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Abstract

Let A e J2f(C) and At, A2 be the unique Hermitian operators such that A = A] + iA2. The paper is
concerned with the differential structure of the numerical range map nA : x i—>• ({A\X, x). {A2x, v>) and
its connection with certain natural subsets of the numerical range W( A) of A. We completely characterize
the various sets of critical and regular points of the map nA as well as their respective images within W(A).
In particular, we show that the plane algebraic curves introduced by R. Kippenhahn appear naturally in
this context. They basically coincide with the image of the critical points of nA.

1991 Mathematics subject classification (Amer. Math. Soc): 15A22, 15A60.

1. Introduction

Let C" be the standard n -dimensional unitary space equipped with its usual inner
product (•, •) and norm || • ||. By Jz?(C) we denote the space of all linear operators of
C" into itself. Associated with each operator A e J£(C") is the set

W(A) = {(Ax,x) | *eS(C")} ,

where §(C) = {x e C" | ||x|| = 1}, known as the numerical range or the field of
values of A. This set has been studied extensively (see, for example, [6, 7, 8, 10, 12,
13, 14]) for it reflects certain important properties of A.

One of the main results concerning the geometrical shape of W(A) is due to
Kippenhahn [10] (see also [13] and [6]). His investigations in 1951 revealed that
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268 M. Joswig and B. Straub [2]

the numerical range of A coincides with the convex hull of a certain plane algebraic
curve CA associated with A.

On the other hand, the numerical range W( A) is the image of the Rayleigh quotient
(Ax x)

RA : x i—> -——, for x ^ 0, of A. As W(A) = RA (§(€")), this yields, for
(x,x)

example, that W(A) is always closed and bounded (see, for example, [12, Section 6.6]).
However, more attention has been given to the Rayleigh quotient for its differential
properties. It is well-known that RA has a stationary value if and only if the operator
A and its adjoint A* have an eigenvector in common. In particular, all eigenvectors
of A occur in this way if and only if the operator A is normal (see, for example, [14,
Section III. 18]). In this case, the set of stationary values of RA coincides with the
curve CA associated with A as both consist precisely of the n eigenvalues of A. This
suggests a possible link between the differential structure of RA and the geometrical
shape of W(A), especially the curve CA.

The aim of this paper is to investigate this connection for an arbitrary (that is, not
necessarily normal) operator A e _£?(C). As in [8], we consider the numerical range
map nA : §(R2") —> R2 of A which is given by

nA(p,q) = {(Ai{p + iq),p + iq),(A2{p + iq),p + iq)) for all (/>,?)

Here, At and A2 are the uniquely determined Hermitian operators in jSf (C) such that
A = Ai + iA2. By identifying a point (p,q) e R" x R" = R2n with the vector
p + iq e O , the map nA can be viewed as the Rayleigh quotient of A restricted
to S(C").

Following the approach in [8], we split the domain §(R2") of nA into the three
subsets E0(A), £,04) and T,2(A). Here, Ey-( A) is the set of all points (p,q) e §(R2")
such that the derivative n'A(p, q) of nA at (p, q), which is a linear map from the
(2« — 1)-dimensional tangent space to §(R2") at (p, q) into R2, has rank j . A new
characterization of the sets T,j(A) in terms of properties of the operators A\ and A2

then allows to extend and refine the results in [8]. For example, it turns out that
nA CE2(A)), in fact, coincides with the interior of W(A). However, our main result is
that the image of the critical points of nA, that is, the points where n'A does not have
the full rank, consists precisely of the curve CA together with all line segments joining
points on CA at which CA has the same tangent. This confirms the link between the
differential properties of nA and the shape of W(A).

2. The numerical range map

Let A e i f (C) . We define Hermitian operators A, and A2 in jSf(C") as
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A + A* A- A*
A\ = — ~ — and A2 = — - — ;

2 ii

these are the unique Hermitian operators subject to A = A, +iA2.
For each k — 1, 2 , . . . , let Jk : I ' x l ' —v C* be the bijection Jk{p,q) - p + iq.

The Cartesian product Rk x Rk and the Euclidean space R2k are identified in the
obvious way.

By NA we denote the map

(p, q) i — • J~l ({A(p + iq), p + iq}), p,q e R"

from I" x I" = K2" into R2. Because A, and A2 are Hermitian, both (A,JC, x) and
(A2x, x) are real numbers for every x e C". It follows that

NA(p, q) = ((A,(p + iq), p + iq), (A2(p + iq), p + iq)), p,q e R".

As the maps (p, q) i—> (Aj(p + iq), p + iq) for j = 1, 2 are polynomials in the
coordinates of p and q with coefficients in IR, it is clear that NA e C°°(K2", IR2). The
derivative N'A(p, q) of A^ at a point (/?, 4) e R2" is the linear map from IR2" into R2

specified by the condition

U m NA(p + h,q+k)- NA(p, q) - N'A(p, q){h, k) Q

Setting x = p + iq, a straightforward calculation shows that N'A{p, q) is given by

) = 2 (Re ((A,p, ft) + (A1<?, A:)) + Im «A,p, Jk) -

Re ((A2p, h) + (A2q, k)) + Im ((A2p, k) - (A2q, h)))

= 2 (Re(A,jc, h + ik), Re(A2Jc, h + ik))

for all {h, k) e R2n.

