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ON A THEOREM OF ARHANGEL'SKIÏ CONCERNING 
LINDELÔF p-SPACES 

R. E. HODEL 

1. Introduction. In [4] Arhangel'skiï proved the remarkable result that 
every regular space which is hereditarily a Lindelof p-space has a countable 
base. As a consequence of the main theorem in this paper, we obtain an analogue 
of Arhangel'skiï's result, namely that every regular space which is hereditarily 
an Ki-compact strong 2-space has a countable net. Under the assumption of the 
generalized continuum hypothesis (GCH), the main theorem also yields an 
affirmative answer to Problem 2 in Arhangel'skiï's paper. 

In § 3 we introduce and study a new cardinal function called the discreteness 
character of a space. The definition is based on a property first studied by 
Aquaro in [1], and for the class of T\ spaces it extends the concept of Ki-
compactness to higher cardinals. (In general the discreteness character and the 
cellularity of a space are not related ; however, the two functions agree 
hereditarily.) The main theorem is proved in § 4, and Arhangel'skiï's problem 
is discussed in § 5. 

Throughout this paper m and n denote cardinal numbers ; m+ is the smallest 
cardinal greater than m ; o-, r, and p denote ordinal numbers ; and \A\ denotes the 
cardinality of the set A. Unless otherwise stated, no separation axioms are 
assumed. However, paracompact spaces are always Hausdorfï and regular 
spaces are always 7\. 

2. Definitions and known results. We let w, L, hy d, z, c, s and \p denote 
the following standard cardinal functions: weight, Lindelôf degree, height 
( = her. L), density, width (= her. d), cellularity, spread (= her. c), and 
pseudo-character. (For definitions, see Juhasz [12].) 

The metrizability degree of a space X, denoted m(X)1 is Ko-in, where m is the 
smallest cardinal such that X has a base which is the union of m discrete collec­
tions. See [10] for a study of this cardinal function. For any 7\ space X let 
F(X) = Xo*nt, where m is the smallest cardinal such that every open subset 
of X is the union of ^ m closed sets. Note that F(X) ^ h(X) for any regular 
space X and yf/{X) S F(X) whenever X is 7Y A Ti space X is perfect if 
F{X) = Xo; i.e., every open set is a countable union of closed sets. 

In [9] the concept of a £-space [2] was extended to higher cardinals as follows. 
A collection { & a la in A} of open covers of a space X is a pluming for X if the 
following holds: if p G Ga Ç ^ 'a for all a in A, then 
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(a) C*(p) = r\{Ga'a in A} is compact; 
(b) { PiaçFGa'F a finite subset of A} is a "base" for C*(p) in the sense that 

given any open setR containing C*(p), there is a finite subset F of A such that 
Pla£F Ga £ R* 
(See [9] for a proof that every regular space has a pluming.) For a regular 
space X, the pluming degree of X, denoted p(X), is Xo-nt, where m is the 
smallest cardinal such that X has a pluming {&a\a in 4̂} with |^4| = m. The 
definition of a pluming for X is based on an internal characterization of ^-spaces 
given by Burke [5], and from Burke's theorem it follows that a Tychonofï 
space X is a £-space if and only if p(X) = Xo- For any regular space X we 
write pp(X) = sup{£( Y) : Y Ç X}. 

According to Arhangel'skiï [3] a collection <yK of subsets of a space X is a we£ 
if given any point p in X and any neighborhood R of £, there is some N injV 
such that p £ N ÇZ R. The w^ weight of a space X, denoted n(X), is Xo*m, 
where m is the smallest cardinal such that X has a net of cardinality m. It is 
easy to check that d(X) g n(X), L(X) ^ n(X), and n(X) ^ w(X). A space X 
has a countable net if and only if n(X) = Xo-

Let X be a set, and let J^ be a cover of X. The cover Jf is said to be separating 
if given any two distinct points p and q in X, there is some S in y such that 
p £ S, q ([ S. For £ in X, the order of p with respect to y , denoted ord(p, S^), is 
the cardinality of the set {S in S^:p (E S}. 

