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Abstract

Consider a branching random walk on the real line with a random environment in time
(BRWRE). A necessary and sufficient condition for the non-triviality of the limit of the
derivative martingale is formulated. To this end, we investigate the random walk in a
time-inhomogeneous random environment (RWRE), which is related to the BRWRE by
the many-to-one formula. The key step is to figure out Tanaka’s decomposition for the
RWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
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1. Introduction and main result

Consider a discrete-time branching random walk on R in random environment (BRWRE).
The random environment is represented by a sequence of random variables ξ = (ξn, n≥ 1)

which is defined on some probability space (�,A, P). We assume throughout that (ξn, n≥ 1)

are independent and identically distributed (i.i.d.) random variables with values in the space
of point process laws (i.e. probability distributions on ∪∞k=1R

k). Each realization of ξn corre-
sponds to a point process law Ln. Given the environment, the time-inhomogeneous branching
random walk is described as follows. It starts at time 0 with an initial particle (denoted by ∅)
positioned at the origin. This particle dies at time 1 and gives birth to a random number of
children which form the first generation and whose positions are given by a point process L1
with law L1. For any integer n≥ 1, each particle alive at generation n dies at time n+ 1 and
gives birth, independently of all others, to its own children, which are in the (n+ 1)th gener-
ation and are positioned (with respect to the position of their parent) according to the point
process Ln+1 with law Ln+1. All particles behave independently conditioned on the environ-
ment ξ . The process goes on as described above if there are particles alive. We denote by T the
genealogical tree of the process. For a given vertex u ∈T, we denote by V (u) ∈R its position
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2 W. HONG AND S. LIANG

and by |u| its generation. We write ui (0≤ i≤ |u|) for its ancestor in the ith generation (with the
convention that u0 := ∅ and u|u| = u). Given a realization of ξ , we write Pξ for the conditional
(or quenched) probability and Eξ for the corresponding expectation. The joint (or annealed)
probability of the environment and the branching random walk is defined as P := Pξ ⊗ P,
that is,

P(·)=
∫

�

Pξ (·) dP,

with the corresponding expectation E.
This model was first introduced by Biggins and Kyprianou [7]. Recently, some results for

the homogeneous branching random walk have been extended to the BRWRE. Huang and Liu
[17] proved a law of large numbers for the maximal position and large deviations principles
for the counting measure of the process. Gao, Liu and Wang [12] obtained the central limit
theorem. Wang and Huang [31] considered the Lp convergence rate of the additive martingale
and a moderate deviations principle for the counting measure. Mallein and Miłoś [26] inves-
tigated the second-order asymptotic behavior of maximal displacement. Also, many authors
have focused on other kinds of random environments. For example, Greven and den Hollander
[13] considered the branching random walk with the reproduction law of the particles depend-
ing on their location. Yoshida [33] and Hu and Yoshida [16] investigated the branching random
walk with space–time i.i.d. offspring distributions.

In this paper we consider the limit of the derivative martingale for the BRWRE, which has
been proved to play an important role in the convergence of both the minimal position and
the additive martingale for the classical branching random walk; see Aïdékon [3] and Aïdékon
and Shi [4], respectively. The use of the derivative martingale in the present paper is related
to the study of the Seneta–Heyde norming of the additive martingale for BRWRE. The con-
vergence of the derivative martingale first sparked interest because of its association with the
F-KPP equation and branching Brownian motion, as described by McKean [28]. Impressively,
this martingale provides a link to the critical speed travelling wave of the F-KPP equation,
as investigated by Lalley and Sellke [20] and Harris [14]. From these results, questions natu-
rally arise regarding the convergence of the martingale and its implications for the branching
random walk.

For each n≥ 1, t ∈R, we introduce the log-Laplace transform of the point process Ln as
follows:

�n (t) := log Eξ

[∫
R

e−txLn (dx)

]
= log Eξ

⎡
⎣∑

x∈Ln

e−tx

⎤
⎦ .

The additive martingale is defined as

Wn(t) :=
∑
|u|=n

e−tV(u)−∑n
i=1 �i(t).

Let Fn := σ
(
ξ1, ξ2, · · · , (u, V(u)), |u| ≤ n

)
. It is well known that for each fixed t,

(Wn(t), n≥ 0) forms a non-negative martingale with respect to the filtration (Fn, n≥ 0) under
both laws Pξ and P. By the martingale convergence theorem, Wn(t) converges almost surely
(a.s.) to a non-negative limit. In the deterministic-environment case, Biggins [5] gave a nec-
essary and sufficient condition for the L1-convergence of Wn(t); we refer to Lyons [23] for a
simple probabilistic proof based on the spinal decomposition. Later, Biggins and Kyprianou
[7] extended this to the random-environment case.
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Convergence of the derivative martingale 3

To ensure the non-extinction and non-triviality of the BRWRE, we assume that

Pξ

( ∑
|u|=1

1≥ 1

)
= 1, P-a.s., P

(
Pξ

( ∑
|u|=1

1 > 1

)
> 0

)
> 0,

Eξ

( ∑
|u|=1

1{V(u)>0}e−V(u)
)

> 0, P-a.s.

(1.1)

We consider the boundary case (in the quenched sense) in this paper, that is,

log Eξ

( ∑
|u|=1

e−V(u)
)
=Eξ

( ∑
|u|=1

V(u)e−V(u)
)
= 0, P-a.s. (1.2)

In fact, if we assume that there exists t∗ > 0 such that, P-a.s., �1 is differentiable at the point t∗
and �1(t∗)= t∗� ′1(t∗), then without loss of generality we can assume that t= 1 and �1(1)=
� ′1(1)= 0, P-a.s. For a general case, we can construct a new BRWRE with position replaced by

Ṽ(u) := t∗V(u)+∑|u|i=1 �i(t∗), u ∈T; the log-Laplace transform of this new process satisfies
�̃1(1)= �̃ ′1(1)= 0, P-a.s.

We are interested in the derivative martingale, defined by

Dn :=
∑
|u|=n

V(u)e−V(u), n≥ 0.

It is easy to show that, in the boundary case, (Dn, n≥ 0) is a signed martingale with respect
to the filtration (Fn, n≥ 0) under both laws Pξ and P. For the branching random walk with
constant environment, the derivative martingale has been studied in many contexts. From the
perspective of the smoothing transformation in the sense of Durrett and Liggett [10] and Liu
[21], the limit of the derivative martingale serves as a fixed point of the smoothing transfor-
mation; the existence, uniqueness, and asymptotic behavior of such a fixed point has been
investigated in [8, 19, 22]. In [7], Biggins and Kyprianou derived a sufficient condition for
the non-triviality (and triviality) of the limit of the derivative martingale. Later, Aïdékon
[3] gave the optimal condition for the non-triviality, which was proved to be necessary by
Chen [9]. For branching Brownian motion, a necessary and sufficient condition for the non-
degeneracy of the limit of the derivative martingale was given by Yang and Ren [32]. Recently,
Mallein and Shi [27] obtained a necessary and sufficient condition for branching Lévy
processes.

In addition, we assume that there exists δ > 0 such that

E

( ∑
|u|=1

V(u)2+δe−V(u)
)

<∞. (1.3)

The assumption (1.3) allows us to prove the existence and some useful asymptotic behaviors
of the quenched harmonic function in Section 2.

The main result of this paper is a proof of the existence of the limit of the derivative mar-
tingale for the BRWRE and obtain a necessary and sufficient condition for the non-degeneracy
of the limit. It is stated as follows.

Theorem 1. Under the assumptions (1.1), (1.2), and (1.3), we have the following:
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4 W. HONG AND S. LIANG

(i) The derivative martingale (Dn, n≥ 0) converges almost surely to a non-negative finite
limit, which we denote by D∞, i.e.

lim
n→∞Dn =D∞ ≥ 0, P-a.s.

(ii) For almost all ξ , D∞ is non-trivial if and only if

E

[
Y log2+ Y + Z log+ Z

]
<∞. (1.4)

More precisely,

Pξ (D∞ > 0) > 0, P-a.s., ⇐⇒ E

[
Y log2+ Y + Z log+ Z

]
<∞,

Pξ (D∞ = 0)= 1, P-a.s., ⇐⇒ E

[
Y log2+ Y + Z log+ Z

]
=∞.

Here log+ x := max {0, log x} and log2+ x := (log+ x
)2

for any x≥ 0, and

Y :=
∑
|u|=1

e−V(u), Z :=
∑
|u|=1

V(u)e−V(u)1{V(u)≥0}.

The idea of the proof of this theorem is to follow the general argument of Biggins and
Kyprianou [7] and Chen [9]. Two significant challenges arise because of the random environ-
ment. Firstly, a harmonic function is required to construct a non-negative martingale which is
formulated in our previous work [15]. Secondly, the random walk in a time-inhomogeneous
random environment (RWRE) is hard to handle. Note that for the constant-environment sit-
uation (see [9]), a basic tool is Tanaka’s decomposition for the random walk conditioned to
stay non-negative. In our scenario, we are dealing with a random environment. To address
this, we examine the RWRE, which is connected to the BRWRE via the many-to-one formula.
Based on the quenched harmonic function (refer to [15]) for the RWRE, we figure out Tanaka’s
decomposition for the RWRE conditioned to stay non-negative (Propositions 2 and 3), which
is a novelty of this paper and is also interesting in itself.

Let us briefly describe the proof of Theorem 1. To demonstrate the convergence of the
derivative martingale Dn, we introduce the truncated martingale D(β)

n , which is formulated via
a quenched harmonic function of the associated random walk, and use it to approach Dn. To
establish the necessary and sufficient condition for the non-degeneracy of the limit D∞, we
utilize the general argument of Biggins and Kyprianou [7] with certain adaptations. A new
probability measure is defined using the truncated martingale, which clearly characterizes the
branching random walk by a spinal decomposition. Propositions 5 and 6 provide additional
details. Using the spinal decomposition, we can determine the conditions for D(β)

n to converge
in L1 or for the limit D(β)∞ to become degenerate (Proposition 7). These conditions are equiva-
lent to the triviality or non-triviality of the limit D∞ of the derivative martingale Dn, as stated
in Lemma 4. Therefore, verification of the conditions outlined in Proposition 7 is crucial. For
the almost sure convergence of the random series in Proposition 7(i), it is demonstrated that its
expectation is finite under (1.4). To establish the almost sure divergence of the random series in
Proposition 7(ii), an equivalent integral condition (Proposition 4) is proven, which holds true
when (1.4) is invalid.

The rest of this paper is organized as follows. In Section 2, we introduce a quenched har-
monic function which is used to constructed the random walk conditioned to stay above a line.
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Then we give a version of Tanaka’s decomposition for the random walk conditioned to stay
non-negative in our setting, using which we prove an equivalent integral condition for the
almost sure divergence of the random series associated with the conditioned random walk.
In Section 3, we use a truncated martingale to make a change of measure and give a spinal
decomposition of the time-inhomogeneous branching random walk; the proofs are provided
in Appendix A. Finally, in Section 4, we derive a necessary and sufficient condition for the
non-trivial limit of the derivative martingale.

Throughout the paper, we denote by (ci, i≥ 0) positive constants and by ci(β) a positive
constant depending on β. The indicator function is written as 1{·}. We use xn ∼ yn (n→∞) to
denote limn→∞ xn

yn
= 1, and when xn and yn are random variables, the limit holds in the sense of

almost sure convergence. For x ∈R∪ {∞} ∪ {−∞}, we write x+ := max{x, 0}. We also adopt
the notation

∑
∅ (· · · ) := 0 and

∏
∅ (· · · ) := 1.

2. Quenched harmonic function and conditioned random walk

In this section we present the many-to-one lemma that connects BRWRE and RWRE. Then,
based on the quenched harmonic function ([15]) for the RWRE, we define the law of the
random walk conditioned to stay above a line. After exploring the relationship between the
quenched probability P

+,(β)
ξ (x;dy) and the annealed renewal measure R(dy), we give a version

of Tanaka’s decomposition. As a result, an equivalent integral condition for the almost sure
divergence of the random series about the conditioned random walk is proved.

