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Abstract
This paper focuses on modeling surrender time for policyholders in the context of life insurance. In this
setup, a large lapse rate at the first months of a contract is often observed, with a decrease in this rate after
some months. The modeling of the time to cancelation must account for this specific behavior. Another
stylized fact is that policies which are not canceled in the study period are considered censored. To account
for both censoring and heterogeneous lapse rates, this work assumes a Bayesian survival model with a
mixture of regressions. The inference is based on data augmentation allowing for fast computations even
for datasets of over millions of clients. Moreover, frequentist point estimation based on Expectation–
Maximization algorithm is also presented. An illustrative example emulates a typical behavior for life
insurance contracts, and a simulated study investigates the properties of the proposed model. A case study
is considered and illustrates the flexibility of our proposed model allowing different specifications of mix-
ture components. In particular, the observed censoring in the insurance context might be up to 50% of
the data, which is very unusual for survival models in other fields such as epidemiology. This aspect is
exploited in our simulated study.
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1. Introduction
1.1 Background
Lapse rate risk modeling is an important issue that is getting attention from insurance markets.
In the context of life insurance, this is an even more important issue, since contracts usually have
longer policy term and higher surrender rates. Originally, the term lapse means termination of
an insurance policy and loss of coverage because the policyholder has failed to pay premiums
(Gatzert et al., 2009; Kuo et al., 2003; Eling & Kochanski, 2013). In this paper, lapse risk refers
to the life policies surrendered before their maturity or canceled contracts when the policyholder
fails to comply with their obligations (e.g., premium payment). In other words, when a customer
cancels their policy or surrenders this policy, either to switch insurance companies or because
someone is no longer interested, we consider that the customer has churned.

Due to the large impact lapses may produce on an insurer’s portfolio, particularly in the first
periods of the contracts, it is important to understand the factors that drive its risk. Large changes
in lapse rates can potentially lead to financial losses which can prevent insurers from complying
with their contractual obligations. Furthermore, lapse rates can be difficult tomodel due to the fact
that while doing so, one needs not only to take into account the policyholder’s behavioral features
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but also the characteristics of the life insurance products being acquired. Once factors associated
with cancelation or surrender are identified, customer retention programs can be developed and
actions can be taken (Günther et al., 2014). Moreover, good persistence is of vital importance to
the financial performance of life insurance companies.

We aim to address some issues related to churning, such as the existence of trends in the persis-
tence of specific products or groups of products. Those factors may enhance the persistence curve
in the insurance company. In addition, churning/lapsing impacts many actuarial tasks, such as
product design, pricing, hedging, and risk management.

Cancelation rates vary through product policyholders’ profiles. Statistical models can be used
to identify risk factors associated with persistency (or lapse) rate over time as well as with pricing,
taking the cancelation risk into account. In this context, the adoption of hierarchical regression
models, survival regression models, and time series models can be useful.

Several works address lapse risk through binary (lapse vs. persistency) classification models
along a single period of interest. Logistic regression models and machine learning classification
techniques have been proposed to predict lapse. In this context, Brockett et al. (2008) pay par-
ticular attention to household customer behavior considering households for which at least one
policy has lapsed and investigating the effects of the lapse rates of other policies owned by the same
household. They use logistic regression and survival analysis techniques to assess the probability of
total customer withdrawal. Günther et al. (2014) consider a logistic longitudinal regression model
that incorporates time-dynamic explanatory variables and their interactions. Other examples of
churn modeling via binary classification models, including binary regressions, decision trees, and
neural networks, can be seen in Guillen et al. (2003), Ishwaran et al. (2008), Bolancé et al. (2016),
and Hu et al. (2020, 2021).

In the present work, instead of binary classification of individuals, as to their lapse or persis-
tence, our focus is on characterization of the temporal evolution of the instantaneous potential
for lapse – equivalently, on the survival curve S(t), which describes, for each time t, the probabil-
ity that a policyholder will persist in a contract. We adopt survival analysis techniques aiming at
jointly capturing, in a unique survival curve for each policy profile, the aggregate behavior of pol-
icyholders with a high or low potential for early cancelation. The survivor curves are stratified by
policyholders’ profiles defined through structured regression which can help identify modifiable
features, aiming at customers’ retention.

The use of survival regression analysis in the context of lapse risk is not a novelty. Milhaud
& Dutang (2018) consider a competing risk approach, Eling & Kiesenbauer (2014) consider the
proportional hazard models and generalized linear models to show that contracts’ features such
as product type or contract age, as well as policyholders’ characteristics, are important drivers for
lapse rates, illustrated by a dataset provided by a German life insurer. In this same line of work,
Brockett et al. (2008) use survival analysis techniques to evaluate the time between the first can-
celation and subsequent customer withdrawal. Guillen et al. (2012) considers survival analysis to
study how long policyholders maintain their policy after the first policy lapsing. Dong et al. (2022)
propose multistate modeling using multinomial logistic regression that allows specific behavior
over a large number of different combinations of insurance coverage and across multiple periods.
Our work is based on the experience gained from data of a specific company, in which higher can-
celation rates are observed at the beginning of the contracts, decreasing after some months. In the
database that motivated this study, the frequency of surrender is much higher than that of other
events that can lead to the termination of a contract (e.g., the death of the policyholder). Thus,
unlike competing or multinomial risk approaches, we implicitly assume independence between
the lapse behavior of a policyholder and policy termination due to reasons other than a lapse. The
interest lies in investigating, through regression structures, issues such as if there are specific per-
sistency patterns associated with different products or groups of products, and if there are factors
that can enhance the persistency curve in the company. Possibly, these factors can be controlled
by the insurer, leading to increased persistency.
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Traditional parametric survival models, such as Weibull, Gamma, and Log-Normal, may fail
to properly capture the shape of the instantaneous potential for lapse (known as hazard function),
through time, for instance, in situations where the risk of cancelation is quite high in the first
months of a contract, assuming more stable patterns in the following months. Some works seek
to produce more flexible survival models by adopting semi-parametric approaches in which the
modeling focus on the hazard function, indirectly inducing the descriptor model for the time to
the event under analysis. In this context, constructions based on the piece-wise exponential model
(PEM) are quite frequent (Friedman, 1982; Gamerman, 1994; Hemming & Shaw, 2002; Kim et al.,
2007; Demarqui et al., 2014; Mayrink et al., 2021). PEM assumes a piece-wise constant hazard
function (thus an Exponential model for the time to event), per time interval. Some of the liter-
ature on PEM is dedicated to the specification of the number and cut points of the time interval
partition, as well as on the transition of the constant hazard rate between consecutive time inter-
vals. According to Demarqui et al. (2014) although parametric in the strict sense, the PEM can be
considered as a nonparametric approach due to the large and unspecified number of parameters
involved in modeling the hazard function. We propose a more parsimonious approach, directly
focusing on themixture of single-parametric components for themodeling of times to event, mak-
ing the behavior of the mixed survival functions (and the implied hazard functions) more flexible
than the ones associated with usual single-component parametric choices. A detailed description
of Bayesian mixture models is found in Frühwirth-Schnatter (2006). We propose a mixture based
on Log-Normal components, to describe the time to lapse. As will be shown further, mixing a
finite and small number of Log-Normal components is sufficient to ensure flexibility to lapse risk
curves that escape the rigid standards dictated by single-parametric component specifications.
Although the proposed formulation depends on regressors, we assume that the heterogeneity in
the persistence curves may not be completely captured by the features which are available in the
analysis. Mixing components can naturally accommodate extra variability due to latent or unob-
served factors, such as unobserved regressors or different temporal regimes. For instance, different
economic scenarios could affect the persistence behavior, and some works explicitly take time-
varying features into account (see Kuo et al., 2003; Knoller et al., 2015). In our formulation, the
temporal indexation of observations is not exploited. Instead, we assume that a finite number of
regime changes associated with temporal dynamics could be captured by latent clusters of persis-
tence patterns. The particular choice of Log-Normal components enables the use of an efficient
computational scheme for a fully Bayesian approach.

