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The Marangoni flow induced by an insoluble surfactant on a fluid–fluid interface is a
fundamental problem investigated extensively due to its implications in colloid science,
biology, the environment and industrial applications. Here, we study the limit of a
deep liquid subphase with negligible inertia (low Reynolds number, Re � 1), where
the two-dimensional problem has been shown to be described by the complex Burgers
equation. We analyse the problem through a self-similar formulation, providing further
insights into its structure and revealing its universal features. Six different similarity
solutions are found. One of the solutions includes surfactant diffusion, whereas the other
five, which are identified through a phase-plane formalism, hold only in the limit of
negligible diffusion (high surface Péclet number Pes � 1). Surfactant ‘pulses’, with a
locally higher concentration that spreads outward, lead to two similarity solutions of the
first kind with a similarity exponent β = 1/2. On the other hand, distributions that are
locally depleted and flow inwards lead to similarity of the second kind, with two different
exponents that we obtain exactly using stability arguments. We distinguish between
‘dimple’ solutions, where the surfactant has a quadratic minimum and β = 2, from ‘hole’
solutions, where the concentration profile is flatter than quadratic and β = 3/2. Each of
these two cases exhibits two similarity solutions, one valid prior to a critical time t∗ when
the derivative of the concentration is singular, and another one valid after t∗. We obtain
all six solutions in closed form, and discuss predictions that can be extracted from these
results.
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1. Introduction

When the interface between two fluids is laden with a non-uniform distribution of
surfactant, the resulting imbalance of surface tension triggers a Marangoni flow (Scriven
& Sternling 1960; de Gennes, Brochard-Wyart & Quéré 2004). The underlying dynamics
is nonlinear, since the surfactant distribution, which sets the surface-driven fluid flow,
is itself redistributed by the resulting velocity field through advection. This two-way
coupled problem has been the focus of numerous studies, as surface-active molecules
are virtually unavoidable in realistic multiphase flow problems, appearing both in natural
and engineered systems (Manikantan & Squires 2020). For example, ambient amounts of
surfactant are known to critically alter flows relevant to the environment like the motion of
bubbles and drops, through a mechanism first proposed by Frumkin & Levich (1947) that
has since been studied extensively (Griffith 1962; Schechter & Farley 1963; Wasserman
& Slattery 1969; Sadhal & Johnson 1983; Cuenot, Magnaudet & Spennato 1997; Wang,
Papageorgiou & Maldarelli 1999; Palaparthi, Papageorgiou & Maldarelli 2006, to name
a few). Likewise, the surface of the ocean is affected by surfactants, which alter the
dynamics of waves ranging from small capillary ripples (Lucassen & Van Den Tempel
1972; Alpers & Hühnerfuss 1989) to larger spilling and plunging breakers (Liu & Duncan
2003; Erinin et al. 2023). Marangoni flows also play an important role in biological fluid
mechanics, both in physiological transport processes within the lung (Grotberg, Halpern
& Jensen 1995) or the ocular globe (Zhong et al. 2019), and in the motion of colonies
of microorganisms that generate biosurfactants (Botte & Mansutti 2005; Trinschek, John
& Thiele 2018). In industrially relevant applications, it is well known that surface-active
molecules influence the dip coating of plates and fibres (Park 1991; Quéré 1999), the
drag reduction of superhydrophobic surfaces (Peaudecerf et al. 2017; Song et al. 2018;
Temprano-Coleto et al. 2023) or the stability of foams (Breward & Howell 2002; Cantat
et al. 2013).

One the most fundamentally important examples of flows induced by surfactants
is the so-called ‘Marangoni spreading’ (Matar & Craster 2009), where a locally
concentrated surfactant spreads unopposed on a clean interface until it reaches a uniform
equilibrium concentration. Early quantitative studies examined surfactant spreading on
thin films, due to their relevance in pulmonary flows (Ahmad & Hansen 1972; Borgas
& Grotberg 1988; Gaver & Grotberg 1990, 1992). The pioneering work of Jensen &
Grotberg (1992) investigated the spreading of insoluble surfactant from the perspective
of self-similarity, a powerful theoretical tool to identify universal, scale-free behaviour
in physical systems (Barenblatt 1996). Several studies of Marangoni flows on thin films
based on self-similarity have since followed. For example, Jensen & Grotberg (1993)
described the spreading of a soluble surfactant, while Jensen (1994) re-examined the
insoluble case, finding additional self-similar solutions for distributions that are not locally
concentrated, but depleted of surfactant, which flow inward (‘fill’) under the action of
Marangoni stresses. Self-similarity was also examined for a deep fluid subphase by Jensen
(1995), considering the limit of dominant fluid inertia (i.e. at high Reynolds number).

In all the above studies, the problem is simplified by the existence of a confining length
scale in the fluid subphase, either the thickness of the thin liquid film or the width of the
momentum boundary layer. Thess, Spirn & Jüttner (1995) considered the case of a deep
fluid subphase at low Reynolds number, where the fluid flow is unconfined, and identified
that the resulting problem is non-local, with the velocity field at any given position
depending on the surfactant distribution on the whole interface. Theoretical work in this
limit followed (Thess 1996; Thess, Spirn & Jüttner 1997) until, recently, Crowdy (2021b)
showed that the problem is equivalent to a complex version of the Burgers equation
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Self-similarity in unbounded viscous Marangoni flows

for a lower-analytic function, effectively providing a local reformulation using complex
variables. This connection between the non-local problem and the Burgers equation had
also been identified previously (Baker, Li & Morlet 1996; Chae et al. 2005; de la Hoz &
Fontelos 2008), albeit in a context unrelated to surfactants or interfacial fluid dynamics.
Applied to Marangoni flows, the complex variables formulation has been a key insight to
derive new exact solutions (Crowdy 2021b; Bickel & Detcheverry 2022) and investigate
extensions of the problem (Crowdy 2021a; Crowdy, Curran & Papageorgiou 2023).

Even after this simplification for low-Reynolds-number, deep-subphase Marangoni flow,
exact solutions to the Burgers equation can be written explicitly only for a selected subset
of initial conditions, limiting the generality of the resulting physical insights. In this paper,
we analyse the problem from the perspective of self-similarity, which has provided key
physical insights not only into Marangoni spreading, but into many other problems like
boundary layer theory (Leal 2007), liquid film spreading (e.g. Huppert 1982; Brenner &
Bertozzi 1993; Wu, Duprat & Stone 2024), drop coalescence (Kaneelil et al. 2022) and
capillary pinching (Eggers 1993; Brenner, Lister & Stone 1996; Day, Hinch & Lister 1998).
We show that self-similarity not only reveals new universal features about the problem
that are independent of the specific initial conditions, but also gives rise to a beautiful
mathematical structure with six different similarity solutions and three different rational
exponents, all of which can be obtained in closed form.

We present the general formulation of the problem in § 2. Section 3 analyses the case
of advection-dominated Marangoni flows, that is, in the limit of infinite surface Péclet
number Pe−1

s = 0. In particular, the different possible similarity solutions for this limit are
identified through a combination of a phase-plane formalism (§ 3.1) and stability analysis
(§ 3.2). In § 4, we consider the case of ‘spreading’, where locally concentrated surfactant
induces an outward flow, and derive one solution without diffusion (§ 4.1) and one with
diffusion (§ 4.2). Section 5 analyses locally depleted surfactant distributions, which induce
a ‘filling’ flow inwards. Depending on the initial conditions, we distinguish that the filling
dynamics converges to either ‘dimple’ (§ 5.1) or ‘hole’ (§ 5.2) solutions. For either case,
we derive one similarity solution that holds prior to a reference time t∗ where the derivative
of the solution has a singularity, and another similarity solution valid after t∗. We discuss
these results and draw conclusions in § 6.

2. Problem formulation

2.1. Governing equations
We consider the dynamics of an insoluble surfactant evolving on the free surface of a layer
of incompressible, Newtonian fluid of density ρ and dynamic viscosity μ. Our focus is the
limit of small Reynolds (Re) and capillary (Ca) numbers given by

Re = ρuclc
μ

� 1, Ca = μuc

γ0
� 1, (2.1a,b)

where γ0 is the surface tension of the clean (surfactant-free) interface, and lc and uc
are the characteristic length and velocity scales of the problem, respectively. In this
asymptotic limit, surface tension dominates over viscous stresses, keeping the interface
flat. In addition, fluid inertia is negligible and the velocity field u(x, t), which depends on
both time t and position x, is well described by the continuity and Stokes equations

∇ · u = 0, ∇ · σ = 0, (2.2a,b)

where σ is the second-order stress tensor, σ = −p I + μ(∇u + (∇u)T), p the mechanical
pressure and I the identity tensor.
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Figure 1. A non-homogeneous distribution of insoluble surfactant, with concentration Γ (x, t), induces a
velocity field u(x, t) within its fluid subphase through interfacial Marangoni stresses. The surfactant is itself
advected by the resulting interfacial velocity us(x, t) = u · ex|y=0, leading to a two-way coupled problem.
(a) For a localized pulse of surfactant, the Marangoni flow results in outward ‘spreading’. (b) When the
surfactant distribution is instead depleted at its centre (a ‘hole’ or a ‘dimple’), the result is an inward ‘filling’
flow. All the dimensional parameters of the model considered here are highlighted in panel (b).

For sufficiently elongated surfactant distributions (e.g. a ‘strip’ of surfactant) and
a sufficiently deep fluid subphase, the problem can be reduced to the unbounded,
two-dimensional scenario displayed in figure 1. We use a coordinate system where x spans
the interface and y points away from the fluid subphase, with ex and ey the unit vectors
in the x and y directions, respectively. Velocity components are denoted u and v, with
u = uex + vey. The domain is considered to be semi-infinite, defined in x ∈ (−∞,∞)

and y ∈ (−∞, 0], and the time evolution of the surfactant concentration Γ (x, t) along the
interface is given by

∂Γ

∂t
+ ∂ (usΓ )

∂x
= Ds

∂2Γ

∂x2 , (2.3)

where Ds is the surface diffusivity of the surfactant and us = u · ex|y=0 is the interfacial
velocity. The boundary conditions at the interface

ex · σ · ey
∣∣
y=0 = −a

∂Γ

∂x
, (2.4a)

v( y = 0) = 0, (2.4b)

are the Marangoni condition (2.4a) linking viscous stresses to the gradient of surfactant,
and the no-penetration kinematic condition (2.4b). Here, the parameter

a =
∣∣∣∣ dγ

dΓ

∣∣∣∣, (2.5)

is a normalized Marangoni modulus, quantifying the reduction of surface tension γ with
increasing surfactant concentration. We regard Ds and a as constants, although they are in
general dependent on Γ through equations of state Ds(Γ ) and γ (Γ ), e.g. see Manikantan
& Squires (2020).

The governing equations (2.2)–(2.3) and boundary conditions (2.4) are supplemented
with an initial condition for the surfactant distribution

Γ (x, t = 0) = Γ0(x). (2.6)
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Self-similarity in unbounded viscous Marangoni flows

The profile Γ0(x) introduces the characteristic scale Γc, which we will take as the
maximum concentration Γc = maxx [Γ0(x)]. Furthermore, the typical width of Γ0(x) sets
the length scale lc of the problem.

From these constants, dimensional analysis of the Marangoni boundary condition (2.4a)
leads to a natural scale for the velocity magnitude

ex · σ · ey
∣∣
y=0 = μ

∂u
∂y

∣∣∣∣
y=0

= −a
∂Γ

∂x
=⇒ uc ≈ aΓc

μ
. (2.7)

For the assumptions of Re � 1 and Ca � 1 to hold, the characteristic concentration Γc
and width lc of the surfactant distribution must both be sufficiently small to ensure that

lcΓc � μ2

ρa
, Γc � γ0

a
, (2.8)

providing practical estimates to determine if, for a given set of physicochemical properties
μ, ρ, a, and γ0, a known surfactant distribution will lead to Marangoni flow in the
asymptotic limit considered in this study.

The full problem, as defined by (2.2)–(2.4) and (2.6), is nonlinear and involves the
two-dimensional vector field u. Thess et al. (1995) recognized that it was possible to
obtain a one-dimensional formulation, using the Fourier transform of (2.2) to obtain us
as a function of Γ . Here, we show that the same simplification can be achieved through
the boundary integral representation of Stokes flow. Indeed, the velocity field given by
(2.2) at any position x along the interface (see Pozrikidis 1992) can be expressed as

u(x, t) = 1
2π

[∫
I

G(x − x′) · σ (x′, t) · n dlx′ + −
∫
I

u(x′, t) · T (x − x′) · n dlx′

]
, (2.9)

where the dash denotes the Cauchy principal value of the integral, I denotes the interface,
n the unit outward normal vector and the tensors in the integrands are defined as

G(x) = − 1
μ

(
ln |x| I − xx

|x|2
)
, (2.10a)

T (x) = −4
xxx
|x|4 . (2.10b)

Since the interface remains flat, the outward normal vector simplifies as n = ey, while x
and x′ are co-linear and parallel to ex. Therefore, we have (x − x′) · n = 0 since the vectors
are orthogonal, and

T (x − x′) · n = −4
(x − x′)(x − x′)(x − x′)

|x − x′|4 · n = 0, (2.11)

eliminating the second integral (the ‘double-layer potential’) in (2.9). Taking (x − x′) =
(x − x′)ex and noting the integrals along the interface are simply along x′, the interfacial
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velocity can then be expressed as

us(x, t) = ex · u|y=0 = 1
2πμ

∫ ∞

−∞

(
1 − ln |x − x′|) ex · σ (x′, t) · ey

∣∣
y=0 dx′, (2.12)

which, upon substitution of the Marangoni boundary condition (2.4a) and integration by
parts, becomes

us(x, t) = a
2πμ

{[(
ln |x − x′| − 1

)
Γ (x′, t)

]x′→∞
x′→−∞ + −

∫ ∞

−∞
Γ (x′, t)
x − x′ dx′

}
. (2.13)

The first term in (2.13) vanishes for any surfactant profile decaying as a power law (or
faster) in the far field. Remarkably, this term also cancels out for profiles Γ (x, t) that do
not decay as |x| → ∞, as long as their far-field values are finite and symmetric, such that
0 < limx→∞ Γ (x, t) = limx→−∞ Γ (x, t) < ∞. We therefore restrict this study to these
two possible far-field behaviours, excluding ‘step-like’ profiles with asymmetric far-field
concentrations. The above leads to the closure relationship

us(x, t) = a
2πμ

−
∫ ∞

−∞
Γ (x′, t)
x − x′ dx′ = a

2μ
H[Γ ], (2.14)

first derived by Thess et al. (1995), where the operator H [ ] denotes the Hilbert transform
of a function (for details, see King 2009a,b). This closure relationship results in a
one-dimensional problem, only requiring the solution of (2.3) alongside condition (2.14).
The resulting formulation is, however, non-local, as the interfacial velocity us at any given
point depends upon the distribution of Γ along the whole real line.

