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Summary

Ritter & Salamini (1996) presented a systematic account of two-point linkage analysis in

allogamous diploid plant species. Vowden et al. (1995) described an alternative approach that is

implemented in a computer program . This paper describes how the latter approach has

been extended to three-point linkage analysis, and implemented in a new program 
$
 that is

available from the authors. The essence of the approach is for the computer program to derive the

appropriate form of analysis for a specific cross from its ‘knowledge’ of the most general type of

cross that can arise. This avoids the need for programming specific codes for the many different

types of cross that can arise. The program allows different locus orderings and parental phases to

be compared. The Haldane or Kosambi map functions can be specified, although it is also possible

to estimate all three pairwise recombination fractions without any assumed map function.

1. Introduction

In a recent paper, Ritter & Salamini (1996) presented

a systematic account of two-point linkage analysis in

allogamous diploid plant species. They enumerated

the possible allelic configurations of the parents,

identifying 21 distinct types of cross. For each of these

they derived an equation for the maximum likelihood

estimator of the recombination fraction (and an

explicit formula for the estimator, if one exists) and a

formula for the expected information, which can be

used to compare the efficiency of different types of

cross. Of course many of their formulae have appeared

previously in the literature, for example, in Allard

(1956), Bailey (1961) and other papers that they cite.

But their work provides a general and exhaustive

approach that is well suited to implementation within

a computer program.

Some time ago, we wrote a Fortran computer

program called  (Vowden et al., 1995) which

also does two-point linkage analysis for general crosses

of diploid parents. The purpose of the present paper is

to describe how the approach used in  has been
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extended to three-point analysis in a more recent

program, 
$
. Three-point linkage analysis is

considerably more complicated than two-point analy-

sis, partly because the calculations are more complex

but also because issues such as locus ordering and

genetic interference become relevant.

The paper is organized as follows. Section 2 outlines

briefly the approach to two-point linkage analysis that

is used in , and contrasts this with the approach

of Ritter & Salamini (1996). Section 3 sets out the

basic theory of three-point linkage analysis, and

indicates how this is implemented in 
$
, and

Section 4 discusses a particular example. The emphasis

in this paper is on the methodology used by 
$
.

More detailed information about using the program is

provided in the manual (Ridout et al., 1997). The

executable version of the program, which runs under

MS-DOS on IBM-compatible personal computers, is

available on request.

2. Two-point linkage analysis

(i) Two-point linkage analysis in LINKEM

Consider a cross involving two loci, A (with alleles a
"
,

a
#
, a

$
and a

%
) and B (with alleles b

"
, b

#
, b

$
and b

%
). Such

a cross has the general form

a
"
b
"
}a

#
b
#
¬a

$
b
$
}a

%
b
%
. (1)
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Table 1. Probabilities of different offspring genotypes

resulting from the cross a
"
b
"
}a

#
b
#
¬a

$
b
$
}a

%
b
%
, when

the recombination fraction between loci A and B is r

B

A b
"
b
$

b
"
b
%

b
#
b
$

b
#
b
%

a
"
a
$

(1®r)#}4 r(1®r)}4 r(1®r)}4 r#}4
a
"
a
%

r(1®r)}4 (1®r)#}4 r#}4 r(1®r)}4
a
#
a
$

r(1®r)}4 r#}4 (1®r)#}4 r(1®r)}4
a
#
a
%

r#}4 r(1®r)}4 r(1®r)}4 (1®r)#}4

Table 2. Probabilities of different offspring genotypes

resulting from the cross aw}nx¬aw}nx, when the

recombination fraction between the two loci is r

ww wx xx

a (1®r#)}4 (r#®r­1)}2 r(2®r)}4
nn r#}4 r(1®r)}2 (1®r)#}4

Our notation is similar to that of Ritter & Salamini

(1996), except that we use lower-case letters and

subscripts to denote alleles, writing for example a
"

instead of A1, and we do not, at this stage, distinguish

null alleles from active alleles. As in their paper, the

symbol}indicates the parental phase for linked loci.

Thus, for example, in the first (female) parent, alleles

a
"
and b

"
lie on one chromosome and alleles a

#
and b

#

on the other.

Let r denote the recombination fraction between A

and B. Table 1 shows the probabilities of observing

each of the 16 offspring genotype combinations that

can result from cross (1). This corresponds to case 21

in Ritter & Salamini (1996). The other cases that they

discuss can be obtained by adding together those rows

and}or columns of Table 1 for which the offspring

genotypes are indistinguishable. For example, con-

sider the cross aw}nx¬aw}nx, where n is a null allele.

This is case 10 in their paper. Here, offspring genotypes

aa (3 a
"
a
$
), an (3 a

"
a
%
) and na (3 a

#
a
$
) are

indistinguishable, as are genotypes wx (3 b
"
b
%
) and

xw (3 b
#
b
$
). The probabilities of the different off-

spring genotypes for this cross can therefore be

obtained from Table 1 by adding rows 1, 2 and 3 and

adding columns 2 and 3. This gives the probabilities

shown in Table 2.

 uses this method to calculate offspring

genotype probabilities as functions of the recom-

bination fraction. It stores a copy of Table 1, and

determines, from a specification of the cross, which

rows and columns, if any, need to be added together.

The probabilities in Table 1 are all of the form

p¯ (β
#
r#­β

"
r­β

!
)}4,

where the coefficients β
!
, β

"
and β

#
are integers.

Derived probabilities that result from adding rows

and adding columns in Table 1 are, therefore, also of

this form, and can be derived with complete accuracy

by a computer program using integer arithmetic.