Specifically, the focus of this work is on modeling the time to lapse of a contract (or surrender).
This includes the contracts which are terminated by the policyholder or terminated by the insurer
due to lack of premium payment and do not include external events such as death. Policies that are
not canceled are defined as censored, as the actual time to cancelation has not yet been observed
in the study period.

Our contribution lies in the combination of the following points: (i) specification of a sim-
ple model, based on the mixture of Log-Normal survival regression models, which extends usual
survival approaches to censored data (Ibrahim et al., 2001; Kalbfleisch & Prentice, 2002) in the
sense of making survival and hazard curves more flexible and fitting specific policyholders’ pro-
files, especially in the presence of complex censoring schemes; (ii) adoption of a fully Bayesian
approach, based on data augmentation and Gibbs sampler as well as other Markov chain Monte
Carlo (MCMC) techniques, allowing for fast and feasible computations (see Tanner & Wong,
1987) which results in efficiency to deal with datasets of thousands of policyholders; (iii) fre-
quentist estimation based on Expectation–Maximization (EM) algorithms, which provides point
estimates for the mixture model parameters.

In short, our proposed method for lapse risk analysis allows accommodating heterogeneous
behavior in the lapse hazard/survivor function via a Bayesian mixture model, taking into account
a usually large volume of censored data, with computational efficiency.
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1.2 Outline of the paper
The remaining of the paper is organized as follows. Section 2 presents the Bayesian mixture model
for lapse risk, beginning with a brief review on single-component parametric survival models
(section 2.1), followed by the proposed mixture models and their properties (section 2.2). The
mixture formulation based on Log-Normal components is presented in section 2.2.1. Sections
2.2.2 and 2.2.3 provide details on the fully Bayesian inferential and computational procedures for
mixture survival modeling via data augmentation, and section 2.2.4 describes the adoption of a
frequentist EM algorithm which produces point estimates. Section 3 presents two applications
of the proposed method considering different simulated datasets. For the first one, the analy-
sis focuses on the effectiveness of our proposal in modeling survival curves that have different
behaviors over time with low computational costs. In the second application, a mixture of survival
Log-Normal regressions is adopted to emulate a life insurance company lapse modeling, through
an artificial dataset, aiming to obtain feasible results via our proposed method. As the applica-
tions show, the proposed formulation enables to compute churning probabilities, in specified time
intervals, for groups of policyholders sharing similar features. Also, we consider a case study based
on the Telco customer churn data which are available in IBM Business Analytics Community
Connect, containing information about home phone and internet services (IBM, 2019). The idea
is to illustrate the flexibility of our proposed model when compared to well-knownmodels used in
the literature of survival analysis. Section 4 concludes with a final discussion and remarks. Some
aspects of the posterior distribution and simulated datasets are presented in Appendices A and B,
respectively.

2. Modeling Lapse Risk Via Bayesian Mixture of Parametric Survival Models
This section presents a detailed description of the proposed mixture model, as well as the adopted
inferential and computational schemes. It begins with a brief review of fundamentals on para-
metric single-component survival models, and an illustration is presented, based on a simulated
dataset, aiming at showing that traditional parametric models can result in more rigid patterns for
the hazard and survivor functions than demanded by the data.

2.1 Single-component parametric survival models
For the purpose of survival analysis, interest lies on the nonnegative random variable Ti, which
denotes the duration of a policy i before termination (cancelation). The adoption of a probability
density function f (t) for Ti implies a survival function given by:

S(t)= P(Ti > t)=
∫ ∞

t
f (u)du, (1)

which describes persistency probability evolution, through time. S(t) is monotonic and decreasing
function, starting at S(0)= 1 and converging numerically to zero, since S(∞)= lim

t→∞ S(t)= 0.
The hazard function λ(t) describes the instantaneous potential for cancelation and is given by:

λ(t)= lim
�t→0

P(t < Ti ≤ t + �t | Ti > t)
�t

≈ f (t)
S(t)

= −S′(t)
S(t)

, (2)

where �t is a small-time increment. In particular, λ(t)�t is the approximate probability of a
cancelation occurring in the interval (t, t + �t), that is, the lapse rate, given that the policy has
survived until time t (for more details, see Ibrahim et al., 2001; Kalbfleisch & Prentice, 2002).

Survival analysis data typically contain censored observations, that is, data on sample units for
which the event of interest was not observed during the study time. In the context of the present
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Figure 1. Simulated dataset: empirical Kaplan–Meier survival curves (dashed line) and Exponential, Weibull and Log-Normal
(solid line) fitted models.

work, we define censored data as current (not canceled) policies, claim occurrences (death of the
insured), and terminations of contracts.

To illustrate the larger surrender rates at the first months of a contract and a smaller rate later in
time, we consider an example and assume an usual single-component parametric survival model,
which proves to be inadequate for this kind of insurer portfolio behavior. An artificial database was
simulated in order to emulate the cancelation behavior in insurance products with 1,000 policies,
40% censored data, and considering a dichotomous covariate x (0/no attribute, 1/yes attribute).
We let the observed failure-time data be denoted by:

di = (ti, δi, xi), i= 1, . . . , 1, 000, (3)
where the ti is the time recorded for the ith policy, xi is a covariate associated with the i-th policy,
and δi is an indicator of the censoring status, given by:

δi =
{
1 if ti is an observed lapse time

0 if ti is a censored time.

Thus, {δi = 1} is the event representing the occurrence of lapse or cancelation (with f (ti) probabil-
ity density), whereas {δi = 0} denotes censored lapse time or, equivalently, nonoccurrence of lapse
during the study period (with survival probability S(ti)), that is, lapse/cancelation time is only
known to be greater than ti. The observations on different policies are assumed to be indepen-
dent. The data were simulated considering variable Yi = log (Ti) as the logarithmic the duration
of a policy i before termination from a mixture of Gaussian distributions. For a more detailed
discussion about data generation, see Appendix B.

Fig. 1 presents the empirical Kaplan–Meier survival curve (dashed line) adjusted to the simu-
lated data, for both attributes, and it is clear that there is a heterogeneous behavior between the
levels of the dichotomous covariate. The absence of the attribute described by the covariate is asso-
ciated with an increased premature risk of cancelation. In addition, for both levels of the covariate,
there is a difference in the survival behavior in the initial times when compared to the following
ones.

In the context of survival analysis, parametric models play a key role in modeling the phe-
nomenon of interest. If Ti follows an Exponential model, then λ(t)= λ is constant over time. If
a Weibull model with parameters λ and κ is considered for Ti, then λ(t)= λκtκ−1, resulting in
constant (κ = 1), growing (κ > 1), or decreasing (κ < 1) hazard through time. The Log-Normal
model with parameters μ (mean of the logarithmic failure time) and σ (standard deviation of the
logarithmic failure time) is an usual choice when the hazard function is not monotonous, reaching
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a maximum point and then decreasing. Structured regression models based on covariates are usu-
ally considered, relating the parameters in the sampling model with covariates responsible for the
description of each contract profile. The simulated data were fit by the Exponential, the Weibull,
and the Log-Normal survival regression models.

