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Abstract

Let L1(ω) be the weighted convolution algebra L1
ω(R+) on R+ with weight ω. Grabiner recently proved

that, for a nonzero, continuous homomorphism 8 : L1(ω1)→ L1(ω2), the unique continuous extension
8̃ : M(ω1)→ M(ω2) to a homomorphism between the corresponding weighted measure algebras on R+
is also continuous with respect to the weak-star topologies on these algebras. In this paper we investigate
whether similar results hold for homomorphisms from L1(ω) into other commutative Banach algebras.
In particular, we prove that for the disc algebra A(D) every nonzero homomorphism 8 : L1(ω)→ A(D)
extends uniquely to a continuous homomorphism 8̃ : M(ω)→ H∞(D) which is also continuous with
respect to the weak-star topologies. Similarly, for a large class of Beurling algebras A+v on D (including
the algebra of absolutely convergent Taylor series on D) we prove that every nonzero homomorphism
8 : L1(ω)→ A+v extends uniquely to a continuous homomorphism 8̃ : M(ω)→ A+v which is also
continuous with respect to the weak-star topologies.
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1. Introduction

Define R+ = [0,∞). We let L1(R+) denote the Banach space of (equivalence classes
of) integrable functions h on R+ with the norm

‖h‖ =
∫
∞

0
|h(t)| dt.

In this paper we will work with weighted analogues of L1(R+). We refer to
Grabiner [4, 5] for further details about the definitions and results summarized below.

A positive Borel function ω on R+ is called an algebra weight if:

(a) ω and 1/ω are locally bounded on R+;
(b) ω is right continuous on R+;
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(c) ω is submultiplicative, that is, ω(t + s)≤ ω(t)ω(s) for all t, s ∈ R+;
(d) ω(0)= 1.

We then define L1(ω) as the weighted space of all the functions h on R+ for which
hω ∈ L1(R+) with the inherited norm

‖h‖ω =
∫
∞

0
|h(t)|ω(t) dt.

(For convenience we will henceforth omit all subscripts on norms in this paper.) It is
well known that, equipped with the usual convolution product

(h ∗ k)(t)=
∫ t

0
h(s)k(t − s) ds

for all t ∈ R+ and h, k ∈ L1(ω), the space L1(ω) is a commutative Banach algebra.
Similarly, the space M(ω) of locally finite complex Borel measures µ on R+ for

which

‖µ‖ =

∫
R+
ω(t) d|µ|t <∞

is a Banach algebra under convolution and contains L1(ω) as a closed ideal. (We
integrate over R+, that is, [0,∞), since µ may have nonzero mass at 0.) Hence
every measure µ ∈ M(ω) defines a multiplier Tµ on L1(ω) by Tµh = µ ∗ h for
all h ∈ L1(ω) and this identifies M(ω) isometrically isomorphic with the multiplier
algebra Mul(L1(ω)) of L1(ω). This induces a strong topology on M(ω) in which a
net (µα) tends to 0 if and only if µα ∗ h→ 0 for every h ∈ L1(ω). Moreover, if we
denote by C0(1/ω) the Banach space of all continuous functions g on R+ for which
g/ω is bounded and vanishes at infinity, with the norm

‖g‖ = sup
t∈R+

|g(t)|

ω(t)
,

then M(ω) is isometrically isomorphic to the dual space of C0(1/ω), and the duality
is defined by

〈g, µ〉 =
∫

R+
g(t) dµ(t)

for all g ∈ C0(1/ω) and µ ∈ M(ω). We thus have three different topologies on M(ω),
namely the norm, strong and weak-star topologies. In the unweighted case where
ω ≡ 1, we use the notation M(R+) and C0(R+) for M(ω) and C0(1/ω), respectively.

In order to present the inspiration for this paper we recall a result of Grabiner. For
all t ∈ R+, we denote by δt the unit point measure at t . Then (δt )t∈R+ is a strongly
continuous semigroup in M(ω). Also, we refer to [6] for the general theory of Bochner
integrals.

THEOREM 1.1 [4, Theorems 3.4 and 3.6]. Let ω1 and ω2 be algebra weights and
let 8 : L1(ω1)→ L1(ω2) be a nonzero continuous homomorphism. Then 8 has a
unique extension to a continuous homomorphism 8̃ : M(ω1)→ M(ω2). Moreover, if
we define νt

= 8̃(δt ) for all t ∈ R+, then (νt )t∈R+ is a semigroup in M(ω2) which is
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strongly continuous in (0,∞) and

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω1), where the integrals exist as strong Bochner integrals in M(ω2),
that is,

8̃(µ) ∗ h =
∫

R+
νt
∗ h dµ(t)

exists as a Bochner integral for all µ ∈ M(ω1) and h ∈ L1(ω2).

