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Background
Major depressive disorder (MDD) is a clinically and biologically
heterogeneous syndrome. Identifying discrete subtypes of ill-
ness with distinguishing neurobiological substrates and clinical
features is a promising strategy for guiding personalised
therapeutics.

Aims
This study aimed to identify depression subtypes with correlated
patterns of functional network connectivity and clinical symp-
toms by clustering patients according to a weighted linear
combination of both features in a relatively large, medication-
naïve depression sample.

Method
We recruited 115 medication-naïve adults with MDD and 129
matched healthy controls, and evaluated all participants with
magnetic resonance imaging. We used regularised canonical
correlation analysis to identify componentmapping relationships
between functional network connectivity and symptom profiles,
and K-means clustering was used to define distinct subtypes of
patients.

Results
Two subtypes of MDD were identified: insomnia-dominated
subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was
characterised by abnormal hyperconnectivity within the ventral
attention network and sleep maintenance insomnia. Subtype 2

was characterised by abnormal hypoconnectivity in the
subcortical and dorsal attention networks, and prominent
anhedonia symptoms.

Conclusions
Our study identified two distinct subtypes of patients with
specific neurobiological and clinical symptom profiles. These
findings advance understanding of the biological and clinical
heterogeneity of MDD, offering a pathway for defining categor-
ical subtypes of illness via consideration of both biological and
clinical features.
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Major depressive disorder (MDD) is a heterogeneous syndrome
varying considerably in clinical presentation, progression, treatment
response and neurobiology.1 Failure to effectively resolve this het-
erogeneity, especially in biological terms, limits drug discovery
and personalised treatment approaches for patients with MDD.
Most data-driven MDD subtyping efforts have focused on discrim-
inating different symptom profiles. In general, these approaches
have not proven to be clinically useful or helpful for treatment
development, as similar particular symptom profiles could be attrib-
uted to different biological mechanisms.2 Also, symptom-based
subtyping has low stability over time.3 Most importantly,
symptom-based clustering has not been useful in illuminating
heterogeneity at the biological level.

Neuroimaging-based subtyping

Although there are multiple biological approaches that might prove
useful for subtyping patients with MDD, considerable attention has
been paid to psychoradiological substrates for depression.4 Some
neuroimaging studies typically have identified MDD subtypes
based on a single modality of neuroimaging data, such as functional
activity or structural patterns.5 Partly because of the focus on high-

dimensional neurobiological data, cluster results have had weak cor-
respondence to clinical symptoms, which limits understanding of
the clinical relevance of brain-based subtyping.

Intergrating analysis with cluster technique

This concern can be addressed by using analytic approaches
designed to identify MDD subtypes based on both neurobiology
and clinical phenomenology.2 Recent resting-state magnetic reson-
ance imaging (MRI) studies3 have identified neurophysiological
subtypes of MDD by applying clustering analysis, together with
some dimensionality reduction via canonical correlation analysis
(CCA) or principal component analysis, with functional connectiv-
ity data, clinical ratings and gene expression data. These approaches
not only enhance the quality of clustering, but also facilitate inter-
pretation of clustering results.6

Although previous efforts in this area have made significant
advances, they have been limited by factors including small
samples, multisite imaging with different scanners and acquisition
protocols, limited or absent approaches for data reduction before
clustering to reduce concerns with overfitting and validation, separ-
ate consideration of symptoms and biology in cluster analyses, and
complex effects of medications and illness course on both symptoms
and brain function on input parameters for cluster analysis.2,7 An* Joint first authors.
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approach that defines robust cluster results that considers MRI and
symptom features simultaneously during clustering, in a large
sample of medication-naïve patients with MDD, could address
these concerns and advance progress in this area. To this end, we
conducted a data-driven decomposition of functional MRI-
defined functional brain connectivity, and defined subtypes by clus-
tering medication-naïve patients with MDD according to a multi-
variate correspondence between functional network connectivity
(FNC) and clinical symptoms, using a regularised canonical correl-
ation analysis (rCCA).8 We then examined symptom severity and
functional brain connectivity differences between identified sub-
types. Finally, we applied multivariate regression modelling, to
detect associations between clinical profiles and abnormal FNC in
each identified subtype.