2.1. The many-to-one lemma

The well-known many-to-one lemma is a powerful tool in the study of branching random
walks; see Shi [29] and the references therein. In this paper, we need a time-inhomogeneous
version of this lemma. For all n≥ 1, we define the probability measure μn on R by

μn (B) := Eξ

⎡
⎣∑

x∈Ln

1{x∈B}e−x

⎤
⎦ , for all B ∈B(R).

Note that μn (B) is a random variable depending on ξ . Up to a possible enlargement of the prob-
ability space, we define a sequence (Xn, n≥ 1) of independent random variables, where Xn has
law μn. Let Sn := S0 +∑n

i=1 Xi. The process (Sn, n≥ 0) is a random walk in a time-dependent
random environment. For convenience, Pξ also stands for the joint law of the BRWRE and the
RWRE, given the environment ξ . If we emphasize that the process starts from a ∈R, this
law will be denoted by Pξ,a and Pξ := Pξ,0. The following time-inhomogeneous many-to-one
lemma can be found in Lemma 2.2 of Mallein [25].

Lemma 1. (Many-to-one) For all n≥ 1 and any measurable function f :Rn→R+, we have

Eξ,a

⎡
⎣∑
|u|=n

f (V(u1), · · · , V(un))

⎤
⎦=Eξ,a

[
eSn−af (S1, · · · , Sn)

]
, P-a.s., (2.1)

with Pξ,a (S0 = a)= 1, P-a.s.

2.2. Quenched harmonic function

In this subsection, we introduce the quenched harmonic function which will be used to
construct the random walk conditioned to stay in a given interval.
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It follows from (1.1), (1.2), (1.3) and (2.1) that

Pξ (S1 > 0)=Eξ

⎡
⎣∑
|u|=1

1{V(u)>0}e−V(u)

⎤
⎦> 0, P-a.s.,

Eξ (S1)=Eξ

⎡
⎣∑
|u|=1

V(u)e−V(u)

⎤
⎦= 0, P-a.s.,

E(S2+δ
1 )=E

⎡
⎣∑
|u|=1

V(u)2+δe−V(u)

⎤
⎦<∞.

(2.2)

Under (2.2), we can formulate the quenched harmonic function as follows.
Let y≥ 0, and denote by τy the first time when {Sn} enters the interval (−∞,−y):

τy := inf {n≥ 1:y+ Sn < 0} .
Define

Un(ξ, y) := Eξ

(
(y+ Sn)1{τy>n}

)
.

Let θ be the shift operator, i.e. θξ := (ξ2, ξ3, · · · ). For n≥ 1, θnξ := θ (θn−1ξ ), with the
convention that θ0ξ := ξ .

The following proposition (see Hong and Liang [15]) proves the existence and asymptotic
behavior of a positive quenched harmonic function.

Proposition 1. For almost all ξ , we have the following statements:

(i) There exists a random variable U(ξ, y) such that

lim
n→∞Un(ξ, y)=U(ξ, y) := −Eξ (Sτy ) <∞.

(ii) The random variable U(ξ, y) satisfies the quenched harmonic property:

U(ξ, y)=Eξ

[
U (θξ, y+ S1) 1{τy>1}

]
.

(iii) The sequence
(
U(θnξ, y+ Sn)1{τy>n}, n≥ 1

)
is a martingale under Pξ .

(iv) The random variable U(ξ, y) is positive and non-decreasing in y, with U(ξ, y)≥ y and
lim

y→∞U(ξ, y)/y= 1.

(v) For any yn ≥ 0 with yn→∞ as n→∞,

lim
n→∞

U(θnξ, yn)

yn
= 1. (2.3)

Remark 1. For classical random walks, one important tool for analyzing the behavior of this
process conditioned to stay non-negative is the well-known Wiener–Hopf factorization; we
refer to the standard book of Feller [11]. For any oscillating random walk, the renewal function
associated with the ladder height process is harmonic; see (2.5). These techniques essentially
rely on the so-called duality principle, which unfortunately fails in our setting because the
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Convergence of the derivative martingale 7

random walk is time-inhomogeneous given the environment. In [15], the quenched harmonic
function is obtained by strong approximation. To put it simply, by approximating a random
walk with Brownian motion, we can demonstrate the existence of the limit lim

n→∞Un(ξ, y)=
U(ξ, y) := −Eξ (Sτy ) for almost every realization of ξ .

2.3. Random walk conditioned to stay above a line

2.3.1. Quenched probability P+,(β)
ξ (x;dy) and annealed renewal measure R(dy). For any fixed

β ≥ 0, we introduce the quenched random walk conditioned to stay above −β for almost all ξ ,
denoted by ζ

(β)
n , in the sense of Doob’s h-transform. By Proposition 1(iii), for any n≥ 1 and

B ∈B(R), we can define the law of ζ
(β)
n by

Pξ,a(ζ (β)
0 = a) := 1, Pξ,a(ζ (β)

n ∈ B) := Eξ,a
(
U(θnξ, Sn + β)1{τβ>n}1{Sn∈B}

)
U(ξ, a+ β)

. (2.4)

The process
(
ζ

(β)
n , n≥ 0

)
is called a random walk in time-inhomogeneous random environ-

ment conditioned to stay above −β. In fact,
(
ζ

(β)
n , n≥ 0

)
is a Markov chain with state space

[−β,∞) and a transition kernel that is given by

P
+,(β)
ξ (x;dy) := U(θξ, y+ β)1{y≥−β}

U(ξ, x+ β)
Pξ,x (S1 ∈ dy) .

On the other hand, (Sn, n≥ 0) is simply a random walk under the annealed law P, thanks
to the i.i.d. nature of the environment. Recall that given the environment ξ , Xn has the law μn.
Let E (μn) be the annealed probability measure corresponding to averaging μn over ξ , and let
μ∞ := ∏∞n=1 E (μn) be the product probability measure; denote by Eμ∞ the corresponding
expectation. Then (Sn, n≥ 0) is a usual random walk under μ∞. When we are considering the
annealed random walk (that is, (Sn, n≥ 0) under Pa), we shall identify the law Pa with the law
μ∞a .

In what follows, we state the usual construction of a classical random walk conditioned to
stay above a given value, which is indicated in Remark 1. Define the strict descending ladder
epochs of the random walk (Sn, n≥ 0) as

γ0 := 0, γk+1 := inf
{
n > γk:Sn < Sγk

}
, k≥ 0.

Let R− be the function associated with (Sn, n≥ 0) that is defined by

R−(0) := 1, R−(x) :=
∞∑

k=0

μ∞(Sγk ≥−x), x > 0.

Then R−(x) is a renewal function of the ladder heights (−Sγk ). Let R−(dx) be the correspond-
ing renewal measure. By the renewal theorem (cf. [11, Chapter XI, Section 1]), in our setting
we have

lim
x→∞

R−(x)

x
= c0 ∈ (0,∞).

The function R−(x) satisfies (cf. [30, Lemma 1])

μ∞
[
R−(x+ X1)1{x+X1≥0}

]= R−(x), for x≥ 0. (2.5)
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8 W. HONG AND S. LIANG

From (2.5), it follows that (R−(Sn + β)1{Sn≥−β}, n≥ 1) is a martingale under μ∞, where
Sn := min {S0, · · ·, Sn}. Thus, we can construct the random walk conditioned to stay above

−β, denoted by η
(β)
n ; that is, for any B ∈B(R),

μ∞a (η(β)
n ∈ B) := μ∞a [R−(Sn + β)1{Sn≥−β}1{Sn∈B}]

R−(a+ β)
.

Similarly, define the weak ascending ladder epochs of the random walk (Sn, n≥ 0) as

0 := 0, k+1 := inf
{
n > k : Sn ≥ Sk

}
, k≥ 0.

Let R(x) be the renewal function associated with the weak ascending ladder height process(
Sn , n≥ 1

)
, i.e.

R(0) := 1, R(x) :=
∞∑

n=1

μ∞(Sn < x), x > 0,

and denote by R(dx) the corresponding renewal measure. Define R(β)(x) := R(x+ β) with the
corresponding measure R(β)(dx). By the renewal theorem again, there exist c1, c2 > 0 such
that for any non-negative measurable function f ,

c1

∫ ∞
0

f (x− β) dx≤
∫ ∞
−β

f (x)R(β)(dx)≤ c2

∫ ∞
0

f (x− β) dx. (2.6)

We give the following lemma, which allows us to express the expectation of the series of the

form
∑∞

n=1
G(θnξ,ζ

(β)
n )

U(θnξ,ζ
(β)
n +β)

(where G(θnξ, x) is a non-negative measurable function depending on

the n-step shifted environment θnξ ) under the annealed probability P in the form of the integral
with respect to R(β)(dx).

Lemma 2. Let ζ
(β)
n be defined as in (2.4), and for almost all ξ , let G(ξ, ·):[−β,∞)→ [0,∞)

be a measurable function, with G (x) := E[G(ξ, x)] <∞ for all x≥−β. Then

E

[ ∞∑
n=1

G
(
θnξ, ζ

(β)
n
)

U(θnξ, ζ
(β)
n + β)

U(ξ, β)

]
=
∫ ∞
−β

G(x)R(β)(dx).

Proof. By the duality principle for classical random walks, following the arguments of
Sections 2 and 6 of [6], for any non-negative measurable function f we get

∞∑
n=1

Eμ∞
(

f (Sn) 1{Sn≥−β}
)
=
∫ ∞
−β

f (x)R(β)(dx). (2.7)

Then, by the definition of ζ
(β)
n , we obtain

E

[ ∞∑
n=1

G
(
θnξ, ζ

(β)
n
)

U(θnξ, ζ
(β)
n + β)

U(ξ, β)

]
=E

[ ∞∑
n=1

Eξ

(
G
(
θnξ, ζ

(β)
n
)

U
(
θnξ, ζ

(β)
n + β

)
)

U(ξ, β)

]

=E

[ ∞∑
n=1

Eξ

(
U(θnξ, Sn + β)1{τβ>n}G(θnξ, Sn)

U(θnξ, Sn + β)U(ξ, β)

)
U(ξ, β)

]
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Convergence of the derivative martingale 9

= E

[ ∞∑
n=1

Eξ

(
1{τβ>n}G

(
θnξ, Sn

))]

=E

[ ∞∑
n=1

∫ ∞
−β

G
(
θnξ, x

)
Pξ

(
Sn ∈ dx, τβ > n

)]
.

Because of the i.i.d. random environment, for each fixed x, G(θnξ, x) forms a stationary and
ergodic sequence (see e.g. [18, Lemmas 10.1 and 10.5]), E [G(θnξ, x)]=G(x), and by the
independence, we deduce

E

[ ∞∑
n=1

∫ ∞
−β

G
(
θnξ, x

)
Pξ

(
Sn ∈ dx, τβ > n

)]= ∞∑
n=1

∫ ∞
−β

E
[
G
(
θnξ, x

)
Pξ

(
Sn ∈ dx, τβ > n

)]

=
∫ ∞
−β

G(x)
∞∑

n=1

P
(
Sn ∈ dx, τβ > n

)

=
∫ ∞
−β

G(x)
∞∑

n=1

μ∞
(
Sn ∈ dx, Sn ≥−β

)

=
∫ ∞
−β

G(x)R(β)(dx),

where the last equality follows from (2.7). This yields the lemma.

2.3.2. Quenched Tanaka’s decomposition. Tanaka’s decomposition is a fundamental tool for
investigating the behavior of the random walk conditioned to stay non-negative; see [1, 6,
30], for example. With the above preparations in hand, we can now specify a quenched ver-
sion of Tanaka’s decomposition for the RWRE conditioned to stay non-negative. We will
then proceed to discuss the relationship between two kinds of probability measures. For
simplicity, we will restrict our analysis to the case where β = 0 and write ζn := ζ

(0)
n . Let

ν denote the time at which the first prospective minimal value of the process (ζn, n� 0)
occurs, i.e.