This result is closely related to the notion of a standard homomorphism [3]. A
homomorphism 8 : L1(ω1)→ L1(ω2) is called standard if, whenever h ∈ L1(ω1)

and L1(ω1) ∗ h is dense in L1(ω1), then L1(ω2) ∗8(h) is dense in L1(ω2). In [3,
Theorem 2.2], it is proved that a nonzero homomorphism 8 is standard if and only if
(νt )t∈R+ is strongly continuous at 0, which in turn holds if and only if 8̃ is strongly
continuous (with νt and 8̃ as in Theorem 1.1). It is still an open question whether
every nonzero homomorphism 8 : L1(ω1)→ L1(ω2) is standard, that is, whether the
extension 8̃ is automatically strongly continuous. However, Grabiner recently proved
that 8̃ is automatically weak-star continuous.

THEOREM 1.2 [5, Theorem 1.1]. Let 8 : L1(ω1)→ L1(ω2) be a nonzero continuous
homomorphism, where ω1 and ω2 are algebra weights, and let 8̃ : M(ω1)→ M(ω2)

be the unique extension given by Theorem 1.1. Then 8̃ is weak-star continuous.

2. Extending homomorphisms into general algebras

The aim of this paper is to consider possible generalizations of Theorem 1.2 for
homomorphisms from L1(ω) into other Banach algebras.

In [8, Proposition 1.1], we proved the following result, with L1(R+) instead of
L1(ω), which shows that a homomorphism from L1(ω) into an arbitrary commutative
Banach algebra B can be extended to a homomorphism from M(ω) into a suitable
extension of B. For a closed ideal C in B we let Mul(C) be the multiplier algebra of C
consisting of those bounded linear operators T on C for which T (ab)= aT (b) for all
a, b ∈ C.

PROPOSITION 2.1. Let B be a commutative Banach algebra, let ω be an algebra
weight and let 8 : L1(ω)→ B be a nonzero, continuous homomorphism. Then the
subspace C =8(L1(ω))B is a closed ideal in B and 8 extends to a homomorphism
8̃ : M(ω)→Mul(C) which is continuous with respect to both the norm and strong
topologies. If B is an integral domain, then the extension of8 is unique. Furthermore,
if νt
= 8̃(δt ), then (νt )t∈R+ is a strongly continuous semigroup in Mul(C), and

‖νt
‖ ≤ ‖8̃‖ · ω(t) for all t ∈ R+ and 8̃(µ) is given by the strong Bochner integral

8̃(µ)=

∫
R+
νt dµ(t)
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for all µ ∈ M(ω), that is,

8̃(µ)c =
∫

R+
νtc dµ(t)

exists as a Bochner integral for all µ ∈ M(ω) and c ∈ C.

The proof of Proposition 2.1 is basically the same as that of [8, Proposition 1.1].
The main ideas are as follows. The algebra L1(ω) has a bounded approximate
identity [4, Theorem 2.2], so Cohen’s factorization theorem (see, for instance, [1,
Corollary 2.9.26]) shows first that C is a closed ideal in B, and second that for all
c ∈ C there exist h ∈ L1(ω) and b ∈ C such that c =8(h)b. We then use an idea of
Esterle [2, Proposition 5.2], and define

8̃(µ)c =8(µ ∗ h)b

for all µ ∈ M(ω) and check that 8̃ has the required properties. The uniqueness of the
extension, when B is an integral domain, follows as in the proof of [4, Theorem 3.6].

For a nonzero, continuous homomorphism 8 : L1(ω1)→ L1(ω2) it follows from
[3, Theorem 2.2] that 8 is standard if and only if the ideal C =8(L1(ω1))L1(ω2) is
equal to L1(ω2). For standard homomorphisms, Grabiner’s extension [4, Theorem 3.4]
thus follows from Proposition 2.1.

In the following sections, we consider some concrete examples of the commutative
Banach algebra B. In these cases, the multiplier algebra Mul(C) sits naturally as
a closed subspace of a certain dual space Y ∗, and we show that the extension 8̃ from
Proposition 2.1 is weak-star continuous regarded as a map from M(ω) to Y ∗. This
is done by verifying, in these particular cases, the condition in the following more
general result which allows us to exchange the order of duality and integration.

PROPOSITION 2.2. Let B be a commutative Banach algebra and let ω be an algebra
weight. Moreover, let 8 : L1(ω)→ B be a nonzero, continuous homomorphism and
let

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω) be the extension to a homomorphism from M(ω) to Mul(C) given by
Proposition 2.1. Suppose that Mul(C) is a closed subspace of a dual space Y ∗, where
Y is a Banach space, and that the integrals

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω) exist as weak-star integrals, that is,∫
R+
〈y, νt

〉 dµ(t)

exists and is equal to 〈y, 8̃(µ)〉 for all µ ∈ M(ω) and y ∈ Y . Then the following
conditions are equivalent.
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(a) The homomorphism 8̃ : M(ω)→ Y ∗ is weak-star continuous.
(b) The semigroup (νt )t∈R+ is weak-star continuous in Y ∗ and νt/ω(t)→ 0 weak-

star in Y ∗ as t→∞.
(c) For all y ∈ Y and t ∈ R+, let

(T y)(t)= 〈y, νt
〉.