Method

Participants

We recruited 115 first-episode and medication-naïve patients with
MDD at the West China Hospital of Sichuan University.
Diagnoses of MDD were confirmed with the Structured Clinical
Interview for DSM-IV Disorders (SCID), determined by consensus
of two experienced clinical psychiatrists. All patients had not
received any lifetime psychotherapy or psychiatric medications
before MRI scanning, and none had a significant history of systemic
or neurological illness. They received different antidepressant treat-
ments later according to clinical guidelines. We also recruited 129
healthy controls, matched for age, gender, handedness and educa-
tion, from the local area by poster advertisement. Healthy controls
were screened with the SCID Non-Patient Version to confirm the
lifetime absence of non-affective psychosis, eating disorders and
mood and anxiety disorders. See Supplementary Table 1 available
at https://doi.org/10.1192/bjp.2021.103 for detailed inclusion and
exclusion criteria. Two experienced clinical psychiatrists rated clin-
ical symptoms of patients withMDDby using the 17-itemHamilton
Rating Scale for Depression (HRSD)9 and the 14-item Hamilton
Rating Scale for Anxiety (HRSA).10 All participants provided
written informed consent and the protocol was approved by the
Research Ethics Committee of West China Hospital, Sichuan
University (study ethical approval number: 2018(610)).

MRI acquisition and preprocessing

Neuroimaging data were acquired with a whole-body 3.0 T MRI
scanner (Siemens Trio, Erlangen, Germany), using a 12-channel
head coil, including T1-weighted anatomic imaging and resting-
state functional MRI. For functional studies, participants were
instructed to relax with their eyes closed, and each scan lasted 6
min and 40 s (i.e. 200 volumes). See Supplementary material for
the detailed information on MRI sequences and protocols.

MRI data preprocessing was done with MATLAB version
R2016b for Windows (MathWorks, Inc, USA; see https://www.
mathworks.com/products/matlab.html), and MRI data analyses
were done with SPM12 (Wellcome Centre for Human
Neuroimaging, UK; http://www.fil.ion.ucl.ac.uk/spm) and CONN
version 2019b for Windows (The Gabrieli Lab. McGovern
Institute for Brain Research, MIT, USA; see http://www.nitrc.org/
projects/conn). Briefly, resting-state images of each participant
were motion corrected, corrected for slice timing, normalised to
Montreal Neurological Institute space and smoothed with a
Gaussian kernel of 8 mm full width at half maximum. Denoising
(e.g. physiological aliasing) and head motion correction procedures
are detailed in the Supplementary material.

Group independent component analysis

Independent component analysis (ICA) is data-driven approach for
constructing a whole-brain FNCwithin the CONN toolbox, and has
been well validated. Unlike region of interest-based functional con-
nectivity analyses, ICA can delineate distinct, coherent resting-state
networks.11We performed a participant-wise group ICA to uncover
ordered components across all participants. Group ICA was per-
formed with 30 components and a dimensionality reduction of
64, which are the default settings of CONN. This approach provides
an optimised determination of network spatial locations for the
sample, image acquisition and analysis pipeline. It also allows iden-
tification of discrete subregions/networks within networks identi-
fied by Yeo et al.12 Spatial ICA was performed on the
preprocessed images to decompose the data into spatial independ-
ent components.We then examined the similarity of extracted inde-
pendent components with canonical resting-state networks (Yeo
et al’s seven networks), using spatial correlation analysis with con-
firmation by visual inspection. Independent components were
assigned into different networks, including the visual network, sen-
sorimotor network (SMN), dorsal attention network (DAN), ventral
attention network (VAN), affective/limbic network, frontoparietal
network (FPN) and default mode network (DMN). We additionally
defined subcortical and cerebellar networks, which have been impli-
cated in MDD pathophysiology (see Supplementary Fig. 1(a)).13

A detailed description of group ICA procedures is presented in
the Supplementary material.