DEFINITION 2.1. The numerical range map nA associated with the operator A
in J^(C) is the restriction of NA to the unit sphere §(R2") = {y e R2" : \\y\\ = 1} of

It follows that nA is a smooth map from the (2« — 1)-dimensional C°°-manifold
SCR2") into R2. Its derivative n'A(y) at a point y e SCR2") is therefore a linear
map from the tangent space r ^ R 2 " ) of §(R2") at y into R2. Note that T.SCIR2'')
is the orthogonal complement {y}^ of the 1-dimensional subspace Ry in R2". More
precisely then, the map n'A(y) is the restriction of the linear map N'A(y) : R2n —• R2

to {y}1. In particular, given y e ^(IR2"), the linear map n'A{y) has rank 0, rank 1 or
rank 2. We split §(R2") accordingly and set Sr(A) = {y e §(IR2") | rank^C)*) = r}
forr = 0, 1,2.
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DEFINITION 2.2. Let y e §(K2"). If y e T,2(A), then we call y a regular point
of nA. Otherwise y is a critical point of nA, and we add rank 0 (rank 1) if we want to
specify that y belongs to Y,0(A) (Si (A), respectively). A rank 0 critical point is also
called a stationary point of n A.

REMARK 2.3. An affine transformation of IR2 = C is a map TaPy : C —> C with
parameters a, fi,y e C such that aft ^ 0 and a/3^' ^ iR, which sends A e C
to a Re A + z/J Im X + y. In results about the numerical range of an operator A,
frequently the corresponding affine transformations TapY(A) = otA\ + i/3A2 + yI of A
are considered (see [10, §2]) for the numerical range W (rapy(A)) of Tapy(A) is given
by TapY (W(A)), [10, §2.4]. For the derivative of the numerical range map nT w of
TaPy(A) at a point y e §(K2") we obtain

)) = V (raPo {{A o n'A(y)) (r(

This is an immediate consequence of the representation of n\ (A)(y)- It follows that

£,- (ra0y(A)) = Hj(A) for 7 = 0 , 1,2.

The proposition below already characterizes the set of all critical points of nA.

PROPOSITION 2.4. Let (c, s) e K2 \ {(0, 0)}. Then a point (p, q) e S(R2n) is a
critical point of nA such that

if and only if the vector x = p + iq e § ( C ) is an eigenvector of the Hermitian
operator sA\ — cA2-

PROOF. Assume that (p, q) is a critical point of nA with

n'A(p, q)(h, k) € R(c, s) for all (h, k) e r^SflR2") = {(p, q))L.

Since n'A(p, q)(h,k) = 2(Rs{AiX,h + ik},Re{A2x,h + ik)) and R(c,s) = {(s,
—c)}-1, this is equivalent to

sRe{AiX,h + ik) -cRe(A2x,h + ik) =0 for all (h,k) e {(/J,^)}-1

which can be written as

(1) Re((sAl-cA2)x,h + ik) =0 for all (h, k) e {(p, q)}1^

because c and s are real numbers. However, since

{(p, q)}x = {(h, k) e K2" : Re(x, h + ik) = 0},

it follows that condition (1) holds if and only if (sA{ -cA2)x e Jn {{(p, q)}±L) = Rx,
that is, if and only if x is an eigenvector of sA\ — cA2. •
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Proposition 2.4 allows us to distinguish between the two different types of critical
points. A point A. = (fi, y) 6 i&2 is called a joint eigenvalue of a pair (B, C) of
operators in C" if there exists x e C" \ {0} such that Bx = 0* and Cx = yx. In this
case, the vector x is called a joint eigenvector of (B, C) corresponding to the joint
eigenvalue k.

COROLLARY 2.5 (see [8, Proposition 1]). The point (p, q) e §(R2") is a stationary
point of nA if and only if the vector x = p + iq is a joint eigenvector of some pair
(cAi + sA2,dAx +tA2)with (c,s),(d,t) € R2 \ {(0,0)} such that ct - sd # 0 . The
corresponding joint eigenvalue is the point ({(cA) + sA2)x, x), {(dAi + tA2)x, x}).

PROOF. By definition, the point (p, q) is a stationary point if and only if

n'A(p, q) (Tu,,q)S(R2")) = {(0,0)}.

Since {(0, 0)} = R(-s, c) n R(-t, d), Proposition 2.4 yields that this is equivalent
to x being an eigenvector of both operators cA, + sA2 and dAx + tA2. •

We note that if one of the conditions of Corollary 2.5 is satisfied, then the vector
x = p + iq is a joint eigenvector of all the pairs (cA\ + sA2,dA\ + tA2) with
(c, s), (d, t) € R2 \ {(0, 0)}. In particular, then x is a joint eigenvector of the pair
(A\, A2) corresponding to the joint eigenvalue nA(p, q).

Combining Proposition 2.4 and Corollary 2.5 gives the following.

COROLLARY 2.6. The point (p, q) e §{R2") is a rank 1 critical point of nA if
and only if the vector x = p + iq is an eigenvector of cA\ + sA2 for some point
(c, s) € K2 \ {(0, 0)} which is unique up to multiplication by y e R \ {0}.

