A CHARACTERISATION OF SIMPLE GROUPS $P S L(5, q)$

A. Iranmanesh and S.H. Alavi

Order components of a finite group are introduced in [4]. We prove that, for every $q, \operatorname{PSL}(5, q)$ can be uniquely determined by its order components. A main consequence of our result is the validity of Thompson's conjecture for the groups under consideration.

1. Introduction.

If n is an integer, $\pi(n)$ is the set of prime divisors of n and if G is a finite group $\pi(G)$ is defined to be $\pi(|G|)$. The prime graph $\Gamma(G)$ of a group G is a graph whose vertex set is $\pi(G)$, and two distinct primes p and q are linked by an edge if and only if G contains an element of order $p q$. Let $\pi_{i}, i=1,2, \ldots, t(G)$ be the connected components of $\Gamma(G)$. For $|G|$ even, π_{1} will be the connected component containing 2 . Then $|G|$ can be expressed as a product of some positive integers $m_{i}, i=1,2, \ldots, t(G)$ with $\pi\left(m_{i}\right)=$ the vertex set of π_{i}. The integers m_{i} 's are called the order components of G. The set of order components of G will be denoted by $O C(G)$. If the order of G is even, then m_{1} is the even order component and $m_{2}, \ldots, m_{t(G)}$ will be the odd order components of G. The order components of non-Abelian simple groups having at least three prime graph components are obtained by Chen [8, Tables 1,2,3]. The order components of non-Abelian simple groups with two order components are illustrated in Table 1 according to [13, 18]. The following groups are uniquely determined by their order components. Suzuki-Ree groups ([6]), Sporadic simple groups ([3]), $P S L_{2}(q)([8]), P S L_{3}(q)$ where q is an odd prime power $([10]), E_{8}(q)([7]), F_{4}(q)\left[q=2^{n}\right]([12]),{ }^{2} G_{2}(q)([2])$ and A_{p} where p and $p-2$ are primes ([11]). In this paper, we prove that $\operatorname{PSL}(5, q)$ is also uniquely determined by its order components, where q is a prime power.

The Main Theorem. Let G be a finite group, $M=\operatorname{PSL}(5, q)$ and $O C(G)=$ $O C(M)$. Then $G \cong M$.

Received 18th July, 2001
The first author would like to thank the Institute for Studies in Theoretical Physics and Mathematics (IPM) Tehran. Iran for financial support.

[^0]
2. Preliminary Results

In this section we state some preliminary lemmas to be used in the proof of the main theorem.

Definition 2.1: ([9]) A finite group G is called a 2-Frobenius group if it has a normal series $G>K>H>1$, where K and G / H are Frobenius groups with kernels H and K / H, respectively.

Lemma 2.2. ([18, Theorem A]) If G is a finite group and its prime graph has more than one component, then G is one of the following groups:
(a) a simple group;
(b) a Frobenius or 2-Frobenius group;
(c) an extension of a $\pi_{1}-$ group by a simple group;
(d) an extension of a simple group by a $\pi_{1}-$ solvable group;
(e) an extension of a π_{1}-group by a simple group by a π_{1}-group.

Lemma 2.3. ([18, Corollary]) If G is a solvable group with at least two prime graph components, then G is either a Frobenius group or a 2-Frobenius group and G has exactly two prime graph components one of which consists of the primes dividing the lower Frobenius complement.

By Lemma 2.3 and the proof of Lemma 2.2 in [18] we can state the following lemma.
Lemma 2.4. If G is a finite group and its prime graph has more than one component, then G is either:
(a) a Frobenius or 2-Frobenius group; or
(b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, and $\bar{K}:=K / H$ is a non-Abelian simple group with $\pi_{i}^{\prime} \subseteq \pi(\bar{K})$ for all $i>1$. Moreover, $\bar{K} \unlhd G / H \leqslant \operatorname{Aut}(\bar{K})$.
Lemma 2.5. ([1, Theorem 1]) Let G be a Frobenius group of even order, and let H and K be Frobenius complement and Frobenius kernel of G respectively. Then $t(G)=2$, the prime graph components of G are $\pi(H)$ and $\pi(K)$, and G has one of the following structures.
(a) $2 \in \pi(K)$, all Sylow subgroups of H are cyclic.
(b) $2 \in \pi(H), K$ is an Abelian group, H is a solvable group, the Sylow subgroups of odd order of H are cyclic and the 2-Sylow subgroups of H are cyclic or generalised quaternion groups.
(c) $2 \in \pi(H), K$ is an Abelian group, and there exists $H_{0} \leqslant H$ such that $\left|H: H_{0}\right| \leqslant 2, H_{0}=Z \times S L(2,5),(|Z|, 2 \cdot 3 \cdot 5)=1$ and the Sylow subgroups of Z are cyclic.

Lemma 2.6. ([1, Theorem 2]) Let G be a 2-Frobenius group of even order. Then $t(G)=2$ and there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that, $\pi_{1}=\pi(G / K) \cup$ $\pi(H), \pi(K / H)=\pi_{2}, G / K$ and K / H are cyclic, $|G / K|||\operatorname{Aut}(K / H)|,(|G / K|,|K / H|)=$ 1 and $|G / K|<|K / H|$. Moreover, H is a nilpotent group.

