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We develop a theoretical model to study (dense) two-dimensional gravity current flow
in a laterally extensive porous medium experiencing leakage through a discrete fissure
situated along this boundary at some finite distance from the injection point. Our model,
which derives from the depth-averaged mass and buoyancy equations in conjunction with
Darcy’s law, considers dispersive mixing between the gravity current and the surrounding
ambient by allowing two different gravity current phases. Thus do we define a bulk phase
consisting of fluid whose density is close to that of the source fluid and a dispersed phase
consisting of fluid whose density is close to that of the ambient. We characterize the degree
of dispersion by estimating, as a function of time, the buoyancy of the dispersed phase and
the separation distance between the bulk nose and the dispersed nose. On this basis, it
can be shown that the amount of dispersion depends on the flow conditions upstream of
the fissure, the fissure permeability and the vertical and horizontal extents of the fissure.
We also show that dispersion is larger when the gravity current propagates along an
inclined barrier rather than along a horizontal barrier. Model predictions are fitted against
numerical simulations. The simulations in question are performed using COMSOL and
consider different inclination angles and fissure and upstream flow conditions. Our study
is motivated by processes related to underground H» storage e.g. an irrecoverable loss of
H; when it is injected into the cushion gas saturating an otherwise depleted natural gas
reservoir.
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1. Introduction

Among possible substitutes for hydrocarbon fuels, hydrogen has a high energy density
and can be converted into heat or electricity without emitting CO, (Andrews & Shabani
2012). Although there is an obvious incentive to generate hydrogen from renewables, it is
difficult to do so on a temporally consistent basis given the variability of e.g. wind forcing
and solar radiation. As such, options for Hj storage must be pursued so that H> produced in
excess may be stored, then used when demand outstrips supply (Sainz-Garcia et al. 2017).
An appealing option for Hj storage, particularly when considering large volumes of Hp,
may be underground storage (Panfilov 2016). The technical and economic feasibility of
underground H» storage (UHS) has been studied in various locales e.g. Bulgaria, United
States, United Kingdom, Poland, Spain and Turkey (Flesch et al. 2018). Here, we consider
UHS in the context of depleted reservoirs. In particular, we focus on depleted natural
gas reservoirs, which avoid a possible contamination of Hy by the longer chain organic
molecules present in depleted oil reservoirs.

Underground H; storage in depleted natural gas reservoirs requires cushion gas,
gas stored permanently in formation to maintain pressure for optimum injection and
withdrawal. Although the cushion gas may be Hp, it is more typically a dissimilar (heavier)
gas such as CO; or Ny (Feldmann ef al. 2016). Thus H» injection into cushion gas may be
associated with significant mixing, whether due to diffusion or dispersion. Mixing may be
exacerbated by buoyancy effects, which result from the small size of the Hy molecule. In
turn, H, has a high mobility in formation and may therefore travel long lateral distances
or else leak into adjoining stratigraphic layers (Lubon & Tarkowski 2021). Leakage
often arises from local fault(s), which act as pathways through otherwise impermeable
layers — see e.g. Flett, Gurton & Taggart (2005). Complicating matters are the facts
that (i) local faults may prove difficult to detect in surveys and (ii) monitoring injectate
migration in UHS operations is non-trivial and expensive. There is a need, therefore,
for tractable conceptual models of buoyancy-driven flow, drainage and dispersion that
may inform key processes important to the techno-economic evaluation of UHS projects.
Of course, such conceptual models might additionally consider effects such as viscous
fingering, capillary effects, bio-geochemical reactions and, when residual liquid is present,
capillarity, dissolution and chemical reaction. However, and in the interests of simplicity,
we do not examine such additional effects here.

Another possible application of our work is to CO; sequestration. In this related (and
better-studied) problem, one likewise considers the eventual fate of a fluid that is injected
at high pressure into a porous medium. Similar to UHS, the success of CO, sequestration
relies, in part, on considerations of the mixing (e.g. by dissolution cf. MacMinn et al. 2012;
Khan, Bharath & Flynn 2022) between the injectate with the ambient fluid (i.e. brine) that
occupies the pore space. However, CO; sequestration flows are complicated by surface
tension effects and the possibility of capillary trapping, which arise because of the relative
immiscibility of CO; and brine.

Buoyancy-driven flows in porous media are bookended by two canonical scenarios: a
vertically ascending or descending plume and a horizontally propagating gravity current.
Wide attention has been devoted to gravity current flow in porous media since the seminal
work of Huppert & Woods (1995), who studied the evolution of finite releases of fluid
propagating in an expansive rectilinear porous medium. They considered that (dense) fluid
moves under gravity along either horizontal or inclined boundaries and through a medium
whose permeability is either uniform or else changes normal to the lower (impermeable)
boundary. (For analytical convenience, many previous studies assume that the gravity
current density is larger than that of the surrounding ambient. To be consistent with this
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earlier body of research, a similar assumption shall be adopted here. In this respect, the
gravity currents to be described quantitatively in e.g. section 2 are ‘upside down’ relative to
those expected in real UHS operations.) Huppert and Woods’s analysis was extrapolated to
axisymmetric geometries by Lyle et al. (2005). Further extensions to Huppert & Woods’s
work have considered gravity current flow in shallow porous media (MacMinn et al. 2012;
Pegler, Huppert & Neufeld 2014), through horizontally heterogeneous media (Zheng,
Christov & Stone 2014) and through layered porous media that are either horizontal
(Pritchard, Woods & Hogg 2001; Goda & Sato 2011; Sahu & Flynn 2017) or else make
an angle to the horizontal (Bharath, Sahu & Flynn 2020). Studies have further considered
non-Newtonian gravity currents (Ciriello et al. 2016) and gravity currents consisting of
fluid having spatially variable densities (Pegler, Huppert & Neufeld 2016).

Notable in the above summary of previous research are investigations involving a
leakage of fluid from the gravity current underside. This leakage may be either localized
(e.g. through a discrete fissure) or else distributed (e.g. into a lower layer of comparatively
small permeability). Pritchard (2007) modelled gravity current flow in a porous medium
with a series of line fissures in which drainage is due to the hydrostatic pressure exerted
by the column of gravity current fluid situated directly above a particular fissure. Neufeld,
Vella & Huppert (2009) expanded this analysis by additionally considering the weight of
the dense fluid inside and below the fissure. More recently, Gilmore et al. (2021) combined
Neufeld et al.’s description with the plume solution of Sahu & Flynn (2015) to study flow
in faults cross-cutting multiple aquifers. Meanwhile Avci (1994) studied local drainage
in separated confined aquifers taking into account the effect of the injection pressure
and the natural contrast of hydraulic head in two separated aquifers. Nordbotten, Celia
& Bachu (2004) extended Avci’s work for multiple abandoned leaky wells. The above
studies mostly invoke a sharp interface approximation and so ignore mass transfer between
gravity currents and the surrounding ambient fluid e.g. through dissolution, diffusion or
dispersion. However, in miscible flow e.g. gas reservoir storage of Hj, the numerical
simulations of Feldmann et al. (2016) indicate that mixing between the injected and
ambient fluids may be non-trivial. As we shall see, this feature becomes more prominent
in the presence of draining.

Mixing in porous media involves dispersion and diffusion. Diffusion is a process driven
at the molecular scale by concentration differences while dispersion is advection driven
and is related to the macro-scale flow phenomena. The mixing that occurs between
miscible fluids in porous medium flow depends on the Péclet number, which characterizes
the importance of advection to diffusion. Mixing is due to diffusion for Pe < 1 and due to
dispersion (transverse and longitudinal) for Pe > 1 (Delgado 2007). Studies that explore
mixing in the context of buoyancy-driven porous medium flow include Szulczewski &
Juanes (2013). They examined mixing due to diffusion for lock exchange flows consisting
of two fluids in vertically confined permeable rock. Szulczewski & Juanes (2013) showed
that, if a constant volume of dense fluid is released into light fluid, there is an evolution
through the following regimes: (i) diffusion-dominated flow, (ii) slumping in which the
interface between the two fluids is sharp and tilts in an S-shaped curve, (iii) slumping
in which the interface remains sharp but changes from an S-shaped curve to a straight
line, (iv) Taylor slumping where mixing increases due to Taylor dispersion at the aquifer
scale and decelerates the flow and (v) late diffusion where, similar to (i), transport occurs
primarily by diffusion. Hinton & Woods (2018) modelled longitudinal shear dispersion due
to a vertical gradient of permeability. They demonstrated that the pattern of longitudinal
dispersion depends on a number of factors including (i) the viscosity (or mobility) ratio and
(i1) the severity of the vertical permeability gradient. Huyakorn et al. (1987) considered
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interfacial mixing associated with sea water intrusions into coastal aquifers. The study of
Paster & Dagan (2007) also applied boundary layer approximations and the von Karmén
integral method to solve for the velocity-dependent transverse dispersion in sea water
intrusions having a non-uniform flux field. Mixing in miscible gravity currents is studied
directly by Sahu & Neufeld (2020). In their study, the authors used the depth-averaged
mass and buoyancy conservation equations to provide a theoretical model for porous
medium gravity currents experiencing transverse dispersion only. Theoretically speaking,
they determined that the gravity current buoyancy flux can be described by a self-similar
solution. However, in contrast to the sharp interface case, the gravity current height and
concentration are not self-similar.

