
17

Loading classical data

The end-to-end quantum applications covered in this book have classical in-

puts and classical outputs, in the sense that the problem is specified by some

set of classical data, and the solution to the problem should be a different set of

classical data. In some cases, the input data is relatively small, and loading it

into the algorithm does not contribute significantly to the cost of the algorithm.

In other cases—for example, “big data” problems within the areas of machine

learning and finance—the dominant costs, both for classical and quantum al-

gorithms, can be related to how the algorithms load and manipulate this large

quantity of input data. Consequently, the availability of quantum speedups for

these problems is often dependent on the ability to quickly and coherently ac-

cess this data. The true cost of this access is the source of significant subtlety

in many end-to-end quantum algorithms.

The authors are grateful to Thomas Häner, Damian Steiger, and Xiao Yuan for

reviewing this chapter.

17.1 Quantum random access memory

Rough overview (in words)

Quantum random access memory (QRAM) is a construction that enables co-

herent access to a database, such that multiple different elements can be read in

superposition. The ability to rapidly access large, unstructured datasets in this

way is crucial to the speedups of certain quantum algorithms, for example in

quantum machine learning based on quantum linear algebra. QRAM is com-

monly invoked to circumvent data-input bottlenecks [1] in situations where

loading input data could dominate the end-to-end runtime of an algorithm. It
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256 17. Loading classical data

remains an open question, however, whether a large-scale dedicated QRAM

device will ever be practical, casting doubt on quantum speedups that rely on

QRAM. Note that, while here we focus on the more common use case of load-

ing classical data with QRAM, certain QRAM architectures can be adapted to

also load quantum data [427].

Rough overview (in math)

Consider a length-N, unstructured classical data vector x, and denote the i-th

entry as xi. Let the number of bits of xi be denoted by d. Given an input quan-

tum state |ψ⟩ = ∑N−1
i=0

∑
b∈{0,1}d αib|i⟩|b⟩, QRAM is defined [434] as a unitary

operation Q with the action

Q|ψ⟩ = Q

N−1∑

i=0

∑

b∈{0,1}d
αib|i⟩|b⟩ =

N−1∑

i=0

∑

b∈{0,1}d
αib|i⟩|b ⊕ xi⟩. (17.1)

Here, the first log2(N)-qubit register stores the “address” (assuming for sim-

plicity that N is a power of 2), while the second d-qubit register stores the

corresponding “data.” Note that the unitary Q can also be understood as an

oracle (or black box) providing access to x, as Q(
∑

i αi|i⟩|0⟩) =
∑

i αi|i⟩|xi⟩.
Let TQ denote the “cost” of implementing the operation Q, where TQ can be

measured in wall time, circuit depth, total number of gates, total circuit space-

time occupancy, total number of T gates, etc., depending on the context. Algo-

rithms that rely on QRAM to claim exponential speedups over their classical

counterparts frequently assume that TQ = polylog(N). However, as discussed

in §Caveats, below, it is crucial to emphasize that this assumption can only

hold when TQ is interpreted as the circuit depth or wall time (or something

similar) to implement Q; whereas, if TQ is taken to be the total gate cost or

the spacetime occupied by the computation, simple gate counting arguments

imply a lower bound of TQ ≥ Ω(dN). In a discrete gate set, each unit of space-

time can be occupied with only a finite number of unique gates; since there

are 2dN different possible data vectors x, the circuit must have at least Ω(dN)

spacetime to be able to implement all possibilities (see also [568, Section V]

for a more detailed discussion).

Dominant resource cost (gates/qubits)

Let us consider for simplicity the d = 1 case, that is, when each data entry

is a single bit. The QRAM operation Q can be implemented as a quantum

circuit that uses O(N) gates. Assuming gates acting on disjoint qubits can be

parallelized, a circuit depth of TQ = O(log(N)) can be achieved at the expense

of using O(N) ancillary qubits; explicit circuits can be found in, for exam-

ple, [349, 496]. The number of ancillary qubits can be traded off for increased
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17.1 Quantum random access memory 257

circuit depth; circuits implementing Q can be constructed using O(N/M) an-

cillary qubits and depth O(M log(N)), where M ∈ [1,N]; see examples in

[722, 140, 349, 496] (the setting of M = N/ log(N) is sometimes referred

to as “QROM”—see terminology caveats below—and its fault-tolerant cost of

implementation is well established [75]).