Lemma 2.7. ([5, Lemma 8]) Let G be a finite group with $t(G) \geqslant 2$ and N a normal subgroup of G. If N is a π_{i}-group for some prime graph component of G and $m_{1}, m_{2}, \ldots, m_{r}$ are some of the order components of G but not a π_{i}-number, then, $m_{1} \cdot m_{2} \cdot \ldots \cdot m_{r}$ is a divisor of $|N|-1$.

Lemma 2.8. Let G be a finite group with $O C(G)=O C(M)$ where $M=$ $\operatorname{PSL}(5, q)$, and suppose $m_{1}(q)$ and $m_{2}(q)$ are the even and odd order components of M respectively. Then:
(a) If $p \in \pi(G)$, then $\left|S_{p}\right|<q^{7}$ or is equal to q^{10} where $S_{p} \in S y l_{p}(G)$.
(b) If q^{\prime} is a power of a prime number, $q^{\prime}| | G \mid$ and $q^{\prime}-1 \equiv 0\left(\bmod m_{2}(q)\right)$, then $q^{\prime}=q^{5}$ or q^{10}.
(c) If q^{\prime} is a power of a prime number, $q^{\prime}| | G \mid$, then $q^{\prime}+1 \not \equiv 0\left(\bmod m_{2}(q)\right)$.
(d) $m_{2}(q)-\varepsilon$ for $\varepsilon=-1,2,3$ and $q^{\alpha}+1$ for $\alpha=5,10$ do not divide $m_{1}(q)$.

Proof: Since $|M|=|G|=q^{10}\left(q^{2}-1\right)\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right) / k$ where $k=(5, q-1)$, it is easy to show that (a) holds. To prove (b) and (c), let $q^{\prime}=p^{a}$ where p is a prime number. Since $|G|=q^{10}(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right) \cdot m_{2}(q)$ where $m_{2}(q)=\left(q^{5}-1\right) /(k(q-1))$, q^{\prime} must divide one of the coprime factors $q^{10},(q-1)^{4}, 3(q-1)^{4},(q+1)^{2},\left(q^{2}+q+1\right) / 3$, $q^{2}+q+1$ or $q^{2}+1$ if q is an even number or $q^{10},(q-1)^{4} / 16,3(q-1)^{4} / 16,8(q-1)^{4}, 12(q-1)^{4}$, $16(q-1)^{4}, 48(q-1)^{4},(q+1)^{2} / 8,(q+1)^{2} / 4,32(q+1)^{2},\left(q^{2}+1\right) / 2, q^{2}+1,\left(q^{2}+q+1\right) / 3$ or $q^{2}+q+1$ if q is an odd number. Therefore, it is sufficient to consider the cases where q^{\prime} divides $q^{10}, 48(q-1)^{4}, 32(q+1)^{2}, q^{2}+1$ or $q^{2}+q+1$. Assume that $q^{\prime}+\varepsilon \equiv 0 \bmod \left(m_{2}(q)\right)$ where $\varepsilon= \pm 1$, that is, $q^{\prime}+\varepsilon=r m_{2}(q)$ for some positive integer r. If $q^{\prime} \mid 48(q-1)^{4}$, then $48(q-1)^{4}=s q^{\prime}$ for some integers s and therefore, $48(q-1)^{4}+\varepsilon s=r s m_{2}(q)$. If $k=5$, we have $A(q)=(r s-240) q^{4}+(r s+960) q^{3}+(r s-1440) q^{2}+(r s+960) q+r s-5 \varepsilon s-240=0$, but for $r s>240$ it is easy to see $A(q)>0$ and for $r s \leqslant 240$ we can get a contradiction by calculation. For the case $k=1$, we also get a contradiction by a similar method. If $q^{\prime} \mid 32(q+1)^{2}, q^{2}+1$ or $q^{2}+q+1$, then $m_{2}(q) \leqslant 32(q+1)^{2}+1, q^{2}+2$ or $q^{2}+q+2$ respectively, and by calculation we get a contradiction. Therefore, $q^{\prime} \mid q^{10}$. If $q \leqslant 5$, by calculation we can see that (b) and (c) are valid. Thus we may assume that $q>5$. Since $m_{2}(q) \leqslant q^{\prime}+\varepsilon$, we have $q^{\prime}>q^{3}, q^{\prime}=q^{3} p^{n}$ and $q^{\prime}+\varepsilon=r m_{2}(q)$ for some positive integer n.