Functional connectivity comparison between patients
and healthy controls

First-level correlation maps were produced by extracting the
residual blood oxygen level-dependent time course from each
independent component, and Pearson correlations were performed
between each pair of independent components to index FNC.
Correlation coefficients of each participant were converted to nor-
mally distributed z-scores, using the Fisher transformation for
second-level generalised linear model analyses. In the second-level
analysis, connectivity maps from all participants were entered into
GLM to compute differences in functional connectivity between
patients and healthy controls, with age, gender and head motion
as covariates. Statistical significance for all comparisons was thre-
sholded at connection-wise P < 0.001 and cluster-level false discov-
ery rate (FDR)-corrected P < 0.05.14 Correlation coefficients of each
participant were extracted for the subsequent rCCA.

rCCA and K-means clustering

High-dimensional neuroimaging data invariably includes features
not relevant to clustering results. We reasoned that more reliable
and meaningful depression subtypes would be marked by a
low-dimensional representation of the significant correlation
between neuroimaging features and clinical symptoms. Therefore,
to reduce dimensionality, in a first-step preliminary screener we
first identified all significant computed Spearman’s correlations
(P < 0.005) between connectivity features and each item of HRSD
and HRSA psychopathology ratings.3 Next, we used rCCA to
define a low-dimensional projection from these associations for
use in clustering. Then, to identify potential MDD subtypes, the
two-dimensional variates (representing connectivity features and
clinical symptoms, respectively) of the first component derived
from the significant rCCA models were subjected to K-means
clustering. The first component represents canonical correlations
that describes the maximum covariation between the two multidi-
mensional variables. The significance of the rCCAmodel was deter-
mined by permutation tests. Finally, the optimal cluster number and
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the validity of the cluster solution were determined with the
‘Nbclust’ package in R version 4.0.3 for Windows (R Foundation
for Statistical Computing, Vienna, Austria; see https://cran.r-
project.org/mirrors.html).15 Clustering stability was examined
with the Jaccard coefficient and a bootstrap technique (n = 1000)
in the ‘fpc’ package in R.16 Methodological details regarding
rCCA and K-means clustering algorithms are described in the
Supplementary material.

Functional connectivity comparisonsbetween subtypes
and healthy controls

To assess whether dysfunctional FNC differed byMDD subtypes, or
between subtypes and healthy controls, we performed a one-way
ANOVA analysis for subtype 1, subtype 2 and healthy controls by
using a GLM in CONN, with age, gender and head motion as
covariates. Statistical significance for all comparisons was
thresholded at connection-wise P < 0.001 and cluster level FDR-
corrected P < 0.05. Post hoc t-tests were performed to compare
connectivity patterns across each MDD subtype and the
healthy controls group. The FDR correction maintained a corrected
P < 0.05 for these comparisons.

Partial least square regression analysis

We applied partial least square regression (PLSR) to create a low-
dimensional representation that relates symptoms and network
connectivity. PLSR involves projecting a predictor space (X) and a
response space (Y) onto a latent space, and then finding the variance
in X-space that explains the maximum variance in Y-space. This
statistical approach is suited for the current problem because it
can work with multivariate response variables as well as multicolli-
nearity among the predictors.17 We constructed a PLSR model for
both subtype 1 and subtype 2 (the two subtypes defined by the
cluster analysis), to examine relations between subtype-differen-
tiated connectivity features and subtype-differentiated symptoms.
In addition, to assess the association of connectivity alterations
and symptoms in patients with MDD as a whole, we also conducted
a PLSR model for the whole MDD group. Details of this analysis are
presented in the Supplementary material. A graphic representation
of the analysis pipeline is presented in Fig. 1.