Then T y ∈ C0(1/ω) for all y ∈ Y , and the map T : Y → C0(1/ω) is a bounded
linear operator and T ∗ = 8̃.

PROOF. We show that (a) implies (b), that (b) implies (c), and that (c) implies (a).
Assume that (a) holds. Now (δt )t∈R+ is weak-star continuous in M(ω), so (νt )t∈R+

is weak-star continuous in Y ∗. Also,

〈g, δt/ω(t)〉 = g(t)/ω(t)→ 0 as t→∞

for g ∈ C0(1/ω), and so δt/ω(t)→ 0 weak-star in M(ω) as t→∞. Hence

νt/ω(t)= 8̃(δt/ω(t))→ 0

weak-star in Y ∗ as t→∞.
Next, assume that (b) holds. For all y ∈ Y , clearly T y ∈ C0(1/ω) and

‖T y‖ = sup
t∈R+

∣∣∣∣〈y,
νt

ω(t)

〉∣∣∣∣≤ sup
t∈R+

‖νt
‖

ω(t)
‖y‖,

so T : Y → C0(1/ω) is a bounded linear operator. For all µ ∈ M(ω) and y ∈ Y , it
follows from the assumption that

〈y, 8̃(µ)〉 =

〈
y,
∫

R+
νt dµ(t)

〉
=

∫
R+
〈y, νt

〉 dµ(t)= 〈T y, µ〉,

so T ∗ = 8̃.
Finally, assume (c) holds. Since 8̃= T ∗ with T continuous, it follows that 8̃ is

weak-star continuous. 2

The examples of commutative Banach algebras B in the following sections are all
semisimple. Consequently there only exist nonzero homomorphisms 8 : L1(ω)→ B
if L1(ω) is semisimple, which is equivalent to the condition limt→∞ ω(t)1/t > 0 (see
[1, Theorem 4.7.27]). We will therefore assume this to be the case in the rest of the
paper.

3. Homomorphisms into the disc algebra

Let A(D) be the disc algebra, which consists of functions analytic on the open unit
disc D and continuous on D. For a homomorphism 8 : L1(ω)→ A(D) we can
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use the ideal structure in A(D) to get a more precise version of Proposition 2.1. Let
C =8(L1(ω))A(D) and let E be the hull of C, that is,

E = {z ∈ D : g(z)= 0 for every g ∈ C}.

Clearly,
E = {z ∈ D :8(h)(z)= 0 for every h ∈ L1(ω)}.

Since C contains a nonzero semigroup, the greatest common divisor of the inner factors
in C is zero, so E is contained in the unit circle T and

C = I (E)= {g ∈ A(D) : g = 0 on E}

by the Rudin–Beurling theorem (see, for instance, [7, p. 85]).
Let H∞(D) be the Banach algebra of bounded analytic functions on D and, for a

closed set E ⊆ T, let

A(D \ E)= { f ∈ H∞(D) : f extends continuously to D \ E}.

Then A(D \ E) is a closed subalgebra of H∞(D). Moreover, it is easily seen that

ι( f )g = f g,

for all f ∈ A(D \ E) and g ∈ I (E), is an isometric isomorphism between A(D \ E)
and Mul(I (E)) which induces a strong topology on the algebra A(D \ E).

If we combine these observations with Proposition 2.1 we obtain most of
Theorem 3.1 below. However, the theorem can also be obtained by using the more
direct approach of [8, pp. 530–533], since the argument given in [8] for L1(R+) also
holds in the weighted case.

THEOREM 3.1. Let ω be an algebra weight, let 8 : L1(ω)→ A(D) be a nonzero
homomorphism and let

E = {z ∈ D :8(h)(z)= 0 for every h ∈ L1(ω)}.

Then the closed ideal C =8(L1(ω))A(D) is equal to I (E) and there exists a strongly
continuous semigroup (νt )t∈R+ in A(D \ E) such that

8̃(µ)=

∫
R+
νt dµ(t)

exists as a strong Bochner integral for all µ ∈ M(ω), that is,

8̃(µ)g =
∫

R+
νt g dµ(t)

exists as a Bochner integral for all µ ∈ M(ω) and g ∈ I (E). This defines a homo-
morphism 8̃ : M(ω)→ A(D \ E) that uniquely extends 8 and which is norm as well
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as strongly continuous. Moreover, νt (z)= e−tG(z) for all z ∈ D \ E, where G is
analytic on D and continuous on D \ E, and

8̃(µ)(z)=
∫

R+
νt (z) dµ(t)

for all µ ∈ M(ω) and z ∈ D \ E.