We proceed to non-dimensionalize equations (2.3), (2.14) and the initial condition (2.6)
using the scales of the problem discussed above. To that end, we apply the rescalings

x → lcx, t →
(

2μlc
aΓc

)
t, u →

(
aΓc

2μ

)
u, Γ → ΓcΓ, Γ0 → ΓcΓ0, (2.15)

which leads to a dimensionless problem given by

∂Γ

∂t
+ ∂ (H [Γ ]Γ )

∂x
= 1

Pes

∂2Γ

∂x2 , (2.16a)

Γ (x, t = 0) = Γ0(x), (2.16b)

and where the surface Péclet number is defined as

Pes := aΓclc
2μDs

. (2.17)

Alternative formulations of the non-local problem (2.16) have been studied in
the mathematical literature (Baker et al. 1996; Morlet 1998; Chae et al. 2005; de
la Hoz & Fontelos 2008; Eggers & Fontelos 2020) as a model for finite-time
blowup. However, that body of work was not concerned with the description of
surfactant dynamics, which introduces key differences that we highlight in § 2.3 below.
In the context of Marangoni flows, Crowdy (2021b) recently showed, through a
complex-variable formulation of two-dimensional Stokes flow, that a dependent variable
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Self-similarity in unbounded viscous Marangoni flows

ψ = us + iΓ = H [Γ ] + iΓ satisfies

∂ψ

∂t
+ ψ

∂ψ

∂x
= 1

Pes

∂2ψ

∂x2 , (2.18a)

ψ(x, t = 0) = ψ0(x) = H [Γ0(x)] + iΓ0(x), (2.18b)

where ψ(z, t) must be a lower-analytic complex function (named h(z, t) in the notation of
Crowdy 2021b) of the variable z = x + iy. This problem reduction can also be realized by
adding (2.16a) to its Hilbert transform, and then recognizing that H [∂xΓ ] = ∂xH [Γ ] and
H [ΓH [Γ ]] = ((H [Γ ])2 − Γ 2)/2. It is worth remarking that subtracting (2.16a) from its
Hilbert transform leads to the same Burgers equation (2.18a) but with a complex conjugate
dependent variable ψ = us − iΓ , which is an equivalent notation followed by Bickel &
Detcheverry (2022). In such an alternative notation the complex function ψ(z, t) is instead
the upper-analytic Schwarz conjugate of the one used here.

The limit of negligible diffusion given by Pes � 1 can be approximated at leading order
by taking Pe−1

s = 0, which yields

∂ψ

∂t
+ ψ

∂ψ

∂x
= 0, (2.19a)

ψ(x, t = 0) = ψ0(x) = H [Γ0(x)] + iΓ0(x). (2.19b)

The problems given by the Burgers equation (2.18a) and the inviscid Burgers equation
(2.19a) (also known as the Hopf equation) are now local, and admit exact solutions
via either the Cole–Hopf transformation for (2.18) or the method of characteristics for
(2.19), as shown in Crowdy (2021b) and Bickel & Detcheverry (2022). While some of
these solutions have been shown to exhibit self-similar behaviour (Thess 1996; Bickel
& Detcheverry 2022), a systematic analysis of the problem from the perspective of
self-similarity has not yet been performed, and is the goal of this paper.

2.2. Self-similar formulation
We adopt the following self-similarity ansatzes:

η = sgn (t − t∗)
x − x∗

A|t − t∗|β , (2.20a)

ψ(x, t) = B|t − t∗|αf (η), (2.20b)

with η the real similarity variable. The similarity function f (η), which takes complex
values, is decomposed as f = U + iC, with U(η) and C(η) real. The interfacial velocity
and surfactant concentration can then be recovered as

us(x, t) = B|t − t∗|αU(η), (2.21a)

Γ (x, t) = B|t − t∗|αC(η). (2.21b)

We introduce the positive real constants A and B for convenience, and fix their values
to simplify the final form of the similarity solutions f (η), as illustrated below. The real
constants x∗ and t∗ are a reference position and time, respectively. Including the factor
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sgn (t − t∗) in the definition (2.20a) is equivalent to choosing

η = x − x∗
A(t − t∗)β

, (2.22a)

for solutions that evolve forward in time t > t∗, and to choosing

η = x∗ − x
A(t∗ − t)β

, (2.22b)

for solutions that evolve backward in time t < t∗. We adopt the more intuitive forward-time
description when describing ‘spreading’ (as in figure 1a) solutions of (2.18) and (2.19).
These solutions become self-similar at long times t � 1, so in that case we take t∗ =
0. However, ‘filling’ self-similar solutions representing inward flow (as in figure 1b) are
often only valid sufficiently close to a reference time t = t∗ > 0 at which the solution has
a singularity, requiring either the backward-time (e.g. Eggers & Fontelos 2008) or the
forward-time (e.g. Zheng et al. 2018) description to analyse their behaviour immediately
prior or subsequent to t∗, respectively.

Using the self-similarity ansatzes (2.20) in the Burgers equation (2.18a) leads to

αf − βη
df
dη

+ B
A

|t − t∗|α−β+1f
df
dη

= sgn (t − t∗)
A2Pes

|t − t∗|1−2β d2f
dη2 . (2.23)

Solutions are self-similar when the above ordinary differential equation (ODE) is solely
dependent on η, and not on t or x separately, which requires either one of the following
two scenarios:

(i) For the general case of a finite Pe−1
s > 0, the only possible choice of exponents is

α = −1/2, β = 1/2. Seeking to eliminate parameters from (2.23), we fix A = B =√
2/Pes, focusing on forward-time solutions with sgn (t − t∗) = 1 that lead to

d
dη

[
df
dη

+ ηf − f 2
]

= 0. (2.24)

Equation (2.24) has one spreading (as in figure 1a) self-similar solution of the first
kind, which was identified by Bickel & Detcheverry (2022) and which we outline in
§ 4.2.

(ii) In the advection-dominated limit given by Pe−1
s = 0, self-similarity only requires

α = β − 1. In this case, we fix B = A, keeping β and A as free parameters. This
leads to

( f − βη)
df
dη

= (1 − β)f . (2.25)

We obtain the same similarity equation (2.25) independently of the choice of the
forward-time or backward-time definition of η, due to the invariance of the inviscid
Burgers equation (2.19a) with respect to a reversal of time t → −t and space
x → −x. In this advection-dominated case, multiple solutions can potentially arise,
depending on the specific value of β. Using a phase-plane formalism and stability
analysis, in § 3 we identify five possible similarity solutions of (2.25). We re-discover
the spreading self-similar solution of the first kind first identified by Thess (1996),
which we detail in § 4.1. We also find four possible ‘filling’ (as in figure 1b) solutions
of the second kind with different power-law exponents β, which we describe in § 5.
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Self-similarity in unbounded viscous Marangoni flows

For either of the two similarity differential equations (2.24) and (2.25) above, solutions
f (η) must have a physically correct parity. Introducing the similarity ansatzes (2.20)
into the closure relationship us(x, t) = H [Γ (x, t)] leads to an analogous relation U(η) =
H [C(η)] for the similarity solutions. Since the Hilbert transform reverses parity (King
2009a), we can conclude that the only admissible parities are either U odd and C even, or
U even and C odd. However, an odd function C(η)would imply unphysical negative values
of the concentration Γ (x, t). Accordingly, we only consider similarity solutions with U(η)
odd and C(η) even or, equivalently, f (−η) = −f (η) with the overbar indicating complex
conjugation. Note that this parity requirement does not necessarily apply to the physical
solutions Γ (x, t) and us(x, t) which, as we show in §§ 4 and 5, can be asymmetric and only
attain symmetry as they converge to a self-similar solution.

In addition, similarity solutions f (η)must satisfy a specific far-field boundary condition
(Eggers & Fontelos 2008) such that the function ψ(x, t) is independent of time in the far
field |x| → ∞. From the similarity ansatz (2.20b) and from the fact that α = β − 1, it is
clear that such a far-field behaviour requires f (η) = O(|t − t∗|1−β) as |η| → ∞. Given the
definition of η in (2.20a), the only possibility to satisfy this condition is

f (η) ∼ k±∞|η|(β−1)/β as |η| → ∞. (2.26)

We use the notation k±∞ to denote generic far-field constants that differ between k∞
as η → ∞ and k−∞ as η → −∞ since, by symmetry, k−∞ = −k̄∞. Equation (2.26) is
referred to as a ‘quasi-stationary’ far-field condition. If the similarity solution f (η) is
globally valid in space, then the condition is equivalent to a far-field behaviour of ψ
that is constant in time as |x| → ∞. If, on the other hand, f (η) is only valid locally
(as is often the case with similarity of the second kind), the condition implies that f (η)
must match with the ‘outer’ non-self-similar part of ψ , which evolves on a slower time
scale.

2.3. A note on alternative formulations
The problem given by (2.16) and (2.18), as well as its variants with Pe−1

s = 0, appear in
the literature with slightly different formulations that are nonetheless equivalent, which
we summarize in table 1. It is easy to check that, once transformed to our formulation,
the finite-time blowup described in the mathematical literature (Baker et al. 1996;
Morlet 1998; Chae et al. 2005; de la Hoz & Fontelos 2008; Eggers & Fontelos 2020)
occurs for negative concentration Γ < 0. This is unphysical if Γ represents a surfactant
concentration, but it is not problematic in the above body of work, where the non-local
problem (2.16) has an unrelated physical motivation. Those studies describe singularities
that are persistent in time and occur at points with Γ < 0, thus qualitatively different
from those found here (§ 5), which happen at points of Γ = 0 within a non-negative
profile Γ (x) ≥ 0, and disappear at finite time. For that reason, the self-similar analysis
by de la Hoz & Fontelos (2008) and Eggers & Fontelos (2020) is linearized around the
non-zero value of Γ at which singularities occur, yielding different similarity equations
and exponents.

3. Analysis of the advection-dominated case

In the advection-dominated case with Pe−1
s = 0, the complexity of the similarity ODE

(2.25) can be reduced by noting that it is scale invariant, since the transformations
f → λf and η → λη (with λ real and non-zero) leave the equation unchanged. The ratio
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F. Temprano-Coleto and H.A. Stone

Conversion to
Non-local form Local form (2.16) and (2.18) Examples

Γt + (H [Γ ]Γ )x = Pe−1
s Γxx ψt + ψψx = Pe−1

s ψxx None This work, Chae et al. (2005),
Γ (x, 0) = Γ0(x) ψ(x, 0) = H [Γ0] + iΓ0 Crowdy (2021b)

Γt + (H̃ [Γ ]Γ )x = Pe−1
s Γxx ψt + ψψx = Pe−1

s ψxx H̃ → −H Baker et al. (1996)
Γ (x, 0) = Γ0(x) ψ(x, 0) = H̃ [Γ0] − iΓ0 Γ → −Γ

Γ0 → −Γ0

Γt − 1
2

(H̃ [Γ ]Γ
)

x = 0

Γ (x, 0) = Γ0(x)

N/A H̃ → −H
t → 2t

Thess (1996)

Γt − (H̃ [Γ ]Γ
)

x = Pe−1
s Γxx

Γ (x, 0) = Γ0(x)
N/A H̃ → −H Morlet (1998)

Γt − (H [Γ ]Γ )x = 0 ψt − ψψx = 0 Γ → −Γ de la Hoz & Fontelos (2008),
Γ (x, 0) = Γ0(x) ψ(x, 0) = H [Γ0] + iΓ0 Γ0 → −Γ0 Eggers & Fontelos (2020)

ψ → −ψ
Γt + (H [Γ ]Γ )x = Pe−1

s Γxx ψt + ψψx = Pe−1
s ψxx ψ → ψ̄ Bickel & Detcheverry (2022)

Γ (x, 0) = Γ0(x) ψ(x, 0) = H [Γ0] − iΓ0

Table 1. Alternative formulations of the problem found in the literature, alongside the transformations
required to convert them to (2.16), (2.18) and their variants with Pe−1

s = 0. Here, we have that
H̃ [Γ ] = π−1 −

∫ ∞
−∞(x

′ − x)−1Γ (x′, t) dx′ is an alternative definition of the Hilbert transform, such that
H̃ [Γ ] = −H [Γ ]. Subindices indicate partial derivatives.

f /η → λf /(λη) = f /η also remains invariant under these rescalings, suggesting a change
of dependent variable g(η) := f (η)/η that turns (2.25) into

dg
d ln |η| = g(1 − g)

(g − β)
. (3.1)

Equation (3.1) is a separable first-order ODE, so it can be integrated directly to obtain

(
1 − f

η

)(
f
η

)−(β/(β−1))

= k±|η|1/(β−1), (3.2)

where exponentiation of complex numbers is understood in a principal value sense. We
again write k± to highlight that, for complex solutions, the complex integration constant
can, in principle, take different values k+ for η > 0, and k− for η < 0. In fact, introducing
the transformations η → −η and f → −f̄ in (3.2), we find that

k− = k̄+, (3.3)

for solutions to have the required symmetry f (−η) = −f (η).
Equation (3.2) is still an implicit relation, providing little insight into solutions for

arbitrary real values of β. It is therefore not straightforward, at least from (3.2) alone,
to determine the particular subset of physically realistic similarity solutions.
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Self-similarity in unbounded viscous Marangoni flows

3.1. The phase plane
Since (3.1) is also autonomous, its solutions can be represented in a phase plane with
state variables Re

[
g
] = U/η and Im

[
g
] = C/η, following Gratton & Minotti (1990).