REMARK 2.7. From its definition it follows that, given (p, q) e §(K2") and x =
p + iq, the numerical range map nA is constant on the subset J~l (Cx D §(C"))
of § (1R2"). As a simple consequence of the results above and the fact that multiplication
by a complex number a leaves the (complex) eigenspaces of an operator B e Jzf (C")
invariant, we obtain for the derivative of n A at any of the points J~l (ax) with a e S(C)
that

n'A (J,;Hax)) (7VVv)S(K2")) = nA(p, q)

In particular, if (p, q) e §(K2") is a rank 0 (rank 1) critical point of nA, then for every
a = a, + iot2 e §(C), the point J~l (a(p + iq)) = (ot\p — a2q, a^q + ot2p) is also a
rank 0 (rank 1) critical point of n A.
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Our main concern in this paper is the connection between certain subsets of the
numerical range W(A) of A or, more precisely, of 7,~' (W(A)) — nA (§(K2")), and
the differential structure of the numerical range map nA. A first result in this direction
was Corollary 2.5. There we have seen that nA (EoC^)) is the set of joint eigenvalues
of the pair (Au A2).

Suppose ip,q) £ §(K2") is a point such that nA(p,q) belongs to the bound-
ary / - ' (dW(A)) of y- ' (W(A)). Let {(a, b) € K2 | ca + sb = A.} be a supporting
line to 7,-' (W(A)), that is, a line which intersects y,"1 (W(A)) in a non-empty subset
of its boundary, passing through the point nA(p, q). Such a line exists because W(A)
is convex. Then x = p + iq e §(C") is a vector such that {(cA\ + sA2)x, x) is the
maximum or minimum of the set {((cA, +sA2)z,z) \ z e §(C")}- It follows that x is
an eigenvector of the operator cA, + sA2. Combining this well-known fact (see, for
example, [2, Proposition 2.1]) with Proposition 2.4 yields the subsequent result.

LEMMA 2.8. (y, o /?„)-' (dW(A)) c E0(A) U E,(/\).

REMARK 2.9. In the case that A e Jf (C2), the inclusion of Lemma 2.8 becomes, in
fact, an equality (see also [8, Proposition 4]). For if (p, q) e S(R2") is a critical point
of«,4,thenx = p + iq is an eigenvector of some operator cAt +sA2 with (c, s) e K2\
{(0,0)} and the corresponding eigenvalue, say a, is necessarily the maximal or minimal
eigenvalue of cAt + sA2. By [10, §3.9-10], the line {(a, b) e U2 | ca + sb = a] is
a supporting line to y,~' (W(A)). Since nA(p, q) is a point on this line, it therefore
belongs toy,"' (dW(A)).

As an immediate consequence of Lemma 2.8 we obtain that J\onA maps all regular
points into the interior W(A)° of W(A) (see also [8, Proposition 2]). However, as
shown below, an even stronger result holds. We make use of the following fact.

REMARK 2.10. Let X be a non-trivial k-dimensional subspace of C with the in-
duced norm and inner product, and let P be the orthogonal projection of C" onto X.
By X we denote the 2k-dimensional subspace J~\X) of R2" corresponding to X.
Then the operator PA\X obtained by restricting the operator PA to X, belongs to
Jz?(X), and PA\\X and PA2\x are the unique Hermitian operators in Jf(X) such that
PA\x = PAi\x + iPA2\x. The numerical range map nPAU of PA\X is a smooth
map from the unit sphere S(X) of X into K2. In fact, nPAix is the restriction of nA

to the (2k - l)-dimensional C°°-submanifold S(X) of §(K2"). It follows that the
derivative n'PAlx(y) of nPAh at a point y e S(X) is the restriction of n'A(y) to the
tangent space TyS(X) of S(X) at v. That is, the linear map n'PAjx(y) is the restric-
tion of N'A(y) to the orthogonal complement {y}1- D X of Ry in X. In particular,
rankn'PAh(y) < rankn'A(y) for all y e S(X).
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We write l(.iSik for the line {(a, b) € K2 | ca + sb = X] in K2 and, as this requires
implicitly that (c, s) ^ (0, 0), we adopt as a convention that the coordinates (c, s, X)
satisfy c = cos <p, s = sin <p for some angle <p e [0,n).

PROPOSITION 2.11. nA (Y,2(A)) = /f1 (W(A)°).

PROOF. It remains to show that every point in /,"' (W(A)°) which is the image of
a critical point is also the image of a regular point of nA. Note that such a point can
not exist if C" has dimension n < 2 (see Remark 2.9).

Let fi0 e /,"' (W(A)°) n n,, (S0(A) U £,(/4)) and let L be the set of lines l,.s.x
through the point /x0 with coordinates (c, s, k) such that A. is an eigenvalue of the
operator c 4 , +sA2. We pick a line lCo,So.Xo through the point n0 such that lCo,SoM & L,if
such a line exists. Otherwise we take a line /<O..!O,AO e L satisfying/(() S(1 ^ D / J ^ (Eo('4)) ^

Without loss of generality we can assume that c0 = 1 and s0 = 0. If not, consider
the operator B = e~"PoA, where <p0 e [0, n) is the angle such that cos<p0 = c0 and
sin^o = so- By Remark 2.3, we have E;(fl) = ^ ( A ) for j = 0, 1, 2.

The line /1OJLO intersects the boundary of /,"' (VK(/4)) in two points fit and /z2- For
j = 1, 2, take (pj, qj) e «^'({/Liy}) and put Xj = p7 + iqj. Note that, by Lemma 2.8
and the choice of /i.0.x0, the two points (/?,, ^i) and (p2, <J2) belong to T,t(A). Let X
be the 2-dimensional subspace of C" spanned by the vectors X\ and x2. Then, using
the notation of Remark 2.10, the numerical range /,"' (W(PA\X)) of PA\X is either
an ellipse or a line segment.