ν := inf {m≥ 1 : ζm+n ≥ ζm, for all n≥ 0} . (2.8)

Write ζ ν
k := ζν+k − ζν , k≥ 1.

Proposition 2. (Quenched Tanaka’s decomposition.) For almost all ξ , we have the following:

(i) ζn→∞ Pξ -a.s. as n→∞;

(ii) (ν, ζ1, · · · , ζν) and
(
ζ ν

1 , ζ ν
2 , · · · ) are independent with respect to Pξ ;

(iii) U(ξ, 0)Pξ (ν = k, ζν ∈ dx)=U
(
θkξ, 0

)
Pξ (Sk < Sk−1, · · · , Sk < S1, Sk ∈ dx) for all

k≥ 1.

Proof. (i) We claim that U(y) := E
[
U(ξ, y)

]
<∞ for any y≥ 0. In fact, by the definition

of U(ξ, y), we have
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U(0)= E
[
Eξ

(−Sτ0

)]=E

[ ∞∑
n=1

Eξ (−Sn, τ0 = n)

]

=E

[ ∞∑
n=1

Eξ (−Sn, S1 ≥ 0, · · · , Sn−1 ≥ 0, Sn < 0)

]

=
∞∑

n=1

Eμ∞ (−Sn, S1 ≥ 0, · · · , Sn−1 ≥ 0, Sn < 0)

=
∞∑

n=1

Eμ∞ (−Sn, γ1 = n)

=−Eμ∞
(
Sγ1

)
<∞,

where the validity of the finiteness of Eμ∞
(
Sγ1

)
is proved by Theorem 1 in Chapter XVIII.5

of [11]. By Proposition 1(ii), U(y) satisfies the annealed harmonic property:

E
[
U (y+ S1) 1{y+S1≥0}

]=U(y), y≥ 0. (2.9)

Since P (S1 > y0) > 0 for some y0 > 0, by (2.9) with y= 0 we have U(y1) <∞ for some y1 >

y0. Again applying (2.9) with y= y1, we have U(y2) <∞ for some y2 > y1 + y0. Repeating
this argument, we deduce that there exists a sequence (yn, n≥ 1) such that U (yn) <∞ for all
n. By the monotonicity of U(y), we conclude that U(y) <∞ for all y≥ 0.

Since U(ξ, y) is positive and non-decreasing in y, for any y > 0, by the definition of ζn, we
have

E

[
U (ξ, 0)

∞∑
n=1

Pξ (ζn < y)

]
=E

[ ∞∑
n=1

Eξ

(
U(θnξ, Sn)1{τ0>n}1{Sn<y}

)
U(ξ, 0)

U (ξ, 0)

]

≤
∞∑

n=1

E
[
U(θnξ, y)Eξ

(
1{τ0>n}1{Sn<y}

)]
.

Following the same argument as in the proof of Lemma 2, we have

∞∑
n=1

E
[
U(θnξ, y)Eξ

(
1{τ0>n}1{Sn<y}

)]= ∞∑
n=1

U(y)P (Sn < y, τ0 > n)

=U(y)
∞∑

n=1

μ∞
(
Sn < y, Sn ≥ 0

)

=U(y)
∫ y

0
R(0)(dx) <∞.

Thus, for almost all ξ ,
∑∞

n=1 Pξ (ζn < y) <∞. The Borel–Cantelli lemma yields that, for
almost all ξ , ζn→∞ Pξ -a.s. as n→∞.

(ii) Let

H (ξ, x, z) := U (ξ, x− z)

U (ξ, x)
, x≥ z≥ 0, H (ξ, x, z) := 0, x < z,
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and

P+
θ j−1ξ

(
yj−1;dyj

)
:= Pξ

(
ζj ∈ dyj

∣∣ ζj−1 = yj−1
)

=U(θ jξ, yj)1{yj≥0}
U(θ j−1ξ, yj−1)

Pθ j−1ξ,yj−1

(
S1 ∈ dyj

)
, j≥ 1.

Then, by Proposition 1(ii), H (ξ, ·, z) is quenched harmonic with respect to the transition kernel
P+ξ in the following sense:

∫
H (θξ, y, z) P+ξ (x;dy)=H (ξ, x, z) , x≥ z≥ 0. (2.10)

Define τ̂z := inf {n > 0:ζn < z}. Since τ̂z is a stopping time, it follows from (2.10) that the

process
(

H
(
θn∧τ̂zξ, ζn∧τ̂z, z

)
, n≥ 0

)
is a martingale under Pξ . Thus, for all n≥ 0, we have

Eξ,x

[
H
(
θn∧τ̂zξ, ζn∧τ̂z , z

)]
=H (ξ, x, z) .

Note that for almost all ξ , 0≤H (ξ, x, z)≤ 1, H (ξ, x, z) := 0 for x < z, and H (θnξ, ζn, z)→
1 as n→∞ by (2.3) and Part (i). It follows that

lim
n→∞H

(
θn∧τ̂zξ, ζn∧τ̂z , z

)
= lim

n→∞H
(
θnξ, ζn, z

)
1{τ̂z>n} = 1{ζn≥z for all n>0}.

By the dominated convergence theorem, we get

Pξ,x (ζn ≥ z for all n > 0)=Eξ,x

[
lim

n→∞H
(
θn∧τ̂zξ, ζn∧τ̂z , z

)]
=H (ξ, x, z) .

This tells us that H (ξ, x, z) is the probability that, starting at x, the process (ζn, n≥ 0) never
hits (−∞, z).

For any x1, · · · , xk, y1, · · · , ym ≥ 0 with x0 = y0 = 0, we have

m∏
j=1

P+
θk+j−1ξ

(
yj−1 + xk;dyj + xk

)
H
(
θk+mξ, ym + xk, xk

)

=
m∏

j=1

P+
θk+j−1ξ

(
yj−1 + xk;dyj + xk

) U
(
θk+mξ, ym

)
U
(
θk+mξ, ym + xk

)
=

m∏
j=1

Pθk+j−1ξ

(
yj−1 + xk;dyj + xk

) U
(
θk+jξ, yj + xk

)
U
(
θk+j−1ξ, yj−1 + xk

) U
(
θk+mξ, ym

)
U
(
θk+mξ, ym + xk

)
=

m∏
j=1

Pθk+j−1ξ

(
yj−1;dyj

) U
(
θk+mξ, ym

)
U
(
θkξ, xk

)
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=
m∏

j=1

Pθk+j−1ξ

(
yj−1;dyj

) U
(
θk+jξ, yj

)
U
(
θk+j−1ξ, yj−1

) U
(
θkξ, 0

)
U
(
θkξ, xk

)
=

m∏
j=1

P+
θk+j−1ξ

(
yj−1;dyj

)
H
(
θkξ, xk, xk

)
.

As a result,

Pξ

(
ν = k, ζ1 ∈ dx1, · · · , ζk ∈ dxk, ζ ν

1 ∈ dy1, · · · , ζ ν
m ∈ dym

)
=1{x1,··· ,xk−1>xk}1{y1,··· ,ym≥0}

k∏
i=1

P+
θ iξ

(xi−1;dxi)

×
m∏

j=1

P+
θk+j−1ξ

(
yj−1 + xk;dyj + xk

)
H
(
θk+mξ, ym + xk, xk

)

=1{x1,··· ,xk−1>xk}
k∏

i=1

P+
θ iξ

(xi−1;dxi) H
(
θkξ, xk, xk

) m∏
j=1

P+
θk+j−1ξ

(
yj−1;dyj

)
=Pξ (ν = k, ζ1 ∈ dx1, · · · , ζk ∈ dxk) Pξ

(
ζ ν

1 ∈ dy1, · · · , ζ ν
m ∈ dym

)
,

which proves that (ν, ζ1, · · · , ζν) and
(
ζ ν

1 , ζ ν
2 , · · · ) are independent with respect to Pξ .

(iii) For all k≥ 1 and x≥ 0, we have

Pξ (ν = k, ζν ∈ dx)=Pξ (ζk < ζk−1, · · · , ζk < ζ1, ζk ∈ dx) H
(
θkξ, x, x

)

=Pξ (Sk < Sk−1, · · · , Sk < S1, Sk ∈ dx)
U
(
θkξ, x

)
U(ξ, 0)

U
(
θkξ, 0

)
U(θkξ, x)

=Pξ (Sk < Sk−1, · · · , Sk < S1, Sk ∈ dx)
U
(
θkξ, 0

)
U(ξ, 0)

,

as desired.
Define P̃(·) := ∫

�
U(ξ,0)
U(0) Pξ (·) dP and denote by Ẽ the corresponding expectation. We

show that the excursion (ζ1, · · · , ζν) under the annealed probability P̃ is distributed as(
S1 − S1−1, · · · , S1

)
under μ∞.

Proposition 3. (Annealed excursion distribution.) If ν is the time of the first prospective
minimal value of the process (ζn, n� 0) defined as in (2.8), then we have the following:

(i) P̃ (ζν ∈ dx)=μ∞
(
S1 ∈ dx

)
;

(ii) Ẽ
[
f (ν, ζ1, · · · , ζν)

]=Eμ∞
[
f
(
1, S1 − S1−1, · · · , S1

)]
for any measurable func-

tion f.

Proof. (i) Proposition 2(iii) yields

E
[
U(ξ, 0)Pξ (ν = k, ζν ∈ dx)

]=E
[
Pξ (Sk < Sk−1, · · · , Sk < S1, Sk ∈ dx) U

(
θkξ, 0

)]
=U (0) μ∞ (Sk − Sk−1 < 0, · · · , Sk − S1 < 0, Sk ∈ dx)

https://doi.org/10.1017/apr.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.55


Convergence of the derivative martingale 13

=U (0) μ∞ (S1 < 0, · · · , Sk−1 < 0, Sk ∈ dx)

=U (0) μ∞
(
1 = k, S1 ∈ dx

)
.

Dividing by U(0) and summing over k, we have P̃ (ζν ∈ dx)=μ∞
(
S1 ∈ dx

)
.

(ii) Similarly to the proof of Proposition 2(iii), we get

Ẽ
[
f (ν, ζ1, · · · , ζν)

]
= E

[∫
f (k, x1, · · · , xk)

U(ξ, 0)

U(0)
Pξ (ν = k, ζ1 ∈ dx1, · · · , ζk ∈ dxk)

]

= E

[∫
f (k, x1, · · · , xk)

U
(
θkξ, 0

)
U(0)

Pξ (Sk < Sk−1, · · · , Sk < S1, S1 ∈ dx1, · · · , Sk ∈ dxk)

]

=
∫

f (k, x1, · · · , xk) μ∞ (Sk < Sk−1, · · · , Sk < S1, S1 ∈ dx1, · · · , Sk ∈ dxk)

=
∫

f (k, x1, · · · , xk) μ∞
(

S̃1 < 0, · · · , S̃k−1 < 0, S̃k − S̃k−1 ∈ dx1, · · · , S̃k ∈ dxk

)
=Eμ∞

[
f
(
1, S1 − S1−1, · · · , S1

)]
,

where S̃j := Sk − Sk−j, j≤ k, and the last equality follows from the duality property for the
random walk under μ∞.

2.3.3. Application of Tanaka’s decomposition. The following proposition gives an integral
criterion for the almost sure divergence of the infinite series

∑∞
n=1 U(ξ, β)F

(
ζ

(β)
n
)
.

Proposition 4. Let ζ
(β)
n be defined as in (2.4), and let F:[−β,∞)→ [0,∞) be a non-

increasing measurable function. Then

∫ ∞
−β

F(x)(x+ β) dx=∞ ⇐⇒
∞∑

n=1

U(ξ, β)F
(
ζ

(β)
n
)(

ζ
(β)
n + β

)
U
(
θnξ, ζ

(β)
n + β

) =∞, P-a.s.

