

V (G; p, q)nt , we require the following assumptions on the variance function R defined in (4),
which were introduced by Guyon and Leon [16].

(A1) R(t) = tβL0(t) for some β ∈ (0, 2) and some positive slowly varying (at 0) function
L0, which is continuous on (0, ∞).

(A2) R′′(t) = tβ−2L2(t) for some slowly varying function L2, which is continuous on (0, ∞).

(A3) There exists a b ∈ (0, 1) with

K = lim sup
x→0

sup
y∈[x,xb]

∣∣∣∣L2(y)

L0(x)

∣∣∣∣ < ∞.

Recall that a function L : (0, ∞) → R is called slowly varying at 0 when the identity

lim
x↘0

L(tx)

L(x)
= 1

holds for any fixed t > 0. Provided that L is continuous on (0, ∞), we have

|L(x)| ≤ Cx−α, x ∈ (0, T ],
for any α > 0 and any T > 0 (where the constant C > 0 depends on α and T ).

https://doi.org/10.1239/jap/1238592121 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592121


Bipower variation for Gaussian processes with stationary increments 137

Finally, we introduce the correlation function of the increments of G, i.e.

rn(j) = cov

(
�n

1G

τn

,
�n

1+jG

τn

)
, j ≥ 0.

By the polarization identity, and due to the stationarity of the increments of G, we know that
rn(0) = 1 and

rn(j) = R((j + 1)/n) + R((j − 1)/n) − 2R(j/n)

2R(1/n)
, j ≥ 1. (6)

We start with the weak law of large numbers for the sequence V (G; p, q)nt . Throughout this
paper, we write Yn ucp−−→ Y when supt∈[0,T ] |Yn

t − Yt | p−→ 0 for any T > 0, where ‘
p−→’ denotes

convergence in probability.

Theorem 2. Assume that conditions (A1)–(A3) are satisfied. Then we have

V (G; p, q)nt

ρ
(n)
p,q

ucp−−→ t,

where the quantity ρ
(n)
p,q is given by

ρ(n)
p,q =

∞∑
m=0

ap,maq,mm! rm
n (1). (7)

Proof. See Appendix A.

Remark 2. Note that, by the orthogonality of Hermite polynomials and (5), the identity

ρ(n)
p,q = E

[∣∣∣∣�n
i G

τn

∣∣∣∣p
∣∣∣∣�n

i+1G

τn

∣∣∣∣q
]

holds. Moreover, since the function L0 is slowly varying at 0, assumption (A1), (6), and (7)
(and the dominated convergence theorem) imply that

ρp,q = lim
n→∞ ρ(n)

p,q =
∞∑

m=0

ap,maq,mm! (2β−1 −1)m = E[|Bβ/2
i −B

β/2
i−1|p|Bβ/2

i+1 −B
β/2
i |q ], (8)

where Bβ/2 is the fractional Brownian motion with Hurst parameter β/2. Consequently,
Theorem 2 yields the uniform convergence

V (G; p, q)nt
ucp−−→ ρp,q t.

Next, we present the weak limit of the properly normalized sequence V (G; p, q)nt . Note
that the central limit theorem for bipower variation is valid under the same assumptions that
are required to show the corresponding result for the power variation case (see [7]).

Theorem 3. Assume that conditions (A1)–(A3) hold and that 0 < β < 3
2 . Then we obtain the

weak convergence (in the space D([0, T ])2 equipped with the local uniform topology)(
Gt,

√
n

(
V (G; p, q)nt

ρ
(n)
p,q

− t

))
w−→

(
Gt,

σp,q

ρp,q

Wt

)
, (9)

where W is a Brownian motion that is defined on an extension of the filtered probability space
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(�, F , (Ft )t≥0, P) and is independent of F , and σ 2
p,q is given by

σ 2
p,q = lim

n→∞ n var(V (Bβ/2; p, q)n1), (10)

where Bβ/2 is the fractional Brownian motion with Hurst parameter β/2.

Proof. See Appendix A.

Remark 3. In Theorem 3 the constant ρ
(n)
p,q cannot be replaced by its limit ρp,q defined

in (8). This is due to the fact that the bias,
√

n(ρ
(n)
p,q − ρp,q), can, in general, converge to ∞.