Results

Group ICA

The spatial matching across all participants between extracted inde-
pendent components and Yeo et al’s seven networks implemented
in CONN are shown in Supplementary Fig. 1. Among the 30 inde-
pendent components, four were identified as noise components,
leaving 26 for subsequent connectivity analyses. The selected 26
independent components included four independent components
in the visual network, four independent components in the SMN,
three independent components in the DAN, two independent com-
ponents in the VAN, two independent components in the limbic
network (LIM), four independent components in the FPN, four
independent components in the DMN, two independent compo-
nents in the subcortical network and one independent component
representing the cerebellar network (see Fig. 2(a)). More details
including the labels and peak coordinates of these independent
components are presented in Supplementary Table 2.

rCCA and K-means clustering

Results of rCCA analysis indicated that the first component has the
highest canonical correlation coefficient (r = 0.86) between FNC

and clinical symptoms, by permutation test (see Supplementary
Fig. 2). Therefore, the first component, including two canonical
variates of FNC and clinical features, was used as input for the
cluster analysis.

Participants with MDD were subdivided into two subtypes by
K-means clustering analysis of the two-dimensional variates. In
terms of the cluster distribution, 59 and 56 patients were
partitioned into subtypes 1 and 2, respectively. Validity and sta-
bility analyses showed that the two cluster solution had the
highest silhouette index (0.56) and Jaccard similarity (0.82)
(Supplementary Fig. 3).

Demographic and clinical profiles in MDD subtypes

Demographic and clinical data for each subtype are shown in
Table 1. HRSD and HRSA total scores did not differ between sub-
types, indicating that the discrimination was not by illness severity
(Fig. 3(c)).

We used the Kruskal–Wallis ANOVA to test subtype
differences in scores for each item of the HRSD and HRSA.
Eleven symptom measures showed significant differences,
with anhedonia symptoms prominent in subtype 1 and
sleep maintenance insomnia prominent in subtype 2 (Fig. 3(a)
and 3(b)).

Group comparison of FNC

Comparisons of FNC between the combined MDD group
and healthy controls showed abnormal connectivity patterns,
including hypoconnectivity within the FPN, visual network and
SMN, LIM and SMN, and LIM and DAN, and hyperconnectivity
between the FPN and LIM in the MDD group (Fig. 2(c)).

Distinct patterns of abnormal FNC between networks were
observed in the two MDD subtypes. Compared with healthy con-
trols, subtype 1 showed hyperconnectivity between the VAN (left
central opercular gyrus) and DAN (right lateral occipital gyrus)
and within the VAN (between left supramarginal gyrus and left
central opercular gyrus). By contrast, subtype 2 showed hyper-
connectivity between the DMN (left praecuneus) and VAN (left
operculum), FPN (right frontal pole) and visual network (right
occipital gyrus), and subcortical network (bilateral thalamus) and
DAN (bilateral lateral occipital gyrus), and hypoconnectivity
within the VAN (between left supramarginal gyrus and left opercu-
lum) (Fig. 2(e)).

In addition, there were common (‘shared’) connectivity abnor-
malities across the two patient groups versus healthy controls
(subtype 1 versus healthy controls and subtype 2 versus healthy con-
trols), which involved hypoconnectivity between the visual network
(bilateral occipital gyrus) and SMN (right superior temporal gyrus),
affective network (frontal orbital/medial gyrus) and SMN (right
superior temporal gyrus), and affective network (frontal orbital/
medial gyrus) and DAN (right middle temporal gyrus), and
hyperconnectivity between the affective network (left amygdala/
hippocampus/temporal pole) and FPN (left cerebellum-crus II)
(Fig. 2(d) and 2(e)).

Association between FNC and MDD symptoms

Significance of exploratory pairwise correlations in PLSR model
was determined by permutation test (P < 0.05, n = 1000).
Hyperconnectivity within the VAN was only negatively correlated
with sleep maintenance insomnia in subtype 1. Anhedonia was
only positively correlated to hypoconnectivity between the sub-
cortical network and DAN in subtype 2. To illustrate relations
between FNC and symptoms, feature loadings are shown in
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Fig. 3(d). There were no other significant associations in the PLSR
analyses.