Once the offspring genotype probabilities have been

derived, maximum likelihood estimation is straight-

forward. The log-likelihood function (ignoring terms

that do not depend on r) is

L(r)¯3 n log (p),

where n is the number of offspring with a particular

genotype, p is the corresponding genotype probability,

and the summation is over all offspring genotypes. In

, the log–likelihood function is maximized

numerically. After some preliminary checks to see

whether the maximum of L(r) occurs on the boundary

of the parameter space, at r¯ 0 or at r¯ 0±5, 

uses Brent’s algorithm (Brent, 1973) to evaluate rW ,
following essentially the implementation in Press et al.

(1989, section 10.3).

The expected Fisher information, I(r), is then

calculated from the formula

I(r)¯N3
1

p 9
dp

dr:
#

,

where N is the total number of offspring. This is used

to derive the standard error of the estimated re-

combination fraction, which is the square root of the

reciprocal of I(rW ).  also derives likelihood-

based confidence limits for r. Other features of the

program are described in the manual (Vowden &

Ridout, 1994).

(ii) Comparison with Ritter & Salamini (1996)

Ritter & Salamini (1996) use an efficient code for the

calculations relating to the different types of cross that

they identify, incorporating an explicit formula for rW ,
if one exists. , on the other hand, uses a single

algorithm to analyse all types of cross. In particular,

it uses numerical optimization to find rW , even when an

explicit formula is available. This approach is clearly

less efficient computationally, but this is of little

practical importance, because the program takes only

a fraction of a second to complete a single two-point

analysis on a personal computer.

(iii) Unknown parental phase

So far, it has been assumed that the parental phase is

known. When the phase is not known,  does a

separate analysis for each possible parental phase, of

which there may be up to four. Detailed results are

presented for the parental phase that gives the largest
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value of L(rW ), but summary results are also given for

other plausible parental phases. A parental phase is

plausible if it gives rise to a value of L(rW ) that differs

from the value under the most likely parental phase by

less than a specified constant. This constant can be

specified by the user of the program; the default value

is 4±0.

3. Three-point linkage analysis

This section explains the basic theory of three-point

linkage analysis, and describes how this is imple-

mented in the program 
$
. Many of the ideas we

discuss are covered in greater detail by Ott (1991).

(i) Deri�ation of the likelihood function

For three loci, A, B and C, a general cross has the

form

a
"
b
"
c
"
}a

#
b
#
c
#
¬a

$
b
$
c
$
}a

%
b
%
c
%
.

We assume, for now, that the parental phase is

known, and that the loci occur in the order A–B–C.

Let r
AB

denote the recombination fraction between

loci A and B, with r
BC

and r
AC

defined similarly. These

recombination fractions are related to the probabilities

that the numbers of crossovers between A and B and

between B and C are even (including zero) or odd. We

define these probabilities as follows:

Number of crossovers between

A and B B and C Probability

Even Even ξ
"

Even Odd ξ
#

Odd Even ξ
$

Odd Odd ξ
%

where ξ
"
­ξ

#
­ξ

$
­ξ

%
¯1. The recombination fraction

r
AB

is the probability of an odd number of crossovers

between the two loci, irrespective of whether the

number of crossovers between loci B and C is odd or

even. Consequently, r
AB

¯ ξ
$
­ξ

%
. Similarly,

r
BC

¯ ξ
#
­ξ

%
. Recombination between loci A and C

occurs if there is an odd number of crossovers between

A and B, or between B and C, but not between both,

and consequently r
AC

¯ ξ
#
­ξ

$
. Conversely, the ξ

values can be calculated from the recombination

fractions using the following equations

ξ
%
¯ (r

AB
­r

BC
®r

AC
)}2,

ξ
#
¯ (r

AB
­r

AC
®r

BC
)}2,

ξ
#
¯ (r

BC
­r

AC
®r

AB
)}2,

ξ
"
¯1®ξ

#
®ξ

$
®ξ

%
.

5

6
7

8

(2)