This formalism allows systematic identification of all possible similarity solutions of
(2.25) as distinct trajectories in the phase plane, with the beginning of each trajectory
representing the origin η = 0 and its end point indicating the far field |η| → ∞. We
construct the phase plane by first finding the fixed points of (3.1), seeding initial conditions
closely around each of them, and then numerically integrating forward or backward in
ln |η| depending on if the particular seed is along a stable or unstable direction. A detailed
account of the integration procedure and the calculation of the fixed points is provided in
Appendix A. We only consider exponents β > 0, excluding also β = 1 since it leads to a
linear problem in (3.1) with constant solutions for f (η).

Phase portraits of the system are shown in figure 2, for a set of six representative values
of β. The phase plane has a remarkably simple structure, being symmetric with respect
to the horizontal axis C/η = 0 due to the invariance of (3.1) to g → ḡ. Note that the
symmetry f (−η) = −f (η) required of the similarity solution leads to g(−η) = g(η), given
that f (η) = η g(η). In the phase plane, this means that a full solution is represented by
a combination of a trajectory in the upper half-plane (given by g) and its reflection in
the lower half-plane (given by ḡ). The curve in the upper half-plane (where C(η)/η > 0)
represents the solution for η > 0 (since C(η)must be non-negative), while its mirror image
in the lower half-plane (where C(η)/η < 0) represents it for η < 0.

The fixed points of the phase plane always include two star nodes O = (0, 0) and P =
(1, 0) on the horizontal axis, whose position is independent of the value of the exponent
β. In addition, there is always a saddle point S = (β, 0) that lies between O and P for
0 < β < 1 and to the right of P for β > 1, denoting a ‘front’ where the solution is locally
non-smooth. These three points O, P, and S have horizontal and vertical eigendirections.
The behaviour of trajectories at the outer edges of the phase plane (i.e. as U/η → ±∞ or
as C/η → ±∞) is given by three additional fixed points (labelled M, N and R) that the
ODE (3.1) displays when it is recast in terms of the reciprocals η/U and η/C, as detailed
in Appendix A. All six fixed points are listed and classified in table 2. Furthermore, the
asymptotic form of the solution around each of these points can be found via linearization
and is also provided in table 2, thereby listing all possible behaviours of f (η) as η → 0
and as |η| → ∞ for different values of β. The fact that two trajectories (one representing
η > 0 and another one η < 0) must be ‘patched’ at η = 0 to generate a full solution f (η)
results in expansions around the origin that often involve terms like sgn (η) and |η| (see
table 2), which can only result in regular solutions for some specific values of β, as we
show in § 3.2.

While all possible similarity solutions with the correct parity can be placed in the plane,
not all of them are necessarily relevant from a physical standpoint. The advantage of a
phase plane formalism is that it provides a way to systematically classify all trajectories
in terms of the fixed points that they connect, so that they can be identified as relevant or
irrelevant. We list all possible trajectories in table 3, where the rightmost column indicates
whether the trajectory is classified as physically relevant, based on three criteria:

(i) Solutions must be representative of Marangoni flow. Some trajectories in figure 2
like M → O, M → P or P → O are fully contained along the horizontal axis, but
that implies a zero concentration C(η) = 0 for all values of η, indicating that they do
not represent Marangoni flow. In fact, the trajectory P → O along the horizontal axis
for β = 3/2 (figure 2d) corresponds to the real similarity solution of the inviscid
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(a) (b) (c)

(d) (e) ( f )

Figure 2. Phase portraits of (3.1), for six different values of β > 0, β /= 1. Any given two trajectories that
are symmetric with respect to the horizontal axis represent one possible similarity solution f (η) = η g(η),
with the origin of the trajectory denoting η = 0 and the endpoint denoting |η| → ∞. The three fixed points
O = (0, 0) (stable node), P = (1, 0) (node) and S = (β, 0) (saddle) have horizontal and vertical eigendirections
for all β > 0. Points M, N, R are the fixed points of the ODE satisfied by the reciprocals of the solution
(see Appendix A). Only green, purple, orange and yellow trajectories represent similarity solutions that are
physically relevant, as illustrated in table 3. Stability criteria (§ 3.2) select the only five solutions that can
be obtained in practice, which are highlighted with a wider streak. The dashed vertical line corresponds to
U/η = 1 − β.

Burgers equation (2.19a) described by Eggers & Fontelos (2008), which appears
prior to the formation of a shock and is relevant to describe other problems like gas
dynamics or wave breaking.

(ii) Solutions must have a far-field behaviour compatible with (2.26), as explained in
§ 2.2. Accordingly, all trajectories listed in table 2 with a far field incompatible with
(2.26), such as those ending at point P for 0 < β < 1, are labelled as irrelevant.

(iii) Solutions must be continuous at the origin. For instance, solutions starting at points
M or R have an odd but discontinuous velocity U(η) at η = 0, with U(0+) = K and
U(0−) = −K for some real, non-zero constant K, as detailed in table 2.

Based on this classification outlined in table 3, we identify four families of solutions
that qualify as physically relevant. We can interpret the qualitative behaviour of each
of these trajectories depending on their position within the phase plane, following the
discussion given in Appendix B. Trajectory N → S → O, which only exists for β = 1/2,
is highlighted in green in figure 2 and, according to Appendix B, corresponds to a
‘spreading’ similarity solution with a forward-time definition of the similarity variable,
as in (2.22a). We discuss this spreading solution, as well as its counterpart with finite
diffusion, in § 4. The P → O (yellow in figure 2) and P → S → O (orange in figure 2)
trajectories are ‘filling’ similarity solutions with a backward-time scaling as in (2.22b),
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Self-similarity in unbounded viscous Marangoni flows

Fixed point Type Meaning U(η) ∼ C(η) ∼(
U
η
,

C
η

)

O (0, 0) SN |η| → ∞ Ksgn (η) |η|(β−1)/β 0

K2 (β − 1)
β

sgn (η) |η|(β−2)/β K|η|(β−1)/β

Ksgn (η) |η|(β−1)/β K′|η|(β−1)/β

P (1, 0) SN [0 < β < 1] |η| → ∞ η + Ksgn (η) |η|β/(β−1) 0

UN [β > 1] η = 0 η + K2β

(1 − β)
sgn (η) |η|(β+1)/(β−1) K|η|β/(β−1)

η + Ksgn (η) |η|β/(β−1) K′|η|β/(β−1)

S (β, 0) S Front at η = ηf βη ± η ln1/2

(∣∣∣∣ ηηf

∣∣∣∣
2β(1−β))

0

βη |η| ln1/2

(∣∣∣∣ηf

η

∣∣∣∣
2β(1−β))

M (±∞, 0) S η = 0 K sgn (η) 0

N (1 − β,±∞) S η = 0 (1 − β)η + β(1 − β)(1 − 2β)
3K2 η3 K − β(1−β)

2K
η2

R (±∞,±∞) UN η = 0 K sgn (η) K′

Table 2. Fixed points of the ODE system given by the real and imaginary parts of (3.1), for β > 0 and β /= 1;
SN denotes a stable node, UN an unstable node, and S a saddle. Points M, N and R are obtained as fixed points
of ODE systems involving the reciprocals η/U and η/C, as detailed in Appendix A. The entries for U(η) and
C(η) denote every possible asymptotic expansion about each fixed point, where K and K′ are independent, real,
non-zero constants of integration, and ηf is the (real, non-zero) location of the front occurring at the saddle
point S. When more than one entry for U(η) and C(η) is provided, the first row corresponds to the trajectory
along the horizontal eigendirection, the second row to the trajectory along the vertical eigendirection and the
third (if provided) to generic curves along any other direction.

which suggests they are valid immediately prior to a singularity. They only hold locally
as evidenced by their far-field behaviour, since these solutions only exist for β > 1 and
the condition (2.26), f (η) ∼ k±∞|η|(β−1)/β , then implies that they grow unbounded as
|η| → ∞. The Hilbert transform is undefined for unbounded functions so, as observed
by Thess et al. (1997), similarity solutions for β > 1 must be only valid locally. The last
of these four families of solutions is N → O, which exists for β > 1/2, is displayed in
purple in figure 2 and has forward-time scaling as in (2.22a). These solutions can be either
spreading, for 1/2 < β < 1, or filling, for β > 1.

Three of the identified families of curves, namely P → O (yellow), P → S → O
(orange) and N → O (purple), appear to exist for multiple values of β, which is typical
of self-similarity of the second kind (Barenblatt 1996). In the case of P → O, there are
even several possible solutions within the same value of β. These second-kind solutions
appear around finite-time singularities, and we show in § 3.2 how considerations about
their stability rule out many of the trajectories within these three families, leading to the
only solutions that are truly obtainable in practice.

997 A45-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.563


F. Temprano-Coleto and H.A. Stone

Trajectory Range of β Physically relevant trajectory?

M → O β > 0 No, U(0−) /= U(0+) and C(η) = 0.
R → O β > 0 No, U(0−) /= U(0+).
N → P 0 < β < 1/2 No, invalid far field.
M → P 0 < β < 1 No, U(0−) /= U(0+), C(η) = 0, and invalid far field.
R → P 0 < β < 1 No, U(0−) /= U(0+) and invalid far field.
R → S → O 0 < β < 1, β /= 1/2 No, U(0−) /= U(0+).
R → S → P 0 < β < 1, β /= 1/2 No, U(0−) /= U(0+) and invalid far field.
N → S → O β = 1/2 Yes, green trajectory in figure 2.
N → S → P β = 1/2 No, invalid far field.
N → O β > 1/2 Yes, purple trajectories in figure 2.
M → S → O β > 1 No, U(0−) /= U(0+).
P → S → O β > 1 Yes, orange trajectories in figure 2.
P → O β > 1 Depends on its direction around point P:

• Horizontal: no, C(η) = 0.
• Otherwise: yes, yellow trajectories in figure 2.

Table 3. List of all possible phase-plane trajectories of the reduced similarity ODE (3.1), for different values of
the exponent β. The last column indicates whether a given trajectory represents a physically relevant solution. If
the solution is classified as not relevant, the reasons are provided, based on three criteria: (i) having a non-zero
concentration C(η) /= 0 representative of Marangoni flow, (ii) compatibility with the far-field condition (2.26)
and (iii) continuity at η = 0. If the trajectory is physically relevant, its colour in figure 2 is indicated.

3.2. Stability analysis
In order to analyse the stability of similarity solutions, we use the dynamical system
formulation (see Giga & Kohn 1985, 1987; Eggers & Fontelos 2008, 2015) of the inviscid
Burgers equation (2.19a). Instead of seeking to reduce the two physical variables x and t
into a single similarity variable η, we use the more general change of variables

ψ(x, t) = A|t − t∗|β−1F(η, τ ), (3.4a)

η = sgn (t − t∗)
x − x∗

A|t − t∗|β , (3.4b)

τ = − ln |t − t∗|, (3.4c)

which, instead of reducing the original partial differential equation (PDE) to an ODE,
leads to a partial differential equation for F(η, τ )

∂F
∂τ

=
[
(F − βη)

∂F
∂η

− (1 − β)F
]
. (3.5)

The key of the transformation given by (3.4) is that the steady state of (3.5) reduces to
the similarity equation (2.25). Indeed, the definition (3.4c) of τ indicates that approaching
the singularity time t → t∗ corresponds to τ → ∞, leading to a steady state ∂τF → 0 at
which solutions to (3.5) satisfy the similarity ODE (2.25).

The stability of each of the similarity solutions found in § 3.1 can now be determined
via linear stability analysis around f (η). We pose a perturbation

F(η, τ ) = f (η)+ ε

∞∑
n=0

bneνnτ φn(η)+ O(ε2), (3.6)
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Self-similarity in unbounded viscous Marangoni flows

where ε � 1, νn are the growth rates of each mode φn and bn are the mode amplitudes.
Introducing (3.6) into the PDE (3.5) we obtain at order O(ε) an eigenvalue problem

Lφn :=
[
β(1 − β)

( f − βη)
η + ( f − βη)

d
dη

]
φn = νnφn. (3.7)

The stability of any given similarity solution f (η) can then be determined solving the
eigenvalue problem (3.7) for the linear operator L, which itself depends on the similarity
solution f (η). Moreover, the spectrum of L is typically discrete given some additional
conditions for the eigenfunctions φn (Eggers & Fontelos 2008, 2015). Namely, each φn(η)
must be regular at η = 0, and satisfy its own quasi-stationary far-field condition

φn(η) ∼ k±∞|η|(β−1−νn)/β as |η| → ∞, (3.8)

for some complex constants k±∞. Only those similarity solutions leading to a spectrum
of L with negative eigenvalues νn < 0 result in perturbations decaying in time and are
therefore stable. However, as shown by Eggers & Fontelos (2008, 2015), there is also a
specific subset of non-negative eigenvalues that does not lead to instability and is instead
an artefact of the continuous symmetries of the problem. Specifically, the invariance of
the governing equation (2.19a) to shifts in space x → x + λ, shifts in time t → t + λ and
scalings ψ → λψ , t → λt, x → λ2x, always leads to the three eigenvalues ν = β, ν = 1
and ν = 0, respectively (see § 3.2 in Eggers & Fontelos 2015). Accordingly, we look for
solutions from the phase plane that lead to a spectrum of L with at most these three
non-negative eigenvalues, with all others being negative.