If y,"' (W(PA\x)) = nPMx(S(X)) is an ellipse, then, by Remark 2.9, its interior is
the image of the set of regular points ofnPAix. In particular, there exists a regular point
(p0, <7o) of nPAh in §(X) c §(K2") such that nPAlx(p0, q0) = Mo- By Remark 2.10,
(Po, <io) is also a regular point of nA and nA(p0, qo) = Mo-

Suppose /,"' (W(PA\X)) is a line segment. More precisely then, it is the line
segment joining the points /u.] and ix2 and contained in the line /i.(u0- This implies
PAt\x = XQlx because ((PA,|X - X0Ix)x, x) = 0 for all x e X. It follows further
that every point (po,qo) € flpJ^GMo}) is a rank 1 critical point of nPAh and, by

Proposition 2.4, that /i'IM,x(po,<7o)(7'(pD.»>s(*)) = R ( ° ' x"> = 7i.o.o- Remark 2.10
yields that n'A(p0, q0) (r(po<w)§(R2")) contains at least the line lt,o.o-

If 'I.OJLO ^ £> then we can deduce from Proposition 2.4 that every point (p0, q0) e
n~pl

Ah({ix0}) is a regular point of nA. Hence, assume that /i.0.x0
 e ^- Since / ) / \ 2 |A-

is Hermitian and /xi ^ /x2, the vectors X\ and A;2 are eigenvectors of PA2\X and
form an orthonormal basis of X. Thus, a point (/?, q) € « ^ | X ( { M O } ) is of the form
J~l(axt + fix2) for constants a , | 3 e C satisfying \a\2 + |y6|2 = 1 and «P/, ]x(p, q) =
(Ao, |a|2(A2jri,X|> + \P\2(A2x2,x2)) = Mo- It suffices to show that there exists
(ho,ko) e Xx such that Re(AiJC|,/!0 + ik0) ^ 0. Then we can find or0, A> £ C
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satisfying (p0, q0) = J~\aoxx + fiox2) G n~p\h({jx0}) and Re(Ai(ao.*i + fiox2), h0 +
ik0) ^ 0. As (ho,ko) € {(p0, go)}1" and riA(p0,q0) is given by n'A(p0,q0)(h,k) =
2 (Re(A\(aoX\ + fiox2), h + ik), Re(A2(aoX\ + A>x2), h + ik)) for all (h,k) e
T[plhqo)S(R2") = {(Po,<7o)}\ this implies that n'A(p0, q0) (r(,,().,o)S(R2")) contains a
point (/•,, r?) with /"i 7̂  0 in addition to the line /1.0.0, and therefore the whole plane.
In other words, (p0, q0) is a regular point of nA such that nA(p0, q0) = fi0.

Now, since (p\, q\) is a rank 1 critical point of nA and l].o.kB is not the supporting
line to /f1 (W(/4)) at /U|, there exists a pair (c, 5) G §(K2) with i > 0 such that
n'A(p\, <7i) (Tipi,q0S(R2")) — / ( j 0 - On the other hand, (p\,q\) e E0( /M|x) which
gives n ^ p , , ^ , ) ^ , . , , , ^ ) ) = {(0,0)}. As r(w.,,,S(X) = {(p,, g , )} 1 n X, there
exists a point (h0, k0) e X x and a real number y ^ O such that n'A(p\, q\)(h0, k0) =
y(—s, c). In particular, Re(A|jfi, ho+iko) = —ys 7̂  0. This completes the proof. •

The worst case in the proof of Proposition 2.11 is indeed possible, that is, it can
happen that every line through an interior point which is the image of a critical point,
belongs to L and that the corresponding operator PA\X has a segment of the line for
its numerical range. We illustrate this with an example.

EXAMPLE 2.12. Consider the operator A = A{ + iA2 e Jz?(C3), where A{ and A2

are the Hermitian operators

/ 0 \. 0 \ / I 0 0
A, = I i 0 | 1 and A2 = 10 0 0

\o 1 o/ \o o -l ,

The numerical range W(A) of A is the ellipse {X e C : 2(Re k)2 + (Im A.)2 < 1}, and
the numerical range map nA is given by

nA(p, q) = (p2(P\ + Pi) + qiiq\ + q3), p\ - p\ + q\- q\) for (p, q) e §(R6).

A direct calculation shows that E, (A) consists of the two sets Si = {(av, bv) \ v €
§(K3), v2 — 2v\V3, (a,b) e §(IR2)} and S2 = {(av, bv) | v e §(K3), w, = — v3,
(<3,i>) e §(IR2)}. All other points (p,q) e §(K6) belong to E2(A). In particular,
Eo(/4) = 0. The image of S, under «,, is precisely the boundary of /,~'(W(/4)),
whereas«A(S2) = {(0,0)}. We note that 0 is an eigenvalue of every operator cA\ +s A2

with (c, 5) € W.2 \ {(0, 0)}, that is, all lines through the point (0, 0) belong to the set
L of Proposition 2.11.

Any line/through the point (0,0) e K2 has a representation {(a, b) e R2 | {2t-\)a
- y/2t{\ -t)b - 0} for some 0 < t < 1. It intersects J~l (dW{A)) in the two
points Hi(t) = (y/2t(l -t), 2/ - l) and fi2(t) = -fxt(t). For j = 1, 2, we have
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[9] On the numerical range map 275

n^({fij}) = y3"' (Cxj(t) n §(C3)), where the vectors xi(O, x2(t) e C3 are given by

t \ / \-t
JC,(O = I V 2 r ( l - 0 and x2(t) = I -y/2t(l-t) | .