If the data vector x is sparse—that is, only s of its N entries are

nonzero—then there exist circuit implementations with depth as shallow as

TQ = O(log(s log(N))), using O(s log(s) log(N)) ancillary qubits, both of

which for s = O(1) are exponentially better than the general case of a dense

vector x [1085].

Each of the above constructions can be generalized to the d > 1 case with

various space-time tradeoffs. For example, the d bits of a data entry can be

queried in series, requiring O(N) ancillary qubits with depth TQ = O(d log(N))

(improvement to TQ = O(d + log(N)) is possible for certain QRAM architec-

tures [269]). Alternatively, the d bits can be accessed in parallel, with depth

TQ = O(log(N)), but at the price of O(Nd) ancillary qubits.

Caveats

The main concern for QRAM’s practicality is the large hardware overhead

that is necessary to realize fast queries with depth TQ = O(log(N)). This cost

is likely to be prohibitive for big-data applications where N can be millions or

billions. The cost will also be magnified by additional overhead associated with

error correction and fault tolerance [349], especially considering that circuits

implementing Q are composed of O(N) non-Clifford gates. Indeed, this obser-

vation together with the assumption that magic state distillation is expensive to

run in a massively parallel fashion, has led some to argue that TQ = O(log(N))

is not realistic in a fault-tolerant setting (see, e.g., [568]). However, it is possi-

ble that alternative approaches to fault tolerance tailored to QRAM could help

alleviate this large hardware overhead.

The fault-tolerance overhead may be reduced for the so-called bucket-

brigade QRAM (BBQRAM) [434, 62, 496], which is a family of circuits

implementing Q that are intrinsically resilient to noise. More precisely, [496]

shows that if ϵ is the per-gate error rate, BBQRAM circuits can implement

Q with leading-order fidelity F ∼ 1 − ϵ polylog(N), while generic circuits

implementing Q have leading-order fidelity F ∼ 1 − ϵ O(N). Nevertheless, at

the scale necessary for useful end-to-end applications, some amount of error

correction will almost certainly be required even for BBQRAM circuits.

Even if depth TQ = polylog(N) is practically achievable, some have ar-

gued that any fair comparison with state-of-the-art classical methods should

then allow for classical parallel computation. After all, the parallel classical
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258 17. Loading classical data

hardware necessary to operate the circuit Q (including the quantum error cor-

rection) could in principle be repurposed directly toward solving the end-to-

end computational problem. For example, many linear algebra tasks such as

matrix-matrix and matrix-vector multiplication of size-N objects are amenable

to parallelization, and can also have cost scaling as polylog(N) in some parallel

classical models of computation [954, 568]. Under such a comparison, it be-

comes difficult to identify conditions where QRAM-based quantum algorithms

can give rise to a significant scaling advantage [568].

Some terminology caveats:

• The unitary Q in Eq. (17.1) is referred to by some as quantum read-only

memory (QROM) [75], reflecting the fact that Q corresponds only to reading

data. Some algorithms also require the ability to write to the vector x during

computation, but the writing of classical (i.e., not in superposition) data need

not be implemented via a quantum circuit.

• The term QRAM is used by different authors to refer to the unitary Q, fam-

ilies of circuits that implement Q, or quantum hardware that runs said cir-

cuits.

• The terms QRAM and QROM are sometimes used for distinguishing the

cases of TQ = polylog(N) and TQ = poly(N), respectively, even though

TQ is unrelated to the distinction between reading and writing. The term

QROAM has also been used to describe intermediate circuits that trade off

depth and width [140].

• Some use the term QRAM to refer exclusively to the case N ≫ 1 and TQ =

polylog(N) depth, where the implementation challenges for QRAM are most

pronounced.

Elsewhere in this book, we follow the convention described in the final bullet

point above: usage of the term QRAM, unless specified otherwise, refers to the

ability to implement Q at cost polylog(N).

Example use cases

• Quantum linear algebra: QRAM can be used as an oracle for implement-

ing linear algebra algorithms operating on unstructured data (e.g., by acting

as a subroutine in a block-encoding), with applications in machine learn-

ing, finance, etc. For example, the quantum recommendation systems algo-

rithm [608] (now dequantized [976]) uses QRAM as a subroutine to effi-

ciently encode rows of an input data matrix in the amplitudes of quantum

states (see Appendix A of [608] for details).