For a 7\ space X, the point separating weight of X, denoted psw(X), is Xo • nt, 
where m is the smallest cardinal such that X has a separating open cover 5f 
with ord(£, Sf) g m for all p in X. Note that psw(X) ^ w(X), and that 
psw{X) = Xo if and only if X has a point-countable separating open cover. 
(See [15; 18].) In [9] it is proved that w{X) = L(X)-p(X)-psw(X) for any 
regular space X. 

For any space X the point weight of X, denoted pw(X), is Xo-nt, where m is 
the smallest cardinal such that X has a base 3ë with ord(£, ^ ) ^ m for all p 
in X. Clearly pw{X) ^ 2£>(X) for any space X, psw{X) ^ pw(X) whenever X 
is 7Y, and pw(X) = Xo if and only if X has a point-countable base. 

3. The discreteness character. The discreteness character of a space X, 
denoted A(X), is Xo*nt, where 

m = sup{ |^~| : ^~ is a discrete collection of non-empty closed sets in X}. 

We also write AA(X) = sup{ A( Y) : Y Ç X}. Note that for any space X, 
A(X) ^ L(X), AA(X) = s{X), and w(X) = w(X)« A(X). As for characteriza­
tions and other basic properties of A(X), we have the following propositions. 

PROPOSITION 3.1. Let X be a T\ space, let n be an infinite cardinal. 
(1) A(X) = Xo-supfl^F]: &~ is a locally finite collection of non-empty closed 

sets in X} ; 
(2) A(X) = Xo-sup{ | Y\ : Y Ç X and every subset of Y is closed in X} ; 
(3) A(X) Snif and only if every subset of X of cardinality > n has a limit point. 
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Proof, We prove (1) only. Let A*(X) denote the right hand side of (1). 
Clearly A(X) ^ A*(X). Assume, then, that A(X) = m, and let us show that 
A*(X) S m. Let-^" = {Fa:a in A} be a locally finite collection of closed sets 
in X such that Fa j£ 0 for all a in A and Fa 5̂  7^ whenever a ^ 0. Suppose 
I ̂ 41 > m. For each a in A pick xa G Zv By Zorn's lemma, there is a subset B 
of 4̂ which is maximal with respect to the property that if a and fi are any two 
distinct elements of B, then xa T£ xp. By the maximality of B, the point 
finiteness of Ĵ ~, and the assumption that \A\ > m, one can conclude that 
\B\ > m. Then {{xa} la in B} is a discrete collection of non-empty closed sets 
in X such that \B\ > m and {xa} 9e {xp} for a 5̂  /3. This contradicts A(X) = m. 
Hence \A\ ^ m, from which it follows that A*(X) g m. 

Remark 3.2. Recall that a space is Hi-compact if every uncountable subset has 
a limit point. By the above proposition, a 7Yspace X is Ki-compact if and only 
if A(X) = Ko. In addition, a space X satisfies property (*) in [1] if and only if 
A(X) = Ko. 

PROPOSITION 3.3. Let X be a Ti-space. Then s(X) ^ A(X) • F{X). In particular, 
every perfect 7\ ^-compact space hereditarily satisfies the countable chain condition. 

Proof. Let A{X) • F(X) = m, let D be a discrete subspace of X, and let us 
show that \D\ ^ m. For each p in D let Vp be an open neighborhood of p such 
that Vp Pi (D - \p)) = 0, and let W = U{ Fp:£ in D). Now W is open and 
F(X) ^m,soW = {J{H<r'-0 ^ a < m}, where each Ha is a closed set. For each 
a < m let Kv = Har\ D, and note that Z) = U { ^ : 0 ^ 0- < m}. The proof 
is complete if we can show that \Kff\ ^ m for each a < m. So let a < m be fixed . 
NowJ^~ = {{x} :x in Ka) is a discrete collection of closed sets in X. (Let p G X. 
If p (? Ha, then (X — Hff) is a neighborhood of p which misses all elements of 
^ . If p G iJff, then p £ W and so there exists g in Z) such that £ G Ffl. Thus VQ 

is a neighborhood of p which intersects at most one element of ^.) Since 
A(X) g m, it follows that \Ka\ ^ m. 

COROLLARY 3.4. Let X be a Tx-space. Then \X\ ^ 2A<*>'P<*>. 

Proof. Hajnal and Juhâsz [8] have proved that \X\ ^ 25<X)''<*> for any 7\ 
space X. Since s(X) ^ A(X)-F(X) and f(X) S F(X), it follows that 
\X\ ^ 2A(X)*F(X). 