One of the simplest examples of a homomorphism from L1(R+) to A(D) can be
constructed by means of the usual Laplace transform

L(h)(w)=
∫
∞

0
h(t)e−wt dt

for all h ∈ L1(R+) and w ∈ C with Re w ≥ 0 by letting

3(h)(z)= L(h)
(

1+ z

1− z

)
=

∫
∞

0
h(t) exp

(
−t

1+ z

1− z

)
dt

for all h ∈ L1(R+) and z ∈ D \ {1} (and 3(h)(1)= 0). In this way we obtain a
homomorphism 3 : L1(R+)→ A(D) with E = {1} and for which the semigroup (of
singular inner functions)

νt (z)= exp
(
−t

1+ z

1− z

)
does not belong to A(D).

We mention in passing that the zero homomorphism does not have a unique
extension. Denote the discrete part of a measure µ by µd , and define

8̃(µ)(z)=3(µd)(z)=
∫

R+
exp

(
−t

1+ z

1− z

)
dµd(t);

then it can easily be seen that 8̃ is a nonzero continuous homomorphism from M(R+)
to A(D) which is the zero homomorphism on L1(R+).

For a nonzero homomorphism 8 : L1(ω)→ A(D), Theorem 3.1 provides a unique
extension 8̃ : M(ω)→ A(D \ E). It is well known that H∞(D) can be identified as
the dual space of the quotient space L1(T)/H1

0(D), with the duality defined by

〈q + H1
0(D), f 〉 =

1
2π

∫ 2π

0
q(eiθ ) f (eiθ ) dθ

for all q ∈ L1(T) and f ∈ H∞(D). For convenience we will henceforth simply write
q in place of q + H1

0(D).
Considering A(D \ E) as a closed subspace of H∞(D), we can thus regard 8̃ as

a map into the dual space H∞(D) (which, furthermore, has the advantage compared
to A(D \ E) of being independent of E and thus of 8). We now aim to prove that
8̃ is weak-star continuous. For homomorphisms from L1(R+) this will be done in
Theorem 3.6 and we will then use the following result to lift the result to the weighted
case.
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PROPOSITION 3.2. Let ω be an algebra weight with the property that

lim
t→∞

ω(t)1/t
= 1,

let 8 : L1(ω)→ A(D) be a nonzero homomorphism, and let

8̃(µ)=

∫
R+
νt dµ(t),

for all µ ∈ M(ω), be the unique extension to a homomorphism from M(ω) to H∞(D)
given by Theorem 3.1. Then (νt )t∈R+ is a bounded and strongly continuous semigroup
in A(D \ E), and if

8̆(µ)=

∫
R+
νt dµ(t),

for all µ ∈ M(R+), then 8̆ is an extension of 8 to a homomorphism from M(R+)
to A(D \ E) which is norm as well as strongly continuous. Moreover, 8̆ maps L1(R+)
into A(D).

PROOF. Let t ∈ R+. Since H∞(D) is a uniform algebra, ‖νt
‖ = ‖ν‖t (where ν = ν1).

Also, ‖νt
‖ ≤ ‖8̃‖ω(t), so ‖ν‖ ≤ ‖8̃‖1/tω(t)1/t . Hence ‖ν‖ ≤ 1, so it follows that

(νt )t∈R+ is a bounded semigroup in H∞(D). Since (νt )t∈R+ is strongly continuous in
A(D \ E) by Theorem 3.1, it follows that

8̆(µ)=

∫
R+
νt dµ(t)

exists as a strong Bochner integral for all µ ∈ M(R+) and defines a continuous homo-
morphism 8̆ : M(R+)→ H∞(D).

In order to prove that 8̆ : M(R+)→ A(D \ E) is strongly continuous, we let (µα)
be a net in M(R+) which converges strongly to 0, and let g ∈ I (E). Since I (E) has
a bounded approximate identity, it follows from Cohen’s factorization theorem that
there exist g1, g2 ∈ I (E) such that g = g1g2. By Theorem 3.1,

8(L1(R+))A(D)= I (E),

so there exist h ∈ L1(R+) and f1 ∈ A(D) such that g1 =8(h) f1. Hence g =8(h) f
where f = g2 f1 ∈ I (E). Then

8̆(µα)g = 8̆(µα)8(h) f = 8̆(µα ∗ h) f =
∫
∞

0
νt f d(µα ∗ h)(t).

Since µα ∗ h→ 0 in L1(R+), it follows that 8̆(µα)g→ 0 in A(D), so 8̆(µα)→ 0
strongly in A(D \ E).