• Hamiltonian simulation, quantum chemistry, condensed matter physics: In

the linear combination of unitaries input model, QRAM can be used as a
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17.2 Preparing quantum states from classical data 259

subroutine for “PREPARE” oracles that encode coefficients of the simulated

Hamiltonian into the amplitudes of quantum states [75]. These use cases typ-

ically consider the hybrid QROM/QRAM constructions with O(K log(N))

ancillary qubits and depth O(N/K) (with the parameter K to be optimized),

because the amount of data (and thus the size of N) scales only polynomially

with the system size.

• Grover search: QRAM can be used as an implementation for Grover’s or-

acle in the context of an unstructured database search; see Chapter 4 of

[801]. This appears for example in quantum algorithms that utilize dynamic

programming to give polynomial speedups for combinatorial optimization

problems like the traveling salesperson problem [28]. However, it has been

argued that a quantum computer running Grover’s algorithm with a QRAM-

based oracle would not provide a speedup over a classical computer with

comparable hardware resources [954].

• Topological data analysis (TDA): A small QRAM (i.e., not exponentially

larger than the main quantum data register) is used in some quantum algo-

rithms for TDA [709, 755] in order to load the positions of the data points for

computing whether simplices are present in the complex at a given length

scale.

Further reading

• Reference [568] focuses on various fundamental and practical concerns for

large-scale QRAM, while also providing a comprehensive survey.

• Reference [293] provides an overview of practical concerns facing QRAM

in the context of big-data applications (though the discussions of noise re-

silience there and in [62] are somewhat outdated, cf. [496]).

17.2 Preparing quantum states from classical data

Rough overview (in words)

An important subroutine in many quantum algorithms is preparing a quantum

state given a list of its amplitudes stored, for example, in a classical database.1

The upshot is that N amplitudes, which require O(N) classical bits to write

down, can be encoded in a quantum state with only log2(N) qubits, an ex-

ponential compression in memory. However, there are caveats; for example,

simple information-theoretic bounds [835] dictate that the quantum circuit that

1 When the amplitudes are given by some well-behaved function, rather than being arbitrarily
chosen, different (related) protocols are used; see §Further reading, below.
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260 17. Loading classical data

prepares the log2(N)-qubit state must still have at least O(N) gates, so no ex-

ponential advantage in gate complexity is possible. Additionally, reading out

the N amplitudes from the encoded quantum state generally requires full quan-

tum state tomography, requiring Ω(N) preparations of the state. Depending on

which resource is being optimized, the best protocol for state preparation will

look different, and optimal state preparation methods are known for several

natural choices of metric.

Rough overview (in math)

Let x = (x0, . . . , xN−1) ∈ CN be a vector of N complex numbers, where N is a

power of 2, and let

|ψ⟩ = 1

∥x∥

N−1∑

i=0

xi|i⟩ (17.2)

be the associated normalized quantum state, where ∥x∥ denotes the standard

Euclidean vector norm. Let n = log2(N) denote the number of qubits of |ψ⟩.
The goal is to prepare the state |ψ⟩ by applying a quantum circuit to the initial

state |0⟩⊗n. This problem has been extensively studied in the literature; a com-

mon approach, originating in [463], is to iterate through each of the n qubits

and perform a single-qubit rotation, with the angle of rotation depending on

the setting of the previous qubits. The rotation on the first qubit creates the

1-qubit state


√∑N/2−1

i=0
|xi|2

|0⟩ +

√∑N−1

i=N/2
|xi|2

|1⟩

by performing a single-qubit rotation (about the Y axis) on the state |0⟩ by an

appropriate angle. Next, a similar kind of single-qubit rotation is performed on

the second qubit, where the angle of rotation depends on whether the first qubit

is |0⟩ or |1⟩. The (m + 1)st rotation is by one of 2m angles, depending on the

setting of the first m qubits. Thus, in total there are 1 + 2 + · · · + 2n−1 = N − 1

total angles that might be used for single-qubit rotations. This sequence of

operations prepares the state ∥x∥−1 ∑N−1
i=0 |xi||i⟩. To apply the phases, a single-

(or zero-) qubit phase gate with the appropriate phase “angle” is performed—

the angle depends on the setting of all n qubits, corresponding to the N = 2n

different phases that might be needed. Thus, the total number of angles that

define the protocol is 2N − 1, exactly corresponding to the number of real

parameters needed to describe the general state in Eq. (17.2).