The three families of trajectories in figure 2 considered here (P → O, P → S → O and
N → O) all have the same far-field behaviour since they end at the same point. From
table 2, we know that f (η) ∼ k±∞|η|(β−1)/β as |η| → ∞, which can be introduced in the
eigenvalue problem (3.7) to yield the far-field behaviour of the eigenfunctions

dφn

dη
=

[
νn( f − βη)− β(1 − β)η

( f − βη)2

]
φn ∼

[
β − 1 − νn

βη

]
φn as |η| → ∞, (3.9)

which leads to φn ∼ k±∞|η|(β−1−νn)/β in the far field, in agreement with condition (3.8).
This means that, for these three families of trajectories, the required far-field behaviour
of eigenfunctions φn(η) is satisfied automatically, and the eigenvalues are then solely
determined by the regularity of φn(η) at η = 0, as shown in in the next three subsections.

3.2.1. Trajectories P → O (yellow in figure 2)
Table 2 indicates that all P → O solutions that do not depart P along the vertical
eigendirection have expansions U(η) ∼ η + K sgn (η) |η|ω and C(η) ∼ K′|η|ω, where we
define the exponent ω := β/(β − 1). The only possibility for U(η) to be regular at
the origin is for ω to be an odd integer (so that sgn (η) |η|ω = ηω), whereas the only
possibility for C(η) to be regular is for ω to be an even integer (so that |η|ω = ηω).
Since these requirements cannot be fulfilled simultaneously, these generic trajectories
P → O can never be regular at η = 0. However, the specific P → O trajectory that
departs P along the vertical eigendirection has a different expansion, given by table 2 as
f (η) ∼ η + iK|η|ω + [K2β/(β − 1)] sgn (η) |η|2ω−1. In that case, the expression can be
regular if ω is an even integer, turning into a true polynomial expansion. In other words,

997 A45-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.563


F. Temprano-Coleto and H.A. Stone

from the continuum of possible real values β > 1, only a discrete set βm given by

βm

βm − 1
= 2m + 2, with m = 0, 1, 2, . . . , (3.10)

leads to regular solutions at the origin, and only for the trajectory leaving P along the
vertical direction. The possible similarity exponents are then

βm = 2m + 2
2m + 1

= 2,
4
3
,

6
5
,

8
7
, . . . (3.11)

Each value βm in this discrete set results in a solution fm(η) with an expansion
fm(η) ∼ η + iKη2m+2 + K2(2m + 2)η4m+3 around the origin. Moreover, each of these
solutions leads to a discrete set of eigenfunctions φmn and eigenvalues νmn indexed by
an integer n. Inserting the expansion for fm(η) in the eigenvalue problem (3.7), we obtain

dφmn

dη
∼ (2m + 2)− νmn(2m + 1)

η
φmn as η → 0, (3.12)

which implies that eigenfunctions are of the form

φmn(η) ∼ k η[(2m+2)−νmn(2m+1)] as η → 0, (3.13)

and therefore for φmn to be smooth at the origin we require an integer exponent

(2m + 2)− νmn(2m + 1) = n, with n = 0, 1, 2, . . . (3.14)

This leads to the discrete set of eigenvalues

νmn = 2m − n + 2
2m + 1

, with m = 0, 1, 2, . . . and n = 0, 1, 2, . . . (3.15)

As detailed in Eggers & Fontelos (2008), a spectrum of eigenvalues with this ‘ladder
structure’ is quite general in the self-similar description of singularities. The smallest
exponent ω = β/(β − 1), which is given by m = 0, defines a ‘ground state’ solution

m = 0 =⇒ β = β0 = 2, ν0n = 2, 1, 0,−1,−2, . . . (3.16)

The three non-negative eigenvalues ν00 = β = 2, ν01 = 1 and ν02 = 0 are an artefact of
the problem symmetries and, as explained by Eggers & Fontelos (2015), do not result in
instability since their associated modes in (3.6) can be cancelled by a shift in the constants
t∗, x∗ and A that enter the similarity variables (3.4). All other eigenvalues are negative, so
we conclude that this ground state solution f0(η) is stable.

Higher values of m define ‘excited states’, such as the first two

m = 1 =⇒ β = β1 = 4
3
, ν1n = 4

3
, 1,

2
3
,

1
3
, 0,−1

3
,−2

3
, . . . , (3.17a)

m = 2 =⇒ β = β2 = 6
5
, ν2n = 6

5
, 1,

4
5
,

3
5
,

2
5
,

1
5
, 0,−1

5
,−2

5
, . . . (3.17b)

These excited states include the three eigenvalues ν = β, ν = 1, ν = 0 that do not
correspond to instability, but they also have an increasing number of other positive
eigenvalues that make them unstable. Since unstable similarity solutions cannot occur in
reality, these excited states are unphysical.

In summary, the only trajectory P → O leading to a physical solution is the one leaving
P along the vertical for β = 2, which corresponds to the yellow trajectory highlighted
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Self-similarity in unbounded viscous Marangoni flows

with a wider streak in figure 2(e). We show in § 5.1 that the similarity solution f (η)
can in this case be obtained in closed form, and that it appears when a locally depleted
distribution of surfactant tends to become uniform under the action of Marangoni flow.
Such a distribution, which we call a ‘dimple’ (following Bickel & Detcheverry 2022),
must have zero concentration Γ0(x0) = 0 with a quadratic minimum Γ0 ∼ K(x − x0)

2 for
some x = x0. Self-similarity appears prior to the time t∗ at which the dimple ‘closes’, and
thus we call this the ‘dimple closure’ solution.

3.2.2. Trajectories P → S → O (orange in figure 2)
We can proceed analogously to determine the only exponent β that leads to stability for
the P → S → O solution. From table 2, the expansion around P for trajectories departing
along the horizontal eigendirection is f (η) ∼ η + Ksgn (η) |η|ω, with ω := β/(β − 1).
This solution can only be regular at the origin if the exponent ω is odd, excluding ω = 1
since it cannot be achieved for any finite β. We then have the discrete sequence

βm

βm − 1
= 2m + 3, with m = 0, 1, 2, . . . , (3.18)

which results in exponents given by

βm = 2m + 3
2m + 2

= 3
2
,

5
4
,

7
6
,

9
8
, . . . (3.19)

This set of values leads to local expansions fm(η) ∼ η + Kη2m+3 around η = 0.
Introducing this expansion for fm(η) in the eigenvalue problem (3.7), we obtain

dφmn

dη
∼ (2m + 3)− νmn(2m + 2)

η
φmn as η → 0, (3.20)

which leads to eigenfunctions φmn ∼ k η[(2m+3)−νmn(2m+2)] locally around η = 0. The
functions φmn are then smooth only if

(2m + 3)− νmn(2m + 2) = n, with n = 0, 1, 2, . . . (3.21)

This means that the discrete sequence of eigenvalues for the P → S → O trajectory is

νmn = 2m − n + 3
2m + 2

, with m = 0, 1, 2, . . . and n = 0, 1, 2, . . . (3.22)

This spectrum of eigenvalues is identical to that of the real inviscid Burgers equation,
for which Eggers & Fontelos (2008) show there exists a similarity solution of the second
kind with β = 3/2 immediately prior to the formation of a shock. This should not come
as a surprise, since that (real) similarity solution is simply the P → O trajectory along
the horizontal axis in figure 2(e). This P → O solution and the P → S → O solution both
depart P along the horizontal eigendirection, so they have the same leading-order structure
around η = 0 and thus the same spectrum. Similar to the previous case of § 3.2.1, the
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eigenvalues (3.22) lead to states of the form

m = 0 =⇒ β = β0 = 3
2
, ν0n = 3

2
, 1,

1
2
, 0,−1

2
,−1, . . . , (3.23a)

m = 1 =⇒ β = β1 = 5
4
, ν1n = 5

4
, 1,

3
4
,

1
2
,

1
4
, 0,−1

4
,−1

2
, . . . , (3.23b)

m = 2 =⇒ β = β2 = 7
6
, ν2n = 7

6
, 1,

5
6
,

2
3
,

1
2
,

1
3
,

1
6
, 0,−1

6
,−1

3
, . . . (3.23c)

All states contain the eigenvalues ν = β, ν = 1 and ν = 0 that do not lead to instabilities,
but also have other positive eigenvalues that seemingly imply that no stable similarity
solutions exist. However, in the particular case of the ground-state solution m = 0, the
additional positive eigenvalue ν = 1/2 does not necessarily lead to instability either, as
shown by Eggers & Fontelos (2008) in the case of the real solution. This can be shown
particularizing the expansion (3.6) at the position x = x∗ (or η = 0) of the singularity

∂2F0

∂η2

∣∣∣∣
η=0

= f ′′
0 (0)+ ε

⎡
⎢⎢⎣b02eτ/2φ′′

02(0)+
∞∑

n=0
n /= 2

b0neν0nτ φ′′
0n(0)

⎤
⎥⎥⎦ + O(ε2). (3.24)

Since we have deduced that for the ground state m = 0 we have f0(η) ∼ η + Kη3 and
φ0n(η) ∼ kηn around the origin, then we have that f ′′

0 (0) = 0 and φ′′
0n(0) = 0 for all modes

with n /= 2, cancelling out the first and third terms on the right-hand side of (3.24).
Also, we have that φ′′

02(0) /= 0 in the second term above. However, in the particular case
where the second derivative of the solution is zero at the position of the singularity, i.e.
∂xxψ(x∗, t) = 0, we also have ∂ηηF(0, τ ) = 0 and therefore the amplitude b02 must be
zero. In that case, b02 = 0 cancels the n = 2 mode altogether and the positive eigenvalue
ν = 1/2 is irrelevant in the stability of the solution. As a consequence, the ground state
m = 0 is stable for the particular set of initial conditions that lead to ∂xxψ = 0 at the
position of the singularity. In the case of the real similarity solution studied by Eggers
& Fontelos (2008), one can show that this is always satisfied in a suitable frame of
reference for solutions that develop a shock (see Appendix D). However, the condition is
not necessarily satisfied in the complex case. In fact, we show in § 5 that only if the initial
distribution of surfactant is locally depleted with Γ0(x0) = 0 for some x = x0, and is also
‘flatter’ than quadratic (i.e. if Γ ′′

0 (x0) = 0), then the condition ∂xxψ(x∗, t) = 0 is fulfilled
and the self-similar solution before the singularity is then P → S → O with β = 3/2. We
call these flatter surfactant profiles ‘holes’, in order to distinguish them from dimples with
a sharper quadratic minimum.

In conclusion, β = 3/2 is the only exponent leading to stability for P → S → O,
corresponding to the trajectory highlighted in figure 2(d). Only filling solutions that have
∂xxψ = 0 at the singularity, which we call ‘holes’, can lead to this similarity solution,
which we correspondingly call the ‘hole closure’ solution. We show in § 5.2 that f (η) can
in this case also be obtained in closed form.

3.2.3. Trajectories N → O (purple in figure 2)
The similarity solution N → O has a functional form f (η) ∼ iK + (1 − β)η around η =
0 (see table 2), appearing to always be smooth at the origin η = 0 independently of β.
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Self-similarity in unbounded viscous Marangoni flows

Furthermore, inserting it into the eigenvalue problem (3.7), we obtain

dφn

dη
∼ iνnφn as η → 0, (3.25)

which always leads to smooth eigenfunctions φn ∼ keiνnη around η = 0. The absence of an
evident sequence of discrete solutions or eigenfunctions based on regularity suggests that
the behaviour of the N → O solution could be governed by a more complicated continuum
of possible similarity solutions (as in Eggers 2000).

Analysing every possible exponent for the N → O solution is beyond the scope of
this paper, but we will consider the two specific cases of β = 3/2 and β = 2. Since,
according to Appendix B, N → O can be interpreted as a forward-time solution happening
subsequent to a singularity, it must appear immediately after either the ‘dimple closure’
solution or the ‘hole closure’ solution, since both occur immediately before the singularity.
Furthermore, since the far-field scaling of solutions is intimately linked to the similarity
exponents through the condition (2.26), the exponent of the pre-singularity solution fixes
the exponent of the post-singularity N → O solution, otherwise the far-field behaviour of
the solution would change instantly at t = t∗. We can then ensure that β = 3/2 and β = 2
are possible exponents for the N → O solution, as we confirm in § 5. Following the naming
convention used by Zheng et al. (2018) for capillary films, we use the term ‘levelling’ for
these two solutions in which the concentration levels towards Γ → 1, as opposed to the
pre-singularity ‘closure’ solutions where the concentration remains Γ = 0 at the point of
the singularity. Specifically, we call the N → O solution with β = 2 the ‘dimple levelling’
solution (highlighted in figure 2e), since it follows the ‘dimple closure’ solution, whereas
the N → O solution with β = 3/2 is labelled as the ‘hole levelling’ solution (highlighted
in figure 2d) since it comes after the ‘hole closure’ solution. These solutions are obtained
in closed form in §§ 5.1 and 5.2, respectively.