Let X(0 = C*,(r) + CJC2(O, X(r) = / j " 1 (X(f)) and let F(r) be the orthogonal
projection of C3 onto X(t). For _/, Jt = 1,2, the tangent space Tj-\u U))S(X(t)) —
{J^iXjU))}1 n X(t) of S(X(r)) at Jfl(Xj(t)) is spanned by the three points in
/3~' ({/JC,-(O,*3-/(O> ix3-j(t)}),andRe(AkXj(t),x) = 0 for every vector x e {/'*,-(0.
JC3_7-(0,'JC3->(0}- It follows that the points J{1

 (JC,(O) and/,"' (x2(t)) in §(X(r)) are
stationary points of the numerical range map nP(t)Ah of P(t) A|x(r), and, by Remark

2.7, that*'1 ({M0})Un;'({M2(0}) = E0 (/ '(r)^^,))- Hence, 7,"'
is the line segment joining the points nx (f) and fi2(t)-

We note that the point (0, 0) e K2 is, for example, the image under nA of the regular

l(\ (W
point I I 0 I , I 0 I I. This point was obtained by taking / = 1 in the above andvw )
proceeding then as in the proof of Proposition 2.11.

In the remaining part of the paper, we will have a closer look at the image of the
rank 1 critical points of nA. Motivated by the observations of Remark 2.7, we take a
geometric approach.

3. Geometric properties

Let K. e {R, C} and m e N. The Grassmannian Gm,kK is the set of all k-
dimensional K-subspaces of the vector space K.m. It is a compact analytic IK-manifold
of dimension (m — k)k. The space Gm,kK has a natural topology which is induced by
the differential structure of the manifold. This topology is, for example, determined
by the metric h on Gm,kK with

h(U, V) = sup inf \\u - v\\ for all U, V e Gm kK.
e { 7 n s ( K ">

The metric /i corresponds to the Hausdorff metric (see [5, 4.5.23]) on the set BmJi =
{£/n§(DCm) | £/ G Gm,t DC}. Other ways of describing the topology on Gm,kK can be
found, for example, in [17, Chapter 13] or [4, VII.8.2].

The (m — 1) -dimensional projective space PG(Km) over DC is defined as

i = [ J Gm.*DsL
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There are geometric operations V and A defined on PG(DCm), where U v V and
U A V denote the span and the intersection of the subspaces U, V < Km, respectively.

Usually, the 1-, 2-, (m — 1)-dimensional subspaces of Km are called the points,
lines, and hyperplanes in PG(K.m), respectively. The span of two points is a line and
the intersection of two hyperplanes is an element of Gm m_2K.

By common abuse of notation we introduce homogeneous coordinates for the points
in PG(Km) as («! : . . . : um) = K(u\,..., um) whenever it is clear which field K is
involved. The coordinates of a vector in Km are always expressed with respect to a
fixed (standard) basis of Km.

A polarity n of PG(Km) is a bijection on PG(Km) which reverses the inclusion
of subspaces and satisfies n2 = id. Throughout the paper, n denotes the standard
polarity of PG(DCm) which is characterized by

u' = for all u e Gm,,K.

It follows that u" e Gmm_iK. Using the polarity it we can also introduce homoge-
neous coordinates on Gm,m_iD£ by setting [vx : ... : vm] = (ui : . . . : vm)".

In the special case where m = 3, the projective space PG(D£3) is called the protective
plane over K. Here lines are the same as hyperplanes.

From Remark 2.7 it is clear that the numerical range map induces a mapping which
is defined on a complex projective space of the proper dimension.

DEFINITION 3.1. For A e _£?(C"), we define the map vA from GnA<L into G3,, R by

vA(Cx) = R ((A,x, JC), (A2x, x), \\xf).

As || x || ^ 0 for JC 7̂  0, we infer that the image of vA is contained in an affine
subplane F of PG(K3) with the point set {(a, : a2 : 1) | ( a 1 ; a 2 ) e R2}- Let
r : F —> R2 be the bijection x{ax : a2 : 1) = (a!,a2)- By Remark 2.7, the
numerical range map nA from SCR2") = § ( C ) to R2 factors through the projective
space PG(C"). The factoring map is given by vA. More precisely, we have

nA = x ovAoo,

wherea : §(R2") —> G n , iCis themapa(p , q) = C(p + iq) for all (p, q) e SiR2").

A non-empty subset C of G3,iK> is called a plane K-algebraic curve if it is the
zero locus of a homogeneous 3-variate polynomial over IK. We note that the defining
polynomial of C is not uniquely determined; for example, if / defines the curve, then
so does / * for any k > 1. A curve is said to be irreducible if it has an irreducible
defining polynomial. Since a polynomial ring over a field is a unique factorization
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domain, each algebraic curve C is the union of finitely many irreducible curves. If
C\,..., Ck are the irreducible components of C with irreducible defining polynomials
/i , . . . , / * , then the polynomial / = /i • • • /* is a defining polynomial of C of minimal
degree. We call / a minimal polynomial of C. It is unique up to a constant factor.
Note that an irreducible real algebraic curve is not necessarily connected.

Let C = {u € G31K I / ( M ) = 0} be an algebraic curve and let / be a min-
imal polynomial of C. A point u € C is called singular or a singularity of C if
(df/duj)(u) = 0 for j = 1, 2, 3. Observe that C has only finitely many singular
points. These are the singular points of the irreducible components of C together with
the points of intersection of any two of these components. A non-singular point u € C
is called a simple point of C. The curve C is the topological closure of its simple
points. Also, if u e C is simple, then there exists a neighborhood of u in which C
admits a smooth parameterization.