It remains to describe how the controlled single-qubit rotations are per-

formed when there are many control bits and different angles for each setting

of the control. Here, one has many choices and the exact method will depend
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17.2 Preparing quantum states from classical data 261

|0⟩ Ry(θ0,0) • • •

|0⟩ Ry(θ1,0) Ry(θ1,1) • •

|0⟩ Ry(θ2,0) Ry(θ2,1) Ry(θ2,2) Ry(θ2,3)

Figure 17.1 A simple quantum circuit to prepare an arbitrary state |ψ⟩ with non-

negative real amplitudes on n = 3 qubits. The gate Ry(θ) denotes a single-

qubit rotation by angle θ about the Y axis. The 2n − 1 angles θs,p indexed by

s ∈ {0, 1, . . . , n − 1} and p ∈ {0, 1, . . . , 2s − 1} can be calculated from the ampli-

tudes xi. To account for negative or complex amplitudes, 2n additional controlled

phase gates would be needed. More sophisticated proposals can reduce the depth

for ancilla-free constructions from O(2n) to O(2n/n) [968].

on how one has access to the data in x and what resource is being optimized.

The most straightforward way is to iterate through each possible setting of the

control bits and perform a multiply controlled rotation by a fixed angle for each

in sequence. This approach requires O(N) n-qubit gates applied sequentially,

as depicted in Fig. 17.1. Assuming one can perform arbitrary single-qubit gates

to exact precision, it is possible to prepare the state |ψ⟩ exactly. However, it is

often useful to work with finite precision angles stored in binary, moreover one

often needs to design circuits from a discrete gate set, such as the Clifford +

T gate set, when compiling into a gate sequence that can be implemented fault

tolerantly. When this is the case, single-qubit rotations must be performed ap-

proximately: to approximate a single-qubit rotation to error ϵ, a Clifford + T

sequence of length O(log(1/ϵ)) can be applied [884].

When ancilla qubits are available, one can design protocols that have shal-

lower depth (but about the same total number of gates). For example, one can

store the 2N − 1 angles in a quantum random access memory (QRAM) data

structure. In this case, for m = 1, . . . , n, to perform the required controlled ro-

tations on the mth qubit in superposition, one can (i) read in the (approximate)

binary value of the rotation angle (depending on the setting of the first m − 1

qubits) into an ancilla register using a single query to the QRAM, and then

(ii) perform fixed-angle single-qubit rotations on the mth qubit, controlled by

the qubits of the ancilla register storing the binary representation of the rota-

tion angle, and finally (iii) reset (uncompute) the ancilla register with another

query to the QRAM. This way, one applies the correct angle in parallel, rather

than iterating through all possible 2m−1 angles.
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262 17. Loading classical data

Dominant resource cost (gates/qubits)

In Table 17.1, we collect several state preparation results in the model where

any single-qubit gate can be performed exactly and the only multiqubit gates

allowed are CNOTs. The circuit size (i.e., the total number of single-qubit and

CNOT gates) and depth (i.e., the number of parallel-acting layers of gates), as

well as the number of ancilla qubits (i.e., the number of qubits beyond the n

qubits needed to hold the state |ψ⟩) are listed.

Ref. Circuit size Circuit depth Ancilla qubits

[968, 1073] O (2n) O (2n/n) none

[968, 1073] O (2n) O (2n/(m + n)) m ∈ [0,O (2n/n)]

[968, 1085, 468] O (2n) O (n) O (2n)

Table 17.1 Asymptotic resource cost (and tradeoffs therein) of exact state prepa-

ration of abitrary states in a gate set with CNOT gates and arbitrary single-qubit

gates.

Note that the result of [1073], which shows depth O(2n/(m + n)) using m

ancilla qubits for m ≤ O(2n/n), encompasses all other results in the table (and

is superior to the third row as it uses O(2n/n) ancilla qubits instead of O(2n)).

We include the other results for completeness, as they are distinct constructions

and can have other potential upsides.