A limitation of the study by Sahu & Neufeld (2020) is that it ignored longitudinal
dispersion. Furthermore, they considered a dispersed interface only and did not define the
bulk interface separately from the dispersed interface. The gravity current nose position
is therefore identical to that predicted by a sharp interface formulation. Sahu & Neufeld’s
model works well when the lower boundary is impermeable, however, when draining is
allowed to occur (either locally or in a distributed fashion), experimental evidence from
Sahu & Flynn (2015) (e.g. their figure 3¢) and from Bharath et al. (2020) shows that a
significant separation may arise between the fronts for the bulk and dispersed phases of
the gravity current.

Due to these shortcomings in the literature, we seek to provide a theoretical model for
porous medium gravity current flow where the bulk and dispersed phases are accounted
for separately using the depth-averaged mass and buoyancy conservation equations for
each phase. Also important is to develop a complementary numerical model (e.g. using
COMSOL Multiphysics) to validate our theoretical model. In § 2, we derive a theoretical
model for gravity currents experiencing dispersion and local drainage. Section 3 describes
the numerical simulations meant to corroborate model output. In § 4, we discuss results
and compare the predictions of the theoretical model with those due to the numerical
simulations. Section 5 illustrates the application of our theoretical model to UHS in
depleted reservoirs. Finally, current work is summarized and ideas for future research are
outlined in § 6.

2. Theoretical model
2.1. Governing equations

We consider gravity current flow due to a dense fluid injection of density p; along a
punctured boundary that makes an angle 6 with the horizontal, as depicted in figure 1.
Simplifying assumptions are as follows: (i) initially, the porous medium is saturated
with ambient fluid of uniform density pp; (ii) the source fluid and ambient fluid are
incompressible and also miscible i.e. capillary effects can be ignored both in the medium
as well as in the fissure; (iii) the gravity current consists of a bulk phase and a dispersed
phase both of which remain long and thin such that the gravity current flow is everywhere
hydrostatic, i.e. the Dupuit approximation is applicable, and in addition, the depth of the
ambient is much larger than the gravity current depth; (iv) consistent with the Boussinesq
approximation, the dynamic viscosity, u, is independent of concentration and therefore the
viscosity of the bulk and dispersed phases are assumed equal; (v) at least until the location
of the isolated fissure, the leading edge of the dispersed phase remains close to that of
the bulk phase such that negligible drainage of dispersed fluid occurs; (vi) Pe > 1, such
that diffusion is ignored; and (vii) broadly analogous to the dissolution study of MacMinn
et al. (2012), whatever mixing occurs along the bulk-dispersed boundary leaves, within
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Dispersed interface

)

Bulk interface

Figure 1. Schematic of a leaky gravity current propagating along an inclined boundary with local drainage
through an isolated fissure. The gravity current consists of bulk and dispersed phases. Variables /1 (bulk phase
height), h» (overall height), u; (bulk phase velocity), u»> (dispersed phase velocity), w,; (entrainment velocity
from bulk phase), w,» (entrainment velocity from ambient) and ¢, (average concentration in dispersed phase)
are functions of x and . Meanwhile, variables xy, (bulk phase nose position) and xy, (dispersed phase nose
position) are functions of ¢ only.

the bulk phase, a core of fluid whose density remains ps. This core of bulk fluid remains
upstream of the dispersed phase and, in time, must extend downstream of the fissure.

Following Vella & Huppert (2006), the coordinate system (x, z) associated with the
along- and cross-slope directions is obtained by a clockwise rotation of the natural
coordinates (X, Z) through an angle 6. The origin of both coordinate systems is coincident
with the isolated source, which is indicated by the red dot in figure 1. In the analysis to
follow, we restrict our attention to x > 0.

If the gravity current experiences local drainage through a fissure situated at x = x; and
having width &, the continuity equation as applied to the bulk phase reads

dhy @ M
0

where ¢ is the porosity, h; is the height of the bulk phase and w,; and w, are the
Darcy velocities respectively accounting for entrainment from the bulk to the dispersed
phase and drainage through the fissure. Meanwhile F(x,xs, &) is a boxcar function
centred on the fissure, which is zero everywhere except within the interval x; — &/2 <
x < xr +&/2. Because the pressure is hydrostatic, the bulk phase velocity u; does not
change significantly in a direction perpendicular to the bottom boundary. Thus, u#; can be
considered independent of z in (2.1) (Happel & Brenner 1991). Accordingly, (2.1) may be
simplified to
ohy
¢ ot
The solute concentration in the bulk phase is assumed to be equal to the source
concentration, cg; consequently, it is unnecessary to apply a solute conservation equation
in the bulk phase.

0
+ a(ulhl) = —Wel — waF(x, x7,§). (2.2)
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The continuity equation for the dispersed phase is

dhy — h a [
(hy 1)+_/

dz = s 2.3
o7 ox )b, up dz = we1 + we2 (2.3)

¢
in which hy — hy and uy are, respectively, the thickness and speed of the dispersed phase.
(Note that, consistent with the caption to figure 1, u; is assumed independent of z). Finally,
W2 1s the entrainment velocity from the ambient to the dispersed phase. By simplifying
and exploiting (2.2), the above result can be rewritten

ohy 0 ad
¢—— + —lua(hy — h)] = ——(Wih1) +wea — waF (x, x7, §). (2.4)
at 0x ax
Finally, solute conservation in the dispersed phase provides
9 [ ) hy
¢— cpdz 4+ — uycy dz = weics. (2.5)
ot h ax n

Here, w1 is defined only over the interval 0 < x < xy, (see figure 1). By defining the
dispersed phase buoyancy as by = c¢(hy — hy), in which ¢; is the z-averaged solute
concentration in the dispersed phase, (2.5) can be further simplified to

0by 0
¢W + a(uzbz) = WelCs. (2.6)

Because the bulk buoyancy, b1 = c¢shy, equals the source buoyancy, solute conservation in
the bulk phase is trivial.

Similar to the classical entrainment hypothesis that was proposed for flow in free jets by
Ellison & Turner (1959), we consider that the entrainment of ambient fluid is proportional
to the gravity current characteristic velocity. Of greater relevance to buoyancy-driven
flow in porous media, Sahu & Neufeld (2020) also used a linear relationship between
the entrainment and characteristic velocities in their study of dispersive gravity currents.
Motivated by this latter work most especially, we define w,1 = eju; and wer = exun,
where €1 and ¢ are entrainment coefficients that account for the effects of dispersive
mixing. Theoretically speaking, there is no reason that &; and ¢, have to be different.
Therefore, we assume &; = g3 = ¢ so as to reduce the number of free parameters in our
problem. (The preliminary accuracy of this assumption can be assessed in the context of
the agreement between theory and numerical simulation to be presented later. A more
detailed assessment of the relative magnitudes of 1 and &, requires a dedicated study
and so is left for future work.) On the other hand, and motivated by analogous studies of
turbulent free gravity currents (Ellison & Turner 1959; Reeuwijk, Holzner & Caulfield
2019), we allow the possibility that ¢ varies with the inclination angle of the bottom
boundary, 6. Such a dependence will be explored below.

Pressure in the bulk and dispersed phases is defined as

p1(x,z, 1) = [Apaghy + (Ap1 — Ap2)ght — psgzl cos + pogxsin® + Py 0 <z < hy,
(2.7)

p2(x, 2, 1) = [Ap2ghy — p2gz] cos O + pogxsin® + Py hy <z < hy, (2.8)

in which g is the gravitational acceleration, Py is a reference pressure evaluated at
x = z = 0 outside of the gravity current, ps is the source (or bulk) fluid density and p»
is the z-averaged density in the dispersed phase. Moreover, Ap; = poBc; is the density
difference between the bulk and ambient phases and Apy = pgfca is the corresponding
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density difference for the dispersed phase, averaged over z. In deriving the previous
expressions for Ap; and Ap,, reference is made to a linear equation of state of the
form p = po(1 4+ Bc) in which pg is a reference density and S is the solute contraction
coefficient. There is, in fact, a more subtle assumption associated with the derivation of
(2.8) namely that vertical variation of p, small enough such that

1 hy 1 hy
padz =~ / o dz = po. 2.9)
hy —z /Z hy — hy Jp,

Stated differently, the above assumption suggests a dispersed phase hydrostatic balance of
the form

op2 _
P2 _ e, (2.10)
9z
rather than
ap2
9z

Our assumption that (2.10) and (2.11) are approximately equal is, of course, consistent
with the principle of ignoring the vertical variation of concentration and of velocity in the
dispersed phase.