Panels in Fig. 1 (see solid line) make it clear that usual survival models are not flexible enough
to accommodate the behavior of the empirical survival function, per stratum, over time. Even
though the Log-Normal model produces a good performance when compared with the competing
models in the initial instants, it fails to adapt in later times as in the other competing models. That
is, the rates tend to decrease faster over time, and usual parametric survival models are not able to
accommodate this behavior. Our working premise is that simple parametric models can serve as
block builders of more flexible models, via mixtures.

2.2 Bayesianmixture of parametric survival models
In this section, we present our proposal of a mixture of parametric models for censored survival
data. Finite mixture models are described in detail in Frühwirth-Schnatter (2006). As seen in the
illustration with artificial data presented in section 2.1, the competing fitted models apparently
do not reflect the empirical distribution of the data. A possible alternative is to use more flexible
structures such as mixture models, which allow the incorporation of behavioral change in the
probability distribution of the data. Our proposal is based on the classical finite mixture model,
where observations are assumed to arise from the mixture distribution given by:

f (ti)=
K∑
j=1

ηjfj(ti), (4)

where f (ti) is the probability density function ofTi and fj(ti) denotesK component densities occur-
ring with unknown proportions ηj, with 0≤ ηj ≤ 1 and

∑K
j=1 ηj = 1. It follows that the survival

function S(t) has the mixed form:

S(t)=
K∑
j=1

ηjSj(t)=
K∑
j=1

ηj

∫ ∞

t
fj(u)du, (5)

and the hazard function has the mixed form:

λ(t)= −S′(t)
S(t)

= −
∑K

j=1 ηjS′j(t)
S(t)

=
∑K

j=1 ηjλj(t)Sj(t)
S(t)

=
K∑
j=1

ηjhj(t), (6)

where hj(t)= λj(t)Sj(t)/S(t).
For each policy i, we define a latent group indicator Ii | η ∼ Categorical(K, η), with η =

(η1, . . . , ηK), following a categorical distribution given by P(Ii | η)=∏K
j=1 [ηj]Iij , where Iij = 1

if observation i is allocated to group j and is null, otherwise. These auxiliary non-observable
variables aim to identify which mixture component each observation has been generated from
and their introduction in the formulation makes it simple to express the likelihood function for
observation i:

fTi(ti | Ii)=
K∏
j=1

[fj(ti)]Iij , i= 1, . . . , n. (7)

Notice that in the example shown in section 2.1, K = 2 components are assumed in addition to
a regressor with two levels, for the generation of the artificial lapse risk data. In this case, the lapse
risk can be decomposed into two overlapping processes in time. The first process is associated
with the period that immediately follows the contracting of the policy. In general, it covers the first
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three months when the lapse risk is relatively high. The second process refers to the subsequent
period when persistence decreases smoothly over time. Thus, the mixture distribution is written
as fTi(ti | Ii)= [f1(ti)]Ii1 [f2(ti)](1−Ii1). It is worth noting that single-component models are obtained
as a particular case of the mixture structure when η1 = 1, ηj = 0, j> 1.

For the estimation process in this work, the number K of mixture components is assumed to
be known and subjective to a sensitivity analysis. As usual in applied contexts, K is subject to
uncertainty. Frühwirth-Schnatter (2006, Chap 4) provides a good discussion of informal meth-
ods seeking to identify the number of components in a mixture, including the evaluation of the
predictive behavior of a statistic T(Y) for future realizations of the response, conditional on its
past values y1, . . . , yn and on a model with fixed K components, for different specifications of K.
The choice of K is then indicated by the specification that leads to the best value of the predictive
performance evaluation statistic, among the proposed mixture structures. We performed sensi-
tivity analysis to choose the number of components, observing the quality of the fit of the survival
and hazard curves, compared to their respective empirical versions, which can be summarized by
statistics indicating the performance of the fit. If K is not fixed, its estimation would lead to mod-
els with variable-dimensional parametric space. Details on Bayesian methods in this context can
be seen in Frühwirth-Schnatter (2006, Chap 5). As shown in the following subsections, we offer
a computationally efficient method for estimating a model with fixed K, and we consider that the
sensitivity analysis to different specifications of K, which can be performed in reduced time, is
sufficient for our purposes.

2.2.1 Mixture of Log-Normal components
In this paper, interest lies in modeling Yi = log (Ti), the logarithmic duration of a policy i
before termination (cancelation), such that Yi ∼N (μi, σ 2), implying that in the original scale
Ti ∼LN (μi, σ 2), i= 1, . . . , n. Survival times associated with a different outcome than the lapse,
such as survival times past the end of our study and deaths, are assumed to be censored for policies,
i= h+ 1, . . . , n., then

f (ti | μ, σ 2)= (2π)−
1
2 (tiσ )−1 exp

{
− 1
2σ 2 ( log (ti)− μi, )2

}
. (8)

The resulting survival function is given by:

S(ti | μi, σ 2)= 1− 	

(
log (ti)− μi

σ

)
. (9)

We can thus write the survival likelihood function of (μ, σ 2) implied by a Log-Normal model and
based on data D as:

L(μi, σ 2 |D)=
n∏
i=1

f (ti | μi, σ 2)δi S(ti | μi, σ 2)(1−δi). (10)

Adopting the finite mixture approach and assuming Yi = log(Ti) | μi, σ 2 ∼N (μi, σ 2) and latent
variables Iij, i= 1, . . . , n, it follows that:

fYi
(
yi | Ii,μi, σ 2)=

K∏
j=1

[Nj(yi | μij, σ 2
j )]

Iij , (11)
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whereNj is a normal distribution for the component group j, j= 1, . . . ,K. Then,

yi | {Ii1 = 1}, β1, σ 2
1 ∼ N1(μi1(β1), σ 2

1 )

yi | {Ii2 = 1}, β2, σ 2
2 ∼ N2(μi2(β2), σ 2

2 )

...
...

yi | {IiK = 1}, βK , σ 2
K ∼ NK(μiK(βK), σ 2

K),

with μij = xTijβ j and β j = (β0j, β1j, . . . , βpj) characterizing the unknown mean and σ 2
j , the

variance, respectively, for j= 1, . . . ,K and i= 1, . . . , n.
Using the latent indicators of categorical allocation, the likelihood simplifies to

f (y | η, β , σ 2) =
K∏
j=1

n∏
i=1

η
Iij
j [Nj(yi | β j, σ 2

j )]
Iij

=
K∏
j=1

η
nj
j

⎡
⎣ ∏
i:Iij=1

Nj(yi | β j, σ 2
j )

⎤
⎦ , (12)

where nj =∑
i Iij is the number of observations allocated to group j and n=∑K

j=1 nj, for
j= 1, . . . ,K, i= 1, . . . , n. Thus, the mixture survival likelihood function is given by:

f (y | η, β , σ 2)=
K∏
j=1

η
nj
j

⎡
⎣ ∏
i:Iij=1

Nj(yi | β j, σ 2
j )

δi S(yi | β j, σ 2
j )

1−δi

⎤
⎦ , (13)

where δi in the censorship indicator, as previously seen in section 2.1.
From a Bayesian point of view, we are interested in the posterior p(η, β , σ 2 | y). The posterior

distribution are generally not available analytically, and numerical integration and simulation are
considered, in particular, MCMC methods (Gamerman & Lopes, 2006) are used in this paper.
Notice that to compute posterior distributions, we need to take into account the censored quan-
tities, which in practice can be computationally prohibitive, depending on the percentage of
censored data and the large dataset. Thus, inference is facilitated through data augmentation.