A lower bound of Ω(2n) is known for circuit size [835], so all of the results

above are size optimal up to constant factors. Moreover, for any m ancillas, a

lower bound of Ω(max(n, 2n/(n + m))) is known for the circuit depth [968], so

all of the results above are also optimal in circuit depth, up to constant factors.

For approximate state preparation using a discrete gate set such as Clifford

+ T , the state |ψ⟩ is prepared up to ϵ error in ℓ2-norm, so that the circuit size

and depth depends on ϵ. Results in this model are collected in Table 17.2.

Ref. Circuit size Circuit depth Ancilla qubits

[968] O (
2n log(2n/ϵ)

) O
(

2n

n
log(2n/ϵ)

)
none

[968] O (
2n log(2n/ϵ)

) O
(

2n

m+n
log(2n/ϵ)

)
m ∈ [0,O

(
2n

n log(n)

)
]

[1084] O (
2n log(1/ϵ)

) O
(

2n

m
log(m) log(log(m)/ϵ)

)
m ∈ [0,O (2n)]

[468] O (
2n log(n/ϵ)

) O (
n + log(1/ϵ)

) O (2n)

Table 17.2 Asymptotic resource cost (and tradeoffs therein) of approximate state

preparation using the Clifford + T gate set.

If the state |ψ⟩ is sparse, meaning that only s of the N amplitudes are

nonzero, then more efficient state preparation methods are known. In par-

ticular, [1085, 968, 727] have studied shallow-depth circuits for sparse state
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17.2 Preparing quantum states from classical data 263

preparation, achieving circuit depth O(log(ns)) using only O(ns/ log(s))

ancilla qubits [727], a great improvement over the general case when s ≪ N.

In some fault-tolerant implementation schemes, such as lattice surgery using

surface codes, Clifford gates can be performed cheaply, while T gates require

the expensive process of magic state distillation. While Ω(2n log(1/ϵ)/ log(n))

total gates are necessary [801, Eq. 4.85] to approximately create |ψ⟩, [722]

noted that it is possible to reduce the number of T gates to
√

2n log(2n/ϵ) using√
2n log(1/ϵ) ancillas (in fact, there is a smooth tradeoff between the T count

and the number of ancillas). Furthermore, these ancillas can be dirty, meaning

that they can be initialized into any quantum state and they are returned to their

(potentially unknown) initial state at the end of the procedure.

All of the above constructions are “garbage-free” state preparation proto-

cols, because they prepare the state |ψ⟩ exactly and all ancilla qubits are re-

turned to their initial state. However, in some applications, it is allowed to

leave an ancilla register entangled with the data as long as the amplitudes are

correct. That is, one might prepare the state

1

∥x∥

N−1∑

i=0

xi|i⟩ ⊗ |garbagei⟩ .

In this setting, en route to giving better algorithms for the electronic struc-

ture problem, [75, Section IIID] gave a construction that approximately pre-

pares the above state using only O(N + log(1/ϵ)) T gates, albeit still requiring

O(N log(1/ϵ)) Clifford gates and O(log(N/ϵ)) ancillas. In [75], the construc-

tion is presented with O(N) depth, but it could be improved to O(log(N)) depth

at the expense of additional ancillas, using log-depth constructions for QRAM,

and it could also be combined with the space-time tradeoffs mentioned above,

as discussed in [722, 140].

Caveats

• Classical preprocessing: Computing the circuits for preparing |ψ⟩ given the

list of N coefficients x can be a non-negligible classical cost. For example,

computing each of the O(N) single-qubit rotation angles requires comput-

ing sums and evaluating trigonometric functions, which can be done to pre-

cision ϵ in polylog(1/ϵ) classical time. Moreover, computing Clifford + T

gate sequences that approximate given rotation angles to error ϵ likewise re-

quires polylog(1/ϵ) classical time [884]. The total classical work scales as

O(N polylog(1/ϵ)), although this cost can be parallelized.

• Coherent arithmetic: To avoid some of the classical preprocessing, one

might try to perform the arithmetic coherently. This might be unavoidable

if the entries of x arrive in an online fashion and rotation angles and other
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264 17. Loading classical data

quantities need to be computed after superpositions have been created.