Remark 3.5. Suppose X is a perfect T\ Ki-compact space. Then by Corol­
lary 3.4, \X\ g 2Ko. This result generalizes a theorem of Stephenson [20]. 

Before proving our next result, we need a generalization of a lemma due to 
Aquaro [1]. No doubt this generalization is well known, and should be considered 
folklore by now. However, for the sake of completeness we sketch a proof. 

LEMMA 3.6. Let X be a topological space with A(X) ^ m, and let^ be an open 
cover of X such that ord(p,^) ^ m for all p in X. Then there is a subcover off 
of cardinality ^ m . 
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Proof. Suppose no subcollection of *V of cardinality ^ m covers X. By Zorn's 
lemma, there is a subset M of X which is maximal with respect to the property 
that if p and q are distinct elements of M, then q d st(p,^). By the maxi­
mal ly of M, the hypothesis that ord(p, ^) S vx for all p in X, and the assump­
tion that no subcollection of "f of cardinality ^ m covers X, one can show that 
|M| > m. Now J^~= {{p}~:p in M} is a discrete collection of closed sets in X. 
For, let x £ X, and let V be some element of ^ which contains x. Suppose 
VC\ [p)~ 9^ 0 and VC\ {q}~ ^ 0, where p and q are distinct elements of M. 
Since V is open, p Ç F and g Ç F, so g G s t ( £ , ^ ) , a contradiction. Thus J H s a 
discrete collection of closed sets in X with \^\ > m, a contradiction of 
A(X) ^ tn. 

PROPOSITION 3.7. Let X be a regular space. Then w{X) = p(X) • A(X)-pw(X). 
In particular, every regular ^-compact p-space with a point-countable base has a 
countable base. 

Proof. Clearly p(X) - A(X)-pw(X) ^ w(X). Assume, then, that 
p{X) - A(X) -pw{X) = m, and let us show that w(X) S m. Since pw{X) ^ m, 
X has the property that every open cover has an open ref inement^ such that 
ord(£, Y) S m for all p in X. It follows from Lemma 3.6 that L(X) ^ m. 
Since w(X) ^ p(X) -L(X) -psw(X) (see [9]), we conclude that w(X) ^ m. 

Problem 3.8. Does every regular Ki-compact £-space with a point-countable 
separating open cover have a countable base? 

4. The main theorem. We begin by introducing a cardinal function called 
the ^-degree. This function extends the concept of a strong 2-space (see [17]) 
to higher cardinality. Recall that for X a set, p £ X, and Ĵ ~ a cover of X, 
C{p^) = .n{F €^:p Ç F}. A collection \^a\a in A] of locally finite 
closed covers of a space X is a strong X-net for X if the following hold for each p 
in X: 

(a) C(£) = n f C ^ ^ a ) : ^ in A] is compact; 
(b) {C(pj^a) :a in 4̂} is a "base" for C(p) in the sense that given any open 

set R containing C(p), there exists a in A such that C(pt^~«) C ^-
Before defining the 2-degree we need the following existence result. 

PROPOSITION 4.1. Let X be a regular space. Then X has a strong 2-net 
{^a'.a in A} with \A\ ^ n(X). 

Proof. Let^V = {Na:a in A} be a net for X with \A\ ^ n(X). For each a in 
4̂ l e t ^ a = {̂ Va, X}. Then, as is easy to check, {^"«la in A} is a strong 2-net 

forX. 

The 2-degree of a regular space X, denoted 2(X), is Ko-trt, where m is the 
smallest cardinal such that X has a strong 2-net {0* a\a in A\ with \A\ = m. 
By the above proposition, 2(X) ^ w(X). Note that a regular space X is a 
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strong 2-space if and only if 2(X) = Ko (see [15; 17]). We also define 
22(X) = s u p j 2 ( F ) : F Ç I j for any regular space X. 

Now we are ready to prove the main theorem in this paper, namely that 
n(X) g AA(X)-22(X) for any regular space X. The basic idea behind the 
proof is the same as that developed by Arhangel'skiï in [4], and can be briefly 
described as follows. Assume AA(X)-22(X) = m. First divide X into two 
subspaces Xi and X2 in such a way that every compact subset of Xt (i = 1, 2) 
has cardinality ^ m . To complete the proof, it suffices to show that n(Xt) ^ m, 
i = 1, 2. This is accomplished by showing that Xt is the union of ^nt sub-
spaces, each of which has net weight ^ m . 