Table 3. Probabilities of different offspring genotypes

resulting from the cross a
"
b
"
c
"
}a

#
b
#
c
#
¬a

$
b
$
c
$
}

a
%
b
%
c
%

in terms of the probabilities ξ
"
, ξ

#
, ξ

$
and ξ

%

C

A B c
"
c
$

c
"
c
%

c
#
c
$

c
#
c
%

a
"
a
$

b
"
b
$

ξ #

"
}4 ξ

"
ξ
#
}4 ξ

"
ξ
#
}4 ξ #

#
}4

b
"
b
%

ξ
"
ξ
%
}4 ξ

"
ξ
$
}4 ξ

#
ξ
%
}4 ξ

#
ξ
$
}4

b
#
b
$

ξ
"
ξ
%
}4 ξ

#
ξ
%
}4 ξ

"
ξ
$
}4 ξ

#
ξ
$
}4

b
#
b
%

ξ #

%
}4 ξ

$
ξ
%
}4 ξ

$
ξ
%
}4 ξ #

$
}4

a
"
a
%

b
"
b
$

ξ
"
ξ
$
}4 ξ

"
ξ
%
}4 ξ

#
ξ
$
}4 ξ

#
ξ
%
}4

b
"
b
%

ξ
"
ξ
#
}4 ξ #

"
}4 ξ #

#
}4 ξ

"
ξ
#
}4

b
#
b
$

ξ
$
ξ
%
}4 ξ #

%
}4 ξ #

$
}4 ξ

$
ξ
%
}4

b
#
b
%

ξ
#
ξ
%
}4 ξ

"
ξ
%
}4 ξ

#
ξ
$
}4 ξ

"
ξ
$
}4

a
#
a
$

b
"
b
$

ξ
"
ξ
$
}4 ξ

#
ξ
$
}4 ξ

"
ξ
%
}4 ξ

#
ξ
%
}4

b
"
b
%

ξ
$
ξ
%
}4 ξ #

$
}4 ξ #

%
}4 ξ

$
ξ
%
}4

b
#
b
$

ξ
"
ξ
#
}4 ξ #

#
}4 ξ #

"
}4 ξ

"
ξ
#
}4

b
#
b
%

ξ
#
ξ
%
}4 ξ

#
ξ
$
}4 ξ

"
ξ
$
}4 ξ

"
ξ
%
}4

a
#
a
%

b
"
b
$

ξ #

$
}4 ξ

$
ξ
%
}4 ξ

$
ξ
%
}4 ξ #

%
}4

b
"
b
%

ξ
#
ξ
$
}4 ξ

"
ξ
$
}4 ξ

#
ξ
%
}4 ξ

"
ξ
%
}4

b
#
b
$

ξ
#
ξ
$
}4 ξ

#
ξ
%
}4 ξ

"
ξ
$
}4 ξ

"
ξ
%
}4

b
#
b
%

ξ #

#
}4 ξ

"
ξ
#
}4 ξ

"
ξ
#
}4 ξ #

"
}4

The point of introducing the ξ values is that they give

rise to simple expressions for the probabilities of

different offspring genotypes. These are shown in

Table 3, which plays the same role in three-point

analysis as does Table 1 in two-point linkage analysis.

As in two-point analysis, the offspring genotype

probabilities for particular types of cross can be

obtained by adding together rows and}or columns of

Table 3 for which the offspring genotypes are

indistinguishable. The resulting probabilities have the

general form

"

%
(β

""
ξ#

"
­β

"#
ξ
"
ξ
#
­β

"$
ξ
"
ξ
$
­β

"%
ξ
"
ξ
%
­β

##
ξ#

#
­β

#$
ξ
#
ξ
$

­β
#%

ξ
#
ξ
%
­β

$$
ξ #

$
­β

$%
ξ
$
ξ
%
­β

%%
ξ #

%
), (3)

where the β coefficients are integers. The log-likelihood

function is again obtained as the sum over all offspring

genotypes of the observed frequency multiplied by the

natural logarithm of the probability of that genotype.

(ii) Calculation of maximum likelihood estimates

In two-point linkage analysis, for example involving

loci A and B, the recombination fraction r
AB

is

constrained to lie in the interval [0, 0±5]. In three-point

analysis, this constraint applies to both r
AB

and r
BC

,

whereas the parameter r
AC

is constrained to lie in the

interval [r
low

, r
high

] where

r
low

¯max (r
AB

, r
BC

),

r
high

¯min (0±5, r
AB

­r
BC

).

These constraints assume the locus ordering A–B–C ;

they must be modified in the obvious way for other

locus orderings.
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Maximum likelihood estimates of parameters are

obtained by maximizing the log-likelihood function

subject to these constraints. This could be done using

a constrained optimization routine. However, in


$
 the log-likelihood function is first re-

parametrized in terms of parameters ²φ
"
,φ

#
,φ

$
´ that

can each take any real value, and this means that the

log-likelihood function can be maximized using an

unconstrained optimization routine. The maximum

likelihood estimates of the φ parameters are trans-

formed to give the maximum likelihood estimates of

the r parameters (maximum likelihood estimates are

invariant under parameter transformation). The

relationships between the φ parameters and the r

parameters are

r
AB

¯ 0±5}(1­e−φ
"),

r
BC

¯ 0±5}(1­e−φ
#),

r
AC

¯ r
low

­(r
high

®r
low

)}(1­e−φ
$).

5

6
7

8

(4)

Calculation of the log-likelihood for given values of

the φ parameters entails transforming to r parameters,

using the equations above, transforming the r

parameters to ξ parameters, using equations (2), and

finally evaluating logarithms of probabilities of the

form given by expression (3). The unconstrained

optimization uses the Nelder–Mead simplex

alogarithm (Nelder & Mead, 1965), again following

essentially the implementation given in Press et al.

(1989, section 10.4).

(iii) Calculation of standard errors and correlations

between estimates

In two-point linkage analysis, the variability of the

estimated recombination fraction is summarized by its

variance, or more commonly by its standard error,

which is the square root of the variance. The variance

is the reciprocal of the expected information. In three-

point linkage analysis, the variability of the estimated

recombination fractions is summarized by a �ariance

matrix. The diagonal elements of this matrix are the

variances of the parameter estimates, and the off-

diagonal elements are the covariances of the estimates.

The variance matrix is the inverse of the expected

information matrix. This matrix has diagonal elements

such as

I(r
AB

, r
AB

)¯N3
1

p 9
¦p

¦r
AB

:#

and off-diagonal elements such as

I(r
AB

, r
BC

)¯N3
1

p 9
¦p

¦r
AB

: 9 ¦p

¦r
BC

: ,
where, as before, N is the total number of observations

and the summations are over all possible offspring

genotypes.