By combining (2.7) and (2.8) with Darcy’s law, i.e.

k
V= —;(Vp — P8): (2.12)

where V is the Darcy flux, u is the dynamic viscosity and k is the (assumed constant)
medium permeability, the calculation steps of Appendix A suggest that

kgB [ 9b> ahy .
uy(x,t) = ——— | —cosf +cy| — cosf —sinf | |, (2.13)
v 0x 0x
k d(crh k 0 byh
us (x, t):—iﬂ (c2h2) cos — ¢o sinf E—g—’B — 272 cos — cosinf | .
v 0x v | dx \ho — Iy
(2.14)

Here, v = 11/ pg is the kinematic viscosity.

If we assume drainage to be hydrostatically driven through a fissure having permeability
kr, width & and depth /, application of Darcy’s law (2.12) similar to Neufeld et al. (2009)
yields the following expression for the drainage velocity:

k h b
wq(x, t) = ff’B (Cs 1+ 5

] + cs> cosb; (2.15)

(see Appendix B). Upon substituting ((2.13)—(2.15)) and the expressions for the
entrainment velocities w,; and wep into (2.2), (2.4) and (2.6), the following modified
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governing equations result:

oh keB o(hU k, k hi +b
¢_1+i'3 (1 ):_8g_,3U_ r8B (e + Z—i—cs cosf x F(x, xs, &),
ot v ox v v )
(2.16)
dhy  kgB 9 v
— = — | —h)|—-C)-—mnU
¢8t v8x|:(2 1)<8x ) 11|
k ow k hi +b
_ R8P (3 ) K8 (el cosf x F(x,xp. &),  (217)
v ox v l
ob k 0 oy k !
g2 KB T, (DY )| = R8Py (2.18)
ot v 0x 0x v

In the above equations, and for the sake of notational economy, we have introduced the
following symbols:

by ohy .
U=—|—+c¢c;— )cosO + ¢ssind, (2.19)
0x 0x
brh
W= 22 (os0, (2.20)
hy — hy
C b2 Gne 2.21)
SInog. .
hy — hy

The variables U, ¥ and C are introduced only to simplify the notation; we do not regard
these variables as having a noteworthy physical significance. Equations ((2.16)—(2.18))
contain three unknowns, namely /1, h and b,. The equations are solved with the boundary
conditions listed below.

2.2. Boundary conditions
Boundary conditions for ((2.16)—(2.18)) are

k db dh
_keB |:( 2 4 csa—l) hicosf — cghy sin9:| =dqs,  hilxy, =0, (2.22a,b)
X

mir 0
halo = hilo,  h2ley, =0, (2.22¢,d)
b2lo =0, balxy, =0. (2.22¢,1)

Here, xy, and xy, are the bulk and dispersed nose positions, respectively as indicated
in figure 1. Note that (2.22a) represents the influx boundary condition, gy = (u1h1)g, at
the source. It is not required to take by|y, = 0 because the source concentration is fixed
(and finite) so bq| X, = 0 is automatically satisfied by (2.22b). From boundary condition
(2.22¢), we assume that the thickness, i, — hy, of the dispersed phase is zero at x = 0; we
investigate the validity of this assumption below. Finally, the expressions of global volume
balance in the bulk phase and the expression of global buoyancy/solute balance for the
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combined bulk and dispersed phases can be written as

qst_qb/ hy dx — S/wddt—// wer dx dt, (2.23a)

qscst = ¢C§‘/ hydx — Scs/ wq dt + ¢/ (hy — hy)cp dx. (2.23b)
0 0

The first term on the right-hand side of (2.23a) represents the volume of the bulk phase
fluid, the second term represents the volume of bulk fluid drained through the fissure and
the third term represents the volume of fluid lost by the bulk phase to the dispersed phase.
The first term on right-hand side of (2.23b) represents the buoyancy in the bulk phase, the
second term represents the buoyancy lost by the bulk phase due to fissure drainage and the
third term represents buoyancy in the dispersed phase where we have assumed implicitly
that 11 = 0 for xy, < x < xn,.

2.3. Non-dimensional governing equations

Consistent with Neufeld et al. (2009), we respectively define the characteristic downdip
length scale, the characteristic across-dip length scale and the characteristic time scale as

1/2
e (waen)? (o)
=x, H=|—-— , and T = , (2.24a—c)

kg kgqs

where g; = g} = gBc; is the source reduced gravity and x; denotes the fissure position —
see figure 1. Thus do we define the following non-dimensional (starred) variables:

3_5_2’ x*zi, g*:é, hT:ﬁ, h;:lg, l*:i, t*:i.
Cs X X H H H T
(2.25a-g)

Neufeld er al. (2009) defined a parameter to characterize the drainage through an
isolated fissure of width &. With reference to this parameter and their (2.12), we define,
for the flow depicted in figure 1, an upstream flow parameter I” and a fissure permeability
ratio K as

it X Upx kg'x
r=-=% oY Y (2.26a)
Lohy g5 $vgs
b
k
K= Ef (2.26b)

respectively. In (2.26a), hg is the height of the gravity current at the source and u), =
kg./¢v is the buoyancy velocity associated with a source concentration cy. There are a
variety of different ways to interpret the upstream flow parameter I". Firstly, I" can be
thought of as the analogue of the Richardson number because its definition includes the
ratio of the time, #; = xrho/qs, for fluid to flow from the source to the fissure based on the
source volume flux, to the time, #r = xy/uy, for fluid to flow from the source to the fissure
based on the source reduced gravity. Keeping with a ratio of time scales, I" can also be
interpreted as a ratio including #r and 7, = g5/ u%, which is a characteristic time of the flow.
Finally, I" (= x7/(qs/up)) can be thought of as the ratio of the fissure distance, x7, to the
flow thickness, gs/up. As the above definitions of I" make clear, the larger the value of I,
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the more the gravity current flow is influenced by its density contrast with the ambient. The
fissure permeability ratio K(< 1) corresponds to the ratio of the flow resistance through
the porous medium to the drainage resistance through the fissure. Therefore, the larger K,
the greater the volume of fluid that can drain through the fissure for a fixed depth of gravity
current.

Applying the above definitions, ((2.16)—(2.18)) may be rewritten in non-dimensional
form as

ar* ax*

o5 b dw*
Pyl [(h; — ) (_ax* -~ C*) - hTU*]

1 B+ b3
F1/2< C*) — KF( +5 + 1) cosf x F(x*,1,£%),  (2.28)

hi + b3
I*

_81*1/2(]*_[(1“( +1> cosf x F(x*,1,€%), (2.27)

ox* I*
ob3 ad oy
2 |p} — )| =er'?ur. (2.29)
arc  ox* ax*
Here,
b5 = c5(h5 — hY), (2.30)
by oh}
U*:_<8_xi+8 *>0050+F1/zsm0 (2.31)
b*h*
Ut = W cos 6, (2.32)
b*
C*=r'"?—2_sing. (2.33)
hy — hy
Also, the boundary conditions (2.22) now read
by dhyY U2 .
d)[(ax* + Py )h cosf —I' hlsmé]o_—l, h1|x7vb =0, (2.34a,b)
Mlo=hilo.  hlsg, =0, (2.34c,d)
b3lo =0, bilx;d =0. (2.34e,f)

Assuming a fixed value for the medium porosity, ¢, there are five dynamically significant
dimensionless groups in ((2.27)—(2.34)), namely I", K, £*, I* and 6. These dimensionless
groups characterize the fluid, medium and fissure properties.