4. Spreading solutions

In the case of a spreading pulse, depicted in figure 1(a), the total mass of (insoluble)
surfactant is, in general, conserved and imposed by the initial profile Γ0(x). This can be
realized by direct integration of (2.3) in x, as we show in Appendix C. We define the total
(dimensionless) mass M0 as

M0 :=
∫ ∞

−∞
Γ (x, t) dx =

∫ ∞

−∞
Γ0(x) dx, (4.1)

which, upon substitution of the similarity ansatzes (2.20a) and (2.21b), and using A = B
and a forward-time description t > t∗ as discussed in § 2.2, leads to

M0 = A2(t − t∗)α+β
∫ ∞

−∞
C(η) dη. (4.2)

The above relation is only compatible with self-similar behaviour if the additional
requirement α + β = 0 is met, in which case the solution f (η) must also satisfy∫ ∞

−∞
C(η) dη = M0

A2 . (4.3)
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4.1. Advection-dominated limit
For the limit of zero diffusion Pe−1

s = 0, the requirement α = β − 1 from the similarity
ODE (2.23), combined with α = −β from the integral constraint (4.2), leads to α = −1/2
and β = 1/2. Since the exponents can be fixed a priori only from dimensional analysis,
this solution displays self-similarity of the first kind (Barenblatt 1996). This solution
corresponds to the N → S → O trajectory in figure 2(b), as shown in § 3.

For these particular values of the exponents α and β, an explicit solution can be obtained
from the implicit relationship (3.2). For β = 1/2, (3.2) yields

f 2 − ηf + k± = 0. (4.4)

The case of a pulse solution requires f (0) = i C(0) to be imaginary, which applied to
(4.4) leads to real integration constants k±. Added to the required symmetry condition
k− = k+ (3.3), this means that we can consider only a single real constant k = k+ = k−.
Furthermore, and since solutions to the similarity ODE (2.25) are defined only up to a
rescaling of f and η, we choose k = 1 to fix f (0) = i and, by extension, C(0) = 1. The
quadratic equation can be solved, leading to

f (η) = 1
2

(
η ±

√
η2 − 4

)
, (4.5)

where the root symbol is always taken to indicate the principal root. The choice of sign
must be made at each value of η to ensure that the concentration Im

[
f
]

remains positive
and that the far field complies with condition (2.26). These conditions lead to a particularly
compact final form of the solution

f (η) = 1
2

(
η +

√
2 − η

√
−2 − η

)
. (4.6)

The complex form (4.6) can be split into its real and imaginary parts to yield the similarity
solutions U(η) and C(η) separately, which can be defined piecewise as

C(η) =
⎧⎨
⎩

1
2

√
4 − η2, if |η| ≤ 2,

0, if |η| ≥ 2.
(4.7a)

U(η) =

⎧⎪⎨
⎪⎩
η

2
, if |η| ≤ 2,

1
2

sgn (η)
[
|η| −

√
η2 − 4

]
, if |η| ≥ 2.

(4.7b)

Note that, since
∫ ∞
−∞ C(η) dη = π, in order to satisfy the integral constraint (4.3) the

constant A in the similarity ansatz (2.20) must be chosen as

A =
√

M0

π
. (4.8)

Figure 3 displays three distinct spreading pulses of surfactant (whose initial profiles
Γ0(x) can be found in Appendix E) obtained solving the inviscid Burgers equation (2.19a)
via the method of characteristics (Crowdy 2021b). At large times t � 1, the curves
are shown to collapse onto the similarity solution (4.6), which is equivalent to the one
originally identified by Thess (1996) through different methods. As pointed out by Bickel
& Detcheverry (2022), a Cauchy pulse (figure 3a), which decays as Γ ∼ x−2 in the far

997 A45-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.563


Self-similarity in unbounded viscous Marangoni flows
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Figure 3. Spreading solutions with Pe−1
s = 0, for initial profiles of surfactant given by (a) a Cauchy pulse,

(b) a rectangular pulse and (c) a double quartic pulse, with their functional forms given in Appendix E. For
each example, panels (a i,iii,b i,iii,c i,iii) show the concentration Γ (x, t) and interfacial velocity us(x, t) obtained
through the exact solution of (2.19), while panels (a ii,iv,b ii,iv,c ii,iv) show the same data rescaled in similarity
variables (colour curves), superimposed on the similarity solution (4.7) (black curves) valid at long times t � 1.
For the double quartic pulse (c), the reference position in (2.20) is x∗ = 1/2; in all other examples x∗ = t∗ = 0.
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field, requires very large times of order t = O(103) to become visually indistinguishable
from the similarity solution. However, figure 3(b,c) illustrate how pulses with a faster
decay or compact support require much shorter times, t = O(10) to converge to (4.6).

It is worth noting that the initial profile Γ0(x) of the double quartic pulse of figure 3(c)
is asymmetric, and therefore the centre x∗ of the distribution at long times is non-zero. We
show in Appendix C that the first moment of the surfactant distribution

M1 :=
∫ ∞

−∞
xΓ (x, t) dx =

∫ ∞

−∞
xΓ0(x) dx, (4.9)

is a conserved invariant of the problem, provided the above integral exists. This leads to a
straightforward definition of the reference position x∗ for pulses, namely

x∗ =
∫ ∞
−∞ xΓ0(x) dx∫ ∞
−∞ Γ0(x) dx

= M1

M0
. (4.10)

In the case of figure 3(c), we have that x∗ = 1/2 (see Appendix E), as can be evidenced by
the shifted pulse at long times in panel (c i).

4.2. General case with finite diffusion
For general values of Pe−1

s > 0, (2.23) requires both exponents to be fixed α = −1/2
and β = 1/2. These values happen to also be compatible with the additional requirement
α + β = 0 from the integral constraint (4.2), illustrating that this more general case with
diffusion also displays self-similar solutions of the first kind. The governing ODE given
by (2.24) can be integrated directly, leading to

df
dη

= k1 − ηf + f 2, (4.11)

where the constant k1 must be real since, for pulses, f (0) = i C(0) is imaginary and
f ′(0) = U′(0) is real by symmetry. The far-field condition (2.26), which in this case with
β = 1/2 translates to f ∼ k∞η−1 as η → ∞, can be introduced in (4.11) to obtain that
k1 = k∞, meaning that the constant k1 in (4.11) is simply the prefactor in the leading-order
far-field behaviour of f (η). This constant can be obtained realizing that, at the initial time
t → t∗, the solution must converge to a single Dirac distribution of surfactant with mass
M0 centred at x∗, and with an interfacial velocity that must be the Hilbert transform of that
Dirac distribution. This can be stated mathematically as

A|t − t∗|−1/2f (η) ∼ H [M0δ(x − x∗)] + i M0δ(x − x∗) as t → t∗. (4.12)

Using the linearity of the Hilbert transform, the fact that H [δ(x)] = (πx)−1 (King 2009b)
and the rescaling property δ(Kx) = δ(x)/K of the Dirac distribution, we obtain

A|t − t∗|−1/2f (η) ∼ M0

A
|t − t∗|−1/2

[
1

πη
+ i δ(η)

]
as η → ∞, (4.13)

and, since we had chosen A = √
2/Pes in § 2.2, this means that

f (η) ∼ M0Pes

2π
η−1 as η → ∞. (4.14)
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Hence, the integration constant in (4.11) must be

k1 = k∞ = M0Pes

2π
. (4.15)

The ODE (4.11) can be further integrated by noting that it is a Riccati equation, which
can be solved with the change of dependent variable

f = −1
h

dh
dη

= − d
dη

Log(h), (4.16)

with Log( ) the principal value of the complex logarithm. This leads to a linear equation

d2h
dη2 + η

dh
dη

+ k1h = 0. (4.17)

Note the analogy between the Cole–Hopf transformation used to linearize the Burgers
equation directly (Crowdy 2021b; Bickel & Detcheverry 2022) and the change of variables
(4.16) to linearize the similarity ODE (4.11). The solution to (4.17) is

h(η) = k2 1F1

(
k1

2
; 1

2
;−η

2

2

)
+ k3 η 1F1

(
1
2

+ k1

2
; 3

2
;−η

2

2

)
, (4.18)

where 1F1 (a ; b ; z) is Kummer’s confluent hypergeometric function (Olver et al. 2010)
and k2, k3 are complex integration constants. Since, as evidenced by the change of
variables (4.16), the solution f (η) is independent of any rescalings of h(η) with a complex
constant, we can set k3 = 1 without any loss of generality. The remaining constant k2
indicates the value of the concentration C at the origin, since

f (0) = − 1
h(0)

dh
dη

∣∣∣∣
η=0

= − 1
k2
, (4.19)

which highlights that k2 must be imaginary with Im [k2] > 0. The value of k2 can be
obtained imposing the integral constraint given by (4.3), namely∫ ∞

−∞
f dη = −

∫ ∞

−∞
d

dη
Log(h) dη = i

M0Pes

2
, (4.20)

which can be simplified as

lim
η→∞

[
Log(h(η))− Log(h(−η))] = −i

M0Pes

2
. (4.21)

Since k2 is imaginary, k1 and k3 are real, and the hypergeometric functions in (4.18) are a
function only of η2, we can conclude that the parity of h must be h(−η) = −h̄(η). Using
this identity, and splitting Log(z) = ln |z| + iArg(z), we get

lim
η→∞ Arg(h(η)) = −M0Pes

4
± π

2
, (4.22)

which, after considering the far-field behaviour of 1F1 (a ; b ; z) (Olver et al. 2010) and the
fact that k1 = M0Pes/(2π), leads to

k2 = i

√
2

2

�

(
M0Pes

4π

)

�

(
1
2

+ M0Pes

4π

) , (4.23)

where � ( ) is the gamma function and should not be confused with the surfactant
concentration Γ , which is italicized throughout the paper. Undoing the change of variables
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(4.16), the final form of the similarity solution is

f (η) =
−6�

(
1
2

+ ζ

)
1F1

(
1
2

+ ζ ; 3
2

; − η
2

2

)
+ 6

√
2 i η � (1 + ζ ) 1F1

(
1 + ζ ; 3

2
; − η2

2

)
+ 4 η2 �

(
3
2

+ ζ

)
1F1

(
3
2

+ ζ ; 5
2

; − η2

2

)

3
√

2 i� (ζ ) 1F1

(
ζ ; 1

2
; − η

2

2

)
+ 6η �

(
1
2

+ ζ

)
1F1

(
1
2

+ ζ ; 3
2

; − η2

2

) ,

(4.24a)
where we have defined

ζ := M0Pes

4π
. (4.24b)

The solution given by (4.24) is equivalent to the fundamental solution derived by Bickel &
Detcheverry (2022) using the Cole–Hopf transformation with a Dirac distribution as the
initial condition. Figure 4 displays an initially rectangular pulse of surfactant spreading
following Burgers equation (2.18a), for different values of the surface Péclet number.
When advection is negligible and Pes � 1, the solution quickly becomes Gaussian in
shape, converging towards the fundamental solution of the (linear) diffusion equation. This
occurs on times of order t = O(Pes), since at small Pes the dominant balance in (2.18a)
modifies the characteristic time scale, which we had assumed to be set by advection in
§ 2. As Pes increases and reaches an advection-dominated regime Pes � 1, the solution
changes shape, resembling the semicircular surfactant profile of the purely advective
solution (4.6) of the previous subsection.

5. Filling solutions

In the case of filling solutions, sketched in figure 1(b), there is no conserved mass of
surfactant since the integral of Γ0(x) diverges as Γ0 → 1 in the far field. This leads
to self-similar solutions of the second kind (Barenblatt 1996), where the exponent β
cannot be determined from dimensional considerations, but is instead given by the stability
criteria presented in § 3.2. Furthermore, the scaling constant A is in this case dependent
on the local properties of initial conditions, and can only be either computed numerically
or calculated if a full solution ψ(x, t) to (2.19) can be obtained explicitly.

The four filling solutions identified in § 3 hold only locally, either before or after
a reference ‘closure’ time t∗ at which the derivative of the solution is singular. This
singular behaviour has only been observed (Thess et al. 1997; Crowdy 2021b; Bickel &
Detcheverry 2022) when the initial distribution of surfactant is zero Γ0(x) = 0 somewhere
along the real line. This fact allows us to calculate, using the method of characteristics, the
time t∗, position x∗, and velocity u∗ of the singular point a priori from the initial surfactant
profile Γ0(x), as we illustrate in Appendix D. While symmetric surfactant profiles result in
a static singularity u∗ = 0 (as in Thess et al. 1997; Crowdy 2021b; Bickel & Detcheverry
2022), note that the (constant) velocity of the moving point at which the singularity
develops can in general be non-zero for asymmetric profiles.

The method of characteristics can similarly be used to illustrate which initial conditions
are classified as ‘dimples’, leading to β = 2, and which ones to ‘holes’, resulting in
β = 3/2. As mentioned in § 3.2, the key distinction between initial profiles Γ0(x) that
lead to one or the other similarity solution is the second derivative of the solution at the
singularity, which we calculate in a frame of reference moving with the singular point.
To that end, we first define the position of the singular point as xs(t) := x∗ − u∗(t∗ − t).
Then, we use the method of characteristics to obtain ∂xxψ(x, t), which is given in (D3),
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Figure 4. Spreading solutions for an initially rectangular pulse of surfactant, with a functional form given in
Appendix E, for (a) Pes = 1/50, (b) Pes = 1 and (c) Pes = 50. For each example, panels (a i,iii,b i,iii,c i,iii)
show the concentration Γ (x, t) and interfacial velocity us(x, t) obtained through the exact solution of
(2.18), while panels (a ii,iv,b ii,iv,c ii,iv) show the same data rescaled in similarity variables (colour curves),
superimposed on the similarity solution (4.24) (black curves) valid at long times t � 1. In all examples,
x∗ = t∗ = 0.