Now let $\varepsilon=-1$ and $q^{\prime}-1=r m_{2}(q)$. If $q^{\prime} \leqslant q^{5}$, then $r m_{2}(q)=q^{\prime}-1 \leqslant q^{5}-1$, thus $r \leqslant k(q-1)$. On the other hand, $r\left(q^{4}+q^{3}+q^{2}+q\right)+r+k=k q^{\prime}=k q^{3} p^{n}$, so $q \mid r+k$, thus, $q \leqslant r+k \leqslant k q$. If $k=1$, then $r+1=q$ and thus $q^{\prime}=q^{5}$. If $k=5$, then $r+k=t q$ where $t=1,2, \ldots, 5$. For $t \neq 5$ we have $r\left(q^{3}+q^{2}+q^{)}+r+t=5 q^{2} p^{n}\right.$, so $q \mid r+t$
but $q \mid r+k=r+5$, thus $q \mid 5-t$, that is, $q<5$ which is a contradiction. If $t=5$, then $r+5=5 q$, and thus $q^{\prime}=q^{5}$. Now let $q^{\prime}>q^{5}$, then $q^{\prime}=q^{5} p^{m}$ for some positive integer m. By (a), $q^{\prime} \leqslant q^{10}$, so $p^{m} \leqslant q^{5}$. Since $q^{\prime}-1=k p^{m}(q-1) m_{2}(q)+p^{m}-1$ and $m_{2}(q) \mid q^{\prime}-1$, then $p^{m}-1 \equiv 0\left(\bmod m_{2}(q)\right)$ with $p^{m} \leqslant q^{5}$ and by a similar method as the last case we must have $p^{m}=q^{5}$, thus $q^{\prime}=q^{10}$ and therefore, (b) is proved. Suppose that $\varepsilon=1$ and $q^{\prime}+1=r m_{2}(q)$. If $q^{\prime} \leqslant q^{5}$, as above, $r<k(q-1)$ and $q \mid r-k$, and thus, $q \leqslant r-k<k(q-2)$. If $k=1$, then $q \leqslant r-1 \leqslant q-1$ which is impossible. If $k=5$, then $r-5=t q$ where $t=1,2,3,4$. Thus $r\left(q^{3}+q^{2}+q\right)+r+t=5 q^{2} p^{n}$, so $q \mid r+t$. But $q \mid r-5$, thus $q \mid t+5$, that is, $q=2,3,4,7,8$ or 9 and it contradicts $k=5$. Therefore, $q^{\prime}>q^{5}$, that is, $q^{\prime}=q^{5} p^{m}$ for some positive integer m. By $(a), q^{\prime} \leqslant q^{10}$, so $p^{m} \leqslant q^{5}$. Since $q^{\prime}+1=k p^{m}(q-1) m_{2}(q)+p^{m}+1$ and $m_{2}(q) \mid q^{\prime}+1$, then $p^{m}+1 \equiv 0\left(\bmod m_{2}(q)\right)$ with $p^{m} \leqslant q^{5}$ and as above we get a contradiction. Now the proof of (c) is completed. Since the proof of (d) is similar for each cases, we present one of them. Let $\varepsilon=-1$. Since $m_{1}(q)=f(q)\left(m_{2}(q)+1\right)+r(q)$ where $r(q)=-20 q^{3}+40 q^{2}-84 q+40$ for $5 \nmid q-1$, and $r(q)=-4980 q^{3}+7800 q^{2}-8820 q-3240$ for $5 \mid q-1$, if $m_{2}(q)+1 \mid m_{1}(q)$, then $r(q)=0$. This has no solution which is contradiction.

Lemma 2.9. Let G be a finite group and $O C(G)=O C(M)$ where $M=$ $\operatorname{PSL}(5, q)$. Then G is neither a Frobenius group nor a $2-$ Frobenius group.

Proof: If G is a Frobenius group, then by Lemma 2.5, $O C(G)=\{|H|,|K|\}$ where H and K are the Frobenius complement and the Frobenius kernel of G, respectively. Suppose that $2||K|$, then $| K \mid=m_{1}(q)$ and $|H|=m_{2}(q)$. Let p be a prime number which divides $|K|$ and $p \nmid q$. By nilpotency of K, S_{p} must be a unique normal subgroup of G where S_{p} is p-Sylow subgroup of K. Thus $m_{2}(q)| | S_{p} \mid-1$ by Lemma 2.7. Therefore, $\left|S_{p}\right|=q^{5}$ or q^{10} by Lemma 2.8(b), which is a contradiction. If $2||H|$, then $| H \mid=m_{1}(q)$ and $|K|=m_{2}(q)$. Since $|H|$ divides $|K|-1, m_{1}(q) \mid m_{2}(q)-1$, which is a contradiction.

Let G be a 2 -Frobenius group. By Lemma 2.6, there is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $|K / H|=m_{2}(q)$ and $|G / K|<|K / H|$. Since $|K / H|=m_{2}(q)=\left(q^{5}-1\right) /((q-$ 1) $(5, q-1))<\left(q^{2}+1\right)\left(q^{2}+q+1\right)$, there exists a prime number p such that $p \mid\left(q^{2}+\right.$ 1) $\left(q^{2}+q+1\right)$ and p does not divide $|G / K|$, that is, $p\left||H|\right.$ since $\pi_{1}=\pi(G / K) \cup \pi(H)$. But S_{p}, the p-Sylow subgroup of H, must be a normal subgroup of K because H is nilpotent. Therefore, $m_{2}(q)| | S_{p} \mid-1$ by Lemma 2.7 which contradicts Lemma 2.8(b). $]$

Lemma 2.10. Let G be a finite group. If the order components of G are the same as those of $M=P S L(5, q)$, then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ satisfying the following two conditions:
(a) H and G / K are π_{1}-groups, K / H is a non-Abelian simple group and H is a nilpotent group.
(b) The odd order component of M is equal to the odd order component of some K / H. Especially, $t(K / H) \geqslant 2$.

Proof: Part (a) of the Lemma follows from Lemma 2.4 and 2.9 because the prime graph of M has two prime graph components.

To prove (b) note if p and q are prime numbers, then if K / H has an element of order $p q$, so G has an element of order $p q$. Hence by the definition of prime graph components, an odd order component of G must be an odd order component of K / H. If q is odd, then by Table I , the number of order components of M is equal to two. Therefore, $t(K / H) \geqslant 2$.