The governing equations are solved using an explicit finite difference algorithm where
spatial derivatives are discretized using backward finite differences because the source is
situated on the upstream side (see Appendix C for more details). Sample results are shown
in figure 2 for # = 0° and for & = 5°. Because bulk fluid drains through the fissure but not
so dispersed fluid, significant separation of the bulk and dispersed interfaces occurs only
downstream of x* = 1. Figure 2 illustrates a sharp change in the leading edge profile of the
dispersed phase, especially at late times. The slope of this leading edge is set by a balance
between the advection and dispersion. When, as is the case here, advection dominates, the
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Figure 2. Theoretical predictions showing, for different times, gravity current profiles for (a) 6 = 0° and
(b) 6 = 5°. The thick line represents the bulk interface and the thin line represents the dispersed interface.
The location of the fissure is as indicated. Here, I' = 35, K = 0.5, [* = 0.79 and £&* = 0.04. As we will justify
in § 3.5, we consider £ = 0.0125 when 6 = 0° and ¢ = 0.0086 when 6 = 5°.

nose of the dispersed phase is expected to change abruptly (though not discontinuously)
as x* — xy .

Accordingly, we focus on the dispersed phase and its fraction, relative to the gravity
current as a whole, of buoyancy (per unit box width) and of area (volume per unit box
width). In symbols, these quantities are denoted as B and A, respectively. In performing
the requisite calculations, we first evaluate the area enclosed by the bulk interface (the
thick lines in figure 2) and by the dispersed interface (the thin lines in figure 2). Areas are
calculated from

)CX] x}t]
A = / " hfdx* and Alisp = / (s — hY) da”. (2.35a,b)
0 0
The dispersed area fraction Ajﬁsp is found from

*

~ disp

AL — (2.36)
r AZulk + AZisp

Buoyancies in the bulk and dispersed phases are respectively determined from

x*

Xy N,
Bl = /0 "hjdet = Aj,, and Bj, = /0 b3 dx*. (2.37a,b)
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Figure 3. Percentage of the gravity current (a) volume and (b) buoyancy that remains in the dispersed phase
for 6 = 0° with ¢ = 0.0125 and 6 = 5° with ¢ = 0.0086. Here, consistent with figure 2, I = 35, K = 0.5,
I*=0.79 and &* = 0.04.

The quantities By, , and A} , are equal because concentrations are scaled by cy. Similar
to (2.36), the dispersed buoyancy fraction is given by

B = L. (2.38)
r ;kmlk + B Zisp

Figures 3(a) and 3(b) show time series of Afﬁsp and B:‘ﬁsp for 6 =0° and 0 = 5°. As
these figures make clear, dispersion increases when the bottom boundary is inclined and
more solute will then reside in the dispersed phase. This phenomenon can be understood
with reference to the significantly larger characteristic value for #; measured in the case of
the sloping boundary, i.e. at r* = 60, the magnitude of #; when 6 = 5° is approximately
30 % larger than that for 6 = 0°. A parametric study that more carefully documents the
impact of the non-dimensional parameters 6, I', K, £€* and [* on the evolution of the

gravity current is included in § 4 below.

3. Numerical investigation

COMSOL simulations were performed so as to illustrate the effects of dispersive mixing
in gravity currents within porous media and to assess our mathematical model in various
scenarios. COMSOL utilizes the finite element method to discretize the governing
equations (given below).

Our COMSOL model is validated in two complementary ways. First, we model the
flow of a porous medium gravity current along an impermeable boundary (in which
dispersion is comparatively small) and thereby demonstrate excellent agreement with
the sharp interface solution of Huppert & Woods (1995). Second, we confirm that our
COMSOL model correctly predicts the degree of dispersion in a scenario where fluid
density differences are absent, i.e. the scalar is passive rather than active. More specifically,
we model the mixing of two miscible fluids in a long capillary tube. As considered by Bear
(1972), § 10.6, the up- and downstream fluids have initial solute concentrations of 0 and cy,
respectively, but mix as a result of dispersion. Here, again, we observe excellent agreement
between the theoretical solution and the corresponding COMSOL-based numerical result.
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Figure 4. Schematic of the numerical set-up.

3.1. Numerical set-up

Simulations are conducted in a two-dimensional rectangular box 400 cm long and
25 cm deep filled with a porous medium saturated with water having a density pg =
0.998 g cm~3. The medium porosity is ¢ = 0.38 based on the assumption of a random
close packing of beads (Happel & Brenner 1991). The permeability is 2.18 x 10~* cm?
and, by inverting Rumpf & Gupte’s relation (Rumpf & Gupte 1971),
I 255
k= 5.6dp¢ , (3.1)
we determine that the equivalent bead diameter measures d, = 5 mm, which is broadly
consistent with the related experiments of Sahu & Flynn (2017) and Bharath er al. (2020)
for which the Reynolds number is of the order of 0.3. The salt water of fixed concentration
is discharged at a constant rate from a source located in the bottom-left corner of the
numerical domain — see figure 4. The source has a vertical expanse of 1 cm; broadly
comparable to Neufeld e al. (2009) the fissure is situated at a distance of x; = 7.5 cm
from the source. At this location, deviation from a hydrostatic pressure gradient is small.
Two different COMSOL physics interfaces are used, i.e.

(i) The Darcy’s law interface is used to model fluid flow within the porous medium
specifically by solving the following mass and momentum equations:

u ow
UL o, 3.2
ox + a9z -2
10
—P Y — P gsine, (3.2b)
podx  k £0
10
__p EW = ﬁg cos 6. (32C)

po 9z k £0

(i1) Solute transport is modelled using the transport of diluted species in porous media
interface where the underlying equation to be solved reads

¢8c+ 8c+ dc " d D 8c+D dc +8 5 8c+D ac
—tuUu—+w_—= — — — — — — 1.
ot ax 9z ax \ Mox Yoz az \ “ox Yoz

(3.3)
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Here, c¢ is concentration and D;; is a dispersion coefficient. The dispersion tensor Dj; is
defined as

Vle

Dij = Dot + @jjim——; - (3.4

V]
Here, D0 is the coefficient of molecular diffusion, V() is a component of the velocity
whose overall magnitude is given by [V| and &, is the geometrical dispersivity of
the porous medium. Scheidegger (1961) showed that a;, is a sparse matrix in which
only terms aij;; = @022 = ag, anze = api = ar and app = a2 = a) = e =
5(a;, — ar) are non-zero for two-dimensional porous medium flow. e dispersion
1 ) for two-d 1 p dium flow. The disp
coefficients for such a two-dimensional flow can therefore be defined as follows:

M2 W2
D, =D +a,— +ar—-, 3.5

Xx 'mol aL|V| aT|V| (3.5a)
W2 MZ

D,, =D, +a,— +ar—, 3.5b

2 mol L|V| T|V| ( )
|luw|

Dy; = Dot + (ar, — aT)m- (3.5¢)

The variables a; and ar are called the longitudinal dispersivity and the transverse
dispersivity, respectively. The dispersivities do not assume universal values and are,
instead, resolved by curve fitting relevant experimental data corresponding to various
regions of the parameter space e.g. as defined by the Schmidt (Sc) and Péclet (Pe) numbers.
Notwithstanding this complication, we can adapt (3) and (4) of Delgado (2007) to derive
reasonable predictions for these two parameters for the Péclet numbers relevant to our flow.
For mathematical convenience in practical applications and as suggested by Sahimi (2011),
the power of Pe in (3) of Delgado (2007) is considered to be unity for 5 < Pe < 300.
Therefore, the longitudinal and transverse dispersivities in this region are

ar, = 0.5d,, (3.6a)
ar = 0.025d,, (3.6b)
respectively. For 300 < Pe < 10, the relevant equations are
ap, = (1.8 £0.4)d,, (3.7a)
ar = 0.0254d,,. (3.7b)

In this work, we take ay, to be 1.8 d, for 300 < Pe < 10°.

3.2. Initial conditions

Consistent with the theory of §2, we assume the porous medium is saturated with
quiescent fresh water at + = 0. The initial pressure distribution is therefore hydrostatic
and the initial solute concentration is everywhere zero. The source concentration is related
to the source density, py, via the equation of state, i.e.

_ Ps— PO
pop

Here, g is considered constant so the effects of temperature and pressure are ignored.
According to the study of Millero & Poisson (1981), 8 is 0.82 cm?® g~!. After defining the
source concentration for desired py, the linear equation of state p = po(1 + Bc) is used to
relate the density to the concentration field c.
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Figure 5. Numerically determined estimates for the dispersed phase area fraction for different grid sizes.
Here, consistent with figure 2, 6 = 0°, I’ = 35, K = 0.5, [* = 0.79 and £* = 0.04.

3.3. Meshing and solver

Equations (3.2) and (3.3) are discretized using an unstructured triangular mesh. As shown
in figure 4, grid refinement is applied in the vicinity of the source and of the fissure because
these are regions of significant velocity shear. Figure 5 shows, for * = 40, Aj‘ﬁsp for various
grid sizes from coarse to fine. The dispersed phase area fraction is sufficiently close to its
asymptotic value when the grid is comprised 81 715 ~ 10*°! triangles; at and beyond this
point, we deem the numerical results to be grid independent.