The proof of the main theorem (4.9) requires several propositions. The first 
of these makes use of the following set-theoretic result of Miscenko (see [7 ; 16]). 

LEMMA (Miscenko). Let X be a set, let m be an infinite cardinal, let y be a 
collection of subsets of X such that orA(p, y) ^ m for all p in X, and let H be a 
subset of X. Then the cardinality of the set of all finite minimal covers of H by 
elements of y does not exceed m. 

PROPOSITION 4.2. Let X be a regular space. Then n(X) = A(X)-2(X)-psw(X). 

Proof. It is easy to check that A(X) -2(X) -psw(X) ^ n(X). Suppose, then, 
that A(X)'Jl{X)-psw(X) = m, and let us construct a net JV for X with 
\j¥\ ^ m.Let^a'.ainA} be a strong 2-net for X with \A\ ^ m. Since A(X) ^ m, 
it follows from Proposition 3.1 that \^a\ S în for each a in A. Let 3^ be all 
finite intersections of elements of Ui^a'a in A}, and note that \J^\ ^ rrx. Let 
y be a separating open cover of X such that ord(£, y) ^ m for all p in X. 
We may assume that X £ y , and hence for any subset H of X there is at least 
one finite minimal cover of H by elements of y', namely {X}. 

First we prove that \y\ ^ m.For each HinJtf let {y(H, a) :0 S <r < nH S m} 
be all finite minimal covers of H by elements of y (use Miscenko's lemma), and 
let 

y = U{y(H, a):H £je,0^a < XlH\. 

We are going to show that y Ç y', from which it follows that \y\ ^ m. Let 
So £ y , and let p G So- Recall that C(p) = C\{C(p^a)\a in A) is compact. 
Obtain a finite subcollection y § of y which covers C(p) and has these proper­
ties: (1) So e yQ] (2) if 5 G y0 and 5 ^ 50f then p £ S. Choose a in A such 
that H = C(p^a) C (jy0. Let yx be a minimal subcollection of yQ which 
covers H, and note that S0 G J^i. Now j ^ \ = y(H, a) for some a < nH, so 
So <E y . 

Now let 

JV = {H - W:H Ç Jtf, W = 0 or W a finite union of elements of y 7 } . 

Then \^V\ ^ m, and so the proof is complete if we can show^K a net for X. 
Let p Ç X, let i? be an open neighborhood of £. Let Z = C(p) — R, and note 
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that Z is compact. (Recall that C(p) = Pi {C{p,^~o)\a in A} and is compact.) 
We may assume that Z ^ 0 , since the case Z — 0 is trivial. Let j ^ o be a finite 
subcollection of f~f which covers Z such that p $ UJ^o = W. Now 
C(p) QRU Wf so there exists a in A such that C(p,^a) ^RU W. Then 
TV = Cip^a) - W is an element of <yK such that p £ N Cl R. 

COROLLARY 4.3. Let X be a regular space. Then w(X) = A(X)-2(X)'pw(X). 

Proof. Let A(X)'2(X)-pw(X) = m. Then by the above result, n(X) = nt, 
from which it follows that d(X) ^ nt. Let D be a dense subset of X with 
\D\ ^ m, let J* be a base for X such that ord(p, Se) ^ m for all p in X and 
0 g ^ . Then & = {B in &:B n D ?* id}, from which it easily follows that 
| ^ | ^ m. 

PROPOSITION 4.4. Let X be a regular space. Then L(X) ^ A(X) -2(X). 

Proo/. Let A(X)-2(X) = m, and let {^«la in A] be a strong 2-net for X 
with |i4| ^ nt. Since A(X) ^ nt, it follows that \<Fa\ ̂  m for all a in A. LetJ^ 
be all finite intersections of elements of U [^'a • « in A}, and note that | J^ | ^ m. 