Formally, the scaling of coherent arithmetic is mild, generally requiring

just polylog(N, 1/ϵ) number of gates and ancilla qubits, but in practice

this is likely to be expensive. For example, known methods for coherently

computing arcsin(·) to nine bits of precision use order-104 Toffoli gates

and more than 100 ancilla qubits [494]. See [894] for a general black-box

approach that avoids coherent arithmetic.

• Too many ancilla qubits: Achieving depths that scale logarithmically with

N requires O(N) ancilla qubits, which limits the size of N that might be

practical. This could be mitigated if it is possible to develop a large-scale

hardware element specialized for performing the sort of circuits that arise in

these protocols, similar to a QRAM.

• Long-range gates: Achieving polylog(N) depth for state preparation requires

O(N) ancilla qubits andO(N) gates, many of which act in parallel and on far-

separated qubits. If spatial locality were imposed, it would likely be difficult

to avoid O(N) overhead in depth.

• Dequantization: Consider the task of drawing samples from the same prob-

ability distribution induced by measuring |ψ⟩ in the computational basis in

time polylog(N) time. Preparing |ψ⟩ as described is a quantum method of

doing so, but the same can be done classically by first constructing a cer-

tain classical data structure and assuming access to classical RAM [248]. In

some machine learning applications, this idea leads to classical algorithms

that effectively dequantize quantum algorithms that utilize the state prepara-

tion primitive [976, 977].

Example use cases

• Hamiltonian simulation via linear combination of unitaries (LCU) requires

a PREPARE step where a state is prepared with certain classically com-

puted coefficients. Relatedly, the same PREPARE gadget is used to con-

struct block-encodings of such Hamiltonians. However, in this application,

state preparation with garbage is generally allowable.

• In certain quantum machine learning protocols, classical data (e.g., image

pixel values) are encoded into a quantum state via the so-called “ampli-

tude encoding,” where N classical features are stored in a quantum state of

log2(N) qubits [916]. Following the preparation of the amplitude-encoded

data, the state is processed with the goal of, for example, classifying the

image.

• Creating a block-encoding of a matrix of classical data is performed using

state preparation as a subroutine (more precisely, block-encoding classical

data requires controlled state preparation). The block-encoding is then use-
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17.2 Preparing quantum states from classical data 265

ful in a variety of contexts, for example in quantum interior point methods,

and certain quantum machine learning algorithms.

Further reading

• When the amplitudes xi correspond to an efficiently computable function

f (i), the complexity of state preparation can be reduced. In this case, the or-

acle access to xi can be replaced by a reversible computation of f (i), up to t

bits of precision, using coherent arithmetic |i⟩|0t⟩ → |i⟩| f (i)⟩ [494, 149, 791].

The value of f (i) can be transduced into the amplitude using the methods

of [465, 894, 1020, 106], and the success probability boosted to unity us-

ing quantum amplitude amplification. There is an alternative method [754],

based on quantum singular value transformation (QSVT) that circumvents

the need for the coherent evaluation of f (i) by implementing a low-cost

block-encoding of sin(i), and then using QSVT to apply f (arcsin(·)) to this

block-encoding. The complexity of both of these approaches depends on an

“ℓ2-norm filling-fraction” F [N]
f

:= ∥ f (i)∥2/(
√

N| f (i)|max) as O(1/F [N]
f

) (see

[754] for more detail). There is also an approach [859] based on the adia-

batic algorithm which has a worse dependence on F [N]
f

. For efficiently in-

tegrable probability distributions, one can use the approach of [463], which

has complexity independent of F [N]
f

. However, this approach requires co-

herent arithmetic to reversibly evaluate the integral of the desired function

(when applied to functions for which an analytic expression for the inte-

gral is not available, this can nullify the quadratic speedup in quantum-

accelerated Monte Carlo estimation [521]). There also exist methods spe-

cialized for certain target states, such as Gaussians [623, 860].

• A related problem asks to synthesize an arbitrary 2n × 2n unitary. Without

ancillas, this requires depth and size O(4n), for which there are upper [787]

and lower [931] bounds that match up to constant factors. With ancillas, it is

an open question whether or not the depth can be reduced to poly(n); this is

related to the “unitary synthesis problem” from the list of open problems in

[3], and it has been studied in several works, for example, [968, 883, 1073].