2.2.2 Inference based on data augmentation
The presence of censored data is a common feature when considering time data until the occur-
rence of an event and the likelihood function takes this fact into account, as seen in equation (10).
Following the Bayesian approach, the estimation procedure can be based on MCMC algorithm
using the data augmentation technique (see Tanner &Wong, 1987). Suppose we observe logarith-
mic survival times yobs = (yobs1 , . . . , yobsh ). Then the idea is to define the logarithmic survival times
for the n− h censored policies as missing data which we denote as z= (zh+1, . . . , zn).

Assume that the full data is given by:

y= (yobs, z). (14)

Let θ be the parametric vector of interest. The data augmentation approach is motivated by the
following representation of the posterior density:

p(θ | yobs, δ)=
∫
Z
p(θ | yobs, z, δ)p(z | yobs, δ)dz, (15)
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where the vector δ is composed by censorship indicators δi ∈{0, 1}; p(θ | yobs, δ) denotes the pos-
terior density of the parameter θ given the observed data yobs; p(z | yobs, δ) denotes the predictive
density of latent data z given yobs; and p(θ | yobs, z, δ) denotes the conditional density of θ given
the augmented data y.

In practice, we do not know a priori to which group a given observation belongs. Thus, in
addition to the censored observations, whose outcome is unknown, the variable Ii in equation (7)
is also latent and is estimated in our inferential algorithm. Assuming that policies are independent,
the likelihood function for the complete data can be written as:

f (yobs, z, δ | θ) =
K∏
j=1

η
nj
j

⎡
⎣ ∏
i:δi=1,Iij=1

f j(yobsi | θ j)
∏

i:δi=0,Iij=1
f j(zi | θ j)I(zi ≥ yobsi )

⎤
⎦ , (16)

where θ j = (ηj, β j, σ 2
j ), nj =

∑
i Iij,

∑k
j=1 nj = n, and Nj ∼ fj(· | θ j). Following Bayes’ theorem,

the posterior distribution of the model parameters and latent variables, given the complete data
y= (y1, . . . , yK)′, is proportional to

p
(
η, β , σ 2 | y, δ) ∝ f (yobs, z, δ | θ)p(I | η)π(η, β , σ 2) (17)

∝
K∏
j=1

η
nj
j

⎡
⎣ ∏
i:δi=1,Iij=1

f j(yobsi | θ j)
∏

i:δi=0,Iij=1
f j(zi | θ j)I(zi ≥ yobsi )

⎤
⎦

×
n∏
i=1

p(Ii | η)π(η, β , σ 2).

The Bayesian mixture model is completed by the prior distribution specification. We assume
independence in the prior distribution with η ∼Dirichlet(K, α), where

∑K
j=1 ηj = 1 and α =

(α1, . . . , αK) is a vector of hyperparameters, such that αj > 0; φj = 1
σ 2
j

∼Gamma(aj, bj), the

regression coefficients, β j ∼Nj(mj, τ 2j Ip) and P(Iij = 1)= ηj, for i= 1, . . . , n and j= 1, . . . ,K.
The resulting posterior distribution in equation (17) does not have closed form, and we appeal

to MCMC methods to obtain samples from the posterior distribution. In particular, posterior
samples are obtained through a Gibbs sampler algorithm, where the Markov chain is constructed
by considering the complete conditional distribution of each hidden variable given the others and
the observations. The scheme is presented in the following section.

2.2.3 Computational scheme for the mixture of Log-Normal components
Assuming K groups, it is possible to consider the Gibbs sampler algorithm in order to over-
come the numerical integration condition of the data augmentation techniques, resulting in a
computationally efficient algorithm.

We consider the following Bayesian Gaussian mixture survival model with data
augmentation:

yj | Ii, β j, φj ∼ Nj(xTi β j, φ−1
j )

Ii | η ∼ Categorical(K, η)

η ∼ Dirichlet(α1, . . . , αK)

β j ∼ Nj(mj, τ 2j Ip)
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φj ∼ Gamma(aj, bj)

p(zi) ∝ I
{
zi ≥ yi

}
Algorithm 1 shows the scheme to estimate the parameters via data augmentation with cen-

sored observations. Details involved in obtaining the full conditional distributions can be seen in
Appendix A.

Algorithm 1. Gibbs sampler for a finite Gaussian mixture survival model with data augmentation.

2.2.4 Point estimation via EM
Optimization methods to obtain maximum likelihood estimates are less computationally expen-
sive than Monte Carlo estimation because they depend uniquely on numerical convergence. In
order to obtain point estimates efficiently, we consider the maximization of log-likelihoods for
the mixture model.

Consider K mixture components. In the classical context, the mixture model without censored
data is described by equations (11) and (12), respectively. Furthermore, without considering cen-
sored data and latent indicators of the mixture components, the log-likelihood function to be
maximized is given by:

l
({

ηj
}K
j=1 ,

{
β j

}K
j=1

,
{
σ 2
j

}K
j=1

)
=

n∑
i=1

log
K∑
j=1

ηjfj(Yi | β j, σ 2
j ). (18)

Notice that the expression depends on logarithms of sums, which cannot be simplified through
logarithmic properties. The estimation, in this context, is exhaustive and without analytic or
recursive forms for the maximum likelihood estimators (MLEs) of the model parameters.

In the mixture distribution context, it is very common to use the EM algorithm proposed by
Dempster et al. (1977) which is an iterative mechanism to calculate the MLE in the presence of
missing observations. Given the use of latent variables, and conditional on I, equation (11) is valid.
Thus, it provides a probability distribution over the latent variables together with a point estimate
for parameters. If a prior distribution is assumed for the parameters, the joint posterior mode is
obtained by the method.

Besides that, when we take into account the censored observed data, the data augmentation
technique, as previously seen, can be applied by including a new latent variable vector z. According
to our model, censored observations are originated from a truncated normal distribution.
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Assume that observation yi is censored. That is, there is an unobserved datum zi such that
zi |
{
Iij = 1

}∼ fj and yobsi | zi,
{
Iij = 1

}∼NT (−∞,zi)(xij′β j, σ 2
j ). The strategy that we will adopt in

the algorithm is to remove the truncation from the observed data yobsi to obtain zi, at each iteration
(k), so that y(k)1:n = (yobs1 , yobs2 , . . . , yobsh , z(k)h+1, . . . , z

(k)
n ), as previously seen in section 2.2.2.

Algorithm 2 is adapted for this context. For more details, see Jedidi et al. (1993). Notice that
E(zi | yobsi ,

{
Iij = 1

}
) and Var(zi | yobsi ,

{
Iij = 1

}
) denote the expected value and variance of a trun-

cated Gaussian distribution, respectively. Although the computational cost (to obtain a point
estimate) is smaller when compared to the proposal in sections 2.2.2 and 2.2.3, a disadvantage
of this approach is that the EM algorithm is quite sensitive to the choice of initial parameters and
does not take into account the uncertainty associated with parameter estimates. Besides, the EM
algorithm will converge very slowly if a poor choice of initial value η(0), β(0)

j , and σ
2(0)
j is selected.

Algorithm 2. Expectation–Maximization algorithm for a finite Gaussian mixture survival model with data augmentation.

3. Applications
This section presents three applications of our proposed model: (i) a simulated dataset study
to evaluate the performance and computational cost of our proposed methodology via data
augmentation; (ii) a realistic simulated dataset that emulates a real portfolio and features
often present in real actuarial data; and (iii) a case study based on the Telco customer churn
data which are available in IBM Business Analytics Community Connect, containing infor-
mation about home phone and internet services https://community.ibm.com/community/
user/businessanalytics/home, IBM (2019). The idea of the case study is to illustrate the
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Figure 2. Simulatedwith 40% censored dataset: posterior survival probabilities withmean (gray line) and limits of 95% cred-
ible interval: (a) the Bayesian Log-Normalmodel (BLN), (b) the point estimationmixture Log-Normalmodel via EM algorithm
(EMMLN), (c) the Bayesianmixture Log-Normalmodel (BMLN)with data augmentation, and (d) Bayesianmixture Log-Normal
model via Stan (SBMLN), considering n= 1, 000 policies. Categories: yes attribute (black dashed line) and no attribute (black
solid line).

flexibility of our proposed model when compared to well-known models used in the literature
of survival analysis. Codes with descriptive data analysis, inference procedure, and database are
available at https://github.com/vivianalobo/LapseRiskAAS.