In the next section we prove the Main Theorem.

3. Proof of the main theorem.

By Lemma $2.10, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-Abelian simple group where $t(K / H) \geqslant 2$, and the odd order component of M is the odd order component of some K / H, that is, one of the odd order component of K / H is equal to $m_{2}(q)=\left(q^{5}-1\right) /((q-1)(5, q-1))$. We summarise the relevant information in Tables I-III below.

Table I

The order components of simple groups ${ }^{1}$ with $t(G)=2$

Group	Orcmp1	Orcmp2
$A_{p}, p \neq 5,6$	$3 \cdot 4 \cdots(p-3)(p-2)(p-1)$	p
p and $p-2$ not both prime	$3 \cdot 4 \cdots(p-2)(p-1)(p+1)$	p
$A_{p+1}, p \neq 4,5$		
$p-1$ and $p+1$ not both prime	$3 \cdot 4 \cdots(p-1)(p+1)(p+2)$	p
$A_{p+2, p \neq 3,4}$ and $p+2$ not both prime	$q^{p(p-1) / 2} \Pi_{i=1}^{p-1}\left(q^{i}-1\right)$	$\frac{q^{p}-1}{(q-1)(p, q-1)}$
$A_{p-1}(q),(p, q) \neq(3,2),(3,4)$	$q^{p(p+1) / 2}\left(q^{p+1}-1\right) \Pi_{i=2}^{p-1}\left(q^{i}-1\right)$	$\frac{q^{p}-1}{q-1}$
$A_{p}(q), q-1 \mid p+1$		
${ }^{2} A_{p-1}(q)$	$q^{p(p-1) / 2} \Pi_{i=1}^{p-1}\left(q^{i}-(-1)^{i}\right)$	$\frac{q^{p}+1}{(q+1)(p, q+1)}$
${ }^{2} A_{p}(q), q+1 \mid p+1$		
$(p, q) \neq(3,3),(5,2)$	$q^{p(p+1) / 2}\left(q^{p+1}-1\right) \Pi_{i=2}^{p-1}\left(q^{i}-(-1)^{i}\right)$	$\frac{q^{p}+1}{q+1}$

[^1]Table I (continued)

Group	Orcmpl	Orcmp2
${ }^{2} A_{3}(2)$	$2^{6} \cdot 3^{4}$	5
$B_{n}(q), n=2^{m} \geqslant 4, q$ odd	$q^{n^{2}}\left(q^{n}-1\right) \Pi_{i=1}^{n-1}\left(q^{2 i}-1\right)$	$\frac{q^{n}+1}{2}$
$B_{p}(3)$	$3^{p^{2}}\left(3^{p}+1\right) \Pi_{i=1}^{p-1}\left(3^{2 i}-1\right)$	$\frac{3^{p}-1}{2}$
$C^{(a)} n=2^{m} \geqslant 2$	$g^{n^{2}}\left(g^{n}-1\right) \square^{n-1}\left(q^{2 i}-1\right)$	$q^{n^{2}+1}$
$C_{n}(q), n=2^{m} \geqslant 2$	$q^{n^{2}}\left(q^{n}-1\right) \Pi_{i=1}^{n-1}\left(q^{2 i}-1\right)$	$\frac{\square}{(2, q-1)}$
$C_{p}(q), q=2,3$	$q^{p^{2}}\left(q^{p}+1\right) \Pi_{i=1}^{p-1}\left(q^{2 i}-1\right)$	$\frac{q^{p}-1}{(2, q-1)}$
$D_{p}(q), p \geqslant 5, q=2,3,5$	$q^{p(p-1)} \Pi_{i=1}^{p-1}\left(q^{2 i}-1\right)$	$\underline{q^{p}-1}$
		q^{q-1}
$D_{p+1}(q), q=2,3$	$\frac{1}{(2, q-1)} q^{p(p+1)}\left(q^{p}+1\right)\left(q^{p+1}-1\right) \Pi_{i=1}^{p-1}\left(q^{2 i}-1\right)$	$\frac{q^{2}-1}{(2, q-1)}$
${ }^{2} D_{n}(q), n=2^{m} \geqslant 4$	$q^{n(n-1)} \Pi_{i=1}^{n-1}\left(q^{2 i}-1\right)$	$\frac{q^{n+1}}{(2, q+1)}$
${ }^{2} D_{n}(2), n=2^{m}+1 \geqslant 5$	$2^{n(n-1)}\left(2^{n}+1\right)\left(2^{n-1}-1\right) \Pi_{i=1}^{n-2}\left(2^{2 i}-1\right)$	$2^{2^{n-1}+1}$
${ }^{2} D_{p}(3), p \neq 2^{m}+1, p \geqslant 5$	$3^{p(p-1)} \Pi_{i=1}^{p-1}\left(3^{2 i}-1\right)$	$\frac{3^{p}+1}{4}$
${ }^{2} D_{n}(3), n=2^{m}+1 \neq p, m \geqslant 2$	$\frac{1}{2} 3^{n(n-1)}\left(3^{n}+1\right)\left(3^{n-1}-1\right) \Pi_{i=1}^{n-2}\left(3^{2 i}-1\right)$	$3^{n-1}+\frac{1}{2}$
$G_{2}(q), q \equiv \varepsilon(\bmod 3), \varepsilon= \pm 1, q>2$	$q^{6}\left(q^{3}-\varepsilon\right)\left(q^{2}-1\right)(q+\varepsilon)$	$q^{2}-\varepsilon q+1$
${ }^{3} D_{4}(q)$	$q^{12}\left(q^{6}-1\right)\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$q^{4}-q^{2}+1$
$F_{4}(q), q$ odd	$q^{24}\left(q^{8}-1\right)\left(q^{6}-1\right)^{2}\left(q^{4}-1\right)$	$q^{4}-q^{2}+1$
${ }^{2} F_{4}(2){ }^{\prime}$	$2^{11} \cdot 3^{3} \cdot 5^{2}$	13
$E_{6}(q)$	$q^{36}\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{5}-1\right)\left(q^{3}-1\right)\left(q^{2}-1\right)$	$\frac{q^{6}+q^{3}+1}{(3, q-1)}$
${ }^{2} E_{6}(q), q>2$	$q^{36}\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{5}+1\right)\left(q^{3}+1\right)\left(q^{2}-1\right)$	$\begin{array}{r}\text { (} \\ q^{6, q-1}-q^{3}+1 \\ \hline\end{array}$
${ }^{2} E_{6}(q), q>2$	$q^{\text {a }}\left(q^{12}-1\right)\left(q^{3}-1\right)\left(q^{\text {a }}-1\right)\left(q^{5}+1\right)\left(q^{3}+1\right)\left(q^{2}-1\right)$	(3,q+1)
M_{12}	$2^{6} \cdot 3^{3} \cdot 5$	11
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2}$	7
$R u$	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13$	29
He	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3}$	17
Mcl	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7$	11
Co_{1}	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13$	23
Co_{3}	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11$	23
$F i_{22}$	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11$	13
$F_{5}=H N$	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11$	19