⇐⇒
∞∑

n=1

U(ξ, β)F
(
ζ (β)

n

)=∞, P-a.s.

Proof. For the second equivalence, note that for almost all ξ , ζ
(β)
n + β→∞ Pξ -a.s. as

n→∞ (by Proposition 2(i)), and by (2.3), we have U
(
θnξ, ζ

(β)
n + β

)∼ ζ
(β)
n + β as n→∞;

hence,

∞∑
n=1

U(ξ, β)F
(
ζ

(β)
n
)(

ζ
(β)
n + β

)
U
(
θnξ, ζ

(β)
n + β

) =∞ ⇐⇒
∞∑

n=1

U(ξ, β)F
(
ζ (β)

n

)=∞, P-a.s.

By Lemma 2, we have

E

[ ∞∑
n=1

U(ξ, β)F
(
ζ

(β)
n
)(

ζ
(β)
n + β

)
U
(
θnξ, ζ

(β)
n + β

)
]
=
∫ ∞
−β

F(x)(x+ β)R(β)(dx).
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It follows from (2.6) that
∞∑

n=1

U(ξ, β)F
(
ζ

(β)
n
)(

ζ
(β)
n + β

)
U
(
θnξ, ζ

(β)
n + β

) =∞, P-a.s. =⇒
∫ ∞
−β

F(x)(x+ β) dx=∞.

Thus we need only to prove that∫ ∞
−β

F(x)(x+ β) dx=∞ =⇒
∞∑

n=1

U(ξ, β)F
(
ζ (β)

n

)=∞, P-a.s.

For simplicity, we only consider β = 0 and write ζn := ζ
(0)
n , since the case of β > 0 is

similar to this case. Note that
∞∑

n=1

U (ξ, 0) F (ζn)=∞, P-a.s. ⇐⇒
∞∑

n=1

F (ζn)=∞, P̃-a.s.

Therefore it remains to show that∫ ∞
0

F(x)x dx=∞ =⇒
∞∑

n=1

F (ζn)=∞, P̃-a.s. (2.11)

To prove (2.11), it suffices to check that

P̃

( ∞∑
n=1

F (ζn)=∞
)

< 1 =⇒
∫ ∞

0
F(x)x dx <∞.

We assume that P̃
(∑∞

n=1 F (ζn)=∞
)
< 1, that is, P̃

(∑∞
n=1 F (ζn) <∞)> 0.

We first use Tanaka’s decomposition (Propositions 2 and 3) to reconstruct the process
(ζn, n≥ 0). Recall that

ν := inf {m≥ 1:ζm+n ≥ ζm, for all n≥ 0} .
We have an excursion

(
ζj, 0≤ j≤ ν

)
, which is denoted by ω= (ω(j), 0≤ j≤ ν). Let

{ωk = (ωk(j), 0≤ j≤ νk) , k≥ 1} be a sequence of independent copies of ω under P̃. Define

V0 := 0, Vk := ν1 + · · · + νk, for all k≥ 1.

The process

ζ0 = 0, ζn =
k∑

i=1

ωi (νi)+ωk+1 (n− Vk) , for Vk < n≤ Vk+1,

is what we need. Then,
∞∑

n=1

F (ζn)=
∞∑

k=1

Vk∑
n=Vk−1+1

F

(
k−1∑
i=1

ωi (νi)+ωk (n− Vk−1)

)

=
∞∑

k=1

νk∑
j=1

F

(
k∑

i=1

ωi (νi)− (ωk (νk)−ωk (j))

)
.
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Hence, by hypothesis,

P̃

( ∞∑
n=1

F (ζn) <∞
)
= P̃

⎛
⎝ ∞∑

k=1

νk∑
j=1

F

(
k∑

i=1

ωi (νi)− (ωk (νk)−ωk (j))

)
<∞

⎞
⎠> 0.

On the other hand, by Proposition 3(i), it follows from the strong law of large numbers that

lim
k→∞

∑k
i=1 ωi (νi)

k
=C, P̃-a.s.,

where C := Eμ∞
(
S1

)
<∞ is due to [11, Chapter XVIII, Section 5, Theorem 1]. Let ε > 0

and A := (C+ ε)∨ 1; then, for all sufficiently large k,
∑k

i=1 ωi (νi)≤ Ak. Since F is non-
increasing, we obtain

P̃

⎛
⎝ ∞∑

k=1

νk∑
j=1

F (Ak− (ωk (νk)−ωk (j))) <∞
⎞
⎠

≥ P̃

⎛
⎝ ∞∑

k=1

νk∑
j=1

F

(
k∑

i=1

ωi (νi)− (ωk (νk)−ωk (j))

)
<∞

⎞
⎠> 0.

Let

χk(ν, ω, F) :=
νk∑

j=1

F (Ak− (ωk(νk)−ωk(j))) ;

then P̃
(∑∞

k=1 χk(ν, ω, F) <∞)> 0. Note that the independence of the sequence {ωk, k≥ 1}
yields the independence of the sequence {χk (ν, ω, F) , k≥ 1}. By Kolmogorov’s 0–1 law, it
follows that

P̃

( ∞∑
k=1

χk (ν, ω, F) <∞
)
= 1. (2.12)

From now on, we proceed in the same way as [9]. Let EM := {∑∞k=1 χk (ν, ω, F) < M
}

for

any M > 0. Either P
(
EM0

)= 1 for some M0 <∞, or P̃ (EM) < 1 for all M ∈ (0,∞). For the
first case—that is, if there exists some M0 <∞ such that P

(
EM0

)= 1—we have

M0 ≥ Ẽ

( ∞∑
k=1

χk (ν, ω, F)

)

= E

⎛
⎝ ∞∑

k=1

νk∑
j=1

F (Ak− (ωk(νk)−ωk(j)))

⎞
⎠

=
∞∑

k=1

Ẽ

⎛
⎝ ν∑

j=1

F (Ak− (ω(ν)−ω(j)))

⎞
⎠

=
∞∑

k=1

μ∞
⎛
⎝1−1∑

j=0

F
(
Ak− Sj

)⎞⎠ ,
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where the last equality follows from Proposition 3(ii). Similarly to (2.7), we have

Eμ∞

⎛
⎝1−1∑

j=0

F
(
Ak− Sj

)⎞⎠=Eμ∞

( ∞∑
n=0

F (Ak− Sn) 1{n<1}

)

=Eμ∞
(

F (Ak− Sn) 1{maxj≤n Sj<0}
)

=
∫ ∞

0
F(Ak+ x)R−(dx),

where R−(dx) is the renewal measure of R−(x), i.e. the renewal measure associated with
the strict descending ladder height process. Thus,

∑∞
k=1

∫∞
0 F(Ak+ x)R−(dx) <∞, which

implies that ∫ ∞
0

F(x)x dx <∞.

For the second case, P̃ (EM) < 1 for all M ∈ (0,∞), so limM→∞ P̃ (EM)= 1 by (2.12). Let

�k,l(ν, ω) :=
νk∑

j=1

1{A(l−1)≤−(ωk(νk)−ωk(j))<Al}, for all k≥ 1, l≥ 1.

Note that, for any k≥ 1,

χk (ν, ω, F)=
νk∑

j=1

F (Ak− (ωk(νk)−ωk(j)))
∞∑

l=1

1{A(l−1)≤−(ωk(νk)−ωk(j))<Al}

=
∞∑

l=1

νk∑
j=1

F (Ak− (ωk(νk)−ωk(j))) 1{A(l−1)≤−(ωk(νk)−ωk(j))<Al}

≥
∞∑

l=1

F(Ak+ Al)�k,l(ν, ω),

where the last inequality holds because F is non-increasing. Thus, we have
∞∑

k=1

χk (ν, ω, F)≥
∞∑

k=1

∞∑
l=1

F(Ak+ Al)�k,l(ν, ω)

=
∞∑

m=1

F(Am+ A)
m∑

k=1

�k,m+1−k(ν, ω)

=
∞∑

m=1

F(Am+ A)mYm,

where Ym := ∑m
k=1 �k,m+1−k(ν, ω)/m for all m≥ 1. Note that

(
�k,·(ν, ω), k≥ 1

)
are i.i.d.

under P̃, and for all l≥ 1, �1,l(ν, ω) has the same law as
∑1−1

j=0 1{A(l−1)≤−Sj<Al} under μ∞.
Following the same first- and second-moment argument for Ym as [9], we obtain that there
exists a sufficiently large number M > 0 so that, for any m≥ 1,

C2 ≥ Ẽ
(
Ym1EM

)≥C1 > 0,
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where C1, C2 are positive constants. Therefore, we have

M ≥ Ẽ

( ∞∑
k=1

χk (ν, ω, F) 1EM

)

≥ Ẽ

( ∞∑
m=1

F(Am+ A)mYm1EM

)

=
∞∑

m=1

F(Am+ A)mẼ
(
Ym1EM

)

≥
∞∑

m=1

F(Am+ A)mC1.

This yields
∞∑

m=1

F(Am+ A)m≤ M

C1
<∞,

which implies that
∫∞

0 F(y)y dy <∞ and completes the proof of (2.11).

3. Change of measure and spinal decomposition

In this section, we introduce the truncated martingale via the quenched harmonic function
of the associated random walk. Subsequently, we demonstrate the existence of the limit of
the derivative martingale and the equivalence between the non-triviality of the limit and the
mean convergence of the truncated martingales. Finally, we provide the spinal decomposition
for the time-inhomogeneous branching random walk. The main idea is similar to that of the
constant-environment situation. All proofs in this section are postponed to Appendix A.

3.1. Truncated martingales and change of probabilities

To investigate the limit of the derivative martingale, we introduce a non-negative process
with a barrier.

Let β ≥ 0 and V (∅)= a≥ 0. We define

D(β)
n :=

∑
|u|=n

U
(
θnξ, V(u)+ β

)
e−V(u)1{min0≤k≤n V(uk)≥−β}, n≥ 1,

and D(β)
0 := U (ξ, a+ β) e−a.

Lemma 3. (Truncated martingale.) For any β ≥ 0 and a≥ 0, the process
(
D(β)

n , n≥ 0
)

is a
non-negative martingale with respect to the filtration (Fn, n≥ 0) under both laws Pξ,a and Pa.

Therefore, for almost all ξ , D(β)
n converges Pξ,a-a.s. to a non-negative finite limit, which we

denote by D(β)∞ .

The lemma presented below establishes a link between the limits of the truncated martin-
gales and the derivative martingale. Therefore, we can examine the non-triviality of the limit
of the derivative martingale by the mean convergence of the truncated martingales.
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Lemma 4.

(i) Assume that (1.1), (1.2) and (1.3) hold; then limn→∞ Dn =D∞ ≥ 0, P-a.s.

(ii) If there exists β ≥ 0 such that, for almost all ξ , D(β)
n converges in L1

(
Pξ

)
, then D∞ is

non-degenerate for almost all ξ , i.e. Pξ (D∞ > 0) > 0, P-a.s.

(iii) If, for almost all ξ , D(β)∞ = 0 Pξ -a.s. for all β ≥ 0, then D∞ is degenerate for almost all
ξ , i.e. Pξ (D∞ = 0)= 1, P-a.s.

Remark 2. In proving Theorem 1, we also show that the following two statements are
equivalent:

(i) There exists β ≥ 0 such that D(β)
n is L1

(
Pξ

)
-convergent for almost all ξ .

(ii) For any β ≥ 0, D(β)
n is L1

(
Pξ

)
-convergent for almost all ξ .