To discretize the equations in space, cubic shape functions are chosen for (3.2), whereas
quadratic shape functions are selected for (3.3). For this latter equation, a third-order
implicit backward differentiation formula is applied such that

1M — 18" + 9"~ — 22

6AL
¢a 5 8c+D dc +¢a 5 ac+D dc e ac]H! (3.9)

=|(¢p— — — — — — | —u— —w— , .
ax \ Foax o Yoz az \ “ox “oz ax az

where 7 is the time increment.

We implement a two-step sequential method to solve (3.2) and (3.3) by using a two-step
segregated solver within COMSOL. In the first step, (3.2a—c) are solved by considering the
fluid density, p, as known. Then, in the second step, velocities calculated in step one are
applied to solve (3.3) for concentration. Thus the Darcy and species equations are solved
in sequence at each time step until convergence is achieved. In this work, we consider a
relative convergence tolerance of 0.001.

3.4. Qualitative observations (horizontal bottom boundary)

One of the key assumptions applied in the model of § 2.1 is that there persists a bulk
gravity current within which the solute concentration is effectively the same as the source
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Figure 6. Bulk phase concentration reduction beyond the fissure for 0 = 0° and [* = 0.79. The red area shows
¢* > 0.9, the green area shows 0.8 < ¢* < 0.9 and the blue area shows ¢* < 0.8. Boundaries are drawn based
on an interpolation performed over a total of 14 simulations for each of the lower and upper surfaces. The
inset images show a comparison between theory and numerical simulations for different combinations of I"
and K. The thick (thin) white line is the bulk (dispersed) interface as predicted by the theoretical model of § 2.
Meanwhile coloured contours show the output of the COMSOL numerical model. Red dashed lines indicate
the location x* = 2, where concentrations are evaluated in constructing the regime diagram.

concentration, c¢s. The numerical simulations afford us the opportunity to test the validity
of this assumption in different regions of the parameter space. To this end, numerical
simulations indicate that the bulk phase concentration decreases downstream of the fissure
and is less than ¢ due to the dispersion that arises in conjunction with drainage. This
discrepancy between the bulk phase concentration and the source concentration can, for
sufficiently vigorous dispersive mixing, affect the accuracy of our theoretical model. It
is necessary, therefore, to estimate the parametric regime where such vigorous dispersive
mixing is or is not significant. The degree to which the bulk phase concentration deviates
from ¢y depends on the upstream flow parameter, I, the permeability ratio, K, and
the non-dimensional fissure width, &* — see figure 6. Although there is an additional
dependence on the vertical extent, [*, of the fissure, this dependence is weak and so is not
considered in the figure. Concentrations in the regime diagram of figure 6 are measured
at x* =2, 7 =0 and at a time r* when the dispersed nose position x;’i,d = 10. Based
on figure 6, we surmise that the theoretical model predicts the bulk interface with good
accuracy for arbitrary I" and K. On the other hand, our model does a comparatively poor
job of predicting the location of the dispersed interface when ¢*(2, 0) = ¢(2,0)/¢s < 0.8.
Among other challenges when ¢*(2, 0) < 0.8 is the fact that the bulk phase terminates
at the location of the fissure, i.e. any gravity current fluid appearing downstream of
x* =1 has a density non-trivially less than ps. This limitation notwithstanding, there
remains a large parametric domain over which our theoretical model works well. Figure 6
suggests that as the upstream flow parameter " decreases, so too does the front speed.
Less dispersive mixing is therefore observed and the solute concentration after the
fissure decreases relatively slowly. As a result, there is a broader range of K over
which our theoretical model generates predictions in reasonable agreement with the
output of the numerical model. Of course, the degree of agreement between theory
and numerics is related to the numerical value of the entrainment coefficient, &, which
appears e.g. in ((2.16)—(2.18)). We discuss the procedure for determining ¢ in the following
subsection.
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Figure 7. Error-minimizing value of ¢ vs 6. Here, we consider I" = 45, K = 0.3, [* = 0.79 and £* = 0.04.

Blue circles consider I = 45, K = 0.2 and red crosses consider I = 30, K = 0.3 Also, and with reference to
(3.10), £{ =20 and #5 = 70.

3.5. Determining the entertainment coefficient

Comparisons such as that depicted in figure 6 (and also figures 8 and 9 below) require that
a value be specified for the entrainment coefficient, €. This coefficient is found based on
our numerical results. More specifically, we specify e such that the separation distance,
x;’;,d — x]’t,b, between the dispersed and bulk nose positions matches as closely as possible
the distance measured numerically. A mean temporal error is therefore defined as

* * * * x
12

T (x;t/ ' x;t/h)num
where (x;“vd — xj{,b)num is evaluated from the numerical model of § 3 and (x}t,d — x}'{,b),heory
is evaluated from the theoretical model of § 2 for various ¢. The (unique) & that minimizes
E is referred to as the optimum entrainment coefficient. For simplicity, we assume that this
optimum value does not depend on I" and K; a justification for this assumption is given
in the next paragraph. However, and motivated by the work of Ellison & Turner (1959),
we allow the error-minimizing value of ¢ to vary with the inclination angle, 6, of the
bottom boundary. Results associated with (3.10) and the minimization of E are displayed
in figure 7. They suggest that the optimum value of € experiences a non-trivial decrease as
the slope angle is increased and the gravity current propagates more rapidly downdip.
Also included in figure 7 are data corresponding to different values of /™ and K. The blue
circles indicate the same value of I" but a different value of K. The red crosses indicate
the same value of K but a different value of I". In all cases, we see but a minor deviation
from the quantitative data indicated by the black line. In principle, larger changes of K can
be imagined, however, these would be inconsistent with figure 6, i.e. we limit ourselves
to changes of K or I" that keep us strictly within the red or green sections of the regime
diagram.

4. Results and discussion

Within the region of model validity defined in subsection 3.4, theoretical results are
compared in figure 8 against COMSOL numerical output. Also included in figure 8 is
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Figure 8. Gravity current profiles as predicted theoretically and numerically. Line types are as follows: thick
solid line — bulk interface; thin solid line — dispersed interface; dashed line — sharp interface solution obtained
by setting ¢ = 0 in (2.16) and (2.17). Numerical output is indicated by the colour contours. Panels (a—d) show
0 =0°T =35 K=0.5,&*=0.04 and I* = 0.79. Panels (e-h) show 6 =5°, ' =70, K = 0.3, £* = 0.04
and /* = 1.11. The variation of parameter values between the left- and right-hand side panels is deliberate and
illustrates model predictions over a broad range of the parameter space. Note that the scale of the horizontal
axis in the left- and right-hand side images is different.

a sharp interface solution that is obtained by setting ¢ = 0 in (2.16) and (2.17). The
sharp interface model over-predicts the nose position while under-predicting the height
of the gravity current, especially when the bottom boundary is inclined. A comparison of
inclined vs. horizontal gravity currents reveals that the height of the dispersed interface
has a monotonic variation with x* when 6 = 0° but a non-monotonic variation with x*
when 6 > 0°. The non-monotonic variation in question becomes more pronounced as time
increases.

To quantify dispersion effects in gravity currents, we examine the time variation of A*

disp
from (2.36) and Bfmp from (2.38) — see figure 9(c—e). Each panel includes both theoretical
and numerical data and considers a different value for K. Whether K is comparatively
large (0.4) or small (0.2), the same general trend appears: theory underpredicts the area
and buoyancy fraction at early times, however, for sufficiently large r*, good agreement is
achieved. The early time discrepancy likely appears because the theoretical model assumes
a long and thin gravity current. Although the gravity current evolves into a shape that is
long and thin for large #*, such a large aspect ratio does not apply initially. Furthermore,
and for mathematical convenience, our theory is predicated on the assumption that
ha(x = 0) = hy(x = 0), however, a careful inspection of our numerical results (not shown)
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Figure 9. (a) Area fraction (2.36) and (b) buoyancy fraction (2.38) as a function of the upstream flow
parameter (2.26a) for three different values of the fissure parameter (2.26b). Here, we consider a horizontal
bottom boundary such that 6 = 0° and r* = 40. Crosses indicate the solutions for I" =45, for which
corresponding time series data are given in panels (c—e) for K = 0.2, 0.3 and 0.4, respectively. These same three
K values are considered in the time series of panels (f—h), which consider, again for I” = 45 and 6 = 0°, the
difference of nose position between the bulk and the dispersed gravity currents. This nose position difference
is shown as a function of I" in panel (i), where we again consider * = 40.
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indicates some non-trivial initial height of the dispersed phase, at least for not small times.
Fortunately, the consequence of ignoring dispersed fluid in the neighbourhood of the
source becomes smaller as time progresses and the cumulative volume occupied by the
(elongating) gravity current grows.

