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Abstract

The age at first calving (AFC) is an important trait to be considered in breeding pro-
grammes of dairy buffaloes, where new approaches and technologies, such as genomic selec-
tion, are constantly applied. Thus, the objective of this study was to compare the predictive
ability of different genomic single-step methods using AFC information from Murrah buf-
faloes. From a pedigree file containing 3320 buffaloes, 2247 cows had AFC records and 553
animals were genotyped. The following models were performed: pedigree-based BLUP
(PBLUP), single-step GBLUP (ssGBLUP), weighted single-step GBLUP (WssGBLUP),
and single-step Bayesian regression methods (ssBR-BayesA, BayesBπ, BayesCπ, Bayes-
Lasso, and BayesRR). To compare the methodologies, the accuracy and dispersion of
(G)EBVs were assessed using the LR method. Accuracy estimates for the genotyped animals
ranged from 0.30 (PBLUP) to 0.39 (WssGBLUP). Predictions with the traditional model
(PBLUP) were very dispersed from what was expected, while BayesCπ (0.99) and
WssGBLUP (1.00) obtained the lowest dispersion. The results indicate that the use of gen-
omic information can improve the genetic gain for AFC by increasing the accuracy and
reducing inflation/deflation of predictions compared to the traditional pedigree-based
model. In addition, among all genomic single-step models studied, WssGBLUP and sin-
gle-step BayesA were the most advantageous methods to be used in the genomic evaluation
of AFC of buffaloes from this population.

Introduction

Age at first calving (AFC) is an important indicator trait of reproductive efficiency that is gen-
etically monitored by the Milk-Recording Buffalo Program in Brazil (Aspilcueta-Borquis et al.,
2022). It is well known, however, that the genetic progress obtained by direct selection of AFC
can be very slow due to the low heritability magnitude of this trait in Buffaloes (Camargo et al.,
2015). Since genomic selection is more accurate than traditional selection, especially for
low-heritability traits (Calus et al., 2008), genomic evaluation is the best strategy for
predicting breeding values for AFC. Furthermore, Camargo et al. (2015) and Araujo Neto
et al. (2020a) have reported some specific genomic regions highly associated to this trait in
GWAS studies in this population, indicating that differential shrinkage models, such as
Bayesian alphabet and weighted single-step GBLUP models, would be a reasonable alternative
to be explored.

The single-step GBLUP (ssGBLUP) method has become the main methodology used for
genomic evaluations in dairy buffaloes (Araujo Neto et al., 2020a, 2020b; Cesarani et al.,
2021; Lázaro et al., 2021; Araujo Neto et al., 2022) given the ease of integrating the relationship
matrices, based on pedigree (A) and genomic (G) information, without major changes in the
mixed model equations (Misztal et al., 2020). Moreover, this methodology allows assigning dif-
ferent weights for each marker, originating the weighted single-step GBLUP method –
WssGBLUP (Wang et al., 2012; Zhang et al., 2016).

Subsequently, Fernando et al. (2014) proposed single-step methodologies combined to
Bayesian regression methods (ssBR), as an option to ssGBLUP. Nonetheless, few studies
have been developed comparing the results of the different single-step methodologies (Lee
et al., 2017; Gao et al., 2018; Zhou et al., 2018). Based on this, it becomes interesting to per-
form similar analyses in buffalo databases to assist in decision making in breeding programmes
that employ genomic technology. Thus, this work was designed with the aim of comparing the
predictive ability of different single-step methods using AFC information from Murrah
buffaloes.
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Materials and methods

Dataset

The phenotypic dataset consisted of 2,314AFC records of Murrah
buffalo cows born between 1995 and 2017. Contemporary groups
(CG) were formed considering animals born on the same farm,
year and season of birth, which was divided into two (dry and
rainy season). Animals with records outside the range between
±3 standard deviations from their CG averages and animals
belonging to GCs with less than five individuals were removed.

From a pedigree file containing 3320 buffaloes, 553 animals
(539 dams and 14 sires) were genotyped with the Axiom
Buffalo Genotyping Array 90 K (Iamartino et al., 2017). Only
SNPs present on autosomal chromosomes (BBU1-BBU24 refer-
enced by UOA_WB_1 genome assembly), as well as those with
call rate > 95%, MAF > 3% and significance level for Hardy
Weinberg equilibrium test was 10−5 , were remained in the ana-
lysis. All samples had a call rate >90%. The database description
(phenotypic and genotypic information) after the consistency
step is in Table 1.