Table II

The order components of simple groups ${ }^{1}$ with $t(G) \geqslant 3$

Group	Orcmp 1	Orcmp 2	Orcmp 3	Orcmp 4
$A_{p, p} p$ and $p-2$	$3 \cdot 4 \cdots(p-3)(p-1)$	$p-2$	p	
are primes				
$A_{1}(q), 4 \mid q+1$	$q+1$	q	$(q-1) / 2$	
$A_{1}(q), 4 \mid q-1$	$q-1$	q	$(q+1) / 2$	
$A_{1}(q), 2 \mid q$	q	$q+1$	$q-1$	
$A_{2}(2)$	8	3	7	
$A_{2}(4)$	2^{6}	5	7	9
${ }^{2} A_{5}(2)$	$2^{15} \cdot 3^{6} \cdot 5$	7	11	
${ }^{2} B_{2}(q)$	q^{2}	$q-\sqrt{2 q}+1$	$q+\sqrt{2 q}+1$	$q-1$
$q=2^{2 n+1}>2$				
${ }^{2} D_{p}(3)$	$2 \cdot 3^{p(p-1)}\left(3^{p-1}-1\right)$	$\left(3^{p-1}+1\right) / 2$	$\left(3^{p}+1\right) / 4$	
$p=2^{n}+1, n \geqslant 2$	$\times \Pi_{i=1}^{p-2}\left(3^{2 i}-1\right)$			
${ }^{2} D_{p+1}(2)$	$2^{p(p+1)}\left(2^{p}-1\right)$	$2^{p}+1$	$2^{p+1}+1$	
$p=2^{n}-1, n \geqslant 2$	$\times \Pi_{i=1}^{p-1}\left(2^{2 i}-1\right)$			
$E_{7}(2)$	$2^{63} \cdot 3^{11} \cdot 5^{2} \cdot 7^{3}$	73	127	
	$11 \cdot 13 \cdot 17 \cdot 19 \cdot 31 \cdot 43$			
$F_{4}(q)$	$q^{24}\left(q^{6}-1\right)^{2}\left(q^{4}-1\right)^{2}$	$q^{4}+1$	$q^{4}-q^{2}+1$	
$2 \mid q, q>2$				
${ }^{2} F_{4}(q)$	$q^{12}\left(q^{4}-1\right)\left(q^{3}+1\right)$	$q^{2}-\sqrt{2 q^{3}}$	$q^{2}+\sqrt{2 q^{3}}$	
$q=2^{2 n+1}>2$	$\times\left(q^{2}+1\right)(q-1)$	$+q-\sqrt{2 q}+1$	$+q+\sqrt{2 q}+1$	
$G_{2}(q), 3 \mid q$	$q^{6}\left(q^{2}-1\right)^{2}$	$q^{2}+q+1$	$q^{2}-q+1$	
${ }^{2} G_{2}(q), q=3^{2 n+1}$	$q^{3}\left(q^{2}-1\right)$	$q-\sqrt{3 q}+1$	$q+\sqrt{3 q}+1$	

${ }^{1} p$ is an odd prime number.