Whereas figure 9(c—e) assumes the same value for I, i.e. I" = 45, the influence of
the upstream flow parameter is explored in figure 9(a,b), where I" appears as the x-axis
variable. The different curves of figure 9(a,b) correspond to K = 0.2, 0.3 and 0.4 such
that, with I" = 45, the red and green regions of figure 6 are spanned appropriately. Curves
are drawn at t* = 40 by which time the gravity current is indeed long and thin, i.e. the
comparison is not unduly influenced by effects related to the early time evolution of the
flow. The area and buoyancy fractions increase with /™ and also with K. When the upstream
flow parameter is large, there is more dispersive mixing because of larger velocities in the
gravity current so the fraction of buoyancy and area associated with the dispersed phase
increases. By increasing K, draining of bulk fluid is more robust causing the gravity current
to elongate more slowly. Although this has a secondary effect on the dispersed phase
(which is, after all, fed by the bulk phase), the overall impact of increasing K is to likewise
increase the area and buoyancy fractions occupied by the dispersed phase in comparison
with the bulk phase. Correspondingly, one might expect that, as K increases, so too does
the separation distance between the bulk and dispersed nose positions. Figure 9(f-h)
confirms this hypothesis and indicate that the theory matches well with the analogous
numerical result. Whereas figure 9( f—h) assumes the same value for I', i.e. I' = 45, the
influence of the upstream flow parameter is explored in figure 9(i), where I" again appears
along the abscissa. The different curves of figure 9(i) correspond to K = 0.2,0.3 and
0.4 and are drawn at * = 40. Figure 9(i) indicates that x}'{,d - xj\‘,b increases with both I
and K.

Analogous results have been generated for 6 = 5° to quantify dispersion effects for
the case of inclined gravity currents — see figure 10. Comparing this figure against
figure 9 shows that, as expected, dispersion is more robust when 6 > 0°. For instance,
and when * = 60, figure 10(g) suggests the nose separation for & = 5° is almost twice
that in figure 9(g) for & = 0°. This is because of the larger characteristic velocity in the
inclined case, which leads to more entrainment to the dispersed phase either from the
ambient or the bulk phase. This point notwithstanding, very similar trends are observed in
figures 9 and 10, e.g. in both cases the separation between the bulk and dispersed noses
increases with K (due to a stronger drainage) and also with I" (due to a larger characteristic
velocity). Moreover, theory and numerical simulation demonstrate satisfactory agreement
with generally better overlap observed for larger r*.

Further to the comparison between figures 9 and 10, the sensitivity of our model
predictions to the slope of the bottom boundary is more thoroughly explored in figure 11.
Figure 11(a) shows, for r* = 45, the difference of nose positions for the bulk vs. dispersed
phases. Meanwhile figure 11(b) shows the corresponding area and buoyancy fractions for
dispersed phase fluid, i.e. A;fh.sp and E;;l.sp. Both panels of figure 11 include theoretical and
numerical data and confirm the hypothesis that dispersion increases with 6.

Because fissure dimensions directly impact drainage, £* and [* also influence the degree
of dispersion. Figure 12 confirms that increasing the fissure width, &%, leads to more
dispersion, whether measured in terms of x}\“,d — x}"vh or AZ‘H s On the other hand, bulk fluid
drainage decreases by increasing the vertical extent, [*, of the fissure. As a result, there
is less dispersion as [* is increased — see figure 13. Consistent with our previous results,
figures 12 and 13 indicate that inclined gravity currents experience more dispersion than
do horizontal gravity currents.
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Figure 10. As in figure 9 but with an inclined boundary (6 = 5°).
5. Application to UHS

To illustrate the application of our results, we return to the example of UHS considered
in § 1. More specifically, and for the idealized case of an unbounded reservoir, we wish to
estimate the fraction of Hj that will be lost to dispersion as a function of, say, the source
volume flow rate. To this end, we consider a line, rather than a point, source such that
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Figure 11. Difference of (a) nose positions and of (b) dispersed phase area and buoyancy fractions vs. 6.
Here, t* =45, " =35, K = 0.5, * = 0.79 and £* = 0.04.
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Figure 12. Difference of (a) nose position and () area fraction in the dispersed phase for § = 0° with
& = 0.0125 and 6 = 5° with ¢ = 0.0086 for various £*. Here, r* =45, I’ =35, K = 0.5 and [* = 0.79.
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Figure 13. As in figure 12 but considering the influence of /* for £&* = 0.04.
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Figure 14. Fraction of H lost to dispersion vs. source volume flow rate for the example of § 5. The horizontal
dashed line assumes a maximum loss fraction of 5 %.

gs is expressed in units of standard m® m~! day~! or (S m?) day~!. Motivated by the
numerical investigation of Feldmann et al. (2016), we further suppose that H is injected
into a sandstone layer, bounded above and below by clay layers, where the cushion gas
consists of 80 mol% N; and 20 mol% CHy. The reservoir pressure is 170 bar such that
the density contrast between the H and the cushion gas is approximated as 118 kg m—>.
The sandstone layer has a porosity of ¢ = 13.08 % and a permeability of &k = 22.4 mD.
Meanwhile the clay layer through which the injected H, drains is idealized as being
impermeable except for an isolated fissure situated at a horizontal distance xy = 50 m from
the source. The fissure is assumed to have a width and depth of 2 m and 1 m, respectively,
and is characterized by K = 0.3, 0.5 or 0.7. Finally, we assume 6 = 0° and consider the
evolution of the flow over a 10 year period.

Given all of the above parameters, figure 14 shows E’Z‘ﬁsp as a function of ¢,. As expected
from the model predictions of the previous section, the proportion of Hj that mixes
with the cushion gas through dispersion decreases with the source volume flow rate.
Moreover, and as expected, Ezisp is larger when more H» is allowed to drain, i.e. when
K is comparatively large. Results such as those shown in figure 14 are helpful because
they can, for given K, identify the minimum source volume flow rate necessary to limit
losses by dispersion to a particular value. For example, if, as suggested by the dashed line
of figure 14, the maximum loss fraction were set to 5 %, the minimum possible g, could be
identified for different fissure permeabilities. Note that this minimum value of the source
volume flow rate, (gs)min decreases with K. Obviously, as K tends to zero (indicating a
fissure of very limited outflow capacity), (gs)min also tends to zero.

The preceding analysis can be criticized for prioritizing injectate losses due to dispersion
over those due to drainage. Indeed, H, losses by either mechanism have the potential to
make otherwise profitable ventures unattractive economically. On the other hand, there
are scenarios such as the ‘selective technology’ advocated by Feldmann et al. (2016) for
which Hj injection or withdrawal occur simultaneously to/from adjacent sandstone layers.
In such a scenario, Hy drained from one layer can be extracted from another layer and so
is not necessarily lost to the geological formation. Rather different considerations apply
to dispersion because any attempt to produce H; that has mixed with cushion gas requires
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the ability, at the surface, to separate Hp from, say, CH4 or Nj. The expenses associated
with such surface separation operations justify our emphasis on dispersion vs. drainage as
a key loss mechanism for H.

Notwithstanding the conclusion of the previous paragraphs, it should be recalled that
our analysis neglects a concentration dependence on viscosity. Strictly speaking, this
assumption is incorrect for UHS-type applications; the viscosity of pure Hy is less than that
of a mixture of Hy and cushion gas. Because we do not account for the greater mobility
of the bulk vs. the dispersed phase, our model likely overestimates the volume of the
latter relative to the former, although by how much is not straightforward to quantify. In a
similar, though more complicated, spirit our model obviously falls well short of permitting
the kinds of fingering instabilities that may arise as a result of a Taylor—Saffman-type
instability and the injection of a less viscosity fluid into a more viscous fluid. The
modification of our momentum equations to include a concentration-dependent viscosity
shall be the subject of future investigations.