PBLUP, ssGBLUP and WssGBLUP models

This set of methodologies is based on the use of relationship
matrices between individuals in mixed model equations, with
the differences consisting of the type of information used (pedigree
or genomic) and the way these matrices are constructed. The model
using pedigree based BLUP (PBLUP) can be described as:

y = Xb+ Za+ e

where, y is the vector of phenotypic records (AFC); β is the fixed
effect vector (CG), X is the incidence matrix that associates β
with y; α is the vector of additive genetic effects, Z is an incidence
matrix associating α with y and, e is the vector of residuals. The
following assumptions were made:

E(y) = Xb E(a) = 0 E(e) = 0

Var(a) = As2
a Var(e) = Ins

2
1

where s2
a and s2

1 represent the additive genetic and residual var-
iances; A and In are the pedigree relationship and an identity matri-
ces, respectively.

The single step GBLUP (ssGBLUP) method is an extension of
the PBLUP model, in which the pedigree-based (A) and genomic
(G) relationship matrices are combined into a single matrix (H),
as described by Aguilar et al. (2010). So, its inverse can be
obtained as:

H−1 = A−1 + 0 0
0 G−1 − A−1

22

[ ]

where A−1 and G−1 are the inverse matrices of A and G respect-
ively, and A−1

22 is the inverse of the section of A related to the gen-
otyped animals. The G matrix was obtained according to
VanRaden (2008) as:

G = ZDZ′

2
∑

pi(1− pi)
′

where pi is the minor allele frequency (MAF) of SNP i, Z is a
matrix relating genotypes of each locus centred by allele frequen-
cies, and D is a diagonal matrix of weights for SNP variances,
(with elements di = SNP i weight). In ssGBLUP model is set
D = I, so that the weight of all SNPs is equal to 1.

In WssGBLUP method (Wang et al., 2012) markers are
assigned with different weights using an iterative process
described with the following steps:

1. Set D(t) = I, when t = 1
2. The genomic relationship matrix is setup for t as

G(t) = ZD(t)Z′/(2
∑

pi(1− pi)
3. The Genomic Breeding Value (GEBV or â) for t are obtained;
4. 4.The GEBV â(t)are converted to SNP effects (û) as

ût = D(t)Z′(G(t))−1â(t)

5. The weight of the ith SNP (the ith element of D or di) is
calculated;

6. SNP weights are normalized in D (t+1) to have constant genetic
variances of SNP effects;

7. Loop to step 2 three times and exit.

For the methods mentioned above, the program BLUPF90+
(Misztal et al., 2014) was used for the estimation of the variance
components and for the validation step. The estimation of the
effects of the markers and the calculation of the weighting
(WssGBLUP) were performed with the program POSTGSF90
(Misztal et al., 2014). The heritability estimates for AFC were
obtained from these estimated variance components.

Single-step Bayesian regression models (ssBR)

The ssBR models combine all available data from genotyped and
non-genotyped animals and use imputed marker covariates for
animals that are not genotyped (Fernando et al., 2014), can be
described as:

yn
yg

[ ]
= Xn

Xg

[ ]
b+ Zn 0

0 Zg

[ ]
Mna+ e
Mga

[ ]
+ e

where vectors and matrices for non-genotyped animals are
denoted with the subscript n and for genotyped animals with
the subscript g. Thus, yn and yg represent the vectors of pheno-
typic observations; β is the vector of systematic effects of GC
(equivalent to the fixed effect in frequentist methods); Xn and
Xg design matrices for the fixed effects; Zn and Zg represent

Table 1. Description of age at first calving dataset used in this study

Description

Number of records

Full
dataset

Partial
dataset

Total of animals with records 2247 1596

Total of genotyped animals 539 539

Total of genotyped animals with
records

509 420

Total of contemporary groups 101 73

Mean (months) 37.34 36.97

Standard Deviation (months) 5.52 5.07
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incidence matrices associated with the genomic values of the ani-
mals; α, e and e, represent in this order, the vectors of marker
effects, imputation residual and model residual; Mg is the marker
matrix for the genotyped animals and Mn is the imputed marker
matrix for the non-genotyped animals. The matrix Mn can be
obtained as:

Mn = AngA
−1
22 Mg

where Ang represents the pedigree-based relationship matrix
between genotyped and non-genotyped animals and; A−1

2g2g repre-
sents the inverse of the pedigree-based relationship matrix

between genotyped animals. The following ssBR methods were
used: BayesA (ssBA- Meuwissen et al., 2001), BayesBπ (ssBBπ-
Meuwissen et al., 2001), BayesCπ (ssBCπ- Habier et al., 2011),
Lasso Bayesian (ssBL- Yi and Xu, 2008) and Bayesian ridge
regression (ssBRR- Campos et al., 2013), where the assumptions
for markers effects are shown in Table 2. The hibayes package
(Yin et al., 2022), available for the R program (R Core Team,
2021), was used to perform the ssBR analyses. A total of 350
000 samples and a burn-in period of 150 000 samples were gen-
erated. The convergence was evaluated using graphical analysis.
The heritability estimates for AFC were also obtained using
these models.