Remark 4. The finiteness of σ 2
p,q (for 0 < β < 3

2 ) is shown in (19) in Appendix A. Note
that, owing to assumption (A1), the behaviour of the function R near 0 is similar to that of the
fractional Brownian motion with Hurst parameter β/2. This is reflected in (10).

Remark 5. As for the power variation case (see [7]), we expect the (pointwise) limit of√
n(V (G; p, q)nt /ρ

(n)
p,q − t) to be an element of the second Wiener chaos if 3

2 < β < 2 (in
particular, it is not normal). When β = 3

2 , both types of limits may appear. See [16] for a
detailed discussion of different cases.

The proof of Theorem 3 relies on the methods developed in the previous section. In the first
step we apply the multiplication formula (1) to obtain the chaos decomposition of the sequence√

n(V (G; p, q)nt /ρ
(n)
p,q − t). Then we show the convergence of finite-dimensional distributions

of the sequence given in (9). Finally, we prove the tightness condition.
Note that the weak convergence in (9) is equivalent to the stable convergence (in D([0, T ]))

√
n

(
V (G; p, q)nt

ρ
(n)
p,q

− t

)
F G−st−−−−→ σp,q

ρp,q

Wt ,

where F G denotes the σ -algebra generated by process G (see [1], [19, p. 512], or [27] for more

details on stable convergence) and Yn F G−st−−−−→ Y (Yn and Y are stochastic processes) means
that Yn converges F G-stably in law to Y . The latter result is crucial for proving a functional
central limit theorem for the bipower variation of integral processes, which is presented below.

4. Extensions to integral processes

In this section we extend the limit theorems of the previous section to integral processes

Zt =
∫ t

0
us dGs (11)

defined on the same probability space as G, where the stochastic integral is the pathwise
Riemann–Stieltjes integral. Assumption (A1) implies that G has finite r-variation for any
r > 2/β and, hence, by [34], the integral in (11) is well defined for any stochastic process u of
finite q-variation with q < 1/(1 − β/2).

Example 1. Let us present some concrete examples of the process defined in (11).

(i) Consider two Hurst parameters H, H ∗ ∈ (0, 1) with H + H ∗ > 1. If us = f (BH ∗
s ) for

some locally Lipschitz function f then the integral

Zt =
∫ t

0
us dBH

s

is well defined in the pathwise Riemann–Stieltjes sense (note that β = 2H ).
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(ii) In [13] the authors used a process of the form

wH ∗
t =

∫ t

0

(t − s)H
∗−1/2

�(H ∗ + 1/2)
dWs,

1
2 < H ∗ < 1,

where W is a Brownian motion, to model the log-volatility of asset prices. This process
is a truncated version of the fractional Brownian motion BH ∗

. In fact, they considered
the log-volatility, x, as the solution of the stochastic differential equation

dxt = −kxt dt + σ dwH ∗
t , t ≥ 0,

with x(0) = 0 and k > 0. Then the asset price, Z, can be written as

Zt =
∫ t

0
exp(xs) dW ∗

s , t ≥ 0,

where W ∗ is another Brownian motion, possibly correlated with W . In this example,
β = 1 and the process ut = exp(xt ) is (H ∗ −ε)-Hölder continuous for any 0 < ε < H ∗.
So the process Z can be defined as a pathwise integral. These models try to capture the
long-memory effect observed in real data on volatility.

In this example we can also replace W ∗ by a fractional Brownian motion BH as long as
H + H ∗ > 1. These kinds of processes appear when asset prices, not only the volatility,
are modelled by diffusions driven by a fractional Brownian motion. See [15] for an
alternative model, using a fractional Brownian motion, to the well-known Black–Scholes
model. However, the use of the fractional Brownian motion for modelling prices in
finance is controversial, because these processes are not semimartingales. Then, without
any additional assumption on the trading operations, these models imply the possibility
of arbitrage. An interesting discussion on this point can be found in [11].

Now we state the law of large numbers for the integral process which is valid under the same
assumptions as in the power variation case.

Theorem 4. Assume that conditions (A1)–(A3) hold. Suppose that u = {ut , t ∈ [0, T ]} is a
stochastic process with finite r-variation, where r < 1/(1 − β/2). Set

Zt =
∫ t

0
us dGs.