Now let i^ be an open cover of X, and let us show that there is a subcover 
of i^ of cardinality ^ m . Let J^ 0 be all elements of ^ which are contained in a 
finite union of elements of ̂ . Clearly \3rif i\ ^ tn, and so if we can show thatJ^o 
covers X, it easily follows that a subcollection of ̂  of cardinality ^ m covers X. 
Let p £ X. Now C(£) is compact, and i^ covers C(p), so there is a finite 
subcollection T^o of ^V such that C(p) C {jf0 = W. Choose a in A such that 
C(p,^a) £ Ŵ . Then C(p,^~a) is an element of J^7 which is contained in a 
finite union of elements of 'K ; i.e., C(p^a) £ ^ V Since £ £ C(/>, ^~ a) , the 
proof is complete. 

PROPOSITION 4.5. L<?/ X be a regular space. Then z(X) ^ AA(X) -SS(X). 

Proof. Let AA(X) • 22 (Z) = m. First note, by Proposition 4.4, that h(X) S m 
and hence \p(X) ^ nt. For simplicity we show d(X) ^ m. (A similar argument 
can be used to show z(X) ^ m.) The technique we use is due to Ponomarev 
[19]. Suppose d(X) > nt. Then there is a subset Y = {xa:0 ^ a < m+} of X 
such that for all a < m+, xa $_ {xT:0 ^ r < a}~~. For each a < m+ let 
{ V(<r, p):0 S p < in} be a collection of open neighborhoods of xa such that 
n{V(a, p):0 ^ p < m} = {xa} and V(a, p) H {xr:0 ^ r < <J} = 0 for all p < nt. 
Let 

y = { 7 ^ , p) n 7:0 ^ (7 < nt+, 0 ^ p < nt}. 

Then S^ is a separating open cover of F such that ord(x(T, J/*7) ^ m for all 
(j < m+. Now A( F) -2( F) ^ m, and so by Proposition 4.2 we have n{ Y) ^ nt. 
This is a contradiction. 

PROPOSITION 4.6. Let X be a regular space, let AA(X)-22(X) ^ nt. Then the 
number of compact subsets of X is ^ 2m. 
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Proof. First , h(X) rg ni, and so every closed subset of X is the intersection of 
^ t n open sets. By Proposition 4.5, d(X) ^ m, and so by a well known result 
w(X) S 2m . (See [12, p. 10].) Let 38 be a base for X with \38\ ^ 2m, l e t ^ be 
all finite unions of elements of £ë, and l e t ^ be all intersections of ^ m elements 
of Y. Note tha t \1V\ ^ 2m. Now let K be any compact subset of X, and let us 
show tha t K £ W. First, i£ = n[Ua:0 ^ o- < m}, where each £/<, is an open 
set. For each a < m there exists Va in i^ such tha t i£ C Va Ç [/,. Hence i£ 
is the intersection of ^ m elements of 7^ , and so X G ^ . 

T h e following set-theoretic lemma extends the result found in [13, Chapter 3, 
§ 40, Lemma 2]. T h e proof is similar and so is omitted. 

LEMMA 4.7. Let Xbea set, let m be an infinite cardinal, and let {Ka : 0 ^ a < n ^ m} 
be a collection of subsets of X such that \Ka\ = m for all a < n. Then there is a 
subset Z of X such that Z C\ Ka ^ 0 and (X — Z) C\ Ka ^ 0 for all a < n. 

PROPOSITION 4.8. Let m be an infinite cardinal, let X be a regular space such 
that AA(X) • 2 2 (X) ^ tn, and assume that every compact subset of X has cardinality 
^m. Then n(X) ^ m. 

Proof. Let \!F a\a. in A} be a strong 2-net for X with |^4| ^ m, and let Jf" 
be all finite intersections of elements of \J{^a\a in A). As noted before, 
\^f\ ^ m. By Proposition 4.4, h(X) ^ m, and so every closed subset of X is the 
intersection of ^ m open sets. For each H in J ^ let { W(H, a) :0 ^ a < m} be a 
collection of open sets such tha t H = H{ W(H, <r):0 ^ o- < m}, and let 

y = {X - H'.HinJ^} U {W(H,a):H in je,0 ^ a < m}. 

Note tha t \y\ ^ m. 
The idea of the proof is to express X as the union of ^ m subspaces, say 

X = U | F T :0 ^ r < nt}, in such a way tha t «5^, when relativized to each FT, 
is a separating open cover. Suppose, for a moment, tha t this is accomplished. 
Then for each r < m, A( FT) -2( F r) -£sw( YT) ^ m, and so by Proposition 4.2 
n( YT) S m. I t then follows tha t n(X) ^ m. 