Discussion

Main findings

The considerable heterogeneity of MDD presents a major obstacle
for the development of new treatment and personalised medicine.
Many previous studies have worked to parse this heterogeneity in
either purely clinical or biological terms – strategies that have had
limited utility and an unclear relationship to clinical practice. In
the present study, we evaluated a cohort of 115 patients with first-
episode MDD, and used an analytic approach that considered neu-
roimaging and clinical ratings simultaneously. Importantly, the
patients with MDD were treatment-naïve, so that medication
effects on functional connectivity patterns symptoms and symp-
toms did not confound the data analysis. We identified two specific
MDD subtypes with different symptom domains (insomnia domi-
nated and anhedonia dominated) that had distinct patterns of
FNC alteration. Our findings provide insight into MDD heterogen-
eity in biological and clinical terms, and represent a promising step
toward categorical subtype classification and, potentially, the devel-
opment of personalised treatments for MDD.

Interpretation of our findings

Of the two subtypes we defined, subtype 1 had more prominent
sleep maintenance insomnia and genital symptoms. In contrast,
subtype 2 demonstrated more prominent depressed mood, feelings
of guilt, suicide attempts and lack of enjoyment (anhedonia).
Importantly, total scores of depression and anxiety severity did
not differ between subtypes, indicating that our subtype delineation
did not merely separate mild and more severely ill patients.
Heterogeneity regarding insomnia and anhedonia features have
long been considered in depression research, and our findings
advance those clinical conceptualisations by linking them to differ-
ent regional alterations in functional brain systems.

Biological differences associated with these two symptom
dimensions included hyperconnectivity within the VAN, a
network involved in attention to salient events (especially nega-
tive events)18 that was associated with more severe insomnia.
This association suggests that an overactivation of attention
systems might be related to difficulties achieving and maintaining
restful sleep. This is consistent with a previous study demonstrat-
ing that increased resting-state activity in the VAN was related to
a hyperarousal state and insomnia in patients with MDD.19 In
contrast to this hyperconnectivity, hypoconnectivity in the sub-
cortical network and DAN, networks involved in orienting atten-
tion to internal thoughts rather than engaging with the external
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world,20 were more characteristic of subtype 2, consistent with
their association with anhedonia symptoms. These findings indi-
cate that distinct patterns of FNC were associated with hyperarou-
sal features of MDD and with the deficits of social motivation and
hedonic tone. Importantly, not only were there different
symptom-brain correlations, but the two patterns were evident
in different subgroups of patients with MDD. Thus, these obser-
vations may be helpful for understanding the complex patho-
physiological mechanisms of MDD and its clinical
heterogeneity. Further, they may suggest the need to target differ-
ent neural systems in patients with MDD, depending on their
pattern of symptom manifestation.

In addition to these distinguishing subtype features, some
abnormal network patterns were shared across the two patient sub-
groups. Overlapping abnormalities included hypoconnectivity
among the visual network and SMN, and affective network and
SMN, networks involved in emotion and sensorimotor process-
ing,21 and hyperconnectivity between the FPN and affective
network, networks involved in visceral/emotional monitoring.22

These findings highlight that although patients with MDD as a
group share some traits, distinguishing features of subtypes of
patients can still be identified. From a broader perspective, our find-
ings indicate that combining clinical and neurobiological features in
subtype identification may permit delineation of distinct and

Table 1 Demographic features of the two subtypes of patients with major depressive disorder and healthy controls

Subtype 1 (n = 59) Subtype 2 (n = 56) Healthy controls (n = 129) Statistics P-value