Derivatives are calculated using formulae such as

¦p

¦r
AB

¯ 3
%

k="

9 ¦p

¦ξ
k

: 9 ¦ξ
k

¦r
AB

: ,
where ¦p}¦ξ

k
is obtained by differentiation of

equation (3) and ¦ξ
k
}¦r

AB
is obtained by differentiation

of equations (2). The information matrix is thus

derived using exact formulae involving the true

recombination fractions, rather than by numerical

differentiation. This is useful for theoretical efficiency

calculations, for example. However, to obtain the

variance matrix, the true parameter values are replaced

by their estimates and the information matrix is

inverted numerically. 
$
 does not display the

variance matrix directly. Instead it displays the

standard errors of the estimated recombination

fractions, and the matrix of correlations between the

estimates.

For two-point analysis,  provides likelihood-

based confidence intervals for the estimated recom-

bination fraction, and these are generally more reliable

than intervals based on the standard error. In

principle, likelihood-based confidence regions can be

calculated for the estimated recombination fractions

in three-point analysis, but these require much more

computation and are not available in the current

version of 
$
.

(iv) Unknown parental phase and}or locus ordering

In two-point linkage analysis there are up to four

distinct parental phases, since there are up to two

possible chromosomal arrangements in each parent.

In three-point analysis there may be as many as 16

distinct parental phases (four in each parent). Ad-

ditionally, there are three distinct orderings of the loci,

giving up to 48 possible phase}ordering combinations.


$
 allows the user to specify that the parental

phase and}or the ordering of the loci is unknown. It

then analyses all allowable phase}ordering com-

binations. Detailed results are given for the phase}
ordering that gives the largest log-likelihood, but the

program also reports brief summary results for other

plausible phase}ordering combinations.

As in two-point analysis, plausible orderings are

those that give a maximized value of the log-likelihood

function that is not too different from the maximum

possible value. This is equivalent to using a likelihood

ratio statistic to compare different phase}ordering

combinations. However, a comparison of different

phase}ordering combinations is, in statistical jargon,

a comparison of non-nested models, and there is no

simple method of assessing the statistical significance

of the likelihood ratio statistic.

https://doi.org/10.1017/S0016672398003371 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672398003371


Three-point linkage analysis in crosses of allogamous plants 115

(v) Genetic interference and the coefficient of

coincidence

Recall that ξ
%
has been defined as the probability that

there is an odd number of crossovers between A and

B and between B and C (assuming the locus ordering

A–B–C ). If the occurrence of crossovers between A

and B is independent of their occurrence between B

and C then

ξ
%
¯ r

AB
r
BC

.

However, departures from independence have been

observed in many species. Such departures are

quantified by the coefficient of coincidence, which is

defined as

c¯
ξ
%

r
AB

r
BC

,

where c¯1 when there is independence. It is also

possible to express ξ
%
, and hence c, entirely in terms of

the recombination fractions, giving

c¯
r
AB

­r
BC

®r
AC

2r
AB

r
BC

.


$
 prints the estimated coefficient of coincidence,

based on this formula. It also prints an approximate

standard error of the estimate, calculated using the

general method for calculating the standard error of a

function of parameter estimates (Kendall & Stuart,

1976, section 10.6) that is sometimes known as the

delta method.

Genetic interference is defined as 1®c. Thus

interference is absent if c¯1, positive if c!1 and

negative if c"1. Positive interference, which implies,

for example, that the occurrence of an odd number of

crossovers between B and C is less likely if the number

of crossovers between A and C is odd than if it is even,

is the more common. If c¯ 0, implying that it is

impossible for there to be an odd number of crossovers

in both intervals, interference is said to be complete.

Because c is defined as a ratio of probabilities it

cannot be negative.

At a more detailed level, genetic interference arises

as a result of one or both of two distinct phenomena

known as chiasma interference and chromatid inter-

ference (e.g. McPeek, 1996), but the distinction

between these is not important for the type of analysis

that 
$
 provides.

(vi) Map functions

Given three ordered loci, A–B–C, the recombination

fraction between the two flanking loci is given by the

equation

r
AC

¯ r
AB

­r
BC

®2cr
AB

r
BC

, (5)

implying that recombination fractions are additive

only under complete interference (c¯ 0). Additivity is

obtained by transforming recombination fractions to

genetic distances (or map distances), using a map

function. Different map functions arise from different

assumptions about the underlying crossover process.

For example, if crossovers occur as a Poisson process,

the relationship between map distance (x) and

recombination fraction (r) is given by

x¯
1

2
3

4

®"

#
log (1®2r) if 0% r! 0±5,

¢ if r¯ 0±5.

This is known as the Haldane map function (Haldane,

1919). Another commonly used map function is the

Kosambi map function (Kosambi, 1944), which is

defined as

x¯

1

2
3

4

"

%
log 91­2r

1®2r: if 0% r! 0±5,

¢ if r¯ 0±5.

These map functions imply, for ordered loci A–B–C,

a specific relationship between the three recombination

fractions. For the Haldane map function

r
AC

¯ r
AB

­r
BC

®2r
AB

r
BC

, (6)

and for the Kosambi map function

r
AC

¯
r
AB

­r
BC

1­4r
AB

r
BC

. (7)

The Haldane map function is therefore equivalent to

assuming c¯1, whereas for the Kosambi map

function c does not have a fixed value, but instead

c¯ 2r
AC

.