3.1 Simulated dataset
In this section, we return to the illustrative dataset seen in section 2.1. Our aim is to compare the
usual andmixture survival Log-Normal models under a Bayesian approach through our proposals
described in sections 2.2.1 and 2.2.2.

We simulate three scenarios: (i) a dataset with 10% of censored data; (ii) a dataset with
40% of censored data; and (iii) a dataset with 60% of censored data, considering a mixture of
K = 2 components, with η1 = η = 0.6. We would like to assess whether our proposal is efficient
in sampling from the posterior distribution as well as its computational efficiency, for the model
of interest. In addition, we vary the sample size (n= 1, 000;10, 000;50, 000;100, 000) in order to
evaluate the computational cost through (a) our proposal with data augmentation for censored
data. To allow fast computations, we perform part of the code implementation with the C++
programming language to build improved loops of complete conditional distributions through
the RcppArmadillo package available in R software (see Eddelbuettel & Sanderson, 2014); and
(b) without data augmentation via RStan package available in R (Stan Development Team, 2018;
Carpenter et al., 2017), that is, considering the survival likelihood given by equation (13). Stan is
a C++ library for Bayesian modeling and inference that primarily uses the No-U-Turn sampler
(NUTS) (see Hoffman & Gelman, 2014) to obtain posterior simulations given a user-specified
model and data.

The survival time can be analyzed according to log (Ti)= β0 + β1xi + εi, with x the covariate
that takes values (x= 0 or x= 1) and error εi ∼N(0, φ−1). We assign vague independent priors
to the parameters in θ with φj ∼Gamma(0.01, 0.01), β j ∼Nj(0, 100I2), and η ∼Dirichilet(α1 =
2, α2 = 2), for j= 1, 2. We run an MCMC chain for 20,000 iterations and consider the first 10,000
out as burn-in. The burn-in and lag for spacing of the chain were selected so that the effective
sample size was around 1,000 samples.

Fig. 2 illustrates the fit of the survival curves by the competing models considering a sample
with 1,000 policies and 40% rate of censorship (as seen in Fig. 1 (a)), the usual Bayesian Log-
Normal (BLN) model (without mixture, like in Fig. 1 (d)) and the Bayesian mixture Log-Normal
model (BMLN) (see panels (c) and (d) in Fig. 2). As can be seen, the proposed mixture model
is able to accommodate different behaviors in the survival curves when compared to the usual
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Table 1. Posterior summaries comparison: with mean and 95% credibility for the Bayes LN, the Bayes Mixture LN via
Stan, and the Bayes Mixture LN; the point estimation via EM Mixture LN, for a simulated dataset with 40% censorship
rate and considering n= 1, 000 policies.

Bayes LN Bayes MLN (Stan) Bayes MLN EMMLN

True Mean IC 95% Mean IC 95% Mean IC 95% Pointwise

β0,j=1 = 3.3 3.76 (3.70,3.82) 3.30 (3.17,3.44) 3.30 (3.16,3.44) 3.39


β0,j=2 = 4.0 – – 4.05 (4.01,4.09) 4.05 (4.02,4.08) 3.98


β1,j=1 = 0.5 0.62 (0.53,0.72) 0.51 (0.39,0.63) 0.51 (0.38,0.64) 0.51


β1,j=2 = 0.8 – – 0.77 (0.71,0.83) 0.77 (0.72,0.82) 0.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2j=1 = 0.3 0.61 (0.58,0.65) 0.23 (0.17,0.31) 0.24 (0.17,0.31) 0.28
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2j=2 = 0.039 – – 0.04 (0.03,0.06) 0.04 (0.03,0.06) 0.04


η = 0.60 – – 0.56 (0.47,0.63) 0.56 (0.47,0.63) 0.53

Log-Normal model. In addition, the uncertainty associated with estimates is lower for our pro-
posedmixture model. Panel (b), in Fig. 2, exhibits the point estimation via EM for the Log-Normal
mixture modeling. The estimated survival curves via the EM algorithm follow the behavior of
the empirical Kaplan–Meier curves. Point estimates of the parameters of interest are reasonable
compared to those obtained via Gibbs sampler techniques. See more details about the simulated
dataset in Appendix B.

Table 1 shows the posterior summaries for the survival Log-Normal model without mix-
ture (Bayes LN) and considering Log-Normal mixtures via our proposal via data augmentation
(BMLN) and via Stan (BMLN and SBMLN), respectively. As already mentioned, the non-mixture
model is not able to capture the behavior of the survival curve. The structure of the non-mixture
model does not allow the incorporation of mixture components in the coefficient estimates. On
the other hand, the mixture Log-Normal model is capable of producing suitable estimates for the
true parameters. Although the data augmentation proposal and the Stan method lead to similar
point and interval estimates, the processing computational cost via Stan is much higher for all
scenarios, as can be seen in Table 2. In this way, the use of Stan for large samples, highly cen-
sored observations, and considering more covariates in the survival model can be prohibitive.
For the EM algorithm, 58 iterations were required until the parameters converged, which resulted
in a computational time of 3.32 seconds. However, as already stated, the EM algorithm does not
generate uncertainty measures associated with estimates.

3.2 A simulated dataset in insurance
In this section, we simulated a dataset aiming to emulate the behavior of a realistic portfolio
in the private life insurance sector. We simulate a large dataset emulating 100,000 policies over
100 months, taking into account heterogeneous lapse rates and realistic censored data with an
approximate 42.7% censorship rate and twomixing components based on η = 0.6, via the mixture
Log-Normal model previously seen in section 2.2.1. To illustrate, this dataset contains individual
policyholder information as well as information about the subscription.

The factors considered in this study are gender (male and female), age group (18–29 years,
30–49 years, and 60+ years), policy type (standard and gold), where the level gold represents
a segmentation of insureds that have a high insured capital and the premium payment mode
(monthly, yearly, i.e., regular premium or single premium) of the policy. Time to churn is the
response variable of interest.

Panel (a) in Fig. 3 presents the simulated survival times in the log scale, indicating the mix-
ing of two distributions. In panels (b)–(c), the empirical survival curve and hazard rate behavior
show that the lapse rate is higher and sharply falls for the first periods of time after subscription
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Table 2. Comparison of computational times (in seconds) involved in the Bayesian
competingmethods for simulated datasets with 10%, 40%, and 60% rates of censor-
ship and considering n (size) policies.

% censored Size n Bayes MLN Bayes MLN (Stan)

10% 1,000 2.20 637.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10,000 4.27 7,274.85
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50,000 76.45 23,913.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100,000 168.98 65,452.20

40% 1,000 2.33 831.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10,000 18.81 8,442.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50,000 108.01 44,036.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100,000 234.18 83,442.90

60% 1,000 3.33 1,005.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10,000 21.42 9,568.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50,000 119.18 49,751.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100,000 263.75 106,977.0

Computational system Ubuntu, Intel Core i5-10400F CPU 2.90 GHZ, 16 GB RAM.
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Figure 3. Simulated dataset: a summary about the survival time with (a) survival time in log scale, (b) empirical survival
curve, and (c) churn hazard curve.

initiation, then it stabilizes for some time, exhibits a peak close to 20 months, and then gradually
decreases.