Since
(
D(β)

n , n≥ 0
)

is a non-negative martingale with Eξ,a
(
D(β)

n
)=U(ξ, a+ β)e−a, it fol-

lows from Kolmogorov’s extension theorem that there exists a unique probability measure Q(β)
ξ,a

on F∞ := ∨n≥0Fn such that, for all n≥ 1,

dQ(β)
ξ,a

dPξ,a

∣∣∣∣Fn

:= D(β)
n

U (ξ, a+ β) e−a
. (3.1)

An intuitive description of the new probability measure is presented in the next subsection.

3.2. Spinal decomposition of the time-inhomogeneous branching random walk

This subsection is devoted to giving a time-inhomogeneous version of the spinal decompo-
sition of the branching random walk. The spinal decomposition method was first introduced
by Lyons, Pemantle and Peres [24] to investigate Galton–Watson processes. Lyons [23] subse-
quently applied this approach to study the additive martingale for the branching random walk.
Later, Biggins and Kyprianou [7] expanded on this work, adapting it to general martingales
based on additive functional of multitype branching.

The spinal decomposition provides an alternative explanation for the distribution of a
branching random walk that is biased by a non-negative martingale as a branching random
walk with a special infinite ray called the ‘spine’. For clarity, we first give the main steps and
then give a detailed description below. Firstly, we define the branching random walk with a ran-
dom infinite ray w(β) = (w(β)

n , n≥ 0
)
: w(β)

0 := ∅, and w(β)
n is a child of w(β)

n−1 with |w(β)
n | = n for

each n≥ 1. Secondly, we construct a new probability measure via a non-negative martingale.
The special individual (spine) reproduces according to the new probability measure, while the
other normal particles behave as before. Lastly, we identify this new process as the branching
random walk under the new probability measure. The spine approach helps us tackle difficult
moment calculations for branching random walks.

Now we introduce the time-inhomogeneous branching random walk with a spine. The pro-
cess starts with a single particle w(β)

0 at position V(w(β)
0 )= a. It dies at time 1 and gives birth

to children distributed as L̂(β)
1,a, whose distribution is the law of L1 under Q(β)

ξ,a. The particle u

is chosen as the spine element w(β)
1 among the children of w(β)

0 with probability proportional
to U

(
θξ, V(u)

)
e−V(u)1{V(u)≥−β}, while all other children are normal particles. For any n≥ 1,

each particle alive at generation n dies at time n+ 1 and gives birth independently to children.
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The children of the normal particle z are distributed as Ln+1,V(z) (i.e. Ln+1 under Pξ,V(z)),

while the spine element w(β)
n reproduces according to the point process L̂(β)

n+1,V(w(β)
n )

, which

is distributed as Ln+1 under Q
(β)

ξ,V(w(β)
n )

, and the particle v is chosen as the spine ele-

ment w(β)
n+1 among the children of w(β)

n with probability proportional to U
(
θn+1ξ, V(v)+

β
)
e−V(v)1{min0≤k≤n+1 V(vk)≥−β}; all other children are normal particles. The process continues

as described as above. We continue to use T to denote the genealogical tree. Let P̂
(β)
ξ,a denote

the law of the new process, which is a probability measure on the product of the space of all
marked trees and the space of all infinite spines.

The following spinal decomposition consists of an alternative construction of the law Q
(β)
ξ,a

as the projection of the law P̂
(β)
ξ,a on the space of all marked trees. By an abuse of notation,

the marginal law of P̂
(β)
ξ,a on the space of marked trees is also denoted by P̂

(β)
ξ,a. This alterna-

tive construction allows us to study the mean convergence of the corresponding martingale in
Section 4.

Proposition 5. (Spinal decomposition.) The branching random walk umder Q(β)
ξ,a is distributed

as P̂
(β)
ξ,a.

Using Proposition 5, we will identify the branching random walk under Q(β)
ξ,a with P̂

(β)
ξ,a in

the following.

Proposition 6. (Law of the spine.) Let the spine w(β) = (w(β)
n
)

and probability measure Q
(β)
ξ,a

be defined as above. We have the following:

(i) For any n and any vertex v ∈T with |v| = n, we have

Q
(β)
ξ,a

(
w(β)

n = v |Fn
)= U (θnξ, V(v)+ β) e−V(v)1{min0≤k≤n V(vk)≥−β}

D(β)
n

.

(ii) The process
(
V(w(β)

n ), n≥ 0
)

under Q(β)
ξ,a is distributed as the random walk (Sn, n≥ 0)

under Pξ,a conditioned to stay in [−β,∞). Equivalently, for all n and any measurable
function f :Rn+1→R+, we have P-a.s.

E
Q

(β)
ξ,a

[
f
(
V(w(β)

0 ), · · · , V(w(β)
n )
)]=Eξ,a

[
f (S0, · · · , Sn)

U(θnξ, Sn + β)

U(ξ, a+ β)
1{min0≤k≤n Sk≥−β}

]
.

(3.2)

Note that Q(β)
ξ,a

(
D(β)

n > 0
)=Eξ,a

(
D(β)

n
U(ξ,a+β)e−a

)
= 1; the right-hand side of the identity in

Proposition 6(i) is Q(β)
ξ,a-a.s. well-defined. For (ii), by (2.4) and (3.2), we obtain the following

identity:

E
Q

(β)
ξ,a

[
f
(
V(w(β)

0 ), · · · , V(w(β)
n )
)]=Eξ,a

[
f
(
ζ

(β)
0 , · · · , ζ (β)

n

)]
.

4. Proof of Theorem 1

Lemma 4(i) yields Theorem 1(i). In this section we prove that (1.4), under the assump-
tions (1.1), (1.2), and (1.3), is a necessary and sufficient condition for the truncated martingale
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(
D(β)

n , n≥ 0
)

to converge in L1
(
Pξ

)
for almost all ξ . Then, by Lemma 4(ii)–(iii), this condi-

tion is equivalent to the non-degeneracy of the limit D∞ of the derivative martingale, which
establishes Theorem 1(ii).

Building on the general approach outlined by Biggins and Kyprianou [7] for multitype
branching processes and their application to deriving the mean convergence of martingales
produced by the mean-harmonic function, we establish the following result (Proposition 7) by
analyzing the mean convergence of the derivative martingale.

Recalling that←−u is the parent of u, for any u ∈T\ {∅}, we define its relative position by

�V(u) := V(u)− V(←−u ).

Under P
ξ,ζ

(β)
n

, we define

X̃ :=
∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−ζ

(β)
n −�V(u)1{

ζ
(β)
n +�V(u)≥−β

}
U
(
θnξ, ζ

(β)
n + β

)
e−ζ

(β)
n

=
∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)≥−β

}
U
(
θnξ, ζ

(β)
n + β

) ,

(4.1)

where (�V(u), |u| = 1) is independent of ζ
(β)
n under Pξ .

Proposition 7. Let ζ
(β)
n be defined as in (2.4). For all β ≥ 0, we have the following:

(i) If, for almost all ξ ,

∞∑
n=1

E
ξ,ζ

(β)
n

[
X̃
((

U(θnξ, ζ (β)
n + β)e−ζ

(β)
n X̃

)∧ 1
)]

U(ξ, β) <∞, Pξ -a.s.,

then Eξ

(
D(β)∞

)=U(ξ, β), P-a.s.

(ii) If, for any c≥ 1,

∞∑
n=1

E
ζ

(β)
n

⎡
⎣X̃1{

U(θnξ,ζ
(β)
n +β)e−ζ

(β)
n X̃≥c

}
⎤
⎦U(ξ, β)=∞, P-a.s.,

then E
(
D(β)∞

)= 0.

Proof. (i) Thanks to the harmonic function and the spinal decomposition outlined in pre-
vious sections, this result follows by the same argument as used in the proof of Theorem 2.1
in [7].

(ii) For the case of degeneracy, the proof differs slightly from the proof of (i), as we use the
annealed probability instead of the quenched probability in the expression. We will indicate
only the alterations that need to be made in the proof, as the primary concept aligns with [7].
Let

Q(β)
a (·) := E

[
Q

(β)
ξ,a(·)

]
;

then we have
dQ(β)

a

dPa

∣∣∣∣Fn

= D(β)
n

U (ξ, a+ β) e−a
.
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It follows from the Corollary 1 of Athreya [2] that

E
(
D(β)∞

)= 0 ⇐⇒ Q
(
D(β)∞ =∞

)= 1.

Note that, by the spinal decomposition,

Q
(
D(β)∞ =∞

)≥Q

(
lim sup

n→∞
U
(
θnξ, V(w(β)

n )+ β
)
e−V(w(β)

n )X̃
(
V(w(β)

n )
)=∞).

Thus it suffices to prove that, for any c≥ 1,

lim sup
n→∞

U
(
θnξ, V(w(β)

n )+ β
)
e−V(w(β)

n )X̃
(
V(w(β)

n )
)≥ c, Q-a.s.

By the conditional Borel–Cantelli lemma, this is equivalent to showing that, for any c≥ 1,

∞∑
n=1

Q

(
U
(
θnξ, V(w(β)

n )+ β
)
e−V(w(β)

n )X̃
(
V(w(β)

n )
)≥ c

∣∣ G(β)
n

)
=∞, Q-a.s.,

where
{
G(β)

n

}
is the filtration containing all the information of the spine and its siblings. By

applying the spinal decomposition and the definition of Q, we achieve the desired result.

4.1. The sufficient condition

In this subsection, we show that for all β ≥ 0, D(β)
n converges in L1

(
Pξ

)
to D(β)∞ for almost

all ξ under the assumption (1.4).

Lemma 5. If (1.4) holds, then for all β ≥ 0, Eξ

(
D(β)∞

)=U(ξ, β), P-a.s.

Proof. According to Proposition 7(i), it suffices to prove that

∞∑
n=1

E
ξ,ζ

(β)
n

[
X̃
((

U(θnξ, ζ (β)
n + β)e−ζ

(β)
n X̃

)∧ 1
)]

U(ξ, β) <∞, P-a.s. (4.2)

By (2.3) and the fact that, for almost all ξ , ζ
(β)
n + β→∞ Pξ -a.s. as n→∞, we have, as

n→∞, ∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)≥−β

}
U
(
θnξ, ζ

(β)
n + β

)

∼
∑
|u|=1

(
ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)≥−β

}
U
(
θnξ, ζ

(β)
n + β

) .

Since
(
ζ

(β)
n +�V(u)+ β

)
1{

ζ
(β)
n +�V(u)≥−β

} ≤ ζ
(β)
n + β +�V(u)1{�V(u)≥0}, we obtain

∑
|u|=1

(
ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)≥−β

}
U
(
θnξ, ζ

(β)
n + β

)
≤
∑
|u|=1

(
ζ

(β)
n + β

)
e−�V(u)

U
(
θnξ, ζ

(β)
n + β

) +
∑
|u|=1 �V(u)e−�V(u)1{�V(u)≥0}

U
(
θnξ, ζ

(β)
n + β

)
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=:

(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) + Z̃(ξn+1)

U
(
θnξ, ζ

(β)
n + β

)
≤2 max

{(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) ,
Z̃(ξn+1)

U
(
θnξ, ζ

(β)
n + β

)
}

,

where
(
Ỹ(ξn+1), Z̃(ξn+1)

)
is independent of ζ

(β)
n under Pξ .

Therefore, we only need to show that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E

{∑∞
n=1 Eξ,ζ

(β)
n

[(
ζ

(β)
n +β

)
Ỹ(ξn+1)

U
(
θnξ,ζ

(β)
n +β

) ((e−ζ
(β)
n
(
ζ

(β)
n + β

)
Ỹ(ξn+1)

)∧ 1
)]

U(ξ, β)

}
<∞,

E

{∑∞
n=1 Eξ,ζ

(β)
n

[
Z̃(ξn+1)

U
(
θnξ,ζ

(β)
n +β

) ((e−ζ
(β)
n Z̃(ξn+1)

)∧ 1
)]

U(ξ, β)

}
<∞,

(4.3)
which implies (4.2).