Then, for p, q > 0, we obtain

V (Z; p, q)nt
ucp−−→ ρp,q

∫ t

0
|us |p+q ds as n → ∞.

Proof. See Appendix A.

Next we provide the weak limit theorem of the properly normalized bipower variation.

Theorem 5. Assume that conditions (A1)–(A3) hold. Suppose that u = {ut , t ∈ [0, T ]} is
an F G-measurable stochastic process with finite r-variation, where r < 1/(1 − β/2), and is
Hölder continuous of the order a with a > max(1/(2(p ∧ 1)), 1/(2(q ∧ 1))). Then we obtain,
for Zt = ∫ t

0 us dGs and p, q > 0,(
Gt,

√
n

(
V (Z; p, q)nt

ρ
(n)
p,q

−
∫ t

0
|us |p+q ds

))
w−→

(
Gt,

σp,q

ρp,q

∫ t

0
|us |p+q dWs

)
as n → ∞,
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where the convergence is in D([0, T ])2 equipped with the local uniform topology, and W is a
Brownian motion defined on an extension of the filtered probability space (�, F , (Ft )t≥0, P)

and is independent of F .

Proof. See Appendix A.

Remark 6. Theorem 3 holds for the processes introduced in Example 1 if the measurability
condition is satisfied, i.e. H + H ∗ > 1 and H ∗ > max(1/(2(p ∧ 1)), 1/(2(q ∧ 1))).

Combining Theorems 4 and 5 we can derive a standard central limit theorem for the bipower
variation.

Corollary 1. Under the assumption of Theorem 5, it holds that

√
n(V (Z; p, q)nt /ρ

(n)
p,q − ∫ t

0 |us |p+q ds)√
(V (Z; 2p, 2q)nt /ρ2p,2q)(σ 2

p,q/ρ2
p,q)

d−→ N(0, 1).

Remark 7. Finally, we demonstrate some applications of the limiting results presented in
Theorems 4 and 5.

(i) In practice, the realised ratio statistic defined as

Rn
t = µ−2

1 V (Z; 1, 1)nt

V (Z; 2, 0)nt
,

where µ1 = E |U |, U ∼ N(0, 1), turns out to be very informative about the properties
of the (unobserved) path of the process Z. When Z is an Itô semimartingale it is well
known (see, e.g. [6]) that Rn

t converges in probability and p − limn→∞ Rn
t ≤ 1. Hence,

the statistic Rn
t can be used to test whether the underlying process Z is a semimartingale

or not (we refer the reader to [33], where a similar type of statistic is used to solve the
same test problem).

When G = BH , H ∈ (0, 1), Rn
t can be used to estimate the Hurst parameter H . By

Theorem 4 we have

Rn
t = µ−2

1 V (Z; 1, 1)nt

V (Z; 2, 0)nt

ucp−−→ µ−2
1 E[|BH

1 ||BH
2 − BH

1 |] = cH arcsin(cH ) +
√

1 − c2
H

with cH = 22H−1 − 1. The right-hand side is bijective as a function in H ∈ (0, 1).
Consequently, a consistent estimator Ĥ of the Hurst parameter H can be constructed by
using the above convergence.

(ii) Another useful property of the bipower variation is its robustness to certain jump pro-
cesses. Consider a pure-jump semimartingale Y of the form

Yt = Y0 + B(h)t + h ∗ (µt − νt ) + (x − h(x)) ∗ µt , t ≥ 0,

where B(h) is a predictable process of bounded variation, h is a truncation function that
behaves like x at the origin, µ is a jump measure, and ν is its predictable compensator.
Let γ be the Blumenthal–Getoor index of Y . When γ < 1, we additionally assume that
B(h) + (x − h(x)) ∗ ν = 0. Then Theorem 4 is robust to Y if

2

β
> γ and

2

β
> max(p, q),
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i.e. the statistics V (Z; p, q)nt and V (Z + Y ; p, q)nt have the same limit in probability.
This property can be deduced by the same methods as presented in [14]. Under the
stronger conditions

1

β
> γ and

2

β
> p + q >

γ

2 − γβ
,

Theorem 5 is also robust to the presence of the process Y (see again [14] for more details).

