CORRECTIONS TO CANONICAL EXPRESSIONS IN BOOLEAN ALGEBRA

ARCHIE BLAKE

Two errors have appeared in my dissertation.¹ First, in the symbolic statement of Theorem (14.1), " $r_i \sim \Lambda$ " should be " $r_i \sim V$." Second, as J. C. C. McKinsey points out in his review, Theorem (10.8) is not correct. The error in the proof enters in the last application of Theorem (10.7), for which the hypothesis $p^{\text{syl}_{c_2}}$ would be needed. The construction given at the bottom of page 35 is valid, however.

To state the correct theorem to replace Theorem (10.8), adopt the notation $\mathrm{syl}_c(p)$ for any one of the mutually congruent polynomials resulting from the adjunction to p of all σ -terms informally included in p which are obtainable by eliminating c from pairs of terms of p. Then:

Theorem. $p^{\mathrm{syl}_{c_1}} \cdot) \cdot (\mathrm{syl}_{c_2}(p))^{\mathrm{syl}_{c_1}}$.

Denote $\operatorname{syl}_{c_2}(p)$ by p_1 ; evidently $p_1^{\operatorname{syl}_{c_2}}$. Supposing the conclusion false, consider any two terms m_1 and m_2 of p_1 such that $(m_1 + m_2)^{-\operatorname{syl}}$ and $c_1^{\operatorname{fact} m_1}$, $c_1^{\dagger \operatorname{fact} m_2}$. Then $m_1 \leqslant c_1^{\dagger}$, $m_2 \leqslant c_1$, and no letter other than c_1 or c_1^{\dagger} enters with opposite signs in m_1 and m_2 . If m_1 and m_2 are both terms of p, then by hypothesis $\sigma(m_1+m_2) \ll p \ll p_1$. Next let one of m_1 and m_2 —say m_1 —be one of the new terms adjoined in forming p_1 , so that $\exists (m_{11} \cdot m_{12})^{\operatorname{terms}} \xrightarrow{p} \rightarrow m_{11} \leqslant c_2^{\dagger}$. $m_{12} \leqslant c_2$, and all co-letter factors of m_{11} and m_{12} except c_2 and c_2^{\dagger} are factors of m_1 .

Suppose $m_2^{\text{term }p}$. Not both of c_2 and c_2^{\dagger} are factors of m_2 —say $c_2^{-fact \ m_2}$, $m_2 \leqslant c_2$. Now $m_{12} \leqslant c_1^{\dagger}$ since $m_1 \leqslant c_1^{\dagger}$; also no letter other than c_1 or c_1^{\dagger} enters with opposite signs in m_{12} and m_2 , because such a letter would then enter with opposite signs in m_1 and m_2 . Then by Theorem (10.7), $\exists m_3^{\text{term }p} \ni \cdot m_3 \leqslant c_1 \cdot m_3 \leqslant c_1^{\dagger} \cdot m_{12} + m_2 \sqsubseteq m_3$, whence $m_3 \leqslant c_2$, and every co-letter factor of m_3 except (possibly) c_2^{\dagger} is a factor of $\sigma(m_1 + m_2)$. If c_2^{\dagger} is a factor of m_2 , it is also a factor of $\sigma(m_1 + m_2)$, so that $\sigma(m_1 + m_2) \ll p \ll p_1$. But if c_2^{\dagger} is a factor of m_2 , then by Theorem (10.7), $\exists m_4^{\text{term }p} \ni \cdot m_4 \leqslant c_1 \cdot m_4 \leqslant c_1^{\dagger} \cdot m_{11} + m_2 \sqsubseteq m_4$, whence $m_4 \leqslant c_2^{\dagger}$. Also no letter other than c_2 or c_2^{\dagger} enters with opposite signs in m_3 and m_4 , so that by Theorem (10.7), $\exists m_5^{\text{term }p_1} \ni \cdot m_5 \leqslant c_2 \cdot m_5 \leqslant c_2^{\dagger} \cdot m_3 + m_4 \sqsubseteq m_5$, whence every co-letter factor of m_5 is a factor of $\sigma(m_1 + m_2)$, and $\sigma(m_1 + m_2) \ll p_1$.

Suppose now that $m_2^{-\text{term }p}$. Then $\exists (m_{21} \cdot m_{22})^{\text{terms }p} \ni m_{21} \leqslant c_2^{\dagger} \cdot m_{22} \leqslant c_2$, and all co-letter factors of m_{21} and m_{22} except c_2 and c_2^{\dagger} are factors of m_2 . Since $m_{11} \leqslant c_1^{\dagger}$, $m_{21} \leqslant c_1$, and no letter other than c_1 or c_1^{\dagger} enters with opposite signs in m_{11} and m_{21} , it follows by Theorem (10.7) that $\exists m_6^{\text{term }p} \ni m_6 \leqslant c_1 \cdot m_6 \leqslant c_1^{\dagger} \cdot m_{11} + m_{21} \sqsubseteq m_6$, whence $m_6 \leqslant c_2^{\dagger}$. Similarly $\exists m_7^{\text{term }p} \ni m_7 \leqslant c_1 \cdot m_7 \leqslant c_1^{\dagger}$

Received July 18, 1938.

¹ Canonical expressions in Boolean algebra, The University of Chicago, 1937.

² The journal of symbolic logic, vol. 3 (1938), p. 93.

 $m_{12}+m_{22} \sqsubset m_7 \cdot m_7 \ll c_2$. No letter except c_2 or c_2^{\dagger} enters with opposite signs in m_6 and m_7 , because such a letter must then enter in one of m_{11} and m_{21} with sign opposite to its sign in m_{12} or m_{22} , and must therefore either enter with both signs in m_1 or m_2 , or enter with opposite signs in m_1 and m_2 ; the latter is possible only for c_1 or c_1^{\dagger} , neither of which is a factor of m_6 or m_7 . Then by Theorem (10.7), $\exists m_8^{\text{term } p_1} \ni m_8 \ll c_2 \cdot m_8 \ll c_2^{\dagger} \cdot m_6 + m_7 \sqsubseteq m_8$. Then every co-letter factor of m_8 is a factor of $\sigma(m_1+m_2)$ so that $\sigma(m_1+m_2) \ll p_1$.

WASHINGTON, D. C.