Fig. 4 presents the marginal empirical Kaplan–Meier survival curve for the variables of this
study. As we can be seen, categories for each variable present particular behavior and could be
useful to understand the time to churn. There is a noticeable drop in active insured in the first
periods after the policy subscription. Some reasons could be discussed, such as the policyholders
who subscribe just to test a service or there may be some association with the premium payment
mode. For the age group, there is no visible difference in patterns of survival probability between
the 18–29 years and 30–59 years of age groups, except for a drop in during the first months of
subscription and nearby the final portion of the survival curve.

Fig. 5 shows the performance of the fitted curves for the competing models, the Log-Normal
model, and the Log-Normal mixture model for some scenarios. Panel (a) represents the character-
istics of the policyholder in scenario 1 (male, standard, 30–59 years of age, andmonthly payment),

https://doi.org/10.1017/S1748499523000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000180


140 Viviana G. R. Lobo et al.

gender

0 25 50 75 100
0.2

0.4

0.6

0.8

1.0

survival time

s
u
rv

iv
a
l 
p
ro

b
a
b
ili

ti
e
s

Female
Male

type.policy

0 25 50 75 100
survival time

standard
gold

age

0 25 50 75 100
survival time

18−29
30−59
60+

payment

0 25 50 75 100
survival time

by month
by year

Figure 4. Simulated dataset:marginal empirical survival curves via Kaplan–Meier for the covariates: gender, type policy, age,
and payment.

panel (b) exhibits the fitted curves for scenario 2 (male, gold, 60+ years of age, and year), and
panel (c) exhibits the estimated survival curves for scenario 3 (female, standard, 60+ years of age,
and month). As we can see, policyholders in scenario 1 have lower persistence when compared to
scenarios 2 and 3, respectively. This behavior is understood due to the fact of the standard group
and 30–59 years of age group present survival empirical curves with more abrupt decay than 60+
years of age and gold categories.

Our proposed Bayesian mixture survival model is able to capture the behavior of the empirical
curves (see Fig. 5). Note that the BLN produces a poor fit due to the fact this model is not allowed
to access distinct behavior of the curve at different times of the study. Besides that, the BMLN and
EMMLN converge for the true values generated from the simulated dataset. In order to under-
stand the lapse of the policyholders, especially in the initial periods of the contract, we consider
obtaining some probabilities to profile the policyholder to customer retention via the BMLN. We
hope that the longer customers are with the insurance company, the less likely they are to cancel
a policy. Table 3 shows a summary of the probabilities conditional on the hypothesis that the pol-
icyholder has survived the first three months, that is, conditional on the event L= {T > 3} for the
scenarios in Fig. 5. As one can see, the risk probability of a lapse occurring in the first year is higher
for scenario 1 (0.394) when compared to scenarios 2 and 3 (0.247 and 0.123), respectively. On the
other hand, the conditional probability that the policyholder maintains the contract term after
36 months, having survived to the first months (P(T ≥ 36 | T > 3)), is high for all considered sce-
narios. Other probabilities can be evaluated in order to understand the profile of the company’s
policyholders. To illustrate, Table 4 exhibits the results obtained conditioning on other events,
such as{T > 12},{T > 24}, and{T > 36}. As expected, the probability of churn decreases, having
the insured persisted in the insurance company for long periods, that is, the lapses reduce sub-
stantially with increasing policy age. Furthermore, when identifying insured profiles, we are able
to understand which profiles need more attention; thus, the insurance company could develop
retention strategies focused on these policyholders.

3.3 Case study: Telco customer churn
The Telco customer churn data is available on IBMBusiness Analytics Community Connect (IBM,
2019) and contains information about a Telco company that provides home phone and internet
services to 7,043 customers in California in the United States. The dataset contains 18 variables
about the profile of the customers and a variable indicating who has left or stayed in the service
resulting in approximately 73.4% of censoring. The response variable tenure represents the num-
ber of months the customer has stayed with the company with an average of 32 months. Lifetimes
equal to zero were removed resulting in a dataset of 7,032 customers. Demographic characteristics
are included for each customer, as well as customer account information and service information.
Following previous studies, we aim to predict customer churn rate behavior and identify the most
important factors that contribute to high- or low-lapse risks.
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Figure 5. Simulated dataset: summary survival curves with the empirical (dashed line), and the Bayes LN, the EM mixture
LN, and the Bayes mixture LN with 95% credible interval (solid gray line): scenario 1 (first row), scenario 2 (second row), and
scenario 3 (third row).

https://doi.org/10.1017/S1748499523000180 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000180


142 Viviana G. R. Lobo et al.

Table 3. Simulated dataset: probability for the time to churn conditional on the event
L= {T > 3} for the scenarios 1, 2, and 3.
Profile P(T ≤ 12 | L) P(12< T < 24 | L) P(24< T < 36 | L) P(T ≥ 36 | L)
Scenario 1 0.394 0.194 0.100 0.312

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario 2 0.247 0.078 0.059 0.616
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario 3 0.123 0.086 0.067 0.724

Table 4. Simulated dataset: probability for the time to churn conditional on the
events {T > 12}, {T > 24} and {T > 36} for the scenarios 1, 2, and 3.
Profile P(T ≤ 24 | T > 12) P(T ≤ 36 | T > 24) P(T ≤ 48 | T > 36)

Scenario 1 0.320 0.243 0.200
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario 2 0.104 0.087 0.077
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenario 3 0.098 0.085 0.076
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Figure 6. Case study: summary about the survival time with (a) lifetime distribution, (b) empirical survival curve, and (c)
churn hazard rate.

Panels in Fig. 6 illustrate the pattern of the lifetime of the customers. Although a large admis-
sion of new customers is observed for the first months of contract, panel (c) indicates that there
is a high lapse rate at the beginning, that is, there is a large portion of customers that will leave
the company after just a few months of service. In the other months, the lapse risk rate remains
around 0.005. Note that after 60 months of contract, there is a steep increase in the lapse rate. We
expect that our proposed model is able to capture these sudden changes of pattern in the hazard
function over time.

To check if usual parametric models are able to accommodate the different regimes of the
survival curve over time, we consider fitting three alternative models: Exponential, Weibull, and
Log-Normal and compare them with the BMLN model proposed in this paper. We present the
Bayesian solution as follows instead of EM point estimates as it is desirable to access uncertainty
in the curves. Figs. 7 and 8 present the general survival and hazard curves for model comparison,
respectively. Indeed, the Exponential alternative seems naive, since it is a well-known fact that it
assumes constant lapse rates over time. This hypothesis does not reflect reality and in this case, we
will not take into account this model to model the profiles risk. Regarding our proposed mixture
model, a sensitivity analysis for the number of components K was performed. Thus, the time to
churn is modeled based on the mixture model with K components for different values of K. Then,
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Figure 7. Case study: model comparison compared with the empirical lapse curve for the Exponential model, the Weibull
model, the Log-Normal model, and the Bayesian mixture Log-Normal model considering K = 2, 3, 4, 5, 6 mixture compo-
nents, respectively. The gray line represents the fitted model and the black line is the empirical curve.
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Figure 8. Case study: model comparison compared with the empirical lapse curve (first row) and the hazard curve (second
row) for the Exponential model, the Weibull model, the Log-Normal model, and the Bayesian mixture Log-Normal model
considering K= 2, 3, 4, 5, 6 mixture components, respectively. The gray line represents the fitted model and the black line is
the empirical curve.

the best model can be selected based on model comparison measures computed for each value
of K. As we can see, the BMLN with K = 2 and K = 3 components return fits that are similar to
the Weibull model, failing to capture the curves from 30 to 70 months of contract. For K > 4,
the mixture models provide better fits, with the general curve recovering the risk to churn in
all periods of time including the first and last months of the contract. This indicates that our
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Figure 9. Case study: marginal empirical survival curve (first row) and hazard curves (second row) for covariates Payment
Method, Contract, and Internet Service.

proposed model allows for more flexibility, besides being computationally efficient even for a
large proportion of censorship in the data.