Finally, since L1(ω) is dense in L1(R+) and A(D) is closed in H∞(D) the last
statement follows. 2

We will need the following three results on the weak-star topology on H∞(D) and
its connection to the strong topology on A(D \ E) (regarded as the multiplier algebra
of I (E)).
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LEMMA 3.3. If ( fα) is a net in H∞(D) and fα→ 0 weak-star, then fα→ 0 pointwise
on D.

PROOF. For all f ∈ H∞(D) and z ∈ D,

f (z)=
1

2π

∫ 2π

0

f (eiθ )eiθ

eiθ − z
dθ = 〈qz, f 〉,

where qz(w)= w/(w − z) belongs to L1(T). The result follows. 2

LEMMA 3.4. Let E ⊆ T be a closed set of measure 0, and ( fα) be a bounded net in
A(D \ E). Then fα→ 0 strongly if and only if fα→ 0 uniformly on compact subsets
of T \ E.

PROOF. First assume that fα→ 0 strongly. Given a compact subset K ⊂ T \ E and
ε > 0, choose g ∈ I (E) with |g − 1|< ε on K . (For example, let F be an outer
function in A(D) such that E = Z(F) and let g = F t for some t > 0 sufficiently small.)
Then choose α0 such that ‖ fαg‖< ε for all α ≥ α0. It follows that, on K ,

| fα| ≤ | fα(1− g)| + | fαg|<
(
sup
α
‖ fα‖ + 1

)
ε

for all α ≥ α0, so fα→ 0 uniformly on K .
Assume conversely that fα→ 0 uniformly on compact subsets of T \ E and let

g ∈ I (E) and ε > 0. Then

K = {z ∈ T : |g(z)| ≥ ε}

is a compact subset of T \ E , so there exists α0 such that | fα|< ε on K for all α ≥ α0.
We then have | fαg|< ‖g‖ε on K and | fαg|< supα ‖ fα‖ε on T \ K for all α ≥ α0, so
fαg→ 0 in A(D). Hence fα→ 0 strongly. 2

COROLLARY 3.5. Let E ⊆ T be a closed set of measure 0. If a bounded net ( fα) in
A(D \ E) converges strongly to 0, then it converges weak-star to 0 in H∞(D).

PROOF. Let q ∈ L1(T) and ε > 0. Choose an open neighbourhood U of E in T such
that ∫

U
|q(eiθ )| dθ < 2πε.

By Lemma 3.4 we can choose α0 such that | fα|< ε on T \U for all α ≥ α0. Then

|〈q, fα〉| ≤
1

2π

∫
U
|q(eiθ ) fα(e

iθ )| dθ +
1

2π

∫
T\U
|q(eiθ ) fα(e

iθ )| dθ

<
(
sup
α
‖ fα‖ + ‖q‖

)
ε

for all α ≥ α0, so fα→ 0 weak-star in H∞(D). 2
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We are now in a position to prove that the extension 8̃ : M(R+)→ H∞(D) of a
homomorphism 8 : L1(R+)→ A(D) is weak-star continuous. However, the case of
a constant function ν ∈ A(D \ E) has to be excluded. If, for instance, ν ≡ 1, then
8̃(µ)= µ(R+), so δt → 0 weak-star in M(R+) as t→∞, but 8̃(δt )= 1 for all
t ∈ R+, so 8̃ is not weak-star continuous.

THEOREM 3.6. Let 8 : L1(R+)→ A(D) be a nonzero homomorphism and let

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(R+) be the unique extension to a homomorphism from M(R+) to
H∞(D) given by Theorem 3.1. Assume that the function ν ∈ A(D \ E) is not constant.
Then:

(a) the homomorphism 8̃ is weak-star continuous;
(b) the semigroup (νt )t∈R+ is weak-star continuous in H∞(D) and νt

→ 0 weak-
star as t→∞;

(c) for all q ∈ L1(T) and t ∈ R+ let

(T q)(t)= 〈q, νt
〉 =

1
2π

∫ 2π

0
q(eiθ )νt (eiθ ) dθ,

which defines a bounded linear operator

T : L1(T)/H1
0(D)→ C0(R+)

with T ∗ = 8̃.

PROOF. For all q ∈ L1(T) and µ ∈ M(R+),∫
R+
|〈q, νt

〉| dµ(t)≤
1

2π

∫
R+

∫
T
|q(eiθ )| |νt (eiθ )| dθ dµ(t) <∞,

since |ν| ≤ 1. Hence
∫

R+〈q, ν
t
〉 dµ(t) exists, and by Fubini’s theorem,∫

R+
〈q, νt

〉 dµ(t) =
1

2π

∫
R+

∫
T

q(eiθ )νt (eiθ ) dθ dµ(t)

=
1

2π

∫
T

∫
R+

q(eiθ )νt (eiθ ) dµ(t) dθ

=

〈
q,
∫

R+
νt dµ(t)

〉
.