5. Conclusion

In this paper we derived convergence in probability and stable central limit theorems for
bipower variation of Gaussian processes with stationary increments and for associated integral
processes. The corresponding asymptotic theory for multipower variation can be obtained
similarly in a straightforward manner. Extensions of the results presented here to spatial and
tempo-spatial settings would be of interest, as would simulation and empirical studies of how
well the limit laws work in applications.

Appendix A

In the following we denote all constants which do not depend on n by C.
Let H1 be the first Wiener chaos associated with the triangular array (�n

jG/τn)n≥1, 1≤j≤[nt],
i.e. the closed subspace of L2(�, F , P) generated by the random variables

(�n
jG/τn)n≥1, 1≤j≤[nt].

Note that H1 can be seen as a separable Hilbert space with a scalar product induced by the
covariance function of the process (�n

jG/τn)n≥1, 1≤j≤[nt]. This means that we can apply
the theory of Section 2 to the canonical Hilbert space H = H1. Denote by Hm the mth
Wiener chaos associated with the triangular array (�n

jG/τn)n≥1, 1≤j≤[nt], and denote by Im the
corresponding linear isometry between the symmetric tensor product H�m

1 (equipped with the
norm

√
m! ‖ · ‖H⊗m

1
) and the mth Wiener chaos.

First, we present the chaos decomposition for the sequence V (G; p, q)nt − ρ
(n)
p,q t .

Lemma 1. For any t > 0, we obtain the decomposition

V (G; p, q)nt − ρ(n)
p,q t =

∞∑
m=2

Im

(
1

n

[nt]∑
i=1

f m
i

)
+ O(n−1), (12)

where the kernels f m
i ∈ H�m

1 are given by

f m
i =

m∑
h=0

s
(n)
h,m

(
�n

i G

τn

)⊗h

⊗̃
(

�n
i+1G

τn

)⊗m−h

(for simplicity we suppress the dependency of f m
i on n) with

s
(n)
h,m =

∞∑
l=0

ap,l+haq,l+m−hl!
(

l + h

l

)(
l + m − h

l

)
rl
n(1).
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Moreover, it holds that

|s(n)
h,m| ≤

∞∑
l=0

|ap,l+h||aq,l+m−h|l!
(

l + h

l

)(
l + m − h

l

)
|rl

n(1)|

≤ C

(
m

h

)(
1

|rn(1)|(1 − |rn(1)|)
)m

, (13)

where the constant C does not depend on n, m, or h.

Proof. Using the multiplication formula (1) and the linearity of the mapping Im, we obtain
the representation

V (G; p, q)nt = 1

n

[nt]∑
i=1

∞∑
m1,m2=0

ap,m1aq,m2

(m1∧m2∑
l=0

l!
(

m1

l

)(
m2

l

)

× Im1+m2−2l

((
�n

i G

τn

)⊗m1 ⊗l

(
�n

i+1G

τn

)⊗m2
))

= 1

n

[nt]∑
i=1

∞∑
m1,m2=0

ap,m1aq,m2

(m1∧m2∑
l=0

l!
(

m1

l

)(
m2

l

)
rl
n(1)

× Im1+m2−2l

((
�n

i G

τn

)⊗m1−l

⊗
(

�n
i+1G

τn

)⊗m2−l))

=
∞∑

m=0

Im

(
1

n

[nt]∑
i=1

f m
i

)
.

Note that ap,2m+1 = 0 for all m ≥ 0 and p ≥ 0, because the H2m+1 are odd functions. This
implies the identity

V (G; p, q)nt − ρ(n)
p,q t =

∞∑
m=2

Im

(
1

n

[nt]∑
i=1

f m
i

)
+ O(n−1).

Now, observe the identity

var

(∣∣∣∣�n
i G

τn

∣∣∣∣p
)

=
∞∑
l=2

a2
p,l l! < ∞.