$
 allows recombination fractions to be

estimated assuming either the Haldane or the Kosambi

map function. This means that only the recombination

fractions r
AB

and r
BC

are estimated; the value of r
AC

is

derived using equation (6) or (7). 
$
 also allows

the coefficient of coincidence to be fixed, and, given

r
AB

and r
BC

, r
AC

is then calculated using equation (5).

This is provided primarily to allow estimation of

recombination fractions assuming complete inter-

ference, setting c¯ 0.

When a map function is specified, and r
AC

becomes

a known function of r
AB

and r
BC

, the optimization

problem is reduced from three dimensions to two.


$
 again reparametrizes the problem so as to be

able to use the simplex algorithm for unconstrained

optimization.

For the fixed c map function

r
AC

¯ r
AB

­r
BC

®2cr
AB

r
BC

.

Given a particular value of r
AB

on the interval [0, 0±5],

one must have

r
BC

%
1®2r

AB

2(1®2cr
AB

)
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to ensure that r
AC

% 0±5. The reparametrization uses

parameters ²ψ
"
,ψ

#
´ where

r
AB

¯
0±5

(1­e−ψ
")

,

r
BC

¯
0±5(1®2r

AB
)

(1®2cr
AB

) (1­e−ψ
#)

.

In the special case of the Haldane map function

(c¯1), r
AB

and r
BC

may vary freely and independently

on the interval [0, 0±5]. This is also true for the

Kosambi map function.

The information matrix becomes 2¬2, rather than

3¬3, when a map function is assumed. It is calculated

in the same way as before, but formulae for the deriva-

tives of the ξ parameters with respect to the recombi-

nation fractions are now more complex. For example,

with the Kosambi map function the relationship

ξ
%
¯ (r

AB
­r

BC
®r

AC
)}2

becomes

ξ
%
¯

1

2 9rAB
­r

BC
®

r
AB

­r
BC

1­4r
AB

r
BC

:
¯

2r
AB

r
BC

(r
AB

­r
BC

)

1­4r
AB

r
BC

.

Inversion of the information matrix gives the variance

matrix for two of the recombination fractions. The

standard error of the remaining recombination frac-

tion is obtained by the delta method.

It is important to emphasize that many of the

formulae in the previous two subsections assume the

locus ordering A–B–C. Analogous, but different,

formulae apply for other locus orderings.

4. An example of three-point linkage analysis

(i) Parental phase and locus ordering assumed known

This section illustrates the output produced by


$
, using some artificial data. We use artificial

data rather than real data because it enables us to

address several issues with a single example. Consider

a cross involving three loci, Loc1, Loc2 and Loc3, with

the following parental genotypes :

Loc1 : ab¬ab Loc2: u�¬uu Loc3: yz¬yz.

We assume that the three loci lie on the same

chromosome. For now, we also assume that the locus

ordering is Loc1–Loc2–Loc3 and that the parental

phase is known to be

auy}b�z¬auy}buz.

For this specific example we have used a notation that

is simpler than was used in the previous section.

Table 4 gives data for 60 progeny from this cross,

showing the numbers of individuals with different

combinations of genotypes at the three loci. For this

cross, 18 distinct offspring genotype combinations can

occur.

The first column of Table 5 gives selected output

from running 
$
 with these data, including

details about the locus ordering, the estimated

recombination fractions, their standard errors, and

the correlations between them. In this example, the

estimates are not particularly highly correlated. The

output also includes the estimated coefficient of

coincidence and its standard error, and a goodness of

fit test. The goodness of fit statistic, the deviance, is

calculated from the table of observed and fitted values

(Table 4) by the formula

de�iance¯ 23 obser�ed n log
e 0obser�ed

fitted 1 ,
where the sum is over all entries in the table, excluding

any cells in which the observed frequency is zero.

When the assumed model is correct, the deviance

follows, approximately, a chi-squared distribution.

The number of degrees of freedom is 4 less than the

number of cells in the table, because the total number

of observations is fixed and three parameters have

been estimated. The χ# approximation becomes more

reliable as the number of offspring increases. The

deviance is related directly to the log-likelihood

function, and indeed, maximizing the log-likelihood

function is equivalent to minimizing the deviance. In

this example the deviance does not indicate any

significant lack of fit.

The estimates of the three recombination fractions

in the first column of Table 5 may be compared with

the estimates obtained by doing a separate two-point

analysis for each of the three pairs of loci. The two-

point estimates and their standard errors are :

Table 4. Hypothetical offspring data from the cross

auy}b�z¬auy}buz showing the number of offspring

with each of the 18 possible combinations of

genotypes. There are 60 offspring in total. Figures in

brackets are fitted �alues based on the estimated

recombination fractions gi�en in the first column of

Table 5

Loc3

Loc1 Loc2 yy yz zz

aa uu 11 (10±8) 2 (2±3) 0 (0±1)
u� 0 (0±5) 1 (1±2) 0 (0±2)

ab uu 2 (2±8) 12 (11±5) 1 (0±7)
u� 0 (0±7) 12 (11±5) 7 (2±8)

bb uu 0 (0±2) 0 (1±2) 1 (0±5)
u� 1 (0±1) 0 (2±3) 10 (10±8)
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Table 5. Selected output from analysing the data in Table 4 using LINK
$
EM, assuming different map functions