Although there is a large set of covariates available to explain the lapse risk, a group
of them is not informative for the survival time under study. For example, the lapse rates
for the two categories of gender in the data are nearly the same. Similar behavior is
observed for some customer service information such as PhoneService, MutipleLines,
and OnlineSecurity. Also, there is multicollinearity for groups of variables, in particular
OnlineSecurity, TechSupport, OnlineBackup, and DeviceProtection are all depen-
dent on the OnlineService variable. For instance, the covariates MonthlyCharges and
TotalCharges present high collinearity. A detailed descriptive analysis for this data is pre-
sented at https://github.com/vivianalobo/LapseRiskAAS. We discuss ways to aggregate
categories in each covariate considered in the analysis to achieve more interpretability of
effects.

In the final models, we considered the covariates PaymentMethod, InternetService, and
Contract resulting in eight risk profiles after rearranging the categories established in the
descriptive analysis. Fig. 9 presents empirical survival and hazard curves for these risk pro-
files. For the customer account information, see that customers with Month-to-Month contracts
have higher lapse rates compared to clients with One-year and Two-year contracts. Notice that
the hazard curve of those with One-year payment is very similar to the one associated with
more than one-year payment regime. Thus, we considered aggregating these categories in a unique
group called “One-year +”. For the payment method, see that the behavior of survival curves and
churn rates for Credit Card (automatic) and Bank Transfer (automatic) are quite similar. On the
other hand, when we consider the instantaneous lapse curve, notice that customers that prefer an
Electronic check as a payment method are the majority to leave the company, so we merged the
other classes in a new category called “others.”
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Figure 10. Case study: model comparison survival curves for the scenarios “varying Internet Service” (first row), “varying
Payment Method” (second row), and “varying both Payment Method and Contract” (third row) for the Weibull model, the
Log-Normal model, and the Bayesian mixture Log-Normal model with K = 4, 5, 6 components. The solid line represents the
fitted curve and the dashed line is the empirical curve. For the BMLN, the 95% credible interval is provided in gray.

Figs. 10 and 11 present some scenarios for the profile risks. The first scenario (first row) refers
to customers that have Fiber optics internet service and others (DSL, No) (for Month-to-Month
and Electronic check). See that individuals that own Fiber optics internet service tend to have a
higher propensity to churn when compared to others. Notice that the choice of the BMLN with
K = 4 components is enough to capture the trend of the lapse curve and the lapse instantaneous
rate. The posterior mean mixture weights estimated for the BMLN with four components
(and respective 95% credible interval) are: η1 = 0.603(0.719, 0.888), η2 = 0.229(0.174, 0.298), η3 =
0.102(0.095, 0.107), η4 = 0.066(0.048, 0.085). A posterior summary of this model is detailed in
Table 5 which gives some insights into the parameters of the model.

As customers who have internet services via Fiber optics have the propensity to churn faster,
we would like to understand whether this trend is maintained by varying the payment method.
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Figure 11. Case study: model comparison hazard curves for the scenarios “varying Internet Service” (first row), “varying
Payment Method” (second row), and “varying both Payment Method and Contract” (third row) for the Weibull model, the
Log-Normal model, and the Bayesian mixture Log-Normal model with K = 4, 5, 6 components. The solid line represents the
fitted curve and the dashed line is the empirical curve. For the BMLN, the 95% credible interval is provided in gray.

For this purpose, scenario 2 (second row) presents customers’ profiles that prefer to deal through
Electronic versus customers with Bank Transfer, Credit Card, or Mailed Check (for Month-
to-Month and Fiber optics). Again, the BMLN shows to be the best model, compared to the
Weibull and Log-Normal. Notice that there is a significant difference between customers that
prefer Electronic check and others: the churn risk for the profile Electronic check, Month-to-
Month, and Fiber optics presents higher lapses over several months (see Fig. 10, second row, after
Month 40).

In scenario 3, four profile risks are considered taking into account both types of contracts and
payment regimes. As we can see, customers whose contract is for One year or more (One year +)
have a lower chance of lapsing when compared to Month-to-Month contracts. This can be seen if
one varies the payment method (for the ones who have Fiber optics). See that risk lapse rates are
higher for Electronic check payment method.
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Table 5. Posterior summary for regressors of the BMLN model with K = 4 mixture
components: with mean, standard error, and 95% credible interval, for the case
study.

Coefficients Mean Standard error 95% CI

interceptj=1 3.087 0.105 (2.854, 3.266)

PaymentMethodothersj=1 0.493 0.070 (0.361, 0.630)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ContractOneyear+j=1 2.006 0.120 (1.785, 2.232)

InternetServiceothersj=1 0.265 0.075 (0.118, 0.410)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interceptj=2 3.998 0.052 (3.895, 4.094)

PaymentMethodothersj=2 0.161 0.065 (0.038, 0.292)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ContractOneyear+j=2 0.215 0.083 (0.072, 0.394)

InternetServiceothersj=2 0.545 0.375 (0.191, 1.546)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interceptj=3 0.000 0.001 (−0.001, 0.001)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PaymentMethodothersj=3 0.000 0.001 (−0.001, 0.002)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ContractOneyear+j=3 4.285 0.003 (4.281, 4.291)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

InternetServiceothersj=3 0.000 0.001 (−0.001, 0.002)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interceptj=4 1.002 0.069 (0.866, 1.139)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PaymentMethodothersj=4 0.108 0.062 (−0.016, 0.232)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ContractOneyear+j=4 3.879 0.581 (3.301, 5.520)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

InternetServiceothersj=4 −0.020 0.065 (−0.148, 0.098)

Overall the proposed mixture models with K ≥ 4 present the best fits when compared with
well-known survival models such as the Weibull model. The flexibility of our proposal captures
changes of regimes in the lapse rates over time, exhibited by the data.

4. Conclusions
We have proposed a flexible survival mixture model that extends the usual models usually con-
sidered for censored data and accommodates different behavior of Ti over time. This is done
via mixtures of parametric models that accommodate censored survival times. The proposal
combines the mixture distributions based on Frühwirth-Schnatter (2006) and data augmenta-
tion techniques proposed by Tanner & Wong (1987). Full uncertainty quantification is available
through the Bayesian distributions which are obtained viaMCMCmethods. Furthermore, we pro-
posed an efficient sampling algorithm for inference summarized in point estimates, via the EM
algorithm. Notice that the Bayesian and frequentist solutions provide similar results in terms of
point estimation for the regression coefficients. However, the Bayesian posterior distribution also
allows for uncertainty quantification and estimation of nonlinear functions such as the survival
curve with no asymptotic approximation required.

We performed extensive simulation studies to investigate the ability of the proposed mixture
model to capture different survival curves. Our simulated examples indicate that the data-
generating model with a mixture of distributions provides the best fit and indicates that the usual
survival models are not able to capture the change in behavior for the churn times. Besides, our
designed solution combining the Gibbs sampler and data augmentation is faster than the solution
provided by the Stan package.