Age 33.63 (11.74) 30.43 (11.26) 32.95 (10.39) F = 1.429 0.241
Gender, male:female 21:38 19:37 57:72 χ2 = 2.278 0.320
Education levela 1.81 (1.04) 1.50 (0.79) 1.52 (0.69) F = 1.741 0.178
Age at onset, years 33.18 (11.82) 29.90 (11.33) Not applicable t = 1.518 0.132
Illness duration, weeks 23.37 (24.91) 27.68 (28.15) Not applicable t =−0.870 0.386
Handedness, right/left 56:3 49:7 129:7 χ2 = 3.745 0.154
Depression symptoms

HRSD score 25.03 (5.16) 26.45 (5.74) Not applicable t =−1.407 0.167
Anxiety symptoms

HRSA score 24.46 (9.67) 24.34 (8.83) Not applicable t = 0.068 0.946

All data are shown as mean (s.d.) or ratios. HRSD, Hamilton Rating Scale for Depression; HRSA, Hamilton Rating Scale for Anxiety.
a. Level 1: bachelor’s or equivalent education; level 2: postsecondary non-tertiary or upper secondary education; level 3: lower secondary education; level 4: primary education; level 5: no
education.
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Fig. 3 Subtype-specific clinical profiles for (a) depression symptoms and (b) anxiety symptoms that varied most significantly by cluster (P <
0.05, Wilcoxon rank-sum tests, false discovery rate corrected). Each item value was z-transformed with respect to the mean for all patients in
each subtype. (c) Boxplot of subtype differences in overall depression and anxiety severity (total HRSD/HRSA score). (d) Loadings of the distinct
functional network connectivity (FNC) and clinical symptoms from partial least squares regression (PLSR) in each of the two identified subtypes.
The left graph shows loadings of PLSR relating distinct FNC (within the VAN) to insomnia-middle (D5) in subtype 1; the right graph shows loadings
of PLSR relating distinct FNC (between the subcortical network and DAN) to anhedonia symptoms (D7) in subtype 2. Items in HRSA and HRSD
rating instruments are presented on the y-axis (e.g. D7 is the seventh item of HRSD). The asterisk indicates significant difference from mean
symptom severity rating for all patients, P < 0.05; error bars depict s.e.m. *P < 0.05, **P < 0.005, ***P < 0.001.
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clinically relevant subtypes of patients with MDD, to advance inte-
gration of neurobiology with clinically relevant behavioural features
for refining disease classification and treatment for depression
syndromes.23

Heterogeneity is a common issue not only for MDD but across
psychiatric syndromes. Identification of discrete homogeneous sub-
types is becoming recognised as an important path for the develop-
ment of more personalised diagnostics and treatments.2 Working to
resolve heterogeneity by using both clinical and neurobiological
information together represents a promising strategy in this
regard. Although our findings represent a significant step forward
in this direction, they to be replicated and their clinical utility
needs to be established in clinical trials.8 Further, given the com-
plexity of the problem, group clustering efforts such as ours are
beginning with single or a small domain of biological phenotypes.
In the longer term, combining wider ranges of phenotypes in
predictive/classification models likely will be needed to optimize
subtype characterisation for nosology refinement and identifying
targets for subtype-specific therapies. Comparison of different
methodological approaches for identifying subtypes will also be
needed. In the present study, we used a regularised version of
CCA to incorporate latent relations between neuroimaging and
clinical data-sets, which tends to avoid overfitting and unstable
solutions that can result from use of classical CCA,24 but alternative
approaches may have benefits as well.

Limitations

Out study has limitations that need to be considered. First, although
we used the bootstrapping method to establish the stability of clus-
tering, we did not have an external validation data-set to replicate
the clustering results. Second, our study included treatment-naïve
patients with first-episodeMDD. This group is useful for identifying
disease-related features independent of drug treatment effects, but it
is unclear whether our findings would be applicable toMDD groups
with multiple prior episodes and active antidepressant therapy, and
across the lifespan, to paediatric and elderly patients. Third, more
precise estimates of functional connectivity may be obtained using
longer data acquisitions, which can increase the reliability of intrin-
sic connectivity estimates compared with 5–7 min of resting-state
data.25