We can therefore apply Proposition 2.2 and thus only need to prove part (b).
By Theorem 3.1 the semigroup (νt )t∈R+ is bounded and strongly continuous in

A(D \ E), so it follows from Corollary 3.5 that it is weak-star continuous in H∞(D).
Moreover, since |ν| ≤ 1 on D and ν is not constant, |ν|< 1 in D, and thus νt

→ 0
pointwise on D as t→∞. By Lemma 3.3 we therefore conclude that 0 is the only
weak-star cluster point of the bounded net (νt ) as t→∞, so νt

→ 0 weak-star as
t→∞. 2
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We note that the fact that νt
→ 0 weak-star as t→∞ in the previous theorem

cannot be deduced from Corollary 3.5, since we do not necessarily have νt
→ 0

strongly as t→∞. For example, if

νt (z)= exp
(
−t

1+ z

1− z

)
,

then the semigroup (νt )t∈R+ , arising from the Laplace transform (mentioned after
Theorem 3.1), acts by isometries on I ({1}) and therefore νt does not tend to 0 strongly
as t→∞.

COROLLARY 3.7. Let ω be an algebra weight, let 8 : L1(ω)→ A(D) be a nonzero
homomorphism and let

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω) be the unique extension to a homomorphism from M(ω) to H∞(D)
given by Theorem 3.1. Assume that the function ν ∈ A(D \ E) is not constant. Then
the following hold.

(a) The homomorphism 8̃ is weak-star continuous.
(b) The semigroup (νt )t∈R+ is weak-star continuous in H∞(D) and νt/ω(t)→ 0

weak-star as t→∞.
(c) For all q ∈ L1(T) and t ∈ R+ let

(T q)(t)= 〈q, νt
〉 =

1
2π

∫ 2π

0
q(eiθ )νt (eiθ ) dθ.

This defines a bounded linear operator T : L1(T)/H1
0(D)→ C0(1/ω) with

T ∗ = 8̃.

PROOF. As in the proof of Theorem 3.6 we can apply Proposition 2.2 and thus only
need to prove part (a).

We may assume that L1(ω) is semisimple (see the end of Section 2) and hence that

r = lim
t→∞

ω(t)1/t > 0.

Setting ω̃(t)= r−tω(t) for all t ∈ R+, we have limt→∞ ω̃(t)1/t
= 1 and the map

f (t) 7→ f (t)r t is a norm and weak-star continuous isomorphism between L1(ω) and
L1(ω̃). Without loss of generality we may therefore assume that r = 1. Hence 8
extends to 8̆ : M(R+)→ H∞(D) by Proposition 3.2, and 8̆ is weak-star continuous
by Theorem 3.6. The extension 8̃ : M(ω)→ H∞(D) given by Theorem 3.1 is the
restriction of 8̆ to M(ω) and is therefore weak-star continuous. 2

4. Homomorphisms into the algebra of absolutely convergent Taylor series and
into Beurling algebras

In this section we turn our attention to homomorphisms from L1(ω) into the Wiener
algebra of absolutely convergent Taylor series on D or into weighted analogues.
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For these algebras the extension provided by Proposition 2.1 actually maps into the
algebra itself. Moreover, the algebras are dual spaces and we will show that the
extension is weak-star continuous.

We denote by A+ the Wiener algebra of those functions f on D with absolutely
convergent Taylor series with the norm

‖ f ‖ =
∞∑

n=0

| f̂ (n)|,

where f̂ (n) for all n ∈ N0 are the Taylor coefficients of f .
The Beurling algebras are defined similarly. Let v = (vn)n∈N0 be an algebra weight

on N0, that is, a positive sequence such that v0 = 1 and vn+m ≤ vnvm for all n, m ∈ N0.
In this paper, we will consider only semisimple Beurling algebras with character
space D, so we further assume that limn→∞ v

1/n
n = 1. We then define the Beurling

algebra A+v to consist of those functions f on D for which

‖ f ‖ =
∞∑

n=0

| f̂ (n)|vn <∞.

It is well known that A+ and A+v are Banach algebras with character space D.
We can identify A+v with the dual space of c0(1/v) (the Banach space of sequences

(xn)n∈N0 with xn/vn→ 0 as n→∞), with the duality defined by

〈(xn), f 〉 =
∞∑

n=0

xn f̂ (n)

for all (xn) ∈ c0(1/v) and f ∈ A+v . When v ≡ 1, this identifies A+ with the dual space
of c0.