6. Summary and conclusions

A theoretical model is developed for a porous medium gravity current consisting of a
bulk phase and a dispersed phase — see figure 1. Our theoretical model of § 2 considers
local drainage along the bottom boundary, which may be either horizontal or inclined.
Model equations are robust enough to capture the essential physical processes of draining
and dispersion but are simple enough to be solved using a straightforward numerical
algorithm. To this end, we solve the non-dimensional governing equations by defining five
non-dimensional parameters namely the inclination angle, 6, the upstream flow parameter,
I, of (2.26a), the permeability ratio, K, of (2.26b), the fissure width, £&*, and the fissure
length, I*. We surmise that all five non-dimensional parameters influence the degree of
dispersion. However, [* exerts a subordinate influence compared with I, K, £* and 6.
Increasing one or both of 1" and 6 increases the gravity current front speed and so increases
the degree of dispersion. With reference to the definition of the entrainment velocities w1
and w,p, increasing the gravity current speed makes the entrainment more robust. This
supports the idea that the volume of the dispersed phase is significantly larger when we
increase parameters such as I" or 6 that increase the driving force for gravity current flow.
Dispersion may also be augmented by causing more (bulk phase) fluid to drain through
the fissure, which is realized as either of K or £* is increased or [* is decreased. Because
drainage directly removes mass from the bulk phase, increasing the drainage leads to more
separation between the leading edges (or nose positions) of the bulk and dispersed phases.

Complementing our theoretical results, a COMSOL-based numerical model is
developed — see §3. The numerical model is exploited to estimate the approximate
optimum value of the entrainment coefficient, &, which appears as a parameter in
the theoretical model e.g. ((2.16)—(2.18)). Through this analysis, we find that the
error-minimizing value of ¢ is a function of the inclination angle, 6, as depicted graphically
in figure 7. With the appropriate value of ¢ so selected, we find from figures such as 8—-10
generally good agreement between theory and numerical simulation. In other words, our
model of § 2 does a reasonable job of predicting the fractions of fluid or solute that appear
in the dispersed phase. Our theoretical model also provides generally accurate estimates of
the separation distance between the noses of the bulk and dispersed phases. Note, however,
that comparisons are restricted to the region of the parameter space for which the degree of
draining and subsequent dispersion is not too severe. The results of figure 6 suggest that our
theoretical model makes inaccurate predictions of the shape of the dispersed phase when
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K is so large and draining is so vigorous that little or no bulk fluid appears downstream of
the source. The modelling of this more complicated case is left for future investigations.

Our study is motivated by the need to address uncertainties in H, storage in depleted
natural gas reservoirs. Mixing of Hy with resident cushion gas is an inevitable facet of
depleted reservoir-based UHS systems, particularly in the medium to long term (Feldmann
et al. 2016). Granted our theoretical and numerical models are predicated on a number
of simplifying assumptions e.g. ignoring viscosity variations, compressibility effects,
ambient counterflow or possible bio-geochemical reactions involving Hy. Progressively
relaxing these (and related) assumptions are topics for future study. It would also be
interesting to consider not localized but rather distributed drainage cf. Pritchard et al.
(2001), Goda & Sato (2011) and Bharath et al. (2020). Work on this latter problem is
already underway and will be reported upon in a future publication.
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Appendix A. Derivation of the bulk and dispersed velocity in the theoretical model

By using the definition of Ap;, Ap> and b; in terms of concentration, (2.7) and (2.8) can
be rewritten as

p1(x, 2z, 1) = pogB(ba + cshy) cos 0 — psgzcos O + pogxsint + Py 0 <z <hy, (Al)
p2(x, z, 1) = [pogBcahy — p2gz] cos O + pogxsin® + Py hy <z < hy. (A2)

Moreover, Darcy’s law (2.12) in the x-direction indicates that

k (dpi .

wen =—— (Ll pgsing ), (A3)
Mmoo\ ox
k (9

wy(x, ) = —— (ﬂ — g sin9> . (A4)
wo\ ox

If we insert p; and p, from (A1) and (A2) into (A3) and (A4), the bulk and dispersed
velocities then read

kgpB [ 0b> ahy .
u (x, 1) = ——— a—cos@ + ¢y 8—0039—s1n9 , (AS5)
v X X
k, a(cah ac
unr, 1) = — 8P | (3C2ha) _ 92 o G sing | (A6)
v ax ax

COMSOL results show that, for the conditions relevant to our analysis, the term z(dc/9x)
in (A6) is two orders of magnitude smaller than d(c2h;)/0x and can therefore be ignored.
Accordingly, velocity in the dispersed phase can be simplified to

kgp [a(ézhz)

7t e
us(x, 1) ” 9x

cosf — cp sin 6i| . (A7)
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Appendix B. Derivation of the drainage velocity in the theoretical model
Using (2.7), the pressure at the bottom boundary of the gravity current is expressed as

p(x, 0,1 = [Apaghy + (Apr — Ap2)ghi] cos O + pogxsin€ + Po. (B1)

Moreover, and assuming a hydrostatic pressure balance, the pressure at z = —I
corresponding to the base of the fissure is given by

px, =1, 1) = poglcos O + pogxsin6 + Py. (B2)

Analogously to Acton, Huppert & Worster (2001), and by considering pressure continuity
at z = 0, the pressure distribution within the fissure is described by the following linear
function:

_ _ Z
p(x. 2. D) = [Afaghy + (Apy — Apa)ghi] (1 + 7) cos

— pogzcosf + pogxsind + Py —I<z<O. (B3)

Applying Darcy’s law, the vertical velocity in the fissure reads

ke (0 k Aprh _ . h
wa(x, t) = —;f (_p + 008 Cos@) — 48 [ﬂ + (Ap1 — A,oz)Tl + A,oli| cosf.

0z w [
(B4)
If we insert Ap; = pofics and Apy = pofcs into (B4), it can be shown that
k hi + b
wa(x, t) = — 18P (CS ll+ 2 + Cs) cos 6. (BS)

Appendix C. Method of solution for the theoretical model

The finite difference method is used to discretize equations (2.27)—(2.29) in space.
First-order derivatives in space are discretized using backward finite differences and a
central finite difference is used to discretize second-order derivatives. Although implicit
methods are more stable, they produce extra diffusion in our solution; we therefore apply
an explicit method for time discretization. Thus (2.27)—(2.29) may be rewritten in discrete
form as

h* - h* . n
(B )" = (h} )" — AFE(hT ;AU — AFUS)" (11—*1!—1 + gpl/z)

Ax
h* .+ bY . n
— A'KT (—l’l = 2 + 1) cosfO x F(x*,1,&%), (C1)
*
(h;i)nH = ()" + W[(hz,i —hi DL =297 + W — (CF — CL)AXY
+ (5= h5 = kYR )W = = CEAXT))

975 A18-26


https://doi.org/10.1017/jfm.2023.805

https://doi.org/10.1017/jfm.2023.805 Published online by Cambridge University Press

Dispersion effects in porous media gravity currents experiencing local drainage

— AfF (hTidUE"+ Up A *]’l_1> — el Ar (—’ X ! —CT>
' X X

h>lk .4 bE n

— AFKT (11—*2 + 1) cosf x F(x*, 1, %), (C2)
*

(Ax*)?

(b — by D — W = CEAX]" + Aftel V2 (U, (C3)

(b )n+1 (bZL)n [b;i(llli* 2‘1’*+ H—l (C;k_ ?—I)Ax*)

respectively. Here, i and n are non-negative indices that respectively correspond to space
and time. In addition, (U;")" and (dU;")" are defined as

by, — b K=\
(Uj)n:_< 2’A v ‘) cos§ + I''/?sin o, (C4)
X X

025 32ht\"
dUH)" = — <8x*2 Seyes) |
4

by iy =205, 405,  hi .y —2hY;+ 0,
— cos@.
(Ax*)? (AX*)2

cos 6

(C5)

Equation (C1) applies for i > 1. When i = 1, (h} O)” in (C1) is found based on the
discrete form of the influx boundary condition in (2. 34a) such that
Ax*
¢ (hT, " cosf

To find (A} O)” in (C6), we assume some amount for (b3 0)" and solve (C2) and (C3) for

i = 1 torecover (h* )”+1 and (b3 , )"+l We then iterate using the secant method to satisfy
boundary COIldlthIlS (2.34¢) and (2 34e), i.e.

(hi )" = + ()" — (B )" — I tan O Ax*. (C6)

(3 )" = (g ), (C7a)
o5t =o0. (C7b)

Then the expressions in (C2) and (C3) apply for i > 2. Finally, for i = N, and i = Ny, the
bulk and dispersed nose positions in (2.34c—f) read

(B} 5" =0, (C8a)
(h;Nd)"“ = (b;Nd)"“ = 0. (C8b)

In the above equations, Ax* and Ar* indicate the grid spacing and the time step,
respectively. Our discretized equations are solved with Ax* = 1072 and Ar* = 107>, We
estimate Ax* by fixing Ar* and then performing a grid-independence test. Once the largest
value of Ax™ that preserves grid independency is determined, Ar* is increased slightly, but
not beyond a value where computed results vary with the magnitude of the time step. With
suitable values for Ax*™ and Ar* selected, we find that the run time to produce a figure such
as figure 2 is approximately 0.65 core hours using an Intel Core 17-9700 CPU (3.00 GHz
and 16 GB memory).