Practical implications

The aim of the present study was to use the association between clin-
ical profiles and functional brain imaging features in an integrated
way for the purpose of defining MDD subtypes. We applied a
rCCA and clustering-based method, considering both neuroima-
ging and clinical data, to define two subtypes of MDD that differen-
tiated both in their symptom profiles (insomnia dominated and
anhedonia dominated) and distinct patterns of altered brain func-
tion. Although the two subtypes were associated with different
MDD symptom features, they cannot be simply distinguished in
overall depression severity or duration, as has been a challenge in
some previous efforts at subgroup identification. Further, we note
that neither subtype was a rare entity, with the two subtypes
being relatively equally represented in our sample. Our specific find-
ings regarding the neurobiological-clinical framework for defining
subtypes need to be examined in terms of its utility for personalising
MDD treatments, and for guiding treatment development efforts.
Success in such efforts would accelerate personalised treatment
for depression, and speed the integration of neuroscience-based
evaluations and clinical/behavioural evaluation in providing
optimal treatment for patients with MDD.
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Saturn: star of melancholy

George Ikkos

Celebrated ‘Saturn and Melancholy: Studies in the History of Natural Philosophy, Religion and Art’, by Klibansky et al, was
published in English by the Warburg Institute in London in 1964. The Institute started life in Hamburg in 1909 as the
Warburg-Bibliothek für Kulturwissenschaft, a library for art studies established by Aby Warburg (1866–1929), scion of the
city’s renowned Jewish banking family. He had ceded his inheritance to his brother, in exchange for a promise to buy him
any book he requested. In 1926 the Library became an Institute, later affiliating with Hamburg University. Under Nazi threat,
in 1933 it relocated to London and in 1944 became associated with London University. Established in 1798, M. M. Warburg &
Co, still in Hamburg, is the longest surviving bank in the world.

Saturn is our solar system’s furthest planet visible to the naked eye, hence the darkest. The first direct reference to it as relat-
ing tomelancholia occurs in Arab astrology during the 9th century. Attributed to it werewhat initially appear to be bewildering
and contradictory powers. It is the darkness that links the planet to black in black bile and hencemelancholia. It is also this link
that helps make sense of its superficially contradictory powers in the light of earlier Greek and Roman humoral theories of
temperament and illness. It also carries it forward in history to Renaissance literature, coloured by Christianity. In theWestern
pictorial tradition Melancholia was most famously depicted in 1514 at the threshold of Enlightenment in Albrecht Dürer’s
eponymous engraving of brooding contemplation. A power attributed to Saturn was to delay projects associated with it.
The final proofs for the book had originally been set in German in Hamburg in 1939 but were destroyed during the annihilating
bombing of the city by the Allies during the Second World War. It was not published in its original language until 1990.

Aby, an emotionally unstable and volatile child, rejected his family’s religious practices andmarried Mary Hertz, daughter of a
senator andmember of the Evangelical Lutheran Church Synod against their wishes. A pioneer inmultidisciplinary art history,
he challenged romantic ideas of artistic genius and rejected the offer of a professorship in Halle University before accepting
one in Hamburg in 1919. He suffered relapsingmental illness andwas admitted to hospital in Kreuzlingen, Switzerland, in 1921
under Ludwig Binswanger, with a differential diagnosis of schizophrenia. Emil Kraepelin visited and diagnosed ‘mixedmanic–
depressive’ state. He was discharged in 1924 but lectured only occasionally thereafter. When he died in 1929, hewas working
on the unfinished Mnemosyne Atlas, an idiosyncratic collection of panels with nearly 1000 pictures from books, magazines,
newspapers and other quotidian sources pinned on them. He wanted to share with others the comfort they had given him
during periods of suffering. It was published in book form in German in 2008, the year of global financial crisis. At the time of
writing, during the COVID-19 pandemic, the Warburg Institute is offering a virtual tour of its Atlas exhibition. Mnemosyne was
the classical Greek goddess of remembrance.
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