For a homomorphism 8 : L1(R+)→ A+, we proved in [8, Theorems 3.1 and 3.3]
that the semigroup (νt )t∈R+ of Proposition 2.1 actually belongs to A+ and has finite
zero set. The argument turns out to hold for homomorphisms 8 : L1(ω)→ A+ as
well. In order to present a slightly extended result in Theorem 4.2 below, we need the
following lemma.

LEMMA 4.1. Let E ⊆ T be a finite set. Then ι, given by

ι( f )g = f g

for all f ∈ A+ and g ∈ I (E), is an isomorphism between A+ and Mul(I (E)).

PROOF. It is clear that ι is an injective homomorphism from A+ to Mul(I (E)). Since,
for instance, ((1− z)1/n)n∈N is a bounded approximate identity for I ({1}), it follows
that I (E) has a bounded approximate identity (en). Let T ∈Mul(I (E)) and g ∈ I (E).
The bounded sequence T (en) in A+ has a weak-star convergent subsequence T (enk )

with limit f ∈ A+ as k→∞. It is well known (see, for instance, [9, Corollary 3.2])
that multiplication in A+ is separately weak-star continuous. Since T is a multiplier it

https://doi.org/10.1017/S144678871000025X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871000025X


[13] Weak-star properties of homomorphisms 87

follows that

T (enk g)= T (enk )g→ f g

weak-star in A+ as k→∞. On the other hand, T (enk g)→ T (g) in A+ (in norm) as
k→∞, so we deduce that T (g)= f g, which finishes the proof. 2

We remark in passing that the strong topology on A+ 'Mul(I (E)) depends on the
set E . For instance, (1− z)1/n

→ 1 strongly in Mul(I ({1})) as n→∞, but not in
Mul(A+) (which corresponds to E = ∅).

THEOREM 4.2. Let ω be an algebra weight, let 8 : L1(ω)→ A+ be a nonzero
homomorphism and let C be the closed ideal 8(L1(ω))A+. Then there exists a finite
set E ⊂ T such that

C = I (E)= {g ∈ A+ : g = 0 on E},

and there exists a semigroup (νt )t∈R+ in C which is continuous in (0,∞) and strongly
continuous at 0 (considered as a semigroup in Mul(C)) such that

8̃(µ)=

∫
R+
νt dµ(t)

exists as a Bochner integral in A+ for all µ ∈ M(ω) and 8̃ : M(ω)→ A+ is a
homomorphism that uniquely extends 8 and is norm as well as strongly continuous
(as a map into Mul(C)).

PROOF. Most of the proof is identical to that of [8, Theorems 3.1 and 3.3].
The statements about strong continuity follow from the previous lemma and
Proposition 2.1. 2

It is not hard to see that the semigroup (νt )t∈R+ in the previous theorem is not
continuous at 0 if E 6= ∅ (for instance, if νt (z)= ((1− z)/2)t ).

For homomorphisms into A+v we can say even more than in Theorem 4.2. We first
need the fact that weak-star convergence in A+v implies pointwise convergence.

LEMMA 4.3. Suppose that ( fα) be a net in A+v and that fα→ 0 weak-star in A+v .
Then fα→ 0 pointwise on D. Further, if vn→∞ as n→∞, then fα→ 0 pointwise
on D.

PROOF. We have (zn)n∈N0 ∈ c0(1/v) for all z ∈ D. Also (zn)n∈N0 ∈ c0(1/v) for all
z ∈ D if vn→∞ as n→∞. Thus

〈(zn)n∈N0, f 〉 =
∞∑
0

f̂ (n)zn
= f (z)

for all f ∈ A+v , and the result follows. 2
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THEOREM 4.4. Let ω be an algebra weight on R+, let v be an algebra weight
on N0 and assume that vn→∞ as n→∞. Let 8 : L1(ω)→ A+v be a nonzero
homomorphism. Then 8(L1(ω))= A+v , and there exists a continuous semigroup
(νt )t∈R+ in A+v such that

8̃(µ)=

∫
R+
νt dµ(t)

exists as a Bochner integral in A+v for all µ ∈ M(ω) and 8̃ : M(ω)→ A+v is a
homomorphism that uniquely extends 8 and is continuous when M(ω) is equipped
with the strong topology and A+v with the norm topology. Moreover, the zero set of ν
is empty, so νt is invertible for all t ∈ R+ and the semigroup extends to a continuous
group (νt )t∈R in A+v .