The proof is complete if we can construct the required subspaces of X. 
Define a relation ^ on I as follows: p ~ q if and only if p £ C(q, Jrff) and 
q £ C(p,Jtif). Now ^ is an equivalence relation on X , so there is a cover 
\Et:t in r } of X by non-empty sets such tha t (1) ESC\ Et = 0 whenever s 
and / are distinct elements of T; (2) for any two points^? and q i n X , {p, q) Ç £ , 
if and only if £ ~ q. Now for each t in T, | £ , | ^ m. (Let p be any point of Et. 
Then £^ is a subset of the compact set C(p) = D{C(pt^a):a in A], and 
\C(p)\ ^ m by hypothesis.) Let E , = }x(/, r ) : 0 ^ r < m j , and for each 
r < m let YT = {*(*, T):*in TJ. Note tha t X = U{ Yr:0 ^ r < m}, and so it 
remains to show tha t S^ is a separating open cover of each FT. Let r < m be 
fixed, and let p and q be distinct points of FT. Then there exist s, / in T, s 9^ t, 
such tha t p = x(s, r) and g = x(t, r ) . Since 5 ^ t, it follows tha t £> ^ g is 
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false, and hence p & C(q,Jf) or q d C(p,j4f). First suppose £ (? C(q, Jtif). Then 
there exists H inJti?such that q £ H,p d H. Then (X — # ) is an element of S^ 
which contains p and not q. Next suppose g $ C(p,Jtff). Then there exists i7 in 
j f such that p 6 Hyqd H. Since q g if, there exists o- < m such that g (? W (̂if, o-). 
Hence W(H, <r) is an element of 5^ which contains p and not g. 

THEOREM 4.9. Assume GCH. Then n(X) = AA(X)-22(X) /or a?ry regular 
space X. 

Proof. Clearly A A(X)-22(X) ^ w(X). Assume, then, that AA(X)-22(X) = m, 
and let us show ft(X) ^ m. By Proposition 4.6, the number of compact subsets 
of X is S2m. Note also that \X\ S 2m. Let J f = {Kff:0 ^ ^ < n ^ 2m} be all 
compact subsets of X of cardinality 2m. By Lemma 4.7, there is a subset Z of X 
such that Z n X ^ 0 a n d ( I - Z ) n X ^ 0 for all a < n. 

Let us show that w(Z) ^ m. A similar argument establishes n(X — Z) ^ tn, 
from which it follows that w(X) ^ m. To show w(Z) ^ m, it suffices, by Propo­
sition 4.8, to show that every compact subset of Z has cardinality :§ m. So let K 
be a compact subset of Z, but suppose \K\ > m. Now K Q X and \X\ ^ 2m 

so \K\ ^ 2m. By GCH, we conclude that \K\ = 2m. Now K is a compact subset 
of X, so K = Ka for some a < n. But then KC\ (X — Z) ^ 0, a contradiction. 
Hence we have |i£| ^ m, and the proof is complete. 

Remark 4.10. Consider the above proof for the special case m = No- It is well 
known (see [12, p. 33]) that every compact Hausdorff space in which every 
point is a Gs has cardinality 5̂ Xo or 2Ko. Consequently the continuum hypo­
thesis is not needed to prove that \K\ = 2No under the assumption \K\ > No-
This leads to the following corollary of 4.9. 

COROLLARY 4.11. Let X be a regular space which is hereditarily an ^-compact 
strong espace. Then X has a countable net. 

COROLLARY 4.12. Let X be a regular space. Suppose that X is hereditarily a 
strong espace and hereditarily satisfies the countable chain condition. Then X 
has a countable net. 

COROLLARY 4.13. Let X be a regular space which is hereditarily a Lindelôf 
2-space. Then X has a countable net. 

5. Arhangel'skiT's Problem. In [4] Arhangel'skiï proved that every regular 
space which is hereditarily a paracompact £-space and satisfies the countable 
chain condition has a countable base. He then asked if this result can be 
generalized in the following natural way. 