Let C be an irreducible plane algebraic curve and / be its minimal polynomial. At
each simple point « e C , we have a unique tangent line to C which is given by

If C is not a projective line or a point, then it is well known that the set {(<%C)7r |
u e C simple} is contained in a unique irreducible algebraic curve C*, the so-called
dual curve of C. As an algebraic curve has at most finitely many singularities, the
dual curve is the topological closure of the set {{^UCY | u e C simple). We have
C** = C. If C is a projective line, then {(J^C)* | u e C] consists of a single point u
inPG(K3). In this case, we set C* = {«} and define C* to be the image under n of the
set of all lines in PG(K3) which pass through u. Then again we have C** = C. The
dual curve of a general plane algebraic curve C is the union of the dual curves of its
irreducible components. In particular, C and C* have the same number of irreducible
components.

Naturally, the general theory of real algebraic curves differs quite a bit from the
complex theory. However, the above statements on the duality of real algebraic curves
immediately follow from the corresponding statements in the complex case.

The details and further information on complex algebraic curves can be found, for
example, in [16]. The literature for the real case is somewhat less easy to access. As
a general reference to the theory of real algebraic geometry, see [3].

Let A e J5f (C). We define an algebraic curve CA in the real projective plane by
setting its dual curve to be

DA = {(c : s : A.) € G3,,D& | det(cAx + sA2 + XI) = 0}.

We write fA for the defining polynomial of DA, that is, fA (c, s, A.) = det(cA[ +sA2 +
XI) for (c : s : X) e G3J K, and denote the minimal polynomial of DA by mA.
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Kippenhahn [10] showed that the curve CA = D\ is contained in the affine subplane
F = {(«] : a2 : 1) | (ori, a2) G R2} and that the convex hull co(CA) of CA is exactly
the image of vA, that is, r(co(CA)) is the numerical range of A. Note that CA and
DA are the real parts of the curves in PG(C3) considered in [10]. Our aim is to show
that the curve CA itself is contained in the image under r~' o nA = vA o a of the set
E0(i4) U E] (A) of critical points of nA.

Every point u € DA has a representation (cos^ : simp : X) for some <p e [0,n)
and A. e IR. As M is a zero of fA, it follows that —X is an eigenvalue of the operator

= cos (pA{ + sin<pA2.

L E M M A 3.2. Let the map srf : R —> i f ( C " ) be given by £?(<p) = c o s ^ A , +

s'm<pA2 for cp e R. Let <p0 e R and Xo be an eigenvalue with multiplicity r of

the operator srf(<po). Then there exists a neighborhood T of<p0 and regular analytic

functions Xj : T —> Randxj : T — • S(C") with 1 < j < r, such that Xj(<p0) = Xo,

^((p)Xj(cp) = Xj(<p)xj(<p)and(xj(<p),xk(<p)) = Sjkforevery<p e Tandl < j,k < r.

Moreover, for every 1 < j < r, the derivative of Xj(-) at cp0 is given by X'j(<p0) =

PROOF. The map srf is a regular analytic function from R into the Hermitian
operators on C". We can thus apply [15, Satz 1] and obtain the functions Xj(-) and
Xj(-) with the desired properties.

For (p e T we can express Xj(cp) as (si/(<p)Xj(<p), Xj(<p)). Then

,. (•rfiVo + h)Xj(<p0 + h), Xj(<p0 + h)) - (£f((po)Xj(<po), Xj(<p0))
= lim

sinh
= lim—— ( ( - s in^o^ i + cos <p0A2)Xj(<p0 + h), Xj(<p0 + h))

h^O h
cosh — 1

+ lim {£?(<Po)Xj(<po + h), Xj(<p0 + h))
A > O n.. (£/(<po)Xj(<po + h), Xj(<p0 + h)) - {jrf((po)Xj(<po), xj((po))

h

The continuity of Xj(-) in (p0 gives Lx = (£/'(<po)xj(<po), Xj((p0)} and L2 = 0.

As £?((po) = £?(<Po) + iO, we can apply the results of Section 2 to the third
limit. Let Pi : R2 —>• R be the projection onto the first coordinate and let p{<p) =
/ - ' (xj((p)) e R2" forip e T. Then

h), Xj(cp0 + h)) - (£/(<po)Xj((po), Xj(<p0))
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(P(<Po)) (p(<Po + h) - p(<po)) + o (p(<p0 + h) - p{<pQ))\
= Pi

•

where o is the Landau symbol. Since Xj((p0) is a joint eigenvector of the pair
(£/(<Po), 0), it follows by Corollary 2.5 that n ' ^ } (p((p0)) = 0 e 5?(R2", I 2 ) . Hence

L - P (\\m ° (P(i;Po rh) p ( ( P o ) ) llp(y>0 + / i ) P^0^ \ = 03 ~ l\™o Wpbpo + V-pton h )~

and

X.'j(<po) = {*/'(<Po)Xj(<po), Xjifpo)). D

We can now prove the first main result in this section.

PROPOSITION 3.3. Let A e j£?(C). Then the curve CA is contained in the image
under vA o o of the critical points ofnA.