PROOF. Since L1(ω) has a bounded approximate identity, it follows from a result
of Sinclair (see [11] or [1, Corollary 2.9.43]) that it contains a bounded semigroup
(ηs)s>0 such that (η1/n)n∈N is a sequential bounded approximate identity for L1(ω).
In particular, 8(η) 6= 0. Let E ⊂ T be the zero set of 8(η). Then 8(η)1/n

→ 1T\E
pointwise on D as n→∞. The bounded sequence (8(η)1/n)n∈N has a weak-star
clusterpoint f ∈ A+v as n→∞, and it follows from Lemma 4.3 that f = 1T\E . Hence
8(η) has no zeros on D and is therefore invertible in A+v , so 8(L1(ω))= A+v . In
particular, C =8(L1(ω))A+v = A+v and thus Mul(C)= A+v . By Proposition 2.1 the
semigroup (νt )t∈R+ is therefore continuous in A+v with ‖νt

‖ = O(ω(t)) as t→∞.
Hence

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω) defines a homomorphism 8̃ : M(ω)→ A+v with the properties
required. (The fact that νt

∈ A+v can also be seen by showing that it is a weak-star
clusterpoint of the bounded sequence 8(δt ∗ η

1/n) as n→∞.) 2

For the extensions from Theorems 4.2 and 4.4 the obvious dual space Y ∗ in
Proposition 2.2 is the algebra, A+ or A+v , itself. We will now prove that these
extensions are weak-star continuous. We will need the following result.

LEMMA 4.5. Let ( fα) be a bounded net in A+v with limα f̂α(n)= 0 for all n ∈ N0.
Then limα fα = 0 weak-star in A+v .

PROOF. Let x ∈ c0(1/v). Given ε > 0, choose N ∈ N such that |xn|/vn < ε for all
n > N , and then choose α0 such that

N∑
n=0

| f̂α(n)|vn < ε

for all α ≥ α0. Then

|〈x, fα〉| ≤
N∑

n=0

|xn|

vn
· | f̂α(n)|vn +

∞∑
n=N+1

|xn|

vn
· | f̂α(n)|vn <

(
‖x‖ + sup

α
‖ fα‖

)
ε

for all α ≥ α0, and the result follows. 2
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In the following theorem the case of a constant function ν has to be excluded using
the same argument as in Theorem 3.6. Also note that bounded weights v correspond
to the algebra A+.

THEOREM 4.6. Let ω be an algebra weight on R+ and let v be an algebra weight on
N0 which is either bounded or has vn→∞ as n→∞. Let 8 : L1(ω)→ A+v be a
nonzero homomorphism and let 8̃, given by

8̃(µ)=

∫
R+
νt dµ(t)

for all µ ∈ M(ω), be the unique extension to a homomorphism from M(ω) to A+v given
by Theorems 4.2 or 4.4. Assume that the function ν ∈ A+v is not constant. Then:

(a) the homomorphism 8̃ is weak-star continuous;
(b) the semigroup (νt )t∈R+ is weak-star continuous in A+v and νt/ω(t)→ 0 weak-

star in A+v as t→∞;
(c) for all x ∈ c0(1/v) and t ∈ R+ let

(T x)(t)= 〈x, νt
〉 =

∞∑
n=0

xn ν̂t (n),

which defines a bounded linear operator T : c0(1/v)→ C0(1/ω) with T ∗ = 8̃.

PROOF. For all µ ∈ M(ω) we have 8̃(µ)=
∫

R+ν
t dµ(t) as a Bochner integral and, in

particular, as a weak-star Bochner integral. Moreover,

〈y, 8̃(µ)〉 =
∫

R+
〈y, νt

〉 dµ(t)

for all y ∈ c0(1/v) since Bochner integrals commute with continuous linear func-
tionals [6, Theorem 3.7.12]. Hence the condition in Proposition 2.2 is satisfied, so
we only need to prove part (b).

If vn→∞ as n→∞, then νt is continuous and, in particular, weak-star continuous
in A+v for t ∈ R+ by Theorem 4.4. If v is bounded, then we may assume that v ≡ 1.
Then νt is continuous and, in particular, weak-star continuous in A+ for all t > 0
by Theorem 4.4, so we only need to prove weak-star continuity at t = 0. We have
νt (z)= e−tG(z)

→ 1 uniformly on compact subsets of T \ E . Now νt is uniformly
bounded on T, so νt

→ 1 in L1(T) as t→ 0. Hence ν̂t (n)→ 1̂(n) as t→ 0 for all
n ∈ N0, so it follows from Lemma 4.5 that νt

→ 1 weak-star in A+ as t→ 0, that is,
νt is weak-star continuous in A+v at t = 0.

In order to prove that νt/ω(t)→ 0 weak-star in A+v as t→∞ we first observe that

C = sup
|z|≤1/2

|ν(z)|< 1

since ν is not constant. By Cauchy’s estimates (see, for instance, [10, Theorem 10.26]),

|ν̂t (n)| =
|(νt )(n)(0)|

n!
≤

C t

( 1
2 )

n
→ 0 as t→∞
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for all n ∈ N0. Since νt/ω(t) is bounded in A+v , it follows from Lemma 4.5 that
νt/ω(t)→ 0 weak-star in A+v as t→∞. 2
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