From this we deduce that a2
p,l ≤ C/l! (for any fixed p ≥ 0). Recall that |rn(1)| < 1, since rn

is a correlation function of a process with stationary increments. Consequently, we obtain the
inequality ∞∑

l=0

|ap,l+h||aq,l+m−h|l!
(

l + h

1

)(
l + m − h

1

)
|rl

n(1)|

≤ C

h! (m − h)!
∞∑
l=0

(l + 1) · · · (l + m)|rn(1)|l

= C

(
m

h

)(
1

|rn(1)|(1 − |rn(1)|)
)m

,

which completes the proof.
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Next, we present a lemma which has been shown in [7].

Lemma 2. Suppose that conditions (A1)–(A3) hold. Let ε > 0 with ε < 2 − β. Define the
sequence r(j) by

r(j) = (j − 1)β+ε−2, j ≥ 2, (14)

and r(0) = r(1) = 1. Then we obtain the following assertions.

(i) It holds that
1

n

n∑
j=1

r2(j) → 0.

If, moreover, β + ε − 2 < − 1
2 , it holds that

∞∑
j=1

r2(j) < ∞.

(ii) For any 0 < ε < 2 − β from (14), there exists a natural number n0(ε) such that

|rn(j)| ≤ Cr(j), j ≥ 0,

for all n ≥ n0(ε).

(iii) Set ρ(0) = 1 and ρ(j) = 1
2 ((j − 1)β − 2jβ + (j + 1)β) for j ≥ 1. Then it holds that

rn(j) → ρ(j) for any j ≥ 0.

Now we introduce two independent variables, Xn
i (1) and Xn

i (2) ∼ N(0, 1), that are given
by

Xn
i (1) = �n

i G

τn

, Xn
i (2) = an

�n
i G

τn

+ bn

�n
i+1G

τn

with bn = (1 − r2
n(1))−1/2 and an = −(1/r2

n(1) − 1)−1/2. Note that an and bn converge,
because rn(1) → ρ(1) (see Lemma 2(iii)), and, consequently, they are bounded. It is clear that
f m

i can be represented as

f m
i =

∑
kl∈{1,2}

cn
k1,...,km

Xn
i (k1) ⊗ · · · ⊗ Xn

i (km)

for some constants cn
k1,...,km

. Note that all summands are orthogonal. We obtain

‖f m
1 ‖2

H⊗m
1

=
∑

kl∈{1,2}
|cn

k1,...,km
|2 =: cn

m.

Let cm, ck1,...,km , and f̃ m
i be analogues of cn

m, cn
k1,...,km

, and f m
i , respectively, which correspond

to G = Bβ/2, where Bβ/2 denotes a fractional Brownian motion with Hurst parameter β/2 (note
that cm, ck1,...,km , and 〈f̃ m

i , f̃ m
j 〉H⊗m

1
do not depend on n, because Bβ/2 is self-similar). Owing

to (13) and the convergence rn(j) → ρ(j), we deduce that

cn
k1,...,km

→ ck1,...,km, cn
m → cm, and 〈f m

1 , f m
1+k〉H⊗m

1
→ 〈f̃ m

1 , f̃ m
1+k〉H⊗m

1
,
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for all m and k. Furthermore, we obtain (since rn(1) → ρ(1))

var

(∣∣∣∣�n
i G

τn

∣∣∣∣p
∣∣∣∣�n

i+1G

τn

∣∣∣∣q
)

=
∞∑

m=2

cn
mm! < ∞, (15)

var

(∣∣∣∣�n
i G

τn

∣∣∣∣p
∣∣∣∣�n

i+1G

τn

∣∣∣∣q
)

→ var(|Bβ/2
1 |p|Bβ/2

2 − B
β/2
1 |q) =

∞∑
m=2

cmm!. (16)

Proof of Theorem 2. We first show the pointwise convergence V (G; p, q)nt − ρ
(n)
p,q t

p−→ 0.
Using expansion (12) and the stationarity of the increments of G, we obtain the identity

var(V (G; p, q)nt − ρ(n)
p,q t) =

∞∑
m=2

m!
( [nt]

n2 ‖f m
1 ‖2

H⊗m
1

+ 2

n2

[nt]−1∑
k=1

([nt] − k)〈f m
1 , f m

1+k〉H⊗m
1

)
.