PROOF. Let M be the (finite) set of singularities of DA, and u0 = (cos(p0 : sin<p0 :
k0) be a point in DA \ M. Then u0 belongs to a uniquely determined irreducible
component D of DA, and there exists a neighborhood N of u0 such that every point
u e DA (~) N is contained in D \ M. As u0 is a zero of fA, —k0 is an eigenvalue of
srf(<Po), say with multiplicity r. By Lemma 3.2, there exist r functions <p i—> kj((p)
defined and regular analytic in a neighborhood T of <p0, such that A.y(<p0) = A.o and
—Xj{(p) is an eigenvalue of the operator srf{<p) for every <p e T and 1 < j < r. It
follows that in a neighborhood No c N of M0. the curve D has the r parameterizations
(p h^ (cos ip : sin <p : A.7 (ip)) for <p e To c T. As none of the points in D n iV0 belongs
to M, this gives A.7(<p) = A.^^) for all <p e To and 1 < j < r. In particular, for every
<p £ To the eigenspace of .e/(<p) corresponding to —Xi((p) has dimension r. Then the
tangent to DA at the point (cos cp0 : sin <p0 : A.] (^0)) is given by the formula

v ( - sin^o : coscp0 : k\(<po))

(2) = [ - cos(poki((p0) + sin<pok\(cp0) : - sin<pok{(<po) - cos<p0A.',(<p0) : 1 ] .

By Lemma 3.2, there exists a regular analytic function x : To —> §(C") such
that £/(<p)x(<p) = —k](<p)x((p) for all <p e To. Moreover, we have A.i(<p0) =
-(stf(<Po)x(<po),x((po)) andk\(<p0) - -(&/'(<po)x((po), x(<p0)).

It follows that the tangent to DA at the point (cos <po '• sin <p0 : k0) is given by

[cos<p0(£f(<p0)x(<po),x(<po)) -

) , x(<po)) + cos<po(srf"((po)x(<p0), x(<p0)) :

: (A2x(<p0),x(<p0)) : 1]
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Its image under n, that is, the point ((Aix((p0), x(<p0)) : (A2x(<po), x(<f>o)) : 1) e CA,
is the image under vA o a = r"1 o nA of the critical point p((po) = /„"' (x(<p0)).

Let 5 be the set of points of CA which correspond to the tangents to DA at simple
points. Note that S contains all components of CA which consist of single points. We
have shown above that all points u e S belong to (vA OCT) ( S O M ) U S I (A)). However,
as DA has only finitely many singular points and none of these is a component of DA,
the set CA \ S is at most finite. It follows that r(CA) is the closure of T ( 5 ) in R2.
Since nA (E0(A) U E, (A)) is a closed set in R2 which contains T ( S ) , T(CA) must be a
subset of nA (S0(A) U S,(A)) as well. Hence CA c (vA o CT) (S0(i4) U S,(A)). D

From the proof of Proposition 3.3 it is clear that the curve CA coincides with the
image of the critical points of nA if fA = mA and DA is a curve without singularities.
In order to clarify the general situation we need the following lemma.

LEMMA 3.4. Suppose (cos <p0 : sin^0 : kQ)isapointofDA. Let E be the eigenspace
of the operator £/((p0) corresponding to its eigenvalue —Xo and P be the orthogonal
projection ofC onto E. Let K be the set of points of CA at which the line [cos(p0 :
sin cp0 : Xo] is tangent to CA. Then (J\ o T)(K) is the set of eigenvalues of the operator
PA\E,and(nA o / " ' ) ( £ ) is the convex hull of T(K).

PROOF. Let r be the dimension of E, and let kj(-) and Xj(-) with 1 < j < r be the
regular analytic eigenvalue and eigenvector functions as given by Lemma 3.2. Then
in a neighborhood of (cos<p0 : simpo : Ao), the curve DA has the r (not necessarily
distinct) parameterizations <t>j : <p i—> (cos<p : sirup : — kj(cp)). Following the
argument in the proof of Proposition 3.3, we infer that for 1 < j < r, the projective
line [(AiXj(<po),Xj(<po)) : (A2Xj((p0),Xj(<p0)) : 1] is the tangent to DA at the point
(cosipo : sin^o : -̂o) along the parameterization <I>j;. The duality of the algebraic curves
CA and DA yields that the line [cos <p0 : sin <p0 : -̂o] is a tangent to the curve CA at the
point ({A\Xj(<po), Xj((p0)) : (A2Xj(<p0), Xj((p0)) : 1). This can be verified by computing
the tangent directly using that, in a neighborhood of the point ((AiXj((p0), Xj((p0)} :
(A2Xj(<p0), xj(<po)) : 1), the curve CA admits the parameterization

(p i—> (cos<pkj(<p) — six\(pk'j{<p) : s.\n<p\j{(p) + cos<pk'j(<p) : 1)

(see equation (2)). In particular, the duality of CA and DA yields that K is the set
{((AxXjbpo), xj(<po)) : {A2Xj(<po),Xj(<po)) : 1) | 1 < j < r).