Map function

None Haldane Kosambi
Complete
interference

Locus ordering Loc1–Loc2–Loc3 Loc1–Loc2–Loc3 Loc1–Loc2–Loc3 Loc3–Loc1–Loc2
Parental phase auy}b�z¬auy}buz auy}b�z¬auy}buz auy}b�z¬auy}buz yau}zb�¬yau}zbu
Estimated recombination
fractionsa

Between Loc1 and Loc2 (r
"
) 0±12 (0±051) 0±098 (0±0388) 0±099 (0±0395) 0±054 (0±0409)

Between Loc2 and Loc3 (r
#
) 0±081 (0±0462) 0±066 (0±0359) 0±066 (0±0358) 0±19 (0±041)

Between Loc1 and Loc3 (r
$
) 0±13 (0±034) 0±15 (0±035) 0±16 (0±037) 0±13 (0±034)

Correlations between estimates
r
"

and r
#

0±26 ®0±38 ®0±45 –
r
"

and r
$

0±41 – – ®0±05
r
#

and r
$

0±22 – – –
Coefficient of coincidencea 3±49 (1±62) 1 (fixed) 0±32 (fixed by 0 (fixed)

map function)
Goodness of fit statistic 18±50

(14 d.f. ; P¯ 0±18)
20±49
(15 d.f. ; P¯ 0±15)

22±79
(15 d.f. ; P¯ 0±09)

27±47
(15 d.f. ; P¯ 0±03)

a SEs in parentheses.

Table 6. Standard error of r
"#

from three-point

analysis as a percentage of the standard error from

two-point analysis, for different �alues of r
"#

and r
#$

r
#$

r
"#

0±02 0±05 0±10 0±25 0±50

0±02 71±8 81±0 88±3 96±5 100±0
0±05 65±5 73±8 81±6 93±8 100±0
0±10 63±0 70±4 78±2 92±3 100±0
0±25 66±4 73±5 81±7 95±1 100±0
0±50 77±9 85±1 92±2 99±1 100±0

Between Loc1 and Loc2 : r
"#

¯ 0±077 (SE¯ 0±0487),
Between Loc2 and Loc3 : r

#$
¯ 0±091 (SE¯ 0±0525),

Between Loc1 and Loc3 : r
"$

¯ 0±13 (SE¯ 0±034).

Two- and three-point analyses give the same estimated

recombination fraction and standard error for Loc1

and Loc3, to the number of decimal places displayed

(0±13, 0±034). For Loc2 and Loc3 the estimated

recombination fraction is similar in both analyses

(0±091 vs 0±081), but the standard error is larger from

the two-point analysis (0±0525 vs 0±0462). For Loc1

and Loc2 the estimated recombination fraction is

rather different in the two analyses (0±077 vs 0±012).

Although the difference between the estimates is not

large in relation to their standard errors, it might be

large enough to affect the outcome of a mapping

program.

For Loc1 and Loc2, the standard error of the

estimated recombination fraction is slightly smaller in

the two-point analysis (0±0487 vs 0±051), but this may

be misleading, given the difference in the estimates

produced by two- and three-point analysis, because

the standard error of an estimated recombination

fraction is usually strongly dependent on the estimate

itself. Table 6 presents a fairer comparison of two-

and three-point analysis in this example. It shows the

standard error from three-point analysis as a per-

centage of the standard error from two-point analysis,

for different true values of the recombination fraction

r
"#

. This ratio depends also on the true values of the

other two recombination fractions, r
#$

and r
"$

.

Different values of r
#$

are shown in Table 6, and, for

convenience, we have assumed that r
"$

is related to r
"#

and r
#$

by the Kosambi formula (cf. equation 7)

r
"$

¯
r
"#

­r
#$

1­4r
"#

r
#$

.

Table 6 shows that three-point analysis is generally

preferable to two-point analysis. The advantage of

three-point analysis for estimating r
"#

decreases as the

strength of linkage between Loc2 and Loc3 decreases

(r
#$

increases), and two-point and three-point analysis

give the same standard error when Loc2 and Loc3 are

unlinked (r
#$

¯ 0±5).

The increased efficiency of three-point analysis

comes about mostly because it is able to glean some

information about linkage from the male parent. In

two-point analysis the male parent provides no

information about r
"#

, because Loc2 is homozygous in

this parent. But suppose that Loc2 and Loc3 are in

fact closely linked, so that recombination between

these loci occurs only infrequently. Then if the

haplotype from this parent is auy or buz, it is likely

that recombination has not occurred between Loc1

and Loc2, because recombination would then also

have to have occurred between Loc2 and Loc3.

Conversely, if the haplotype is auz or buy it is likely

that recombination between Loc1 and Loc2 has
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occurred. One extreme case is when r
#$

¯ 0, so that

recombination between Loc2 and Loc3 ne�er occurs.

Conversely, if r
#$

¯ 0±5, so that Loc2 and Loc3

segregate independently, three-point analysis provides

no additional information, as is reflected by the values

of 100% in the final column of Table 6.

(ii) Unknown parental phase and}or locus ordering

So far, we have assumed that the parental phase and

the locus ordering are known. If the example is re-run

with phase and ordering specified as unknown it turns

out that the most likely phase}ordering combination

is the one used previously, with deviance 18±50.

However, with the same parental phase, the ordering

Loc2–Loc3–Loc1 gives deviance 18±56 and the

ordering Loc3–Loc1–Loc2 gives deviance 19±53, and

these are flagged as plausible alternatives by 
$


(with the default setting for plausibility). The next

largest value of the deviance, arising from a different

parental phase, is 47±16 – much larger than the values

obtained previously. The appropriate conclusions are

that the three loci are linked, that the parental phase

is clearly identified, but that the data give little useful

information about the ordering of the three loci on the

chromosome.