Figure 1. Estimates of SNP marker effects (Manhattan plot) for the different methods employed (ssBA, Single step Bayes A; ssBπ, Single step Bayes Bπ; ssBCπ, Single
step Bayes Cπ; ssBL, Single step Bayes Lasso; ssBRR, Single step Bayes Ridge Regression), and cluster analysis based on similarity between marker effects.
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Validation of (G)EBVs

The predictive ability of the methods was assessed using accur-
acy and dispersion statistics proposed by Legarra and Reverter
(2018). This methodology is based on predicting (G)EBV
using full (ûw) and a partial (ûp) datasets. The partial dataset
(reference group) was obtained by omitting phenotypic records
of genotyped animals born after 2010 (validation group).
Thus, to assess the prediction ability of the models, only geno-
typed animals from the validation group were used to calculate
the following statistics:

Accuracy Dispersion

rAÂ =
�������������
cov(ûw, ûp)

(1− �F)ŝ2
g

√
bw,p =

cov(ûw, ûp)

var(ûp)

where �F is the average inbreeding coefficient of the validation
individuals and ŝ2

g,i is the estimate of additive genetic variance.

Results

In this study, the estimated heritability for AFC was 0.17 using
BLUP-based methods and 0.16 to 0.18 using ssBR methods and,
the estimates of the effects of the markers can be seen in Figure
1. Accuracy estimates for the genotyped animals ranged from
0.30 (ssBRR) to 0.39 (WssGBLUP) (Fig. 2). Estimates of accuracy
with low magnitude were observed for non-genotyped animals,
with values ranging from 0.29 (ssGBLUP) to 0.33 (ssBA). The
PBLUP model presented accuracies of 0.30 and 0.29 for genotyped
and non-genotyped animals, respectively.

Regarding the dispersion of the GEBV prediction (Fig. 2),
ssBCπ (0.99) and WssGBLUP (1.00) obtained the best results con-
sidering only genotyped animals, while for non-genotyped animals
only WssGBLUP (1.02) showed the best value, although it was also
the higher than 1. The PBLUP model had the worst result with
values straying 35% below from the reference value (1.0).

In the full dataset, Pearson’s correlation between GEBVs and
EBVs (predicted via PBLUP) ranged from 0.92 (ssBRR) to 0.93
(ssGBLUP), while for animals with both genotypic and pheno-
typic information, the correlation between GEBVs and EBVs ran-
ged from 0.71 (ssBRR) to 0.77 (WssGBLUP). The correlations
between all GEBVs predicted with the single-step genomic models
were higher than 0.95.

Discussion

In this study, a heritability estimate obtained for AFC, had mag-
nitude similar to those described in several studies with the buf-
falo species, with values ranging from 0.13 to 0.19 (Agudelo et al.,
2015; Thiruvenkadan et al., 2015; Fernandes et al., 2016; Araujo
Neto et al., 2020a, 2020b). These results show that despite the
greater information provided by the markers in the analysis,
there was very little influence on the estimation of the genetic
parameters, possibly due to the polygenic nature of the trait.
There are few reports in the literature on comparison of genomic
prediction for reproductive traits, and it is not yet possible to find
studies that compared the predictive ability between different
single-step methods for AFC. Moreover, several accuracy mea-
sures have been reported by different authors, which makes the
comparison between their values even more difficult. For
instance, Costa et al. (2019), working only with genotyped
Nellore breed animals and considering the correlation between
GEBV and adjusted AFC (rGEBV,Y*), estimated values with magni-
tudes similar to those found in our study with BayesCπ (0.31) and
Bayes-Lasso (0.31), while Toghiani et al. (2017) reported lower
values with BayesA (0.148) and BayesCπ (0.15), studying the
same breed and using the same type of accuracy. In both cited
studies, accuracy estimates were not presented for PBLUP
model, which does not allow us to fully contrast with our findings.
Possibly, for comparison purposes, checking the accuracy incre-
ments in relation to PBLUP is the best approach to discuss our
results. Thus, all literature discussed about predictability were
made based on the difference in performance between methods
also used in our study.