Table II (continued)

Group	Orcmp 1	Orcmp 2	Orcmp 3	Orcmp 4	Orcmp 5	Orcmp 6
	$2^{23} \cdot 3^{63} \cdot 5^{2} \cdot 7^{3}$					
$E_{7}(3)$	$\cdot 11^{2} \cdot 13^{3} \cdot 19 \cdot 37 \cdot 41$	757	1093			
	$61 \cdot 73 \cdot 547$					
${ }^{2} E_{6}(2)$	$2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11$	13	17	19		
M_{11}	$2^{4} \cdot 3^{2}$	5	11			
M_{22}	$2^{7} \cdot 3^{2}$	5	7	11		
M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7$	11	23			
M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7$	11	23			
J_{1}	$2^{3} \cdot 3 \cdot 5$	7	11	19		
J_{3}	$2^{7} \cdot 3^{5} \cdot 5$	17	19			
J_{4}	$2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3}$	23	29	31	37	
$H S$	$2^{9} \cdot 3^{2} \cdot 5^{3}$	7	11			
$S z$	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7$	11	13			
$O N$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3}$	11	19	31		
$L y$	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11$	31	37	67		
$C o_{2}$	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7$	11	23			
F_{23}	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	17	23			
$F_{24}^{\prime 4}$	$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13$	17	23	29		
$F_{1}=M$	$2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3}$	41	59	71		
	$\cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 47$					
$F_{2}=B$	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13$	31	47			
	$\cdot 17 \cdot 19 \cdot 23$					
$F_{3}=T h$	$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13$	19	31			

Table III
The order components of $\mathrm{E}_{8}(\mathrm{q})$

Group	$E_{8}(q), q \equiv 0,1,4(\bmod 5)$
Orcmp 1	$q^{120}\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)^{2}\left(q^{10}-1\right)^{2}\left(q^{8}-1\right)^{2}\left(q^{4}+q^{2}+1\right)$
Orcmp 2	$q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1$
Orcmp 3	$q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1$
Orcmp 4	$q^{8}-q^{6}+q^{4}-q^{2}+1$
Orcmp 5	$q^{8}-q^{4}+1$

Group	$E_{8}(q), q \equiv 2,3(\bmod 5)$
Orcmp 1	$q^{120}\left(q^{20}-1\right)\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{12}-1\right)\left(q^{10}-1\right)\left(q^{8}-1\right)\left(q^{4}+1\right)$
	$\times\left(q^{4}+q^{2}+1\right)$
Orcmp 2	$q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1$
Orcmp 3	$q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1$
Orcmp 4	$q^{8}-q^{4}+1$

Since K / H is a non-Abelian simple group with $t(K / H) \geqslant 2$, then K / H must be isomorphic to one of the simple groups in Tables I, II or III.

If K / H is isomorphic to the alternating groups, by Table I and II and Lemma 2.10, we must have $m_{2}(q)=p-2$ or p, where $p \neq 5$ is an odd prime number. If $m_{2}(q)=p-2$, then $m_{2}(q)+1=p-1$ divides $m_{1}(q)$ which contradicts Lemma $2.8(\mathrm{~d})$, and, if $m_{2}(q)=p$, then $m_{2}(q)-2=p-2 \mid m_{1}(q)$, which contradicts Lemma 2.8(d).

If K / H is isomorphic to one of the sporadic simple groups, $A_{2}(2), A_{2}(4),{ }^{2} A_{3}(2)$, ${ }^{2} A_{5}(2), E_{7}(2), E_{7}(3),{ }^{2} E_{6}(2)$ or ${ }^{2} F_{4}(2)$, by Lemma 2.10 we must have $m_{2}(q)=3,5,7,9$, $11,13,17,19,23,29,31,37,41,43,47,59,67,71,73,127,757$ or 1093 . This equation has only one solution $m_{2}(q)=31$ and in this case $q=2$. Thus K / H can be isomorphic to $J_{4}, O N, L y, F_{2}=B$ or $F_{3}=T h$. But in all the above cases $11 \in \pi(K / H)$ and $|G|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$ which is a contradiction because $|K / H|||G|$.

If K / H is isomorphic to one the simple groups ${ }^{2} A_{n}\left(q^{\prime}\right), B_{n}\left(q^{\prime}\right)$ where $n=2^{m} \geqslant 4$ and q^{\prime} is odd, $C_{n}\left(q^{\prime}\right)$ where $n=2^{m} \geqslant 2,{ }^{2} D_{n}\left(q^{\prime}\right), G_{2}\left(q^{\prime}\right)$ where $q^{\prime} \equiv 1(\bmod 3),{ }^{3} D_{4}\left(q^{\prime}\right), F_{4}\left(q^{\prime}\right)$, ${ }^{2} E_{6}\left(q^{\prime}\right)$ where $q^{\prime}>2,{ }^{2} F_{4}\left(q^{\prime}\right)$ where $q^{\prime}=2^{2 m+1}>2$ or ${ }^{2} G_{2}\left(q^{\prime}\right)$ where $q^{\prime}=3^{2 m+1}$, using Tables I,II and Lemma 2.8(c) we can get a contradiction. For example, if $K / H \cong B_{n}\left(q^{\prime}\right)$ where $n=2^{m} \geqslant 4$ and q^{\prime} is odd, by Lemma 2.10 one of the odd order components of K / H must be $m_{2}(q)=\left(q^{5}-1\right) /((q-1)(5, q-1))$. But by Table I, the odd order component of $B_{n}\left(q^{\prime}\right)$ where $n=2^{m} \geqslant 4$ and q^{\prime} is odd, is $\left(q^{\prime n}+1\right) / 2$ and thus $q^{\prime n}+1 \equiv 0\left(\bmod m_{2}(q)\right)$ which contradicts Lemma 2.8(c).