(iii) Using map functions

Referring back to the first column of Table 5 we see

that with no assumed map function the estimated

coefficient of coincidence is 3±49 (SE¯1±62),

indicating negative interference. To test whether this

constitutes a significant departure from no interference

(c¯1) we can calculate the test statistic

z¯
3±49®1

1±62
¯1±54.

If there is no interference, z has approximately a

standard normal distribution. As positive and negative

interference can occur, a two-tailed test is appropriate

here, and this gives a P value of 0±12. Thus the

evidence for negative interference is not very strong.

We can analyse the data assuming no interference

by specifying the Haldane map function, and this

gives the output shown in the second column of Table

5. The most likely locus ordering is again Loc1–

Loc2–Loc3. The estimated recombination fractions r
"#

and r
#$

are slightly smaller than before. However, even

these smaller estimates imply a slightly larger estimate

of r
"$

than in the unrestricted analysis. The deviance is

20±49 on 15 d.f. whereas in the unrestricted model it

was 18±50 on 14 d.f. The increase, 1±99, may be

compared with χ# tables on 1 d.f. to obtain an

alternative test for interference that is likely to be

more accurate than the z-test given above. In this

example it gives a P value of 0±16, implying even less

evidence of interference. The ordering Loc3–Loc1–

Loc2 is less plausible, as an alternative to Loc1–

Loc2–Loc3, under the Haldane map function than it

was when no map function was assumed.

The third column of Table 5 shows the output if we

assume the Kosambi map function instead. Again the

most likely ordering is Loc1–Loc2–Loc3. The esti-

mated recombination fractions, and their standard

errors, are very similar to those obtained with the

Haldane map function. However, the deviance is

larger, indicating that this map function does not give

such a good fit. Unfortunately, there is no simple test

for comparing the Haldane and Kosambi map

functions directly, since this again involves the

comparison of non-nested models. However, we can

compare the Kosambi map function with the un-

restricted model by comparing the difference in

deviance, which is 4±29 (¯ 22±79®18±50), with the χ#

distribution on 1 d.f. This gives a P value of 0±04.

Thus the fit of the Kosambi model is significantly

worse than the fit of the unrestricted model.

We could reach a similar conclusion by using a z-

test to see whether the value of c obtained under the

Kosambi map function, 0±32, appears reasonable,

based on the unrestricted analysis. This gives

z¯
3±49®0±32

1±62
¯1±96,

implying a similar P value of 0±05.

It is clear from this that assuming complete

interference (c¯ 0) will give an even less satisfactory

fit. However, for illustration we show the results in the

final column of Table 5. This time the results are quite

different. The most likely parental phase is as before,

but the most likely ordering is now Loc3–Loc1–Loc2.

In fact, assuming complete interference, this is the

only ordering possible with that phase. The ordering

Loc1–Loc2–Loc3, for example, is impossible because

the probability of genotypes ²aa, u�, yy´ and ²bb, uu, zz´
is zero with complete interference, but in fact one

individual has the latter genotype.

(iv) Crosses in which each parent is homozygous at

one locus

Suppose that we modify the cross that we have been

studying to

auy}a�z¬auy}b�y.

The female parent provides information about r
#$

, but

not about r
"#

or r
"$

. Similarly, the male parent

provides information about r
"#

, but not about r
#$

or

r
"$

. Since neither parent provides any information

about r
"$

, a full three-point analysis is impossible.

However, analysis is possible if we are prepared to
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assume one of the map functions, since r
"$

is then a

function of r
"#

and r
#$

. More generally, given one of

the map functions any of the three recombination

fractions can be calculated if the other two are known.


$
 is therefore able to analyse crosses of this

type, provided that a map function is specified.

5. Discussion

Ritter & Salamini (1996) identified 21 distinct types of

cross that need to be considered for an exhaustive

treatment of two-point linkage analysis. We have not

attempted to enumerate the possibilities for three-

point analysis, but the number is clearly much greater

than in two-point analysis. As a result, it would be

very cumbersome to list all the possible formulae, and

it is preferable to use a computer program such as


$
 to generate formulae as and when they are

needed.

Of course, the advantage of not having to derive

and program many special formulae is offset, to some

extent, by a loss of computational efficiency. We

argued earlier that in two-point analysis this loss of

efficiency is of little practical importance. This is not

entirely true of three-point analysis. A single three-

point analysis in 
$
, if it involves looking at all

48 combinations of parental phase and locus ordering,

can take a few seconds of computing time. This could

doubtless be reduced by improving the numerical

aspects of the program, since this is an area to which

we gave low priority in developing this version of


$
. For example, the simplex algorithm that we

have used for optimization is robust but not very

efficient.

Potentially, three-point linkage analysis offers two

advantages over two-point analysis. First, and most

importantly, three-point analysis allows the likelihood

of different orderings of the three loci to be assessed

directly. This is important in building genetic maps.

Secondly, three-point analysis may provide more

precise estimates of recombination fractions. This was

certainly the case in the example of Section 3. A

referee has suggested another illuminating example.