To prove the first term of (4.3), by the inequality ex/2 ≥ x for all x > 0, we have

E

{ ∞∑
n=1

E
ξ,ζ

(β)
n

[(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) ((e−ζ
(β)
n
(
ζ (β)

n + β
)
Ỹ(ξn+1)

)∧ 1
)]

U(ξ, β)

}

≤E
{ ∞∑

n=1

E
ξ,ζ

(β)
n

[(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) ((e−ζ
(β)
n /2+β/2Ỹ(ξn+1)

)∧ 1
)]

U(ξ, β)

}

≤E
⎧⎨
⎩
∞∑

n=1

Eξ

⎡
⎣(ζ (β)

n + β
)
e−ζ

(β)
n /2+β/2Ỹ2(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) 1{
ζ

(β)
n ≥2 log Ỹ(ξn+1)+β

}∣∣∣∣ζ (β)
n

⎤
⎦U(ξ, β)

⎫⎬
⎭

+E

{ ∞∑
n=1

Eξ

[(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) 1{
ζ

(β)
n <2 log Ỹ(ξn+1)+β

}∣∣∣∣ζ (β)
n

]
U(ξ, β)

}
.

Hence, it follows by Lemma 2 and (2.6) that

E

{ ∞∑
n=1

E
ξ,ζ

(β)
n

[(
ζ

(β)
n + β

)
Ỹ(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) ((e−ζ
(β)
n
(
ζ (β)

n + β
)
Ỹ(ξn+1)

)∧ 1
)]

U(ξ, β)

}

≤
∫ ∞
−β

E

[
(x+ β) e−x/2+β/2Ỹ2(ξn+1)1{x≥2 log Ỹ(ξn+1)+β

}]R(β)(dx)

+
∫ ∞
−β

E

[
(x+ β) Ỹ(ξn+1)1{x<2 log Ỹ(ξn+1)+β

}]R(β)(dx)

≤c2

∫ ∞
0

E

[
xe−x/2+β Ỹ2(ξn+1)1{x≥2 log Ỹ(ξn+1)+2β

}] dx

+ c2

∫ ∞
0

E

[
xỸ(ξn+1)1{x<2 log Ỹ(ξn+1)+2β

}] dx
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=c2eβE

[
Ỹ2(ξn+1)

∫ ∞
2
(
log Ỹ(ξn+1)+β

)
+

xe−x/2 dx

]
+ c2E

[
Ỹ(ξn+1)

∫ 2
(
log Ỹ(ξn+1)+β

)
+

0
x dx

]

≤c1(β)E
(
Ỹ(ξn+1) log+ Ỹ(ξn+1)

)+ c2(β)E
(
Ỹ(ξn+1) log2+ Ỹ(ξn+1)

)
=c1(β)E(Y log+ Y)+ c2(β)E(Y log2+ Y) <∞.

For the second term of (4.3), by the same argument, we have

E

{ ∞∑
n=1

E
ξ,ζ

(β)
n

[
Z̃(ξn+1)

U
(
θnξ, ζ

(β)
n + β

) ((e−ζ
(β)
n Z̃(ξn+1)

)∧ 1
)]

U(ξ, β)

}

≤c3(β)E
(
Z̃(ξn+1) log+ Z̃(ξn+1)

)
=c3(β)E(Z log+ Z) <∞.

This completes the proof of (4.3), and so Lemma 5 is now proved.
Proof of the sufficient condition of Theorem 1(ii). Assume that (1.4) holds. By Lemma 5,

for all β ≥ 0, D(β)
n is L1

(
Pξ

)
-convergent for almost all ξ . Therefore, in view of Lemma 4(ii),

we prove that D∞ is non-degenerate for almost all ξ , which completes the proof of sufficiency.

4.2. The necessary condition

In this subsection, we show that D(β)∞ = 0 P-a.s. for all β ≥ 0 when (1.4) does not hold.

Lemma 6. If (1.4) does not hold, then for all β ≥ 0, E
(
D(β)∞

)= 0, which is equivalent to D(β)∞ =
0 Pξ -a.s. for almost all ξ .

Proof. According to Proposition 7(ii), it suffices to prove that, for any c≥ 1,

E

[
Y log2+ Y + Z log+ Z

]
=∞

=⇒
∞∑

n=1

E
ζ

(β)
n

⎡
⎣X̃1{

U(θnξ,ζ
(β)
n +β)e−ζ

(β)
n X̃≥c

}
⎤
⎦U(ξ, β)=∞, P-a.s. (4.4)

Following the idea of Chen [9], we divide the assumption on the left-hand side of (4.4) into
three cases as follows:⎧⎪⎨

⎪⎩
(a) E

[
Y log2+ Y

]=∞, E
[
Y log+ Y

]
<∞,

(b) E
[
Y log+ Y

]=∞,

(c) E
[
Z log+ Z

]=∞.

(4.5)

Note that under P
ξ,ζ

(β)
n

, (�V(u) : |u| = 1) is distributed as Ln+1. For any x ∈R, we define

Y+ (ξn+1, x) :=
∑
|u|=1

e−�V(u)1{�V(u)≥−x},

Y− (ξn+1, x) :=
∑
|u|=1

e−�V(u)1{�V(u)<−x}.

Observe that Ỹ (ξn+1)= Y+ (ξn+1, x)+ Y− (ξn+1, x), and (Y+ (ξn+1, x) , Y− (ξn+1, x) , x ∈R)

is independent of ζ
(β)
n under Pξ .
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Firstly, we give the proof of (4.4) under the assumption (a) of (4.5). By (4.1) and
Proposition 1(iv), under P

ξ,ζ
(β)
n

, we have

X̃ =
∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)+β≥0

}
U
(
θnξ, ζ

(β)
n + β

)

≥
∑
|u|=1

(
ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

�V(u)≥−(ζ (β)
n +β)/2

}
U
(
θnξ, ζ

(β)
n + β

)

≥
∑
|u|=1

(
ζ

(β)
n + β

)
e−�V(u)1{

�V(u)≥−(ζ (β)
n +β)/2

}
2U
(
θnξ, ζ

(β)
n + β

)
= ζ

(β)
n + β

2U
(
θnξ, ζ

(β)
n + β

)Y+
(

ξn+1,
ζ

(β)
n + β

2

)
.

Thus we only need to show that, for any fixed c≥ 1, P-a.s.,

∞∑
n=1

E
ζ

(β)
n

⎡
⎣(ζ (β)

n + β
)
Y+
(
ξn+1, (ζ (β)

n + β)/2
)

U
(
θnξ, ζ

(β)
n + β

) 1{
e−ζ

(β)
n (ζ (β)

n +β)Y+
(
ξn+1,

ζ
(β)
n +β

2

)
≥c

}
⎤
⎦U(ξ, β)=∞.

Since, for almost all ξ , ζ
(β)
n + β→∞ Pξ -a.s. as n→∞, and by (2.3), it suffices to prove that

∞∑
n=1

E

⎡
⎣Y+

(
ξn+1,

ζ
(β)
n + β

2

)
1{

log Y+
(
ξn+1,

ζ
(β)
n +β

2

)
≥ζ

(β)
n

} ∣∣∣ ζ (β)
n

⎤
⎦U(ξ, β)=∞, P-a.s.,

which we can write as
∞∑

n=1

F

(
ζ

(β)
n + β

2
, ζ (β)

n

)
U(ξ, β)=∞, P-a.s., (4.6)

where F (x, y) := E
[
F (ξn+1, x, y)

]
and F (ξn+1, x, y) := Eξ

[
Y+ (ξn+1, x)

1{log Y+(ξn+1,x)≥y}
]
, x, y ∈R.

Let
F1 (ξn+1, y) := Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y

}] , y ∈R,

and F1 (y) := E
[
F1 (ξn+1, y)

]
. Note that, by the assumption (1.2),

0≤ F (ξn+1, x, y)≤ F1 (ξn+1, y)≤Eξ

(
Ỹ(ξn+1)

)= 1, P-a.s.

It follows that F1 (y) is a non-negative, non-increasing function. By the assumption (a) of (4.5),
we obtain ∫ ∞

−β

F1 (y) (y+ β) dy=
∫ ∞
−β

E

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y

}] (y+ β) dy

=E

[
Ỹ (ξn+1)

∫ log+ Ỹ(ξn+1)

−β

(y+ β) dy

]
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=
E

[
Ỹ (ξn+1)

(
log+ Ỹ (ξn+1)+ β

)2]
2

=
E

[
Y
(
log+ Y + β

)2]
2

=∞.

By Proposition 4, we have
∞∑

n=1

F1

(
ζ (β)

n

)
U(ξ, β)=∞, P-a.s. (4.7)

It remains to prove that
∞∑

n=1

[
F1

(
ζ (β)

n

)
− F

(
ζ

(β)
n + β

2
, ζ (β)

n

)]
U(ξ, β) <∞, P-a.s.,

which, together with (4.7), implies (4.6). Equivalently, we only need to prove that
∞∑

n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)
[

F1

(
ζ (β)

n

)
− F

(
ζ

(β)
n + β

2
, ζ (β)

n

)]
U(ξ, β) <∞, P-a.s. (4.8)

We begin our proof by giving an upper bound for F1 (ξn+1, y)− F (ξn+1, x, y). For any x, y ∈
R, we obtain

F1 (ξn+1, y)− F (ξn+1, x, y)

=Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y

}]−Eξ

[
Y+ (ξn+1, x) 1{log Y+(ξn+1,x)≥y}

]
=Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y>log Y+(ξn+1,x)

}]+Eξ

[
Ỹ (ξn+1) 1{log Y+(ξn+1,x)≥y}

]
−Eξ

[
Y+ (ξn+1, x) 1{log Y+(ξn+1,x)≥y}

]
=Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y>log Y+(ξn+1,x)

}]+Eξ

[
Y− (ξn+1, x) 1{log Y+(ξn+1,x)≥y}

]
≤Eξ

[
2Y− (ξn+1, x) 1{log Ỹ(ξn+1)≥y>log Y+(ξn+1,x), Y−(ξn+1,x)≥Y+(ξn+1,x)

}]
+Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y>log Y+(ξn+1,x), Y−(ξn+1,x)<Y+(ξn+1,x)

}]
+Eξ

[
Y− (ξn+1, x) 1{log Y+(ξn+1,x)≥y}

]
≤3Eξ

[
Y− (ξn+1, x)

]+Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y>log Y+(ξn+1,x), Y−(ξn+1,x)<Y+(ξn+1,x)

}]
≤3Eξ

[
Y− (ξn+1, x)

]+Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥y>log

(
Ỹ(ξn+1)/2

)}]
=:3A1 (ξn+1, x)+ A2 (ξn+1, y) ,

where the first and last inequalities follow from the fact that Ỹ (ξn+1)≤
2 max {Y+ (ξn+1, x) , Y− (ξn+1, x)}. Therefore,

∞∑
n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)
[

F1
(
ζ (β)

n

)− F

(
ζ

(β)
n + β

2
, ζ (β)

n

)]
U(ξ, β)

≤
∞∑

n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)E

[
3A1

(
ξn+1,

ζ
(β)
n + β

2

)
+ A2

(
ξn+1, ζ (β)

n

)]
U(ξ, β).
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Taking the expectation on both sides, we have

E

{ ∞∑
n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)
[

F1
(
ζ (β)

n

)− F

(
ζ

(β)
n + β

2
, ζ (β)

n

)]
U(ξ, β)

}

≤E
{ ∞∑

n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)E

[
3A1

(
ξn+1,

ζ
(β)
n + β

2

)
+ A2

(
ξn+1, ζ (β)

n

)]
U(ξ, β)

}
.

Then, using Lemma 2, we deduce that

E

{ ∞∑
n=1

ζ
(β)
n + β

U
(
θnξ, ζ

(β)
n + β

)
[

F1
(
ζ (β)

n

)− F

(
ζ

(β)
n + β

2
, ζ (β)

n

)]
U(ξ, β)

}

≤
∫ ∞
−β

3(x+ β)E

[
A1

(
ξn+1,

x+ β

2

)]
R(β)(dx)+

∫ ∞
−β

(x+ β)E
[
A2 (ξn+1, x)

]R(β)(dx).