If K / H is isomorphic to $B_{n}\left(q^{\prime}\right)$ where $q^{\prime}=3$ and $n=p$ is an odd prime, $C_{n}\left(q^{\prime}\right)$ where $q^{\prime}=2$ or 3 and $n=p$ is an odd prime, $D_{n}\left(q^{\prime}\right)$ where $n=p+1$ and $q^{\prime}=2$ or 3 or $G_{2}\left(q^{\prime}\right)$ where $q^{\prime} \equiv-1(\bmod 3)$, then by Lemma $2.8(\mathrm{~d})$ we get a contradiction. For example, if $K / H \cong B_{p}(3)$, then by Lemma $2.10,3^{p}-1 \equiv 0\left(\bmod m_{2}(q)\right)$. Hence by Lemma 2.8(b), $3^{p}=q^{5}$ or q^{10}. Since $3^{p}+1| | K / H \mid$ then $q^{5}+1$ or $q^{10}+1$ must divide $m_{1}(q)$ and this contradicts Lemma 2.8(d).

If K / H is isomorphic to $D_{p}\left(q^{\prime}\right)$ where $p \geqslant 5$ is an odd prime number and $q^{\prime}=2,3$ or 5 , $E_{6}\left(q^{\prime}\right)$ or $E_{8}\left(q^{\prime}\right)$, by Lemma 2.8(a) we get a contradiction. For example, if $K / H \cong D_{p}\left(q^{\prime}\right)$, then by Table I and Lemma 2.10, $m_{2}(q)=\left(q^{\prime p}-1\right) /\left(q^{\prime}-1\right)$, so $q^{\prime p}=q^{5}$ or q^{10} by Lemma 2.8(b). Since $p \geqslant 5$, then $q^{\prime p(p-1)} \geqslant q^{\prime^{4 p}}>q^{10}$ which contradicts Lemma 2.8(a).

If K / H is isomorphic to ${ }^{2} B_{2}\left(q^{\prime}\right)$ where $q^{\prime}=2^{2 m+1}>2$ or $G_{2}\left(q^{\prime}\right)$ where $3 \mid q^{\prime}$ we can get a contradiction by Lemma 2.8. For example, if $K / H \cong{ }^{2} B_{2}\left(q^{\prime}\right)$, then $m_{2}(q)=$ $q^{\prime}-\sqrt{2 q^{\prime}}+1, q^{\prime}+\sqrt{2 q^{\prime}}+1$ or $q^{\prime}-1$ by Table II and Lemma 2.10. If $m_{2}(q)=q^{\prime}-\sqrt{2 q^{\prime}}+1$ or $q^{\prime}+\sqrt{2 q^{\prime}}+1$, then $q^{\prime 2}+1 \equiv 0\left(\bmod m_{2}(q)\right)$ which contradicts Lemma 2.8(c). If $m_{2}(q)=q^{\prime}-1$, by Lemma 2.8(b) we must have $q^{\prime}=q^{5}$ or q^{10}. If $q^{\prime}=q^{10}$, then $q^{\prime 2}>q^{10}$ which contradicts Lemma 2.8(a). If $q^{\prime}=q^{5}$, then $(q-1)(5, q-1)=1$ which is impossible.

By the above argument we deduce that K / H must be isomorphic to a simple group of Lie type A_{n}. Now we claim that $K / H \cong A_{4}(q)=P S L(5, q)$ and therefore $H=1$ and since $|K|=|G|$, we must have $G \cong M$ where $M=\operatorname{PSL}(5, q)$. To prove this claim,
we assume that $K / H \cong A_{1}\left(q^{\prime}\right)$. If $2 \mid q^{\prime}$, then $m_{2}(q)=q^{\prime}-1$ or $q^{\prime}+1$ by Table II and Lemma 2.10. By Lemma 2.8(c) we must have $m_{2}(q)=q^{\prime}-1$, and hence $q^{\prime}=q^{5}$ or q^{10} by Lemma 2.8(b). Hence, $q^{5}+1$ or $q^{10}+1$ divide $m_{1}(q)$ which contradicts Lemma 2.8(d). If $q^{\prime} \equiv \varepsilon(\bmod 4)$ where $\varepsilon= \pm 1$, then by Table II and Lemma 2.10 we must have $m_{2}(q)=q^{\prime}$, $\left(q^{\prime}-1\right) / 2$ or $\left(q^{\prime}+1\right) / 2$. But from Lemma 2.8(c) we have $m_{2}(q)=q^{\prime}$ or $\left(q^{\prime}-1\right) / 2$. If $m_{1}(q)=q^{\prime}$, then $q^{\prime}+1=m_{2}(q)+1 \mid m_{1}(q)$ which is impossible. If $m_{2}(q)=\left(q^{\prime}-1\right) / 2$, then $q^{\prime}=q^{5}$ or q^{10}, since $q^{\prime}+1 \mid m_{1}(q)$, we get a contradiction.