Problem [4]. Let X be a regular space which is hereditarily a paracompact 
£-space. Is it true that c(X) = w(X)? 

In this section we show that the answer is u y e s " under the assumption of 
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GCH. We begin by extending to higher cardinality Arhangel'skiï's result that a 
regular space has a countable base if it is hereditarily a Lindelôf £-space. 

LEMMA 5.1. Let X be a regular space, let [&~a\a m A) be a collection of locally 
finite closed covers of X with \A\ S tn, and let T be all finite subsets of A. Assume 
the following hold for each p in X : 

(a) C(p) = r\{C(p^a):a in A] is compact; 
(b) { Daey C(p^a):y in T} is a "base" for C{p). 

Then 2(X) S m. 

Proof. For each y in T let J^y = A \^a'-a in 7}. Then each JÏ?y is a locally 
finite closed cover of X, and it is easy to check that \Jtfy:y in T} is a strong 
2-net for X. 

PROPOSITION 5.2. Let X be a regular space. Then 2(X) ^ L(X)-p{X). 

Proof. Let L(X)-p(X) = m. Then there is a pluming {&a\a in A] for X 
such that \A\ ^ m and | ^ a | ^ m for all a in A. Let J f be all finite inter­
sections of elements of U{ &a'*oL in A }, and note that \$f\ g m. For each H in 
Jtff let^~(H) = {i?, X}. By the lemma above, the proof is complete if we can 
show that for each p in X : 

(a) C(p) = n{C(p^(H)): H in Jf} is compact; 
(b) if W is open and C(p) Ç W, then there exist H0, if 1, . . . , if* in ffl such 

that nî=o C(p9^(Ht)) Ç W. 
First note that C(p,^(H)) = H whenever p £ H, and that 

C(/>) = D{H:H inJif, p £ H). For each a in A choose G« in ^ « such that 
p € Ga. Now DlGa'cc in 4̂} = C*(p) is compact and contains C(p), so (a) is 
proved. To prove (b), let W be an open set with C(p) Ç pf. Set Z = C*(£) — 14̂ . 
Now Z is compact, and {X — H'.H in J^, p £ H\ covers Z, so there exist 
Hlt.. .,HkinJ^withp £ Hu i = 1 , . . . , k, such that Z Ç UÎ=i(* - Si) = V. 
Let R = V \J W. Then 7? is an open set containing C*(p), so there is a finite 
subset F of 4 such that Da^F Ga C 2?. Let if 0 = P I ^ F G«. Note that if 0 £ Jf7 

and £ € if „. For i = 0, 1, . . . , k, C(pJJ
r(Hl)) = Hu and since fïî-o # , C W, 

the proof of (b) is complete. 

THEOREM 5.3. Assume GCH. Thenw(X) = h(X) - pp{X) for any regular space 
X. 

Proof. Let h(X)-pp(X) = m, and let us show w(X) ^ m. By the previous 
result 22(X) ^ tn, and since AA(X) ^ /&(X) ^ m, it follows from Theorem 4.9 
thatw(X) ^ m. Clearly psw{X) ^ »(X) for any regular space X, and so we have 
w{X) = L(X)-p(X)-psw(X) ^ m. (See [9].) 

Remark 5.4. Consider the above proof for m = Ko- In this case we can use 
Corollary 4.11 instead of Theorem 4.9, thereby avoiding the continuum hypo­
thesis. Thus we obtain Arhangel'skiï's result that every regular space which is 
hereditarily a Lindelôf /?-space has a countable base. 
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COROLLARY 5.5. Assume GCH. If X is a hereditarily paracompact space, then 
w(X) = c(X)-pp{X). In particular, if X is hereditarily a paracompact p-space, 
then w(X) = c(X). 

Proof. Let c(X)-pp(X) = m, and let us show w(X) ^ m. By the above 
theorem, it suffices to show h(X) ^ m. So let F Ç I and let usshowL(F) ^ m. 
We may assume that Y is open. L e t ^ be an open cover of Y. Now Y is para­
compact, so i^ has a <r-disjoint open refinement U^i^k (see [14]). Since 
c(X) ^ m, it follows that \Wk\ S m, k = 1, 2, . . . , and so | UJU ^ * | S m. It 
easily follows that 7^ has a subcollection of cardinality ^ m which covers F. 
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