Our aim is to prove that the values of the two integrals in the last equality are finite, which
completes the proof of (4.8). For the first term, by the many-to-one lemma, we have

E
[
A1 (ξn+1, x)

]=E
[
Y− (ξn+1, x)

]=E

⎡
⎣∑
|u|=1

e−�V(u)1{�V(u)<−x}

⎤
⎦= P (S1 <−x) . (4.9)

Thus, from (4.9), (2.6), and the assumption (1.3), we obtain∫ ∞
−β

(x+ β)E

[
A1

(
ξn+1,

x+ β

2

)]
R(β)(dx)=

∫ ∞
−β

(x+ β)P

(
S1 <−x+ β

2

)
R(β)(dx)

≤c2

∫ ∞
0

xP
(

S1 <− x

2

)
dx

=c2E

[∫ 2(−S1)+

0
x dx

]

=2c2E

[
((−S1)+)2

]
<∞.

For the second term, by (2.6) and the assumption (a) of (4.5), we have∫ ∞
−β

(x+ β)E
[
A2 (ξn+1, x)

]R(β)(dx)

=
∫ ∞
−β

(x+ β)E
[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥x>log

(
Ỹ(ξn+1)/2

)}]R(β)(dx)

≤c2

∫ ∞
0

xE
[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)+β≥x>log

(
Ỹ(ξn+1)/2

)+β
}] dx

=c2E

[
Ỹ (ξn+1)

∫ (
log Ỹ(ξn+1)+β

)
+(

log
(
Ỹ(ξn+1)/2

)+β
)
+

x dx

]

≤c4(β)E
[
Y log+ Y

]
<∞.

We conclude that (4.4) holds for the first case in (4.5).
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Secondly, we give the proof of (4.4) under the assumption (b) of (4.5). By (4.1) and
Proposition 1 (iv), under P

ξ,ζ
(β)
n

, we get

X̃ =
∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)+β≥0

}
U
(
θnξ, ζ

(β)
n + β

)

≥
∑
|u|=1

(
ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)+β≥1

}
U
(
θnξ, ζ

(β)
n + β

)

≥
∑
|u|=1 e−�V(u)1{

�V(u)≥−
(
ζ

(β)
n +β−1

)}
U
(
θnξ, ζ

(β)
n + β

)
=Y+

(
ξn+1, ζ

(β)
n + β − 1

)
U
(
θnξ, ζ

(β)
n + β

) .

Hence, it suffices to prove that, for any fixed c≥ 1,

∞∑
n=1

E
ζ

(β)
n

⎡
⎣Y+

(
ξn+1, ζ

(β)
n + β − 1

)
U
(
θnξ, ζ

(β)
n + β

) 1{
e−ζ

(β)
n Y+(ξn+1,ζ

(β)
n +β−1)≥c

}
⎤
⎦U(ξ, β)=∞, P-a.s.

Since, for almost all ξ , ζ
(β)
n + β→∞ Pξ -a.s. as n→∞, and by (2.3), this is equivalent to

∞∑
n=1

E

[
Y+
(
ξn+1, ζ

(β)
n + β − 1

)
ζ

(β)
n + β + 1

1{
log Y+(ξn+1,ζ

(β)
n +β−1)≥log c+ζ

(β)
n

} ∣∣∣ ζ (β)
n

]
U(ξ, β)=∞, P-a.s.,

which we can write as
∞∑

n=1

F
(
ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

ζ
(β)
n + β + 1

U(ξ, β)=∞, P-a.s., (4.10)

recalling that F (x, log c+ y)=E

[
Y+ (ξn+1, x) 1{log Y+(ξn+1,x)≥log c+y}

]
, x, y ∈R.

Let

F2 (ξn+1, y) :=
Eξ

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥log c+y

}]
y+ β + 1

= F1 (ξn+1, log c+ y)

y+ β + 1
, y≥−β,

and let F2 (y) := E
[
F2 (ξn+1, y)

]
. Clearly F2 (y) is non-increasing and

0≤ F2 (y)= E

[
F1 (ξn+1, log c+ y)

y+ β + 1

]
= F1 (log c+ y)

y+ β + 1
≤ 1.

By the assumption (b) of (4.5), we have∫ ∞
−β

F2 (y) (y+ β) dy=
∫ ∞
−β

F1 (log c+ y)

y+ β + 1
(y+ β) dy

≥
∫ ∞

1

F1 (log c+ y)

y+ β + 1
(y+ β) dy

≥ 1

2

∫ ∞
1

F1 (log c+ y) dy
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= 1

2

∫ ∞
1

E

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥log c+y

}] dy

= 1

2
E

[
Ỹ (ξn+1)

(
log (Ỹ (ξn+1) /c)− 1

)
+
]
=∞,

which implies
∫∞
−β

F2 (y) (y+ β) dy=∞. By Proposition 4, we get

∞∑
n=1

F1
(

log c+ ζ
(β)
n
)

ζ
(β)
n + β + 1

U(ξ, β)=∞, P-a.s. (4.11)

It remains to prove that
∞∑

n=1

F1
(

log c+ ζ
(β)
n
)− F

(
ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

ζ
(β)
n + β + 1

U(ξ, β) <∞, P-a.s.,

which, combined with (4.11), implies (4.10). Equivalently, we only need to prove that
∞∑

n=1

F1
(

log c+ ζ
(β)
n
)− F

(
ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β) <∞, P-a.s. (4.12)

By the same argument as in the proof of the first part, we have
∞∑

n=1

F1
(

log c+ ζ
(β)
n
)− F

(
ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β)

≤
∞∑

n=1

E
[
3A1
(
ξn+1, ζ

(β)
n + β − 1

)+ A2
(
ξn+1, log c+ ζ

(β)
n
)]

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β).

Taking the expectation on both sides, we get

E

{ ∞∑
n=1

F1
(

log c+ ζ
(β)
n
)− F

(
ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β)

}

≤E
⎧⎨
⎩
∞∑

n=1

E
[
3A1
(
ξn+1, ζ

(β)
n + β − 1

)+ A2
(
ξn+1, log c+ ζ

(β)
n
)]

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β)

⎫⎬
⎭ .

Then, by Lemma 2, we have

E

{ ∞∑
n=1

F1
(
ξn+1, log c+ ζ

(β)
n
)− F

(
ξn+1, ζ

(β)
n + β − 1, log c+ ζ

(β)
n
)

U
(
θnξ, ζ

(β)
n + β

) U(ξ, β)

}

≤
∫ ∞
−β

[
3E (A1 (ξn+1, x+ β − 1))+ E (A2 (ξn+1, log c+ x))

]R(β)(dx).

We now turn to proving the finiteness of the above two integrals, which completes the proof
of (4.12). For the first integral, by (4.9) and (2.6), we obtain∫ ∞

−β

E
[
A1 (ξn+1, x+ β − 1)

]R(β)(dx)=
∫ ∞
−β

P (S1 <−(x+ β − 1))R(β)(dx)

≤c2

∫ ∞
0

P (S1 <−(x− 1)) dx
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=c2E

[∫ (−S1+1)+

0
dx

]

=c2E
[
(−S1 + 1)+

]
<∞.

For the second integral, by (2.6), we get∫ ∞
−β

E
[
A2 (ξn+1, log c+ x)

]R(β)(dx)

=
∫ ∞
−β

E

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)≥log c+x>log

(
Ỹ(ξn+1)/2

)}]R(β)(dx)

≤c2

∫ ∞
0

E

[
Ỹ (ξn+1) 1{log Ỹ(ξn+1)+β≥log c+x>log

(
Ỹ(ξn+1)/2

)+β
}] dx

=c2E

[
Ỹ (ξn+1)

∫ (
log
(
Ỹ(ξn+1)/c

)+β
)
+(

log
(
Ỹ(ξn+1)/2c

)+β
)
+

dx

]

≤c5(β)E
[
Ỹ (ξn+1)

]
<∞.

We obtain that (4.4) holds for the second case in (4.5).
Finally, we give the proof of (4.4) under the assumption (c) of (4.5). By (4.1) and Proposition

1(iv), under P
ξ,ζ

(β)
n

, we get

X̃ =
∑
|u|=1 U

(
θn+1ξ, ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{

ζ
(β)
n +�V(u)+β≥0

}
U
(
θnξ, ζ

(β)
n + β

)
≥
∑
|u|=1

(
ζ

(β)
n +�V(u)+ β

)
e−�V(u)1{�V(u)≥0}

U
(
θnξ, ζ

(β)
n + β

)
≥
∑
|u|=1 �V(u)e−�V(u)1{�V(u)≥0}

U
(
θnξ, ζ

(β)
n + β

)
= Z̃ (ξn+1)

U
(
θnξ, ζ

(β)
n + β

) .

Hence we just need to prove that, for any fixed c≥ 1,

∞∑
n=1

E

⎡
⎣ Z̃ (ξn+1)

U
(
θnξ, ζ

(β)
n + β

)1{
e−ζ

(β)
n Z̃(ξn+1)≥c

} ∣∣∣∣ ζ (β)
n

⎤
⎦U(ξ, β)=∞, P-a.s.

Since, for almost all ξ , ζ
(β)
n + β→∞ Pξ -a.s. as n→∞, and by (2.3), this is equivalent to

∞∑
n=1

E

[
Z̃ (ξn+1)

ζ
(β)
n + β + 1

1{
log Z̃(ξn+1)≥log c+ζ

(β)
n

} ∣∣∣∣ ζ (β)
n

]
U(ξ, β)=∞, P-a.s.,

which can be written as ∞∑
n=1

F3
(
ζ (β)

n

)
U(ξ, β)=∞, P-a.s., (4.13)
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where

F3 (x) :=
E

[
Z̃ (ξn+1) 1{log Z̃(ξn+1)≥log c+x

}]
x+ β + 1

, x≥−β.

It is obvious that F3(x) is non-increasing and

0≤ F3 (x)=
E

[
Z̃ (ξn+1) 1{log Z̃(ξn+1)≥log c+x

}]
x+ β + 1

≤E(Z)=E
[
(S1)+

]
<∞.

Observe that, by the assumption (c) of (4.5),

∫ ∞
−β

F3 (x) (x+ β) dx≥
∫ ∞

1

E

[
Z̃ (ξn+1) 1{log Z̃(ξn+1)≥log c+x

}]
x+ β + 1

(x+ β) dx

≥ 1

2

∫ ∞
1

E

[
Z̃ (ξn+1) 1{log Z̃(ξn+1)≥log c+x

}] dx

= 1

2
E

[
Z̃ (ξn+1)

(
log (Z̃ (ξn+1) /c)− 1

)
+
]
=∞.

By Proposition 4, it follows that (4.13) is valid. Therefore, we conclude that (4.4) holds for the
third case in (4.5).

Proof of the necessary condition of Theorem 1(ii). By Lemma 6, for almost all ξ , D(β)∞ = 0
Pξ -a.s. for all β ≥ 0 when (1.4) does not hold. Therefore, using Lemma 4(iii), we obtain that
D∞ is degenerate for almost all ξ , which completes the proof of necessity.

Appendix A. Proof of the results in Section 3

Proof of Lemma 3. For any v ∈T\ {∅}, we denote by ←−v its parent. By the branching
property, many-to-one lemma, and quenched harmonic property, we have

Eξ,a

[
D(β)

n+1 |Fn

]

=Eξ,a

⎡
⎣∑
|u|=n

∑
|v|=n+1:←−v =u

U
(
θn+1ξ, V(v)+ β

)
e−V(v)1{min0≤k≤n V(uk)≥−β}1{V(v)≥−β}

∣∣∣∣ Fn

⎤
⎦

=
∑
|u|=n

1{min0≤k≤n V(uk)≥−β}Eξ,V(u)

⎡
⎣∑
|v|=1

U
(
θn+1ξ, V(v)+ β

)
e−V(v)1{V(v)≥−β}

⎤
⎦

=
∑
|u|=n

1{min0≤k≤n V(uk)≥−β}e−V(u)Eξ,V(u)

[
U
(
θn+1ξ, S1 + β

)
1{S1≥−β}

]

=
∑
|u|=n

1{min0≤k≤n V(uk)≥−β}e−V(u)U
(
θnξ, V(u)+ β

)
=D(β)

n .