A depth lower bound of Ω(n + 4n/(m + n)) is known for m ancilla qubits

[968], but the shallowest upper bound is depth O(n2n/2), using m = O(4n/n)

ancilla qubits [1073].
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266 17. Loading classical data

17.3 Block-encoding dense matrices of classical data

Rough overview (in words)

Many potential applications of quantum algorithms, especially in the area of

machine learning, require access to large amounts of classical data, and in or-

der to process this data on quantum devices, one needs coherent query access

to the data. Block-encoding is a technique for importing classical data into

quantum computers that provides exactly this type of coherent query access.

Block-encodings work by encoding the matrices of classical data as blocks

within larger matrices, which are defined such that the full encoding is a uni-

tary operator. One way of thinking of this process is by “brute-force” com-

piling a unitary with the right structure, and then postselecting measurement

outcomes to ensure the desired block of the unitary was applied. In general,

block-encoding a dense matrix is not an efficient process, as both the normal-

ization factor of the block-encoding and the circuit complexity to implement

it can scale with the size of the matrix (e.g., poly(N) for an N × N matrix).

Nonetheless, end-to-end applications often assign polylogarithmic cost to the

block-encoding, which is achievable if the relevant cost metric is the circuit

depth (rather than the circuit size)—this is similar to the assumption that one

has access to large-scale log-depth quantum random access memory (QRAM).

For a general treatment not restricted to dense classical data, see Section 10.1

on block-encoding.

Rough overview (in math)

Given an N × N matrix A, a block-encoding is a way of encoding the matrix A

as a block in a larger unitary matrix:

UA =

(
A/α ·
· ·

)
.

If A is not square, one can pad it with zeros such that it becomes square. Let

n = ⌈log2(N)⌉. We say that the (n + a)-qubit unitary UA is an (α, a, ϵ)-block-

encoding of the matrix A ∈ CN×N if
∥∥∥A − α(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I)

∥∥∥ ≤ ϵ,

where a ∈ N represents the number of ancilla qubits needed, α ∈ R+ is a

normalization constant, and ϵ ∈ R+ is an error parameter. The fact that UA is

unitary implies that the normalization constant α must satisfy α ≥ ∥A∥, where

∥·∥ denotes the spectral norm.

In this section, we consider the case where the N2 entries of A are arbitrary

values provided to us in a classical database. In general, all of these entries
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17.3 Block-encoding dense matrices of classical data 267

can be nonzero; that is, A is a dense matrix. The goal is to provide a quantum

circuit implementing a unitary UA as above while minimizing quantities such

as the circuit depth and circuit size, as well as the number of ancilla qubits a

and the normalization constant α. The block-encoding construction we focus

on performs UA using a pair of state preparation unitaries [429, 608, 248],

following the more general method of block-encoding Gram matrices [429,

Lemma 47]. In particular, the product

UA = U
†
R
UL

is an exact (α, a, 0)-block-encoding of A, where UL and UR are unitaries that

perform (controlled) state preparation. Specifically, the (n + a)-qubit unitaries

UL and UR prepare a different 2n-qubit state for each of 2n possible settings of

the final n-qubit register, with the assistance of a − n additional ancilla qubits,

as follows:

UL|0⟩⊗(a−n)|0⟩⊗n|i⟩ = |0⟩⊗(a−n)|ψi⟩
UR|0⟩⊗(a−n)|0⟩⊗n| j⟩ = |0⟩⊗(a−n)|ϕ j⟩ ,

(17.3)

where the 2n-qubit states |ψi⟩ and |ϕ j⟩ are chosen such that ⟨ψi|ϕ j⟩ = Ai j/α,

where Ai j is the matrix entry of A in row i and column j—the states |ψi⟩ and

|ϕ j⟩ encode the (normalized) rows of A and norms of those rows, respectively.

For this construction, the normalization constant α satisfies

α = ∥A∥F ,

where ∥·∥F is the Frobenius norm. Note that for an N ×N matrix the Frobenius

norm satisfies ∥A∥ ≤ ∥A∥F ≤
√

N∥A∥—thus, the value of α achieved by this

method can be larger than its minimal possible value (∥A∥) by a factor as large

as
√

2n.2

There are several methods of implementing the (controlled) state preparation

unitaries UL and UR, offering tradeoffs between various metrics, as discussed

in Section 17.2 on state preparation. Of particular relevance is the T -count and

T -depth of the circuit when it is decomposed into a Clifford + T gate set, as

the T gate is the most difficult to implement in many fault-tolerant schemes.