997 A45-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.563


F. Temprano-Coleto and H.A. Stone

and particularize it at xs(t) to obtain

∂2ψ

∂x2 (xs(t), t) = ψ ′′
0 (x∗ − t∗u∗)(

1 + tψ ′
0(x∗ − t∗u∗)

)3 . (5.1)

In the case of real solutions, it can be shown that ψ ′′
0 (x∗ − t∗ u∗) = 0 (see Appendix D),

and therefore ∂xxψ = 0 for all times at the (moving) point of the shock. However,
complex solutions can lead to either ψ ′′

0 (x∗ − t∗u∗) /= 0, in which case we define the initial
distribution Γ0(x) as a ‘dimple’, or to ψ ′′

0 (x∗ − t∗u∗) = 0, in which case we define it as a
‘hole.’ Each of these two cases lead to a different similarity solution and are therefore
treated separately in the next two subsections.

5.1. Dimple solutions
The first dimple distribution we consider is Γ0(x) = x2/(1 + x2) (which we call the
‘Cauchy dimple’) since it has already been studied by Crowdy (2021b) and Bickel &
Detcheverry (2022). It has a quadratic minimum Γ0(x) ∼ x2 around x = 0 and, since it is
a symmetric distribution, it follows from the method of characteristics (see Appendix D)
that u∗ = x∗ = 0 and t∗ = 1. The exact evolution of a Cauchy dimple is displayed in
figure 5(a i,iv), with the surfactant concentration reaching a cusp-like singularity at t∗
and x∗. Figures 5(b i,iv) and 5(c i,iv) displays the evolution of other profiles Γ0(x) with
different functional forms (detailed in Appendix E), but always with a quadratic minimum
to ensure that they display the same similarity behaviour. Self-similarity appears locally,
for positions and times close enough to x∗ and t∗, respectively. As discussed in § 3.2, the
self-similar solution that appears prior to t∗ is dubbed the ‘closure’ solution, since here
the concentration remains zero Γ (x∗, t) = 0 at all times. After the dimple ‘closes’ at t∗,
a different ‘levelling’ solution appears, whereby the concentration starts levelling towards
the final steady distribution Γ (x, t) = 1.

It is shown in § 3.2 that the similarity exponent for dimple solutions is β = 2, which can
be substituted in the implicit similarity solution (3.2) to yield

sgn (η) k±f 2 + f − η = 0. (5.2)

Solutions to (5.2) represent both (pre-singularity) closure solutions and (post-singularity)
levelling solutions, which have expansions around η = 0 (table 2) given by f (η) ∼
η + iKη2 and f (η) ∼ iK − η, respectively. Both of these expansions lead to imaginary
constants k± when introduced in (5.2). This means that, due to the symmetry condition
k− = k̄+ (3.3), we can consider a single constant k = k+ = −k− = sgn (η) k±. Solving
(5.2),

f (η) = −1 ± √
1 + 4kη

2k
. (5.3)

For the levelling solution, we expect ψ(x∗, t), and thus f (0), to be non-zero, which leads
us to choose the minus sign in (5.3). This sign choice must be valid for all η since a change
from − to + requires the square root to be zero to maintain a continuous solution, while
the radicand 1 + 4kη can never be zero with k imaginary. We also fix k = i so that f (0) = i
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Figure 5. Filling solutions with Pe−1
s = 0, for initial ‘dimple’ distributions of surfactant given by (a) a Cauchy

dimple, (b) a squared Cauchy dimple and (c) an arctangent dimple, with their functional forms given in
Appendix E. For each example, panels (a i,iv,b i,iv,c i,iv) show the concentration Γ (x, t) and interfacial velocity
us(x, t) obtained through the exact solution of (2.19). Panels (a ii,v,b ii,v,c ii,v) and (a iii,vi,b iii,vi,c iii,vi) show
exact solutions rescaled in similarity variables (colour curves), superimposed on the closure (5.7) and levelling
(5.5) similarity solutions (black curves) valid prior and subsequent to the singularity, respectively. In all
examples, x∗ = 0. 997 A45-27
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(or, equivalently, C(0) = 1). The dimple levelling solution is then

f (η) = i
2

(√
1 + 4iη + 1

)
, (5.4)

which can alternatively be decomposed into its real and imaginary parts using the relation√
z = √

(|z| + Re [z])/2 + i sgn (Im [z])
√
(|z| − Re [z])/2, leading to

C(η) = 1
2

(√
1
2

[√
1 + 16η2 + 1

]
+ 1

)
, (5.5a)

U(η) = −1
2

sgn (η)

√
1
2

[√
1 + 16η2 − 1

]
. (5.5b)

We note that (5.5) leads to C(η) ∼ (
√

2/2) |η|1/2 and U(η) ∼ −sgn (η) (
√

2/2) |η|1/2 as
|η| → ∞, compatible with the far field condition (2.26).

For the closure solution, the choice in (5.3) must be the plus sign such that f (0) = 0. In
the absence of an obvious choice for an integration constant k (since U(0) = C(0) = 0),
we fix its value so that the far-field behaviour of the closure solution is equivalent to
that of the levelling solution (5.5). In other words, we require C(η) ∼ (

√
2/2) |η|1/2 and

U(η) ∼ sgn (η) (
√

2/2) |η|1/2 as |η| → ∞, where the sign change in U(η) is due to the
reversal in the sign of x between the definitions of the similarity variable (2.22a) and
(2.22b) for each solution. This leads to f (η) ∼ eiπ/4η1/2 as η → ∞, which introduced in
(5.2) results in k = −i. The final form of the dimple closure solution is then

f (η) = i
2

(√
1 − 4iη − 1

)
, (5.6)

from which we obtain

C(η) = 1
2

(√
1
2

[√
1 + 16η2 + 1

]
− 1

)
, (5.7a)

U(η) = 1
2

sgn (η)

√
1
2

[√
1 + 16η2 − 1

]
. (5.7b)

The choice of (5.4) and (5.6) having an equivalent far-field behaviour ensures that the
multiplicative constant A in the similarity formulation (2.20) is the same for both the
closure and the levelling solutions. This fact simplifies calculations, since it then suffices
to compute A for only one of the two solutions.

Figure 5(a ii,v,b ii,v,c ii,v) shows how the exact solutions converge to the closure
self-similar profiles given by (5.6) before the singularity, for the three distinct initial
profiles Γ0(x) considered. Likewise, figure 5(a iii,vi,b iii,vi,c iii,vi) illustrates that exact
solutions converge to the levelling solution (5.4) after the singularity. Since the similarity
solutions are only valid locally, the agreement between the rescaled profiles is always
improved as t → t∗ or as x → x∗.

5.2. Hole solutions
Contrary to dimples, hole similarity solutions (with β = 3/2) had not yet been identified
for the complex inviscid Burgers equation (2.19a). One of the simplest examples of a
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distribution of surfactant that satisfies this condition is a ‘rectangular hole’ with Γ0(x) =
H(|x| − 1), where H(x) is the Heaviside step function, which we illustrate in figure 6(a).
For this case, the initial surfactant profile is even and therefore its Hilbert transform
us0(x) = H [Γ0(x)] is odd, which implies (see Appendix D) that the position of the
singularity is x∗ = 0, its velocity u∗ = 0, and the closure time t∗ = π/2. One can also
easily verify that Γ ′′

0 (0) = u′′
s0(0) = 0 and thus the condition for hole self-similar solutions

ψ ′′
0 (x∗ − u∗t∗) = ψ ′′

0 (0) = 0 is satisfied. Figure 6(a) depicts the exact evolution of the
rectangular hole according to the inviscid Burgers equation (2.19a). As for the case of
dimples, the distribution first goes through a ‘closure’ phase where surfactant is advected
inwards but remains Γ (0, t) = 0 at the origin. However, figure 6(a) also shows that the
self-similar dynamics before the closure time t∗ must be different from that of the dimple,
since the solution retains a finite interval around x∗ = 0 where the concentration remains
zero. After t∗ = π/2, the concentration at the origin starts ‘levelling’, with Γ (0, t) > 0,
until the profile reaches a homogeneous distribution Γ (x, t) = 1 as t → ∞.

In this case, the self-similar solutions can also be obtained in closed form by substituting
β = 3/2 in the implicit solution given by (3.2), which leads to

k±f 3 + f − η = 0. (5.8)

Substituting the expansions around η = 0 found in table 2 for the closure ( f ∼ η +
Kη3) and levelling solutions (f ∼ −iK − η/2) into (5.8) leads to real constants k±.
Combined with the symmetry condition (3.3), this indicates that for either solution we
can consider a single constant k = k− = k+, as in the case of spreading pulse solutions of
§ 4.1.

We first solve (5.8) for the case of the (post-singularity) levelling solution. We again
choose to fix f (0) = i or, equivalently, C(0) = 1, which results in k = 1. The discriminant
of the cubic (5.8) is then −4 − 27η2, which is negative for any η. This implies that (5.8),
for any given value of η, has one real and two complex conjugate solutions that can be
obtained using standard methods for solving cubic equations (Cox 2012). Choosing the
complex solution with a positive imaginary part results in the hole levelling solution

f (η) = eiπ/3
3

√√√√1
2

[√
η2 + 4

27
− η

]
+ e2iπ/3

3

√√√√1
2

[√
η2 + 4

27
+ η

]
. (5.9)

Furthermore, since the arguments of the two cubic roots in (5.9) are always real and
positive, it is straightforward to decompose the expression into

C(η) =
√

3
2

⎛
⎝

3

√√√√1
2

[√
η2 + 4

27
− η

]
+ 3

√√√√1
2

[√
η2 + 4

27
+ η

]⎞⎠ , (5.10a)

U(η) = 1
2

⎛
⎝

3

√√√√1
2

[√
η2 + 4

27
− η

]
− 3

√√√√1
2

[√
η2 + 4

27
+ η

]⎞⎠ , (5.10b)

where the far-field behaviour |η| → ∞ is in this case given by C(η) ∼ (
√

3/2)|η|1/3 and
U(η) ∼ − sgn (η) (1/2) |η|1/3.

In the case of the closure solution, we again choose the integration constant such that
its far field is equivalent to that of the levelling solution, which requires k = −1. As in
the case of dimples, this choice of far field ensures that the scaling constant A in the
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Figure 6. Filling solutions with Pe−1
s = 0, for initial ‘hole’ distributions of surfactant given by

(a) a rectangular hole, (b) a quartic hole and (c) an asymmetric hole, with their functional forms given in
Appendix E. For each example, panels (a i,iv,b i,iv,c i,iv) show the concentration Γ (x, t) and interfacial velocity
us(x, t) obtained through the exact solution of (2.19). Panels (a ii,v,b ii,v,c ii,v) and (a iii,vi,b iii,vi,c iii,vi)
show exact solutions rescaled in similarity variables (colour curves), superimposed on the closure (5.13) and
levelling (5.10) similarity solutions (black curves) valid prior and subsequent to the singularity, respectively.
The asymmetric hole (c) has x∗ ≈ 0.562, otherwise x∗ = 0.
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similarity formulation (2.20) is the same for both closure and levelling. The discriminant of
(5.8) is then 4 − 27η2, which indicates that its three solutions are real for |η| ≤ √

4/27 =
2
√

3/9, whereas for |η| ≥ 2
√

3/9 there is one real and two complex conjugate solutions.
The only way to ensure a continuous solution with C(η) > 0 is to define f (η) piecewise,
with one of the three solutions of the cubic valid for η ≤ −2

√
3/9, and another one valid

for η ≥ −2
√

3/9. Such a solution is

f (η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

eiπ/3

⎛
⎝

3

√√√√−1
2

[√
η2 − 4

27
− η

]
−

3

√√√√−1
2

[√
η2 − 4

27
+ η

]⎞⎠, if η ≤ −2
√

3
9
,

eiπ/3

⎛
⎝

3

√√√√ 1
2

[√
η2 − 4

27
+ η

]
−

3

√√√√ 1
2

[√
η2 − 4

27
− η

]⎞⎠, if η ≥ −2
√

3
9
,

(5.11)

which can be expressed more compactly as

f (η) = eiπ/3

⎛
⎜⎝ 3

√√√√√1
2

⎡
⎣
√
η + 2

√
3

9

√
η − 2

√
3

9
+ η

⎤
⎦ −

3

√√√√√1
2

⎡
⎣
√
η + 2

√
3

9

√
η − 2

√
3

9
− η

⎤
⎦
⎞
⎟⎠.
(5.12)

For |η| ≥ 2
√

3/9, the argument of the cubic roots in (5.12) is always real, leading to
a straightforward decomposition into real and imaginary parts. However, in the case of
|η| ≤ 2

√
3/9, the real and imaginary parts of the solution can only be obtained through

the trigonometric solution of the cubic (Cox 2012). In summary, the final form of the
similarity solutions C(η) and U(η) is

C(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for |η| ≤ 2
√

3
9
,

√
3

2

⎛
⎝

3

√√√√1
2

[
|η| +

√
η2 − 4

27

]
− 3

√√√√1
2

[
|η| −

√
η2 − 4

27

]⎞⎠ for |η| ≥ 2
√

3
9
,

(5.13a)

U(η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
√

3
3

sin

[
1
3

arcsin

(
3
√

3
2
η

)]
, for |η| ≤ 2

√
3

9
,

1
2

sgn (η)

⎛
⎝

3

√√√√1
2

[
|η| +

√
η2 − 4

27

]
+ 3

√√√√1
2

[
|η| −

√
η2 − 4

27

]⎞⎠ , for |η| ≥ 2
√

3
9
,

(5.13b)

where we can verify that its far field as |η| → ∞, which is given by C(η) ∼ (
√

3/2)|η|1/3
and U(η) ∼ sgn (η) (1/2)|η|1/3, is equivalent to that of the levelling solution.