It follows that
(

D(β)
n , n≥ 0

)
is a non-negative martingale under Pξ,a and Pa. By the martingale

convergence theorem, we have the almost sure convergence of D(β)
n .
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Proof of Lemma 4.

(i) By Theorem 7.1 of Biggins and Kyprianou [7], we have Wn→ 0 P-a.s. as n→∞. Since
e− inf|u|=n V(u) ≤Wn, it follows that

inf|u|=n
V(u)→∞, inf

u∈T V(u) >−∞, P-a.s.

Hence, for any ε > 0, there exists β := β(ε) such that

P

(
inf
u∈T V(u)≥−β

)
≥ 1− ε.

On the one hand, by Lemma 3,

D(β)
n =

∑
|u|=n

U
(
θnξ, V(u)+ β

)
e−V(u)1{min0≤k≤n V(uk)≥−β} →D(β)∞ , P-a.s.

Note that on the event {infu∈T V(u)≥−β}, we have, by (2.3),

D(β)
n =

∑
|u|=n

U
(
θnξ, V(u)+ β

)
e−V(u) ∼

∑
|u|=n

(V(u)+ β) e−V(u) =Dn + βWn, P-a.s.

Since Wn→ 0 P-a.s., it follows that with probability at least 1− ε, Dn converges to a
non-negative finite limit. This yields the P-a.s. convergence of Dn if we let β→∞.

(ii) If there exists β ≥ 0 such that D(β)
n converges in L1(Pξ ) for almost all ξ , then we have

Eξ

(
D(β)∞

)=U(ξ, β) > 0, P-a.s.; in particular, Pξ

(
D(β)∞ > 0

)
> 0, P-a.s. Since D(β)

n is non-
decreasing in β, we deduce by (i) that Pξ (D∞ > 0) > 0, P-a.s.

(iii) If, for almost all ξ , D(β)∞ = 0 Pξ -a.s. for all β ≥ 0, then, by (i) again, we have
Pξ (D∞ = 0)= 1 P-a.s.

Proof of Proposition 5. To describe the probabilities Pξ,a, Q(β)
ξ,a, and P̂

(β)
ξ,a, we use the Ulam–

Harris–Neveu notation to encode the genealogical tree T with U := ∪∞k=1 (N∗)k ∪ {∅}, where
N∗ := {1, 2, · · · }. The vertices of the tree are labeled by their line of descent. For example,
the vertex u= k1 · · · kn means the knth child of · · · of the k1th child of the initial vertex ∅.
Given two strings u and v, we write uv for the concatenated string. We refer to Section 1.1 of
Mallein [25] for a rigorous presentation of the time-inhomogeneous branching random walk.
Let (gu, u ∈ U) be a family of non-negative measurable functions. By the standard argument
for the measure extension theorem, it suffices to prove that for any n≥ 0,

E
P̂

(β)
ξ,a

⎡
⎣∏
|u|≤n

gu (ξ, V(u))

⎤
⎦=E

Q
(β)
ξ,a

⎡
⎣∏
|u|≤n

gu (ξ, V(u))

⎤
⎦ ,

where E
P̂

(β)
ξ,a

and E
Q

(β)
ξ,a

denote the corresponding expectations of P̂
(β)
ξ,a and Q

(β)
ξ,a, respectively.

That is, by (3.1) (the definition of Q(β)
ξ,a),

E
P̂

(β)
ξ,a

⎡
⎣∏
|u|≤n

gu (ξ, V(u))

⎤
⎦=Eξ,a

⎡
⎣ D(β)

n

U (ξ, a+ β) e−a

∏
|u|≤n

gu (ξ, V(u))

⎤
⎦ . (A.1)
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Let us define

D(β)
n (v) := U

(
θnξ, V(v)+ β

)
e−V(v)1{min0≤k≤n V(vk)≥−β}, n≥ 1,

and D(β)
0 (∅) := U (ξ, a+ β) e−a if V (∅)= a. Clearly, D(β)

n =∑|v|=n D(β)
n (v), n≥ 0. We

claim that for any v ∈ U with |v| = n,

E
P̂

(β)
ξ,a

⎡
⎣1{

w(β)
n =v

} ∏
|u|≤n

gu (ξ, V(u))

⎤
⎦=Eξ,a

⎡
⎣ D(β)

n (v)

U (ξ, a+ β) e−a

∏
|u|≤n

gu (ξ, V(u))

⎤
⎦ , (A.2)

which implies (A.1) if we sum over |v| = n.
We turn to the proof of (A.2). We introduce some notation for our statement. For any

u ∈ U , we denote by u−→ its children and by Tu the subtree rooted at u. We write {∅� u} :={
∅, u1, · · · , u|u|

}
for the set of vertices in the unique shortest path connecting ∅ to u.

Decomposing the product
∏
|u|≤n gu (ξ, V(u)) along the path {∅� v}, we can write (A.2) as

E
P̂

(β)
ξ,a

⎡
⎢⎣1{

w(β)
n =v

} n∏
i=0

gvi (ξ, V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦

=Eξ,a

⎡
⎢⎣ D(β)

n (v)

U (ξ, a+ β) e−a

n∏
i=0

gvi (ξ, V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦ ,

(A.3)

where hu(ξ, ·) := Eθ |u|ξ
[∏

z∈Tu
guz (ξ, · + V(z)) 1{|z|≤n−|u|}

]
and vi−1−−→\vi means the set of the

siblings of vi.
Now we prove (A.3) by induction. The equation obviously holds for n= 0. Assume that it

holds for n− 1; we need to show that it is true for n. Let us introduce the filtration

G(β)
n := σ

(
w(β)

i , V
(
w(β)

i

)
, 0≤ i≤ n

)
∨ σ
(

w(β)
i−−→, V

(
w(β)

i−−→
)
, 0≤ i < n

)
,

the information of the spine and its siblings. By the construction of P̂
(β)
ξ,a, given that{

w(β)
n−1 = vn−1

}
, the probability of the event

{
w(β)

n = v
}

is

D(β)
n (v)

D(β)
n (v)+∑u∈vn−1−−→\v

D(β)
n (u)

,

and the point process generated by w(β)
n−1 = vn−1 under P̂

(β)
ξ,a has Radon–Nikodym derivative

D(β)
n (v)+∑u∈vn−1−−→\v

D(β)
n (u)

D(β)
n−1(vn−1)

with respect to the point process generated by vn−1 under Pξ,a. As a result, for the nth term
1{

w(β)
n =v

}gv (ξ, V(v))
∏

u∈vn−1−−→\v
hu (ξ, V(u)) in the product inside the left-hand side of (A.3),
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conditioned on G(β)
n−1, we have

E
P̂

(β)
ξ,a

⎡
⎢⎣1{

w(β)
n =v

}gv (ξ, V(v))
∏

u∈vn−1−−→\v
hu (ξ, V(u))

∣∣∣∣G(β)
n−1

⎤
⎥⎦

=1{
w(β)

n−1=vn−1

}E
P̂

(β)
ξ,a

⎡
⎢⎣ D(β)

n (v)gv (ξ, V(v))

D(β)
n (v)+∑u∈vn−1−−→\v

D(β)
n (u)

∏
u∈vn−1−−→\v

hu (ξ, V(u))

∣∣∣∣ G(β)
n−1

⎤
⎥⎦

=1{
w(β)

n−1=vn−1

}E
P̂

(β)
ξ,a

⎡
⎢⎣ D(β)

n (v)gv (ξ, V(v))

D(β)
n (v)+∑u∈vn−1−−→\v

D(β)
n (u)

∏
u∈vn−1−−→\v

hu (ξ, V(u))

∣∣∣∣(w(β)
n−1, V(w(β)

n−1)
)
⎤
⎥⎦

=1{
w(β)

n−1=vn−1

}Eξ,a

⎡
⎢⎣D(β)

n (v)gv (ξ, V(v))

D(β)
n−1(vn−1)

∏
u∈vn−1−−→\v

hu (ξ, V(u))

∣∣∣∣V (vn−1)

⎤
⎥⎦

=:1{
w(β)

n−1=vn−1

}f (ξ, V (vn−1)) .

It follows from the above expression and the inductive hypothesis that

E
P̂

(β)
ξ,a

⎡
⎢⎣1{

w(β)
n =v

} n∏
i=0

gvi (ξ, V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦

=E
P̂

(β)
ξ,a

⎡
⎢⎣1{

w(β)
n−1=vn−1

}f (ξ, V (vn−1))

n−1∏
i=0

gvi (ξ .V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦

=Eξ,a

⎡
⎢⎣ D(β)

n−1(vn−1)

U (ξ, a+ β) e−a
f (ξ, V (vn−1))

n−1∏
i=0

gvi (ξ, V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦

=Eξ,a

⎡
⎢⎣ D(β)

n (v)

U (ξ, a+ β) e−a

n∏
i=0

gvi (ξ, V(vi))
∏

u∈vi−1−−→\vi

hu (ξ, V(u))

⎤
⎥⎦ .

This proves (A.3) and hence completes the proof of Proposition 5.

Proof of Proposition 6. (i) Recalling (A.2) in the proof of Proposition 5 and (3.1) (the
definition of Q(β)

ξ,a), we have

E
Q

(β)
ξ,a

⎡
⎣1{

w(β)
n =v

} ∏
|u|≤n

gu (ξ, V(u))

⎤
⎦=Eξ,a

⎡
⎣ D(β)

n (v)

U (ξ, a+ β) e−a

∏
|u|≤n

gu (ξ, V(u))

⎤
⎦

=E
Q

(β)
ξ,a

⎡
⎣D(β)

n (v)

D(β)
n

∏
|u|≤n

gu (ξ, V(u))

⎤
⎦ ,
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which implies

Q
(β)
ξ,a

(
w(β)

n = v
∣∣ Fn

)
= D(β)

n (v)

D(β)
n

.

This proves the first part of the proposition if we recall the definition of D(β)
n (v).

(ii) For all n and any measurable function f :Rn+1→R+, by Part (i), we have

E
Q

(β)
ξ,a

[
f
(
V(w(β)

0 ), · · · , V(w(β)
n )
)]

=E
Q

(β)
ξ,a

⎡
⎣∑
|v|=n

f (V(v0), · · · , V(vn)) 1{
w(β)

n =v
}
⎤
⎦

=E
Q

(β)
ξ,a

⎡
⎣∑
|v|=n

f (V(v0), · · · , V(vn))
U (θnξ, V(v)+ β) e−V(v)1{min0≤k≤n V(vk)≥−β}

D(β)
n

⎤
⎦ .

Then, from the definition of Q(β)
ξ,a and the many-to-one lemma, we obtain

E
Q

(β)
ξ,a

⎡
⎣∑
|v|=n

f (V(v0), · · · , V(vn))
U (θnξ, V(v)+ β) e−V(v)1{min0≤k≤n V(vk)≥−β}

D(β)
n

⎤
⎦

=Eξ,a

⎡
⎣∑
|v|=n

f (V(v0), · · · , V(vn))
U (θnξ, V(v)+ β) e−V(v)1{min0≤k≤n V(vk)≥−β}

U (ξ, a+ β) e−a

⎤
⎦

=Eξ,a

[
f (S0, · · · , Sn)

U(θnξ, Sn + β)

U(ξ, a+ β)
1{min0≤k≤n Sk≥−β}

]
.

This completes the second part of the proposition.
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