We have exploited three applications to illustrate the usefulness of our proposedmixturemodel
for fitting time to churn. The first one is a simulated study that shows that our model is feasible
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even for very large datasets (order of thousands) and that our proposed implementation is compu-
tationally efficient and recovers well all model parameters and risk behaviors studied. The second
application emulates an insurance dataset with risks changing over time and high censoring. The
proposed model is also able to recover well all risk behaviors. Lastly, our case study illustrates that
our mixture model is more flexible than the well-known survival models usually fitted in these
applications.

We conclude that allowing for a flexible survival model enables more realistic description of
the behavior of the survival probability curves, for the factors affecting times to an event such as
surrender. In particular, this is crucial when the lapse rates change regime over time. An alternative
way to accommodate heterogeneity in the hazard and survival functions is to define a dummy
variable indicating the first months of contract. However, this solution would work for this period,
but often it is not easy to set a priori which are the periods of time when changes of regime occur.
In that context, our model allows the data to inform which are the regime changes necessary for
a good fit of the regression model. In the present work, calendar effects were not considered. As
an extension, we could investigate if changes in regime would be observed over several years, in
which case dynamic models would be necessary. It is also a research interest to investigate if a
finite number of components, as proposed in our work, could capture changes in the regime.

Regarding model complexity, an excessive number of components could lead to overfitting,
while too fewmight not be able to accommodate heterogeneities in the hazard and survival curves.
In this work, different values of K were set, subject to subsequent sensitivity analysis based on the
quality of fit metric. If our interest lies in the estimation of the effects to understand the profile
customer retention, then a large number of parameters and components would not be a concern.
However, if the purpose of the analysis is to predict whether a customer will be subject to churn
or not, an alternative would be to apply regularization methods, which take into account both
the quality and the complexity of the fit, penalizing the model’s coefficients and shrinking them
towards zero. Among such methods, least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996; Park & Casella, 2008) can be seen as a form of variable selection, as it is able
to nullify coefficients and could be used to select the number of components while preserving the
adequacy of the fit.

Data availability statement. Codes for reproducing the descriptive data analysis, inference procedure, and database of the
paper are available at https://github.com/vivianalobo/LapseRiskAAS.
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A. Posterior distribution
The prior distributions considered for the parameters, the complete conditional distributions, and
proposal densities used in the MCMC algorithm are detailed as follows.

A.1 Bayesianmixture survival model
Consider the likelihood given in equation (16) and mixture components in equation (11).

The conditional distribution of each Ii, i= 1, . . . , n, given all other parameters and prior
distribution Ii | η ∼ Categorical(K, η), η = (η1, . . . , ηK) is given by:

p(Iij = 1 | yi, η, ·) ∝ f (yi |
{
Iij = 1

}
, η)π(Iij = 1 | η)

∝ ηjfj(yi)∑K
j=1 ηjfj(yi)

.

If yi |
{
Iij = 1

}∼Nj(μij, φ−1
j ), then

p(
{
Iij = 1

} | yi, η, β j, φj)=
ηjNj(yi | β j, φj)∑K
j=1 ηjNj(yi | β j, φj)

. (A.1)

Thus, the marginal posterior distribution is I | y∼ Categorical
(
K; η1N1(yi|β1,φ1)∑K

j=1 ηjNj(yi|β j,φj)
, . . . ,

ηKNK (yi|βK ,φK )∑K
j=1 ηjNj(yi|β j,φj)

)
.

The conditional distribution for, considering a prior distribution as η ∼
Dirichilet(K; α1, . . . , αK) is given by:

p(η | I, ·) ∝ f (I | η, ·)π(η)=
K∏
i=1

p(Ii | η, ·)π(η)=
⎡
⎣ n∏

i=1

K∏
j=1

η
[Iij=1]
j

⎤
⎦ K∏

j=1
η

αj−1
j (A.2)

∝
K∏
j=1

η
αj−1+∑i:Iij=1 [Iij=1]
j =

K∏
j=1

η
(αj+nj)−1
j ,

where nj =∑
i Iij. Thus, η | I, · ∼Dirichilet(α∗

1 , . . . , α
∗
K), with α∗

j = nj + αj, j= 1, . . . ,K.
For each group j, we can compute a sample from each of the components φj = 1/σ 2

j individu-
ally. For φj ∼Gamma(aj, bj),

p(φj | yj, ·) ∝ f (yj | φj, I, ·)π(φj)

∝ (φj)nj/2exp

{
−φj

(
(yj − xTi β j)T(yj − xTi β j)

2

)}
φ
aj−1
j exp

{−φjbj
}

∝ φ
aj+nj/2−1
j exp

{
−φj

(
bj +

(yj − xTi β j)T(yj − xTi β j)
2

)}
. (A.3)

The conditional distribution of φj | yj, · ∼Gamma
(
aj + nj

2 ;bj +
(yj−xTi β j)T (yj−xTi β j)

2

)
.

For β j ∼Nj(mj, τ 2j ), with β j = (β0j, β1j, . . . , βpj). The conditional distribution is given by:

p(β j | yj, ·) ∝ f (yj | β j, ·)π(β j) (A.4)
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For latent variable Z, when δi = 0, i= 1, . . . , n, we consider the data augmentation. Thus, p(zi |{
Iij = 1

}
, β j, φj, ·)∝ I(yi ≥ yi), we have

p(zi | I
{
Iij = 1

}
, yi, ·) ∝ f (yi |

{
Iij = 1

}
, ·)π(zi |

{
Iij = 1

}
)

∝ f (yobsi , zi |
{
Iij = 1

}
, ·)π(zi) (A.5)

∝ f (zi |
{
Iij = 1

}
)π(zi)= exp

{
−φj

2
(zi − xTi β j)2

}
I(zi ≥ yi).

The conditional distribution of zi |
{
Iij = 1

}
, yi ∼NT (xTi β j, φ−1

j ).

B. Some results for simulated datasets
In this appendix, we present the generation of observations via mixture distribution considering
the presence of censored data introduced in section 2.1 and explored in section 3.1. The dataset
was simulated considering variableYi = log (Ti) as the logarithmic the duration of a policy i before
termination from a mixture of Gaussian distribution with K = 2 components given by:

f (yi | θ)= η N1(μi1, σ 2
1 )+ (1− η)N2(μi2, σ 2

2 ), i= 1, . . . , n, (B.1)
where θ = (η, β , σ 2) the parametric vector of interest. The mean for j= 1, 2 is given by μi,j=1 =
β01 + β11x= 3.3+ 0.5x and μi,j=2 = β02 + β12x= 4.0+ 0.8x and variance as σ 2

1 = 0.3 and σ 2
2 =

0.039, respectively. The weight η1 = η is equal to 0.6 and x represents the covariate that takes
values (x= 0, no attribute and x= 1, yes attribute). In the presence of censored observation, that
is, δi = 0, we generate the censored observation yci from a truncated Gaussian distribution as:

yci | · ∼NT (−∞,yi]
(
μij, σ 2

j

)
, ∀ j= 1, . . . ,K. (B.2)

Thus, in inferential processes with simulated data, the likelihood will be based on the original
observations yi for δi = 1 and the censored ones, yci , for δi = 0, emulating the observable informa-
tion in real practical situations. Fig. B.1 shows the mixture distribution with 40% censored data
considering n= 1, 000 policies. Panels (a) show the behavior in the original scale, that is, Ti from
a Log-Normal distribution, and (b) in the log scale. See that the mixture proportions are indeed
based on the probabilities that were defined, that is, η = 0.6 and 1− η = 0.4, respectively.
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Figure B.1. Simulatedwith 40%censored dataset considering n= 1, 000 policies: (a) original scale Ti and (b) log scale log (Ti).
Besides, 60% come fromN1(·, ·) and 40% come fromN2(·, ·). Dashed lines are the mean for δ = 0 and δ = 1, respectively.
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