On the other hand, we have (since an and bn are bounded, |rn(j)| ≤ Cr(j) by Lemma 2(ii)
and r(j) is decreasing)

|〈f m
1 , f m

1+k〉H⊗m
1

| =
∑

hl∈{1,2},gl∈{1,2}
cn
h1,...,hm

cn
g1,...,gm

m∏
l=1

〈Xn
i (hl), X

n
i+k(gl)〉H1

≤ cn
m(Cr(k − 1))m. (17)

Since E[|Xn
i (1)|2] = E[|Xn

i (2)|2] = 1, we also have

|〈f m
1 , f m

1+k〉H⊗m
1

| ≤ cn
m.

Now, there exists a Q with Cr(k − 1) < 1 for all k ≥ Q. It holds that

1

n

[nt]−1∑
k=1

([nt] − k)〈f m
1 , f m

1+k〉H⊗m
1

≤ Qcn
m + 1

n

∣∣∣∣
[nt]−1∑
k=Q

([nt] − k)〈f m
1 , f m

1+k〉H⊗m
1

∣∣∣∣
≤ cn

m

(
Q +

[nt]−1∑
k=Q

(Cr(k − 1))2
)

≤ Ccn
m

[nt]−1∑
k=1

r2(k). (18)

Consequently, we deduce that

var(V (G; p, q)nt − ρ(n)
p,q t) ≤ C

n

∞∑
m=2

cn
mm!

[nt]−1∑
k=1

r2(k).

By (15), (16), and Lemma 2(i), we obtain the pointwise convergence

V (G; p, q)nt

ρ
(n)
p,q

p−→ t.

The ucp convergence follows immediately, because V (G; p, q)nt /ρ
(n)
p,q is increasing in t and

the limit process g(t) = t is continuous.
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Proof of Theorem 3. We divide the proof of Theorem 3 into two steps. In the first step we
prove the convergence of the finite-dimensional distribution of the sequence(

Gt,
√

n

(
V (G; p, q)nt

ρ
(n)
p,q

− t

))
.

Then we prove the tightness of this sequence.
Step 1. Define the vector Yn = (Y 1

n , . . . , Y d
n )� by

Y k
n = 1√

n

[nbk]∑
i=[nak]+1

(∣∣∣∣�n
i G

τn

∣∣∣∣p
∣∣∣∣�n

i+1G

τn

∣∣∣∣q − ρ(n)
p,q

)
,

where (ak, bk], k = 1, . . . , d, are disjoint intervals contained in [0, T ]. Clearly, it suffices to
prove that

(Gbk
− Gak

, Y k
n )1≤k≤d

d−→ (Gbk
− Gak

, σp,q(Wbk
− Wak

))1≤k≤d ,

where σp,q is given by (10) (because ρ
(n)
p,q → ρp,q , where ρp,q is given in (8)).

By Lemma 1 we obtain the representation

Y k
n =

∞∑
m=2

Im

(
1√
n

[nbk]∑
i=[nak]+1

f m
i

)
+ O(n−1/2).

Since
E[(Gbk

− Gak
)Y l

n] = 0 for any 1 ≤ k, l ≤ d,

it is sufficient to check the following conditions.

(i) For any m ≥ 1 and k = 1, . . . , d, the limit

lim
n→∞ m!

∥∥∥∥ 1√
n

[nbk]∑
i=[nak]+1

f m
i

∥∥∥∥2

H⊗m
1

= σ 2
p,q(m, k)

exists,
∑∞

m=2 σ 2
p,q(m, k) = σ 2

p,q(bk − ak) < ∞, and

lim
N→∞ lim sup

n→∞

∞∑
m=N+1

m!
∥∥∥∥ 1√

n

[nbk]∑
i=[nak]+1

f m
i

∥∥∥∥2

H⊗m
1

= 0.

(ii) For any m ≥ 1 and k �= h,

lim
n→∞

〈
1√
n

[nbk]∑
i=[nak]+1

f m
i ,

1√
n

[nbh]∑
i=[nah]+1

f m
i

〉
H⊗m

1

= 0.