Figures 6(a ii,v) and 6(a iii,vi) show that the exact solution, when appropriately rescaled
using (2.20), converges to the closure solution (5.13) before t∗ and to the levelling solution
(5.10) after t∗. Other initial surfactant profiles also lead to these similarity solutions, as
long as the condition ψ ′′

0 (x∗ − t∗u∗) = 0 is met. It is worth noting that the initial surfactant
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distribution does not need to be zero at a finite interval to tend to a self-similar solution for
a hole, as exemplified by the ‘quartic hole’ initial condition Γ0(x) = x4/(1 + x4), whose
evolution is displayed in figure 6(b). This initial profile also has even symmetry, leading to
x∗ = 0, u∗ = 0, and t∗ = √

2 (see Appendix D), but its initial concentration is zero only
at the origin x∗ = 0. Regardless, since ψ ′′

0 (x∗ − u∗t∗) = ψ ′′
0 (0) = 0, the profiles evolve

towards the closure solution (5.12) for t < t∗ (figure 6b ii,v) and towards the levelling
solution (5.9) for t > t∗ (figure 6b iii,vi). Even though Γ0(x) is zero at a single point,
the concentration ‘flattens’ as t → t∗ to converge towards a solution that is zero at a finite
interval.

The last example illustrated in figure 6(c) is an asymmetric initial condition. For this
case, we have that x∗ /= 0 and u∗ /= 0, although their values can still be calculated from
the method of characteristics, as detailed in Appendix D. The self-similar dynamics is
still governed by the solutions (5.12) and (5.9) although, since the point of the singularity
moves with u∗ /= 0, the similarity variable must account for a frame of reference moving
with the singular point. This leads to a more general similarity ansatz

ψ(x, t) = u∗ + A|t − t∗|β−1f (η), (5.14a)

η = sgn (t − t∗)
x − [x∗ + u∗(t − t∗)]

A|t − t∗|β . (5.14b)

Equation (5.14) accounts for the moving singular point, whose position is xs(t) = x∗ +
u∗(t − t∗). Note that xs(t∗) = x∗, whereas xs(0) = x∗ − u∗t∗, which is the departure
position of the moving singular point.

6. Conclusions

Quantitatively describing Marangoni flows induced by surfactant is a central problem
in interfacial fluid dynamics, due to their prevalence in environmentally and industrially
relevant multiphase flows. Motivated by recent theoretical progress, we have investigated
the two-dimensional spreading problem for a deep, viscous subphase in terms of its
self-similarity. The analysis reveals a rich structure with six distinct similarity solutions
and three different exponents β, listed in table 4, all of which can be obtained in closed
form.

In § 4, we derive one similarity solution without diffusion (Pe−1
s = 0) and another with

diffusion (Pe−1
s > 0) for the case of pulses of surfactant, both of which are valid at long

times t � 1. The solution with Pe−1
s = 0 is in fact only valid for times up to 1 � t � Pes,

since at t = O(Pes) the interfacial velocity is expected to become small enough for
diffusion to be comparable to advection. These two spreading solutions are equivalent
to the ones previously identified by Thess (1996) and Bickel & Detcheverry (2022),
respectively, through different methods. In addition to their derivation, we have also shown
(Appendix C) how to calculate the centre of mass x∗ around which these solutions appear,
something particularly useful when the initial surfactant distribution is asymmetric or the
combination of several pulses. Since their similarity exponent is β = 1/2, these pulse
solutions are analogous to a diffusive process where the surfactant peak decreases as
Γ ∝ t−1/2, and its front spreads as xf ∝ t1/2. These two solutions can therefore be used
to obtain effective surfactant diffusivities resulting from the Marangoni flow, as detailed
by Bickel & Detcheverry (2022). We also note that the solutions N → O in the phase
plane (figure 2) that have 1/2 < β < 1 are also spreading and, in principle, physically
admissible in terms of their stability (§ 3.2). Therefore, we postulate that surfactant pulses
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Name Pe−1
s Kind Validity Exponent β Similarity variable η Solution f (η)

Pulse 0 First t � 1 1/2
x − x∗(
M0

π
t
)1/2 (4.6)

Pulse > 0 First t � 1 1/2
x − x∗(
2

Pes
t
)1/2 (4.24)

Dimple closure 0 Second t � t∗ 2
[x∗ + u∗(t − t∗)] − x

A(t∗ − t)2
(5.6)

Dimple levelling 0 Second t � t∗ 2
x − [x∗ + u∗(t − t∗)]

A(t − t∗)2
(5.4)

Hole closure 0 Second t � t∗ 3/2
[x∗ + u∗(t − t∗)] − x

A(t∗ − t)3/2
(5.12)

Hole levelling 0 Second t � t∗ 3/2
x − [x∗ + u∗(t − t∗)]

A(t − t∗)3/2
(5.9)

Table 4. Summary of the six similarity solutions found in this study, indicating the equation number of each
solution f (η) obtained in closed form. Here, M0 is the dimensionless surfactant mass as defined in (C2), and
Pes is the Péclet number given by (2.17). In the case of pulses, the reference position x∗ is the centre of mass
of the surfactant distribution given by (4.10), and in the case of dimples and holes x∗ is the ‘closure position’
at which the solution has a weak singularity, which can be calculated a priori from the initial conditions as
described in Appendix D. The parameters t∗ and u∗ are the closure time and instantaneous velocity of the
singular point, respectively, and can also be calculated using Appendix D. For solutions of the second kind, the
constant A depends on local properties of the initial condition Γ0(x).

that decay too slowly in the far field to have a well-defined mass M0 might display this
kind of self-similar solution.

Section 5 is concerned with surfactant distributions that are locally depleted and flow
inwards, for which similarity only occurs for Pe−1

s = 0. We have provided the first
derivation of two similarity solutions with β = 2 and another two with β = 3/2. Through
insights provided by stability analysis (§ 3.2) and the complex method of characteristics,
we have also provided a quantitative criterion to determine if a given initial surfactant
profile will develop similarity with β = 2, in which case we call such profile a ‘dimple’, or
with β = 3/2, in which case we call it a ‘hole.’ Aside from providing valuable information
about the spatial and temporal structure of the evolution of surfactant, these solutions also
allow us to calculate effective local properties of the flow. For example, from the similarity
ansatz (2.20b), we can deduce that the concentration at the centreline x∗ of an interfacial
strip that is depleted of surfactant is

Γ (x∗, t) =
{

0, if 0 ≤ t ≤ t∗,
A(t − t∗), if t � t∗,

(6.1)

for dimples, while for holes

Γ (x∗, t) =
{

0, if 0 ≤ t ≤ t∗,
A(t − t∗)1/2, if t � t∗,

(6.2)

where t∗ can be obtained exactly if Γ0(x) is known, as detailed in Appendix D.
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Since local surfactant concentrations are challenging to measure experimentally, one
can also derive expressions for the centreline interfacial shear, which reads

∂us

∂x
(x∗, t) =

⎧⎪⎨
⎪⎩

1
t∗ − t

if t � t∗,
1

t − t∗
if t � t∗,

(6.3)

for dimples, and

∂us

∂x
(x∗, t) =

⎧⎪⎨
⎪⎩

1
t∗ − t

if t � t∗,
1

2(t − t∗)
if t � t∗,

(6.4)

for holes. These expressions for the interfacial shear are, in principle, obtainable by
measuring the interfacial velocity field in experiments, and should be valid for times
sufficiently near t∗, but not too close to the singularity for surface diffusion to locally
regularize the interfacial velocity field. The expressions do not depend on any scaling
constant A, and the only parameter involved, t∗, can be either calculated exactly if Γ0(x) is
known, or measured from experimental data.

This taxonomy of self-similar solutions provides insights into the behaviour of
Marangoni flows on a deep fluid subphase, in the limit of low Reynolds and capillary
numbers. A natural question arises from this analysis: Given an arbitrary initial distribution
of surfactant, will it always evolve to one of these similarity solutions? We expect that any
profile decaying in the far field will eventually converge to ‘spreading’ similarity solutions,
either with diffusion (4.24) or without it (4.6) if Pes � 1. This is consistent with general
self-similar behaviour appearing in scale-free physical systems at long times (Barenblatt
1996), and we have observed it even with multiple surfactant pulses (see figure 3c).
On the other hand, ‘filling’ self-similar solutions appear locally for depleted distributions
of surfactant, but only in the absence of diffusion and if the initial concentration Γ0(x)
is exactly zero at some point. We have conducted a preliminary comparison between the
‘hole’ and ‘dimple’ solutions and simulations in more realistic scenarios, which include
small amounts of background endogenous surfactant (see Grotberg et al. 1995) and a
finite diffusion (as also analysed by Crowdy 2021b). We found that surface diffusion, no
matter how small, locally regularizes the singularities in the derivatives, but the similarity
solutions still provide a good approximation of the dynamics at high Pes � 1. This
suggests that any profile that does not decay in the far field but is locally depleted could
potentially be approximated by self-similar solutions, as long as the minimum value of
Γ0(x) and diffusion are both sufficiently low. A detailed analysis, which could perhaps be
achieved perturbatively, could provide further insights into the generality of self-similar
behaviour given arbitrary initial conditions. Similarly, it is worth asking if a self-similarity
approach would yield similar insights into an axisymmetric geometry, since this work
deals exclusively with a planar, two-dimensional domain. The axisymmetric problem has
a more complicated non-local closure (Bickel & Detcheverry 2022) for which it appears
that no reformulations like the Burgers equation exist, but the tools of self-similarity could
still be applied for non-local problems (as in Lister & Kerr 1989, for example).
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Center for Energy and the Environment. We thank the National Science Foundation for partial support through
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Appendix A. Construction of the phase plane

We first recast the autonomous ODE (3.1), which governs the behaviour of the complex
similarity solution f (η) = η g(η) in the limit Pe−1

s = 0, as

dg
d ln |η| = g(1 − g)(ḡ − β)

|g − β|2 , (A1)

with the overbar indicating complex conjugation. Since the right-hand side of the above
ODE has a singularity at g = β, we reparametrize the equation (as in, for instance, Slim
& Huppert 2004) in terms of an auxiliary variable χ , leading to

dg
dχ

= g(1 − g)(ḡ − β), (A2a)

d ln |η|
dχ

= |g − β|2. (A2b)

Since, by virtue of (A2b) above, we have that d ln |η|/ dχ ≥ 0, then integrating the system
in terms of χ instead of ln |η| does not change the direction of trajectories in the phase
space (Re

[
g
]
, Im

[
g
]
), unlike in other more complicated systems of equations such as the

one considered in Slim & Huppert (2004). The three fixed points of (A2a) are given by
g = 0, g = 1 and g = β and linearization around each of them (Strogatz 2018) reveals
their type, as well as the asymptotic form of the solution around each of them (points O, P
and S in table 2).

We integrate (A2) numerically using the built-in MATLAB integrator ode15s. The
initial condition of (A2b) is chosen as (ln |η|)|χ=0 = −K, with K � 1 to represent a point
close to the origin η ≈ 0. The initial values of g are seeded close to the fixed points of the
system such that g(χ = 0) = g0 +Δeiθ , with Δ � 1 and θ real constants, and where g0
is the value of g at each fixed point. We integrate (A2a) forward in χ if g(χ = 0) lies on an
unstable direction around the fixed point, and backward in χ if g(χ = 0) lies on a stable
direction. Integration proceeds until ln |η| reaches a target value ln |η| = K � 1, denoting
the far field |η| → ∞. The resulting trajectories are shown in figure 2.

We also consider the behaviour of trajectories as |g| → ∞, which can be illustrated by
studying the fixed points of the dynamical system given by the reciprocals 1/Re

[
g
] = η/U

and 1/Im
[
g
] = η/C. Splitting the complex ODE (3.1) into its real and imaginary parts,

and changing variables ũ := 1/Re
[
g
]

and c̃ := 1/Im
[
g
]
, we obtain the following system

of ODEs:

dũ
d ln |η| = ũ

[
ũ2(1 + (β − 1)ũ)− c̃2(ũ − 1)(1 − βũ)

]
ũ2 + c̃2(1 − βũ)2

, (A3a)

dc̃
d ln |η| = c̃

[
ũ2 + c̃2(1 − 2βũ + βũ2)

]
ũ2 + c̃2(1 − βũ)2

. (A3b)

The fixed points of (A3) are (ũ, c̃) = (0, 0), which represents (Re
[
g
]
, Im

[
g
]
) → (±∞,

±∞), and (ũ, c̃) = ((1 − β)−1, 0), which represents (Re
[
g
]
, Im

[
g
]
) → (1 − β,±∞).
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Linearization around these two points leads to the rows of table 2 corresponding to points
N and R.

Finally, the behaviour of solutions for Re
[
g
] → ±∞ and Im

[
g
] = 0 can only be

determined by examining the dynamical system given by the reciprocal 1/Re
[
g
] = η/U,

retaining the imaginary part Im
[
g
]
. Changing variables ũ := 1/Re

[
g
]

and ĉ := Im
[
g
]
,

we obtain a dynamical system given by

dũ
d ln |η| = ũ

[
ũĉ2(1 + (β − 1)ũ)− (ũ − 1)(1 − βũ)

]
(1 − βũ)2 + ũ2ĉ2 , (A4a)

dĉ
d ln |η| = ĉ

[
1 − 2βũ + βũ2 + ũ2ĉ2]
(1 − βũ)2 + ũ2ĉ2 . (A4b)

The only fixed point of (A4) is (ũ, ĉ) = (0, 0), which represents (Re
[
g
]
, Im

[
g
]
) →

(±∞, 0). Linearization of (A4) around it results in the row of table 2 corresponding to
point M.