It follows that the r vectors Xj(<p0), which form an orthonormal basis of E, belong
to (Jn o n~A

x
 OT)(K). They are eigenvectors of the operator P£/'((po)\E. In fact, by

Lemma 3.2, we have ^(<p0) = W(<Po)Xj(<po),Xj(<Po)) for every 1 < j < r. By
[11, Theorem 7], the derivatives k'j(<p0) are the eigenvalues of the (r x r)-matrix
( ) j k S r . Hence W(<po)Xj(<po), xk(<p0)) = 0 for all j ^ k.
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This implies n'B (J~l(Xj(<po))) = 0 for all 1 < j < r, where B denotes the operator
e-1**/M|£ = P£?((po)\E + iP&r(<po)\E. By Corollary 2.5, the r vectors Xj(<p0) are
joint eigenvectors of the pairs (P£?(<PO)\E, P-^'(<PO)\E) and (PAi\E, PA2\E)- Since
(nA o J~l)(E) = V (W(PA\E)), this completes the proof. •

From Lemma 3.4 we can deduce that if the curve DA has a unique tangent at the
point (cos <p0 : sin <p0 : A.o), then nA o /„"' maps the eigenspace E of the operator £?(<p0)
corresponding to its eigenvalue — Xo to a single point in K2 which belongs to r(CA).
This follows from the fact that then K consists of a single point; the condition holds,
in particular, for all simple points of DA. If there exists more than one line which is
tangent to DA at (cos<p0 : sin<p0 : Xo) along some local parameterization of DA, then
the set K contains more than one point. In this case, {nA o J~l)(E) is the segment
of the line /cos^sin^.-xo which joins all points in x(K). We have thus proved the
following theorem.

THEOREM 3.5. Let A e j£?(C"). The image under vA o a of the critical points of
nA consists of the curve CA together with all line segments joining pairs of points of
CA at which CA has the same tangent line.

If (Xu X2) belongs to nA (£0(A)), t n e n (M, ^2) is a joint eigenvalue of the pair
(A\, A2). It follows that (uX, + vX2 + w) is a factor of fA and so \{\x : X2 : 1)} is a
component of CA- From Theorem 3.5 one therefore obtains the image of the rank 1
critical points of nA by subtracting all such components of CA- However, as is well
known, a component of CA which consists only of a single point does not necessarily
correspond to a joint eigenvalue of the pair (Ai, A2). In Example 2.12, for instance,
{ ( 0 : 0 : 1)} is a component of CA, yet the set of stationary points is empty.

From the local representation of CA given above, one can derive formulas for the
curvature of x(CA) at all but a finite number of points.

PROPOSITION 3.6. Let (w0, v0, 1) e CA, and [cos^0. sin<p0, Xo] be a tangent to CA

at (uQ, V0, 1). / /(cos <p0, sinipo, -̂0) is a simple point of DA, then the signed curvature
k0 ofx{CA) at the point («0. v0) is given by

(3)
2
- trace (£f'((po)S£Z'(<Po)P)

where r is the multiplicity of the eigenvalue —Xo of g/(q)o), P is the orthogonal
projection onto the eigenspace of £/(<po) corresponding to —Xo and S denotes the
reduced resolvent (or Moore-Penrose inverse) of&f((po) + Xo.

PROOF. Suppose (cos#>0> sin^0, -̂o) is a simple point of DA. Then by Lemma 3.2
there exists a unique local eigenvalue function A.(-) such that X{<po) = — Xo. From
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equation (2) it follows that in a neighborhood of (w0, t>0) the curve r{CA) admits the
parameterization q> i—> (u((p), v(cp)), say for <p e To, where u(<p) = cos(pk(<p) —
sir\(pk'((p) and v(cp) — sincpkicp) + cos<pk'(cp).

The signed curvature k(q>) at any point (u(<p), v((p)) with cp e To can then be
computed by the formula

k(<p) =

This gives k0 = \k(cp0) + k"(cpo)\~
l (see [1, p. 295]).

From the perturbation results of [9, Section II.2], applied to the map \j/ i—
cpo) = cos(i/f)^/(<po) + sin(i^)^/'((p0), we obtain a power series expansion of the
eigenvalue function i/r i—> X(i/O = k(\lr + <po) at iff = 0, that is, k{f) = J2T=o ^-k^k-
For the details on the coefficients A*, we refer to [9, Section II.2]. It follows that
k"((p0) = k"(0) = 2A2 = j trace (-^((po)P - s?f'(<po)S£/'((po)P) with P and S as
above. This completes the proof. •

Note that k0 is allowed to be infinity; this situation will occur, for example, if
l(u0, v0, 1)} is a component of CA.

REMARK 3.7. Let x(-) be any of the r (local) eigenvector functions Xj(-) ob-
tained in Lemma 3.2. Then we have k(cp) = (&/(<p)x(<p), x{q>)) and k'(<p) =
(g/'(<p)x(<p),x(<p)} for all (p in the domain of x(-). Using this representation of
k'itp), an argument similar to the one applied in the proof of Lemma 3.2 yields that
k"((p) = -k(<p) + 2Re(£/'((p)x(<p), x'(<p)}. Hence, the curvature of x{CA) at (x0, y0)
is also given by

k0 = \2Re{£/'((po)x(<po),x'(<po))\~
l .

REMARK 3.8. Proposition 3.6 yields in particular the curvature of the numerical
range W(A) at certain boundary points. Let (u0, v0) e dW(A). If there exists a
supporting line lcs>, to dW(A) at (UQ, VO) such that (c, s, —k) is a simple point of DA,
then the curvature of 3 W(A) at (u0, v0) is given by the formulas above. A sufficient
but not necessary condition for (c, s, —k) to be a simple point of DA is that A is a
simple eigenvalue of the operator cA{ + sA2. In this case, our formula for &0 is the
reciprocal of the corresponding formula for the radius of curvature derived from [6,
Theorem 3.3]. Thus, Proposition 3.6 is the natural generalization of [6, Theorem 3.3].
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