(iii) For any m ≥ 1, k = 1, . . . , d, and 1 ≤ p ≤ m − 1, we have

lim
n→∞

∥∥∥∥
(

1√
n

[nbk]∑
i=[nak]+1

f m
i

)
⊗p

(
1√
n

[nbk]∑
i=[nak]+1

f m
i

)∥∥∥∥
H

⊗2(m−p)
1

= 0.
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Under conditions (i)–(iii), we then obtain (by Theorem 1) the central limit theorem

Yn
d−→ Nd(0, σ 2

p,q diag(b1 − a1, . . . , bd − ad)),

where σ 2
p,q is given by (10). Since the increments of the process G are stationary, we will prove

part (i) and (iii) only for k = 1, a1 = 0, and b1 = 1.
(i) Recall (18):

m!
∥∥∥∥ 1√

n

n∑
i=1

f m
i

∥∥∥∥2

H⊗m
1

≤ Cm! cn
m

n−1∑
k=1

r2(k).

Since cn
m → cm and

∑∞
k=1 r2(k) < ∞ (by Lemma 2(ii) with 0 < ε < 3

2 − β in the definition
of r (see (14))), we deduce by the dominated convergence theorem that

σ 2
p,q(m, 1) = m!

(
‖f̃ m

1 ‖2
H⊗m

1
+ 2

∞∑
k=1

〈f̃ m
1 , f̃ m

1+k〉H⊗m
1

)
,

where the kernels f̃ m
i correspond to the case in which G = Bβ/2. Clearly,

lim
n→∞ n var(V (Bβ/2; p, q)n1) =

∞∑
m=2

σ 2
p,q(m, 1) = σ 2

p,q < ∞, (19)

because ∞∑
m=2

σ 2
p,q(m, 1) ≤ C

∞∑
m=2

cmm!
∞∑

k=1

r2(k) < ∞

owing to Lemma 2(i) and (16). On the other hand, we have

∞∑
m=N+1

m!
∥∥∥∥ 1√

n

n∑
i=1

f m
i

∥∥∥∥2

H⊗m
1

≤ C

∞∑
m=N+1

cn
mm!

∞∑
k=1

r2(k) (20)

and

lim
n→∞

∞∑
m=N+1

cn
mm! =

∞∑
m=N+1

cmm!

for any fixed N by (16) and cn
m → cm. Since

∑∞
m=2 cmm! < ∞, we obtain

lim
N→∞ lim sup

n→∞

∞∑
m=N+1

m!
∥∥∥∥ 1√

n

n∑
i=1

f m
i

∥∥∥∥2

H⊗m
1

= 0.

(ii) For any 1 ≤ k, h ≤ d with bk ≤ ah, we have〈
1√
n

[nbk]∑
i=[nak]+1

f m
i ,

1√
n

[nbh]∑
i=[nah]+1

f m
i

〉
H⊗m

1

= m!
n

[nbk]∑
j=[nak]+1

[nbh]∑
i=[nah]+1

〈f m
1 , f m

1+i−j 〉H⊗m
1

.

Assume, without loss of generality, that ak = 0, bk = ah = 1, and bh = 2 (the case in which
bk < ah is much easier). By Lemma 2(ii) with 0 < ε < 3

2 − β in the definition of r (see (14)),
we obtain the approximation (by (17))∣∣∣∣

〈
1√
n

[nbk]∑
i=[nak]+1

f m
i ,

1√
n

[nbh]∑
i=[nah]+1

f m
i

〉
H⊗m

1

∣∣∣∣ ≤ Cm

(
1

n

n∑
j=1

jrm(j) +
n−1∑
j=1

rm(n + j)

)
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for some constant Cm > 0. It follows that rm(j) ≤ (j − 1)−1−δ for some δ > 0 and all
m, j ≥ 2. Hence, we obtain

〈
1√
n

[nbk]∑
i=[nak]+1

f m
i ,

1√
n

[nbh]∑
i=[nah]+1

f m
i

〉
H⊗m

1

→ 0 as n → ∞.