A general strategy for implementing UL and UR involves constructing binary

trees representing the amplitudes in the states |ψi⟩ and |ϕ j⟩ in Eq. (17.3), and

building the state preparation unitaries out of controlled Y rotations by angles

2 See [429, Lemma 50] for a variant of this method yielding normalization factor

α =

√
nq(A)n2−q(A†) for q ∈ [0, 2], where nq(A) = maxi∥Ai,·∥qq, with ∥·∥q the vector q-norm

and Ai,· the i-th row of A.
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268 17. Loading classical data

Optimized for min depth Optimized for min count

# Qubits 4N2 N log(1/ϵ)

T -Depth 10 log(N) + 24 log(1/ϵ) 8N + 12 log(N)(log(1/ϵ))2

T -Count 12N2 log(1/ϵ) 16N log(1/ϵ) + 12 log(N)(log(1/ϵ))2

Table 17.3 Explicit resource counts for block-encoding circuits of arbitrary ma-

trices of classical data. These expressions omit subleading terms; the full expres-

sions can be found in [296].

defined in those binary trees (the controlled Y rotations are performed approx-

imately in a discrete gate set like Clifford + T , leading to a nonexact block-

encoding). Tradeoffs involving the T -depth, T -count, and number of ancilla

qubits are established based on the manner in which these controlled Y gates

are performed. For example, the shallowest implementation [296] requires a

large number of ancilla qubits, which are used to perform all the controlled Y

rotations in one parallel layer, before “injecting” a subset of these ancillas into

the main data qubits using a controlled SWAP network and then uncomputing

the ancillas.

Dominant resource cost (gates/qubits)

The shallowest implementations are able to achieve polylog(N) depth for UL

and UR (and hence for UA), at the expense of a = O(N2) ancilla qubits. On

the other hand, the fewest number of ancillas needed by this family of methods

would be a = n, in which case the circuit depth would scale as O(N2). While

the total circuit size must be at least Ω(N2), the number of gates in the circuit

that are T gates can be as small as O(N) using the techniques in [722].

Detailed resource counts (including the constant prefactors for key metrics)

and implementations of block-encodings were studied in [296]. We reproduce

their resource counts optimized for minimum T -depth and for T -count in Ta-

ble 17.3.

Caveats

An important caveat is that the total gate complexity of UA must be at least

Ω(N2), reflecting the N2 degrees of freedom in the arbitrary N × N matrix A.

Thus, while A operates on a quantum system of only log2(N) qubits, achieving

depth polylog(N) requires parallel-acting gates across at least Ω(N2) ancilla

qubits. In many algorithms, it is assumed that the cost of implementing UA is

polylog(N), in order to preserve an end-to-end runtime that is polylog(N) and

claims of exponential speedup. This is only defensible if the key metric is the

circuit depth and if many ancilla qubits are available. Furthermore, the normal-
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ization constant α can introduce poly(N) factors into an end-to-end analysis,

owing to the fact that ∥A∥F can be larger than ∥A∥ by a
√

N factor.

Another caveat to note is that if the matrix being block-encoded is sparse and

if the values and locations of its nonzero entries can be computed efficiently,

or if the matrix enjoys some structure in the data in addition to sparsity, then

more efficient block-encoding methods can be employed—see Section 10.1 on

block-encoding for details. In those cases, the results stated here may not be

applicable.

Example use cases

In financial portfolio optimization, classical data representing average histori-

cal returns and covariance matrices for a universe of assets is needed in a quan-

tum algorithm for optimizing a portfolio. See, for example, [328]. Similarly, in

quantum machine learning based on quantum linear algebra, the algorithm of-

ten requires fast coherent access to large matrices of classically stored data.

Further reading

• An excellent overview of block-encodings and quantum linear algebra:

[431].

• A detailed resource count of block-encoding with explicit circuits: [296].

• Select-SWAP QRAM and a tradeoff between qubit count and T gates: [722].

• For sparse matrices of classical data, or matrices expressed as a linear com-

bination of Pauli matrices, more efficient methods for block-encoding exist.

Asymptotic resource expressions for varying number of ancilla qubits are

reported in [1084].
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