Considering the percentage of accuracy increment in relation
to PBLUP predictions in only genotyped animals, we observed
three groups of models: increments less than 5% – ssBL and
ssBRR; increments close 10% – ssBBπ, ssBCπ and ssGBLUP
and; increments greater than 25% – ssBA and WssGBLUP.
Estimates of accuracy increments using SNP markers with magni-
tudes similar to those we have found for AFC, have been
described in the literature for productive traits in buffaloes
(Cesarani et al., 2021; Herrera et al., 2021).

For milk, fat and protein yield, greater increases in accuracy
(rGEBV,Y*) are presented by Herrera et al. (2021) (13.04 to
76.47%) and Cesarani et al. (2021) (15.28 to 33.33%).
Aspilcueta-Borquis et al. (2015), studying the same population of
this study and ssGBLUP model, reported similar increase in the
average accuracy (based on prediction error variance) of
(G)EBVs, which ranged from 8.52 to 12.05% for several dairy traits.
This gain in accuracy observed with the use of genomic informa-
tion is due to the additional capture of both Mendelian sampling
variations and relationships between animals (Christensen et al.,
2012; Cesarani et al., 2020). The similarity in predictive perform-
ance between the different single-step genomic methods, however,
could be related to the reduced number of animals evaluated, the
small subset of genotyped animals analysed, and the polygenic
nature of the AFC (Calus, 2010; Campos et al., 2013).

The proximity between ssBA and GRM-based model observed
in this study (by the magnitude of estimated accuracies) may be
explained by the polygenic nature of the trait and the robustness
of ssBA method for different genetic architectures. Zhou et al.
(2018), studying the effects of QTL number on the accuracy pre-
diction with simulated data, also verified that ssBA method was
robust and performed similarly to ssGBLUP in scenarios with a
large number of QTL.

Table 2. Description of different prior for markers effects used in Bayesian
single-step regression methods used for genomic analysis of age at first
calving in dairy buffaloes

Model Presuppositions

Single step Bayes A aj � N(0, s2
aj)

s2
aj � x−2(v, S)

Single step Bayes Bπ aj � (1− p)N(0, s2
a)+ pd0

s2
aj � x−2(v, S)

Single step Bayes Cπ aj � (1− p)N(0, s2
a)+ pd0

aj � N(0, s2
a)

Single step Bayes Lasso aj � N(0, s2
aj)

s2
aj � Expon(l2/2)

Single step Bayes Ridge Regression aj � N(0, s2
a)

4 J. C. G. Santos et al.
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The dispersion criterion is related to the degree of inflation or
deflation of predictions, which was measured in our validation set
as the slope of the regression of the GEBV obtained with the full
dataset on GEBV from the partial dataset. Our results showed that
the inclusion of genomic information reduces the dispersion of
prediction compared to the traditional evaluations (PBLUP),
regardless of the single-step model considered. The same
improvement in prediction slopes by using genomic information
was reported by Lázaro et al. (2021) studying several milk-related
traits with random regression models in the same buffalo

population, while other authors, such as Gao et al. (2018) also
analysing dairy traits in Finnish red dairy cattle, report no benefit.
Moreover, the GEBVs predicted with WssGBPUP did not dis-
perse in relation to what was expected for the subset of genotyped
animals and presented little deflation for the prediction of non-
genotyped animals. The low dispersion of GEBVs predicted
with WssGBLUP compared to the predictions from other gen-
omic models is probably due to the self-fitting of the SNP weights
to the dataset (weighting steps), which regulates the scale of the
additive effect to the full dataset previously (a priori).

Figure 2. Estimates of accuracy and dispersion of genetic and genomic values using different single-step methods (ssBA, Single step Bayes A; ssBπ, Single step
Bayes Bπ; ssBCπ, Single step Bayes Cπ; ssBL, Single step Bayes Lasso; ssBRR, Single step Bayes Ridge Regression) for the study of age at first calving in dairy buf-
faloes (genotyped animals).
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The results indicate that the use of genomic information can
improve the genetic gain for AFC by increasing the accuracy
and reducing inflation/deflation of predictions of this trait com-
pared to the traditional pedigree-based model. In addition,
among all genomic single-step models studied, WssGBLUP and
ssBA were the most advantageous models to be used for the gen-
omic evaluation of AFC of buffaloes from this population.
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