(iii) Fix 1 ≤ p ≤ m − 1. Now, by Lemma 2(ii) (with 0 < ε < 3
2 − β in the definition of r)

and (17), we deduce the inequality∥∥∥∥
(

1√
n

n∑
i=1

f m
i

)
⊗̃p

(
1√
n

n∑
i=1

f m
i

)∥∥∥∥
H

⊗2(m−p)
1

≤ Cm

n2

∑
1≤j,l,h,k≤n

rp(|j − l| − 1)rp(|h − k| − 1)

×
∣∣∣∣
〈(

�n
jG

τn

)⊗(m−p)

⊗̃
(

�n
l G

τn

)⊗(m−p)

,

(
�n

hG

τn

)⊗(m−p)

⊗̃
(

�n
kG

τn

)⊗(m−p)〉
H

⊗2(m−p)
1

∣∣∣∣,
where ‘∼’ denotes the symmetrization and r(−1) := 1. Again applying Lemma 2(ii) and (17),
we see that it suffices to prove that

n−2
∑

1≤j,l,h,k≤n

rp(|j − l| − 1)rp(|h − k| − 1)rα(|j − h| − 1)rm−p−α(|l − h| − 1)rm−p−α

× (|j − k| − 1)rα(|l − k| − 1)

→ 0,

where 0 ≤ α ≤ m − p. The latter term is smaller than

n−1
∑

−1≤j,l,k≤n−2

rp(|j − l|)rp(k)rα(j)rm−p−α(l)rm−p−α(|j − k|)rα(|l − k|).

Without any loss of generality, we can assume that p = m − p = 1 and α = 0 or α = 1. For
α = 0 and any 0 < ε < 1, we obtain

n−1
∑

−1≤j≤n−2

( ∑
−1≤l≤n−2

r(|j − l|)r(l)
)2

≤ n−1
∑

−1≤j≤[nε]

( ∑
−1≤l≤n−2

r(|j − l|)r(l)
)2

+ 2n−1
∑

[nε]<j≤n−2

( ∑
−1≤l≤[nε/2]

r(|j − l|)r(l)
)2

+ 2n−1
∑

[nε]<j≤n−2

( ∑
[nε/2]<l≤n−1

r(|j − l|)r(l)
)2

≤ 2ε

( ∑
−1≤l<n−2

r2(l)

)2

+ 6
∑

−1≤l<n−2

r2(l)
∑

[nε/2]<l<∞
r2(l),
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which converges to 2ε(
∑

−1≤l<∞ r2(l))2 as n → ∞ by Lemma 2(i). The desired result follows
by letting ε tend to 0.

Step 2. Clearly, it suffices to show the tightness of the sequence
√

n(V (G; p, q)nt − ρ
(n)
p,q t).

Set

√
n(V (G; p, q)nt − ρ(n)

p,q t) =
∞∑

m=2

Im

(
1√
n

[nt]∑
i=1

f m
i

)
+ O(n−1/2) =: Zn

t + O(n−1/2)

(where the approximation holds locally uniformly in t) and

Z
n,N
t =

N∑
m=2

Im

(
1√
n

[nt]∑
i=1

f m
i

)
.

In step 1 we have proved that conditions (i)–(iii) of Theorem 1 are satisfied. Then, by (3) and
the Cauchy–Schwarz inequality, we obtain the approximation

P(|Zn,N
t − Z

n,N
t1

| ≥ λ, |Zn,N
t2

− Z
n,N
t | ≥ λ)

≤ E1/2[|Zn,N
t − Z

n,N
t1

|4] E1/2[|Zn,N
t2

− Z
n,N
t |4]

λ4

≤ C
σ 4

p,q([nt] − [nt1])([nt2] − [nt])
λ4

≤ C
σ 4

p,q(t2 − t1)
2

λ4

for any t1 ≤ t ≤ t2 and λ > 0 (and the constant C does not depend on n). On the other hand,
(15) and (20) imply that

lim
N→∞ E[|Zn

t − Z
n,N
t |2] = 0

for any n and any t . Using this, we conclude that

P(|Zn
t − Zn

t1
| ≥ λ, |Zn

t2
− Zn

t | ≥ λ) ≤ C
σ 4

p,q(t2 − t1)
2

λ4

for any t1 ≤ t ≤ t2 and λ > 0, from which we deduce the tightness of the sequence Zn
t by

Theorem 15.6 of [12]. This completes the proof of Theorem 3.

Proof of Theorem 4. The assertion of Theorem 4 follows from Theorem 2 by similar methods
as presented in [7] (see the proof of Theorem 2 therein).

Proof of Theorem 5. The assertion of Theorem 5 follows from Theorem 3 by similar methods
as presented in [7] (see the proof of Theorem 6 therein).
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