Appendix B. Interpretation of the phase plane

In order to interpret the phase plane in figure 2, it is useful to note two facts about the
sign of solutions. First, from the self-similar ansatz (2.21b) and the facts that α = β − 1
and A = B, we have at the origin x = x∗ that Γ (x∗, t) = A|t − t∗|β−1C(0), illustrating
that, if C(0) > 0, values of 0 < β < 1 will result in surfactant locally decreasing in time
(i.e. spreading solutions), whereas exponents β > 1 represent locally increasing surfactant
(i.e. filling solutions). Consequently, solutions with 0 < β < 1 must lead to a (locally)
outward flow as in figure 1(a), with us positive for x > x∗ and us negative for x < x∗ or,
in other words, (x − x∗)us > 0. On the other hand, solutions with β > 1 must lead to
(x − x∗)us < 0 locally around the origin as in figure 1(b).

Second, physical solutions require Γ (x, t) ≥ 0 and therefore also C(η) ≥ 0. Since each
quadrant of the phase plane has a fixed sign of C(η)/η and U(η)/η, it then follows that each
quadrant must also have a fixed sign of η and U(η) individually. These sign restrictions
lead to a unique meaning for each quadrant of the phase plane, as illustrated in figure 7.
For a given value of β, each quadrant must represent either a forward-time (2.22a) or
backward-time (2.22b) scaling, as well as necessarily belong to either the right half of the
real line (i.e. x > x∗), or to the left half (i.e. x < x∗).

Appendix C. Invariants of the problem

Direct integration of the surfactant conservation law given by (2.3) yields

d
dt

∫ ∞

−∞
Γ dx + (usΓ )|∞−∞ = 1

Pes

∂Γ

∂x

∣∣∣∣
∞

−∞
, (C1)

and, since us(x, t) necessarily decays and Γ (x, t) can be at most constant in the far field,

d
dt

∫ ∞

−∞
Γ dx = 0. (C2)

Equation (C2) implies that the total mass M0 of surfactant, as defined in (4.1), is conserved
in time. This holds as long as the integral given by (4.1) exists, which is the case for initial
pulses of surfactant with Γ0(x) decaying sufficiently quickly as |x| → ∞.
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η > 0 U > 0U < 0η > 0

η < 0 U > 0 η < 0 U < 0

η > 0 U > 0U < 0η > 0

η < 0 U > 0 η < 0 U < 0

Filling solutions (β > 1)Spreading solutions (0 < β < 1)

RIGHT HALF: x > x∗

η =
x – x∗

A(t – t∗)β

FORWARD TIME:

LEFT HALF: x < x∗

BACKWARD TIME:

η =
x∗ – x

A(t∗ – t)β

BACKWARD TIME:

η =
x∗ – x

A(t∗ – t)β

RIGHT HALF: x > x∗

η =
x – x∗

A(t – t∗)β

FORWARD TIME:

LEFT HALF: x < x∗

RIGHT HALF: x > x∗

η =
x – x∗

A(t – t∗)β

FORWARD TIME:

η =
x – x∗

A(t – t∗)β

FORWARD TIME:

LEFT HALF: x < x∗

LEFT HALF: x < x∗

BACKWARD TIME:

η =
x∗ – x

A(t∗ – t)β

BACKWARD TIME:

η =
x∗ – x

A(t∗ – t)β

RIGHT HALF: x > x∗

Re[g] = U/η Re[g] = U/η

Im
[g

] =
 C

/η

00

0 0

(a) (b)

Figure 7. Physical interpretation of each quadrant of the phase plane in figure 2, for (a) spreading solutions
with an outward flow (as in figure 1a), and (b) filling solutions with an inward flow (as in figure 1b). In order
for the concentration Γ (x, t) to be strictly non-negative, each quadrant must correspond to a specific definition
of the similarity variable, either forward time as in (2.22a) or backward time as in (2.22b). In addition, each
quadrant represents one half of the real line, either x > x∗ or x < x∗.

Furthermore, multiplying (2.3) by x and applying the chain rule, we obtain

∂ (xΓ )
∂t

+ ∂

∂x
(xusΓ )− usΓ = 1

Pes

[
∂

∂x

(
x
∂Γ

∂x

)
− ∂Γ

∂x

]
, (C3)

which, upon integration, yields

d
dt

∫ ∞

−∞
xΓ dx + (xusΓ )|∞−∞ −

∫ ∞

−∞
usΓ dx = 1

Pes

[(
x
∂Γ

∂x

)∣∣∣∣
∞

−∞
− Γ |∞−∞

]
. (C4)

Since the far-field concentration of surfactant can be at most constant with the same values
as x → ∞ and as x → −∞, all the far-field flux terms in (C4) vanish as long as the
product usΓ decays at least as usΓ ∼ x−1 as |x| → ∞. Remarkably, since in this problem
us = H [Γ ], the integral term in (C4) also vanishes due to the orthogonality condition of
the Hilbert transform (King 2009a), namely

∫ ∞

−∞
usΓ dx =

∫ ∞

−∞
H [Γ ]Γ dx = 0. (C5)

All the above implies that the first moment M1 of the surfactant distribution, as defined in
(4.9), is also conserved, satisfying

d
dt

∫ ∞

−∞
xΓ dx = 0, (C6)

as long as xΓ0(x) decays sufficiently quickly for the above integral to exist.
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Appendix D. Closure time of dimple/hole distributions

The solution of the inviscid Burgers problem (2.19) can be written implicitly using the
method of characteristics (Crowdy 2021b), yielding

ψ(x, t) = ψ0(x − tψ(x, t)). (D1)

Defining the characteristic variable ξ(x, t) := x − tψ(x, t) and differentiating (D1) yields

∂ψ

∂x
(x, t) = ψ ′

0(ξ)

1 + tψ ′
0(ξ)

. (D2)

Therefore, singularities in the solution derivatives occur when 1 + t∗ ψ ′
0(ξ∗) = 0, for some

characteristic ξ∗ = x∗ − t∗ψ(x∗, t∗) crossing the singularity coordinate x∗ at time t∗. If the
solution ψ(x, t) is real, the characteristic is also real, leading to the classic result (see e.g.
Olver 2014) of a shock appearing at the earliest possible time t∗ = minξ {−1/ψ ′

0(ξ)}, from
which it follows that ψ ′′

0 (ξ∗) = 0. This highlights that any given (real) initial distribution
ψ0(x) > 0 must have a negative slope ψ ′

0 < 0 somewhere along the real line for a
singularity to develop. We can also calculate the second derivative of the solution

∂2ψ

∂x2 (x, t) = ψ ′′
0 (ξ)

(1 + tψ ′
0(ξ))

3 . (D3)

In the case of real solutions, at the point xs(t) := x∗ − (t∗ − t)ψ(x∗, t∗) moving with
the shock, the second derivative is ∂xxψ(xs(t), t) = ψ ′′

0 (ξ∗)/(1 + tψ ′
0(ξ∗))

3 = 0, which
highlights that the profile is locally linear in the moving frame of reference.

The case of complex solutions is more complicated, since the condition for a singularity
to occur must be satisfied for both the real and imaginary parts of a complex-valued ξ∗

1 + t∗Re
[
ψ ′

0(ξ∗)
] = 0, Im

[
ψ ′

0(ξ∗)
] = 0. (D4)

Previous studies (Thess 1996; Crowdy 2021b; Bickel & Detcheverry 2022) identified that
singularities develop at points where surfactant not only reaches a minimum, but also
has a value of zero Γ (x∗, t∗) = 0. Building upon this observation, we limit our analysis
to singularities where Im [ψ(x∗, t∗)] = 0, which in turn leads to a real characteristic ξ∗.
In that case, we have that ψ ′

0(ξ∗) = u′
s0(ξ∗)+ iΓ ′

0(ξ∗) and the conditions (D4) for a
singularity to occur are simplified, leading to

1 + t∗u′
s0(ξ∗) = 0, Γ ′

0(ξ∗) = 0. (D5)

The closure time t∗ can then be calculated as follows:

(i) If the surfactant distribution is sufficiently smooth and zero at a single point
Γ0(x0) = 0, then such point x0 must be a minimum, and so conditions (D5) then
lead to x0 = ξ∗ and a singularity time given by

t∗ = − 1
u′

s0(ξ∗)
, with ξ∗ such that Γ ′

0(ξ∗) = Γ0(ξ∗) = 0. (D6)

While Γ ′
0(ξ∗) = 0, the second derivative could be either Γ ′′

0 (ξ∗) > 0 in the case of a
quadratic minimum or Γ ′′

0 (ξ∗) = 0 for flatter distributions like, for instance, one with
a quartic minimum. For that reason, (D6) applies for ‘dimples’, described in § 5.1,
and also for some ‘holes’, such as the quartic hole described in § 5.2. In general, once
t∗ and ξ∗ are calculated using (D6), one can retrieve the velocity of the singularity
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Self-similarity in unbounded viscous Marangoni flows

Name Γ0(x) us0(x) = H [Γ0(x)] ψ0(z) M0 t∗

Cauchy pulse
1

1 + x2
x

1 + x2
1

z − i
π N/A

Rectangular pulse H(1 − |x|) 1
π

ln
∣∣∣∣ x + 1
x − 1

∣∣∣∣ 1
π

Log
(

z + 1
z − 1

)
2 N/A

Half-Cauchy pulse
H(x)

1 + x2
πx + 2 ln |x|
2π(1 + x2)

π(z + i)+ 2Log(z)
2π(1 + z2)

π

2
N/A

Quartic pulse
1

1 + x4
x(1 + x2)√
2(1 + x4)

z − i
√

2√
2(z2 − i

√
2 z − 1)

√
2π

2
N/A

Cauchy dimple 1 − 1
1 + x2 − x

1 + x2
iz

z − i
∞ 1

Squared Cauchy dimple 1 − 1
(1 + x2)2

− x(3 + x2)

2(1 + x2)2
iz(2z − 3i)
2(z − i)2

∞ 2
3

Arctangent dimple 1 − arctan x
x

− ln(1 + x2)

2x
i − Log(1 + iz)

z
∞ 2

Rectangular hole H(|x| − 1)
1
π

ln
∣∣∣∣ x − 1
x + 1

∣∣∣∣ 1
π

Log
(

1 − z
1 + z

)
∞ π

2

Quartic hole 1 − 1
1 + x4 − x(1 + x2)√

2(1 + x4)

z(1 + i
√

2z)√
2 (z2 − i

√
2z − 1)

∞ √
2

Table 5. Initial conditions Γ0(x) and us0(x) used in the article. The fourth column lists the lower-analytic
complex function ψ0(z), with z = x + iy, that results in ψ0(x) = us0(x)+ iΓ0(x) on the real axis y = 0. The
fifth column denotes the mass of surfactant, as defined in (4.1), for the case of pulses. The last column specifies
the singularity time t∗ for holes or dimples, as defined in (D6) and (D7). Here, H(x) denotes the Heaviside step
function.

u∗ = us0(ξ∗) and then the actual position x∗ of the singularity using x∗ = ξ∗ + t∗u∗.
In the case of a symmetric surfactant distribution (as in figures 5 and 6b), the odd
interfacial velocity imposes u∗ = 0 and thus the singular point is static with x∗ = ξ∗.

(ii) If the initial surfactant is zero on a finite interval, then Γ ′
0(ξ) = Γ ′′

0 (ξ) = 0 on any
point of the interval as well. This is the case for some ‘holes’ such as the rectangular
hole and the asymmetric hole from § 5.2. Such distributions lead to singularities at
multiple points, since the solution develops a moving front that converges inwards
as in figure 6(a,c). However, the hole closure time t∗ will be determined by the last
instant in which a singularity occurs, so it can in this case be calculated as

t∗ = max
ξ

{
− 1

u′
s0(ξ)

}
, and ξ∗ = arg max

ξ

{
− 1

u′
s0(ξ)

}
, (D7)

which also implies that u′′
s0(ξ∗) = 0. Like in the previous case, the velocity and

position of the singularity can in general be retrieved as u∗ = us0(ξ∗) and x∗ =
ξ∗ + t∗u∗, respectively, and for symmetric distributions (as in figure 6a) we have
that u∗ = 0 and x∗ = ξ∗.
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Appendix E. Dictionary of initial conditions

Table 5 compiles the functional form of profiles Γ0(x) = Im [ψ0(x)] and their Hilbert
transforms us0(x) = Re [ψ0(x)] = H [Γ0(x)] used in §§ 4 and 5. In addition, the
lower-analytic complex function ψ0(x + iy) that reduces to ψ0(x) = us0(x)+ iΓ0(x) on
the real line (y = 0) is also provided. This function is required to compute exact solutions
to (2.19) via the method of characteristics since the solution ψ(x, t) = ψ0(x − tψ(x, t))
involves evaluations of ψ0(z) at complex departure points z.

For spreading solutions, multiple pulses can be generated via linear combination
ψ0(z) = ∑N

n=1 an ψ0,n((z − cn)/bn) of N shifted and rescaled solutions ψ0,n. The
properties of the Hilbert transform (King 2009a) lead to simple expressions for the total
mass M0 = ∑N

n=1 anbnM0,n and first moment M1 = ∑N
n=1 anbncnM0,n, where M0,n is

the mass of the nth pulse. For the double (N = 2) quartic pulse in figure 3(c), we fix
a1 = a2 = K, b1 = 1/3, b2 = 2/3, c1 = −1/2, c2 = 1, with K such that max[Γ0(x)] = 1.

Dimple and hole profiles can be readily generated from a pulse ψP
0 (z) by defining

ψH
0 (z) = i − ψP

0 (z) for the dimple or hole. More complicated functional forms of ψ0(z)
can be produced in a similar fashion. For instance, the asymmetric hole of figure 6(c),
which has an expression that is too long to include in table 5, can be built using
superposition and shifts of simpler profiles. If we label the half-Cauchy pulse of surfactant
as ψ0,A(z), and the rectangular pulse as ψ0,B(z) (both in table 5), then the asymmetric hole
can be generated as ψ0(z) = i − ψ0,A(z − 1)− ψ0,B(z).
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