Consider the cross A�X}aVx¬AVX}a�x, with the

following offspring genotypes : 28 ²A®,V®,X®´, 4

²A®,V®,xx´, 12 ²A®, ��,X®´, 3 ²A®, ��,xx´, 1

²aa,V®,X®´, 8 ²aa,V®,xx´, 2 ²aa, ��,X®´, 2

²aa, ��,xx´. Two-point linkage analysis gives the

following estimated recombination fractions, with

standard errors in brackets : r
"#

¯ 0±38 (0±386),

r
"$

¯ 0±18 (0±056) and r
#$

¯ 0±39 (0±418). Only the first

and third loci appear to be linked. However, three-

point analysis based on this locus ordering gives the

following estimates : r
"#

¯ 0±20 (0±130), r
"$

¯ 0±20

(0±059) and r
#$

¯ 0±20 (0±130). There is little change to

r
"#

or its standard error, but this analysis suggests that

all three loci may be linked. Two-point analysis

involving the second locus is not very informative in

this example, because in the female parent the

dominant allele for the second locus is coupled with

the recessive alleles at the other two loci.

Lathrop et al. (1985) did similar efficiency calcu-

lations and found generally modest improvements in

efficiency from using three-point analysis, though

much larger improvements resulted in special cir-

cumstances that are outside the scope of the present

paper, such as when penetrance was incomplete. In

another study, Thompson (1984) also found small

improvements in efficiency for three-point analysis

compared with two-point analysis, but considered

that the main benefit from three-point analysis was

the improved information about locus ordering.

There is one complication that can arise with three-

point analysis that does not arise with two point

analysis. Suppose that four loci are believed to lie in

the order A–B–C–D. Three-point analysis of the

triples A–B–C and B–C–D will usually give rise to two

different estimates of the recombination fraction r
BC

.

The best way of combining these estimates is to take

a weighted mean, with the weights being the

reciprocals of the variances of the two separate

estimates. Often, the resulting estimate will be similar

to the two-point estimate, but when the two differ, the

combined three-point estimate should be the more

reliable.

Currently, 
$
 does not provide any facilities

for testing for linkage. Our assumption is that data

would first be run through a two-point analysis

program, such as , to determine linkage groups.

The emphasis in the three-point program is, therefore,

on estimation rather than testing. However, the

example given earlier in the Discussion, based on the

cross A�X}aVx¬AVX}a�x, indicates that three-point

analysis may detect linkages which are not apparent

from two-point analysis. It may therefore be useful to

incorporate linkage tests into 
$
 in the future.

Ott (1991, section 6.1) discusses various tests that are

available.

It is worth emphasizing that the program is quite

general. It is not necessary to make any assumptions

about parental phase (though this is something that

can often be deduced from two-point analysis), locus

ordering or interference. There are, of course, nu-

merous programs available for multipoint linkage

analysis that allow many more than three loci to be

analysed simultaneously. However, most of these

assume the Haldane map function, which greatly

simplifies the calculations. For example, Stam (1993)

points out that estimation of recombination fractions

in the program  (Lander et al., 1987) is

based on the Haldane map function even when the

user chooses the Kosambi map function; the Kosambi

function is used only to convert the estimated
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recombination fractions to map distances. Stam’s own

program  (Stam & Van Ooijen, 1995), which

is available commercially, correctly calculates log-

likelihoods for three-point analysis (but not general

multipoint analysis) with either the Haldane or the

Kosambi functions. However, it is not possible, in

, to estimate all three recombination fractions

without any assumption about interference.

Experimental studies of various organisms have

shown that genetic interference usually exists, but the

Haldane map function is often used nonetheless,

primarily for its computational convenience. How-

ever, an additional justification is sometimes used,

particularly in human genetics, where experimental

data are not available. It is argued that the level of

interference is very difficult to estimate from the

available data, resulting in very imprecise estimators.

Estimates of recombination that ignore interference

can be biased, but may have smaller mean square

error than estimates that rely on an estimated level of

interference. See Ott (1991, pp. 135–136) for further

discussion. It is not clear, however, to what extent this

argument is appropriate for experimental organisms,

particularly plants, where reasonably large numbers

of offspring are often available from a single set of

parents.

Extending 
$
 to provide more general multi-

point linkage analysis would clearly involve an

increase in the complexity of the calculations. But

there is another difficulty that can be illustrated by

considering four-point analysis. In generalizing

equation (2) there would be eight ξ probabilities,

which would sum to one, leaving seven unknowns. On

the other hand there would be only six pairwise

recombination fractions. Thus it is no longer possible

to calculate the ξ values uniquely from the recom-

bination fractions (e.g. Owen, 1950). It is instead

necessary to introduce an additional generalized

recombination fraction to specify the probability that

there are, in total, an odd number of crossovers

between the first and second loci and the third and

fourth loci (Karlin & Liberman, 1979). Map functions

simplify the analysis because all the recombination

fractions, including the generalized recombination

fraction, can be calculated from the pairwise re-

combination fractions between adjacent loci. How-

ever, for many map functions this can lead to negative

values for the ξ probabilities when there are more than

three loci (Liberman & Karlin, 1984). Map functions

for which this cannot occur, including the Haldane

map function, are said to be multilocus feasible. But

most commonly used map functions, including the

Kosambi function, are not multilocus feasible. Re-

cently, Speed (1996) has questioned whether one

should necessarily consider map functions that are not

multilocus feasible to be invalid, but the point we wish

to make here is that moving beyond three-point

analysis introduces additional complexities that are

not purely computational.

This work was funded in part by European Union grant
AIR3-CT93-1585. We are grateful to the referees for their
comments on an earlier draft of this paper.
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