975 A18-27


https://doi.org/10.1017/jfm.2023.805

https://doi.org/10.1017/jfm.2023.805 Published online by Cambridge University Press

S. Sheikhi, C.K. Sahu and M.R. Flynn

REFERENCES

ACTON, D.M., HUPPERT, H.E. & WORSTER, M.G. 2001 Two-dimensional viscous gravity currents flowing
over a deep porous medium. J. Fluid Mech. 440, 359-380.

ANDREWS, J. & SHABANI, B. 2012 Where does hydrogen fit in a sustainable energy economy? In
International Energy Congress (IEF-IEC). Elsevier.

Avcl, C.B. 1994 Evaluation of flow leakage through abandoned wells and boreholes. Water Resour. Res.
30, 2565-2578.

BEAR, J. 1972 Dynamics of Fluid in Porous Media. Dover.

BHARATH, K.S., SAHU, C.K. & FLYNN, M.R. 2020 Isolated buoyant convection in a two-layered porous
medium with an inclined permeability jump. J. Fluid Mech. 902, A22.

CIRIELLO, V., LONGO, S., CHIAPPONI, L. & FEDERICO, V.D. 2016 Porous gravity currents: a survey to
determine the joint influence of fluid rheology and variations of medium properties. Water Resour. Res.
92, 105-115.

DELGADO, J.M.P.Q. 2007 Longitudinal and transverse dispersion in porous media. Chem. Engng Res. Des.
85, 1245-1252.

ELLISON, T.H. & TURNER, J.S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423-448.

FELDMANN, F., HAGEMANN, B., GANZER, L. & PANFILOV, M. 2016 Numerical simulation of hydrodynamic
and gas mixing processes in underground hydrogen storages. Environ. Earth Sci. 75, 1165.

FLESCH, S., PubpLO, D., ALBRECHT, D., JACOB, A. & ENZMANN, F. 2018 Hydrogen underground
storaged-petrographic and petrophysical variations in reservoir sandstones from laboratory experiments
under simulated reservoir conditions. Intl J. Hydrog. Energy 43, 20822-20835.

FLETT, M., GURTON, R.M. & TAGGART, 1. 2005 Heterogeneous saline formations: long-term benefits for
geo-sequestration of greenhouse gases. In Proceedings of the 7th International Conference on Greenhouse
Gas Control Technologies, vol. 38. Elsevier.

GILMORE, K.E., SAHU, C.K., BENHAM, G.P., NEUFELD, J.A. & BICKLE, M.J. 2021 Leakage dynamics
of fault zones: experimental and analytical study with application to CO; storage. J. Fluid Mech. 931, A31.

GoDA, T. & SATO, K. 2011 Gravity currents of carbon dioxide with residual gas trapping in a two-layered
porous medium. J. Fluid Mech. 673, 60-79.

HAPPEL, J. & BRENNER, H. 1991 Low Reynolds Number Hydrodynamics: With Special Applications to
Farticulate Media. Kluwer.

HINTON, E.M. & WooDs, A.W. 2018 The effect of vertically varying permeability on tracer dispersion.
J. Fluid Mech. 860, 384—407.

HUPPERT, H. & WooDS, A.W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 55-69.

HUYAKORN, P.S., ANDERSEN, P.F., MERCER, J.W. & WHITE, H.O. Jr. 1987 Saltwater intrusion in
aquifers: development and testing of a three-dimensional finite element model. Water Resour. Res.
23,293-312.

KHAN, M.I., BHARATH, K.S. & FLYNN, M.R. 2022 Effect of buoyant convection on the spreading and
draining of porous media gravity currents along a permeability jump. Transp. Porous Med. 146, 721-740.

LUBON, K. & TARKOWSKI, R. 2021 Numerical simulation of hydrogen injection and withdrawal to and from
a deep aquifer in nw poland. ACS Energy Lett. 6, 2181-2186.

LYLE, S., HUPPERT, H.E., HALLWORTH, M., BICKLE, M. & CHADWICK, A. 2005 Axisymmetric gravity
currents in a porous medium. J. Fluid Mech. 543, 293-302.

MACMINN, C.W., NEUFELD, J.A., HESSE, M.A. & HUPPERT, H.E. 2012 Spreading and convective
dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48, 1-21.

MILLERO, F.J. & POISSON, A. 1981 International one-atmosphere equation of state of seawater. Deep Sea
Res. 28, 625-629.

NEUFELD, J.A., VELLA, D. & HUPPERT, H.E. 2009 The effect of a fissure on storage in a porous medium.
J. Fluid Mech. 639, 239-259.

NORDBOTTEN, J.M., CELIA, M.A. & BACHU, S. 2004 Analytical solutions for leakage rates through
abandoned wells. Water Resour. Res. 40, W04204.

PANFILOV, M. 2016 Underground and pipeline hydrogen storage. Tech. Rep. Elsevier.

PASTER, A. & DAGAN, G. 2007 Mixing at the interface between two fluids in porous media: a boundary-layer
solution. J. Fluid Mech. 584, 455-472.

PEGLER, S.S., HUPPERT, H.E. & NEUFELD, J.A. 2014 Fluid injection into a confined porous layer. J. Fluid
Mech. 745, 592-620.

PEGLER, S.S., HUPPERT, H.E. & NEUFELD, J.A. 2016 Stratified gravity currents in porous media. J. Fluid
Mech. 791, 329-357.

PRITCHARD, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech.
584, 415-431.

975 A18-28


https://doi.org/10.1017/jfm.2023.805

https://doi.org/10.1017/jfm.2023.805 Published online by Cambridge University Press

Dispersion effects in porous media gravity currents experiencing local drainage

PRITCHARD, D., WooDs, A.W. & HOGG, A.J. 2001 On the slow draining of a gravity current moving
through a layered permeable medium. J. Fluid Mech. 444, 23-47.

REEUWUK, M.V., HOLZNER, M. & CAULFIELD, C.P. 2019 Mixing and entrainment are suppressed in
inclined gravity currents. J. Fluid Mech. 873, 786-815.

RuMPF, H. & GUPTE, A.R. 1971 Einfliisse der porositéit und korngroBenverteilung im widerstandsgesetz der
porenstromung. Chemie Ingenieur Technik 43, 367-375.

SAHIMI, M. 2011 Flow and Transport in Porous Media and Fractured Rock. Wiley-VCH.

SAHU, C.K. & FLYNN, M.R. 2015 Filling box flows in porous media. J. Fluid Mech. 782, 455-478.

SAHU, C.K. & FLYNN, M.R. 2017 The effect of sudden permeability changes in porous media filling box
flows. Transp. Porous Med. 119, 95-118.

SAHU, C.K. & NEUFELD, J.A. 2020 Dispersive entrainment into gravity currents in porous media. J. Fluid
Mech. 886, AS.

SAINZ-GARCIA, A., ABARCA, E., RUBI, V. & GRANDIA, F. 2017 Assessment of feasible strategies for
seasonal underground hydrogen storage in a saline aquifer. Intl J. Hydrog. Energy 42, 16657-16666.

SCHEIDEGGER, A.E. 1961 General theory of dispersion in porous media. J. Geophys. Res. 66, 3273-3278.

SZULCZEWSKI, M.L. & JUANES, R. 2013 The evolution of miscible gravity currents in horizontal porous
layers. J. Fluid Mech. 719, 82-96.

VELLA, D. & HUPPERT, H.E. 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech.
555, 353-362.

ZHENG, Z., CHRISTOV, [.C. & STONE, H.A. 2014 Influence of heterogeneity on second-kind self-similar
solutions for viscous gravity currents. J. Fluid Mech. 747, 217-246.

975 A18-29


https://doi.org/10.1017/jfm.2023.805

	1 Introduction
	2 Theoretical model
	2.1 Governing equations
	2.2 Boundary conditions
	2.3 Non-dimensional governing equations

	3 Numerical investigation
	3.1 Numerical set-up
	3.2 Initial conditions
	3.3 Meshing and solver
	3.4 Qualitative observations (horizontal bottom boundary)
	3.5 Determining the entertainment coefficient

	4 Results and discussion
	5 Application to UHS
	6 Summary and conclusions
	Appendix A. Derivation of the bulk and dispersed velocity in the theoretical model
	Appendix B. Derivation of the drainage velocity in the theoretical model
	Appendix C. Method of solution for the theoretical model
	References