Now we claim that $K / H \nRightarrow A_{p}\left(q^{\prime}\right)$ where $q^{\prime}-1 \mid p+1$ and p is an odd prime number. Because if $K / H \cong A_{p} q^{\prime}$, then by Lemma 2.10 and Table I , we must have $m_{2}(q)=$ $\left(q^{\prime p}-1\right) /\left(q^{\prime}-1\right)$. Lemma $2.8(\mathrm{~b})$ yields $q^{\prime p}=q^{5}$ or q^{10}. If $q^{\prime p}=q^{10}$, then $q^{(p(p+1) / 2)}>q^{10}$ which contradicts Lemma 2.8(a). If $q^{\prime p}=q^{5}$ and $p \geqslant 5$, then $q^{\prime(p(p+1) / 2)} \geqslant q^{3 p}>q^{10}$ and again we get a contradiction by Lemma 2.8(a). If $p=3$ and $q^{3}=q^{5}$, then $q^{\prime}-1=d(q-1)$ where $d=(5, q-1)$. If $d=1$, then $q^{\prime}=q$ which is impossible, and if $d=5$, then $q^{5}=(5 q-4)^{3}$ which is a contradiction.

Therefore, $K / H \cong A_{p-1}\left(q^{\prime}\right)$ where $\left(p, q^{\prime}\right) \neq(3,2),(3,4)$. Then by Lemma 2.10 and Table I, $m_{2}(q)=\left(q^{\prime p}-1\right) /\left(\left(q^{\prime}-1\right)\left(p, q^{\prime}-1\right)\right), q^{\prime p}=q^{5}$ or q^{10} by Lemma 2.8(b). If $q^{\prime}=q^{10}$ and $p>3$, then $q^{(p(p-1) / 2)} \geqslant q^{2 p}>q^{10}$ which contradicts Lemma 2.8(a). If $p=3$ and $q^{3}=q^{10}$, then

$$
\begin{equation*}
d(q-1)\left(q^{5}-1\right)=d^{\prime}\left(q^{\prime}-1\right) ; d=(5, q-1) \text { and } d^{\prime}=\left(3, q^{\prime}-1\right) \tag{1}
\end{equation*}
$$

If $d=5$ or $d=d^{\prime}=1$, by (1) we must have $q^{\prime}+1>q^{\prime}-1 \geqslant q^{5}+1$, thus $q^{\prime}>q^{5}$, so $q^{\prime 3}>q^{10}$ which contradicts Lemma 2.8(a). If $d=1$ and $d^{\prime}=3$, by (1) $q^{\prime}-1=$ $((q-1) / 3)\left(q^{5}+1\right) \geqslant q^{5}+1$ for $q \geqslant 4$ and again we get a contradiction by Lemma 2.8(a). If $q=2$ or 3 , then $q^{\prime}=q^{m}$ for some positive integer m, then $q^{3 m}=q^{10}$, that is, $3 m=10$ which is impossible. Therefore, $q^{\prime p}=q^{5}$. If $p>5$, then $q^{p(p-1) / 2}>q^{10}$ which contradicts Lemma 2.8(a). If $p=3$ and $q^{3}=q^{5}$, then

$$
\begin{equation*}
d(q-1)=d^{\prime}\left(q^{\prime}-1\right) ; d=(5, q-1) \text { and } d^{\prime}=\left(3, q^{\prime}-1\right) \tag{2}
\end{equation*}
$$

If $d=5$ and $d^{\prime}=1$ or 3 , by (2) we obtain the equations $q^{5}=(5 q-4)^{3}$ or $27 q^{5}=(5 q-2)^{3}$, respectively, but both of them do not have suitable solutions. By (2), if $d=1$ and $d^{\prime}=3$, $q^{3}>q^{5}$ which are impossible, therefore, $d=d^{\prime}=1$ and thus $q=q^{\prime}$.

Therefore, $q^{\prime p}=q^{5}$ and $p=5$, that is, $q=q^{\prime}$ and $p=5$, thus $K / H \cong A_{4}(q)=$ $\operatorname{PSL}(5, q)$ and the proof is completed.

Remark 3.1. It is a well known conjecture of J.G.Thompson that if G is a finite group with $Z(G)=1$ and M is a non-Abelian simple group satisfying $N(G)=N(M)$ where $N(G)=\{n \mid G$ has a conjugacy class of size $n\}$, then $G \cong M$. We can give positive answer to this conjecture by our characterisation of the groups under discussion.

Corollary 3.2. Let G be a finite group with $Z(G)=1, M=\operatorname{PSL}(5, q)$ and $N(G)=N(M)$, then $G \cong M$.

Proof: By [4, Lemma 1.5] if G and M are two finite groups satisfying the conditions of Corollary 3.2, then $O C(G)=O C(M)$. So the main theorem implies the corollary. \square

Shi and Jianxing in [16] put forward the following conjecture.
Conjecture. Let G be a group and M a finite simple group, then $G \cong M$ if and only if
(i) $|G|=|M|$
(ii) $\pi_{e}(G)=\pi_{e}(M)$, where $\pi_{e}(G)$ denotes the the set of orders of elements in G.

This conjecture is correct for all groups of alternating type ([17]), Sporadic simple groups ([14]), and some simple groups of Lie types ([15, 16]). As a consequence of the main theorem, we prove the validity of this conjecture for the groups under discussion.

Corollary 3.3. Let G be a finite group and $M=P S L(5, q)$. If $|G|=|M|$ and $\pi_{e}(G)=\pi_{e}(M)$, then $G \cong M$.

Proof: By the assumption we must have $O C(G)=O C(M)$. Thus the corollary follows by the main theorem.

References

[1] G.Y. Chen, 'On Frobenius and 2-Frobenius group', J. Southwest China Normal Univ. 20 (1995), 485-487.
[2] G.Y. Chen, 'A new characterization of simple group of Lie type ${ }^{2} G_{2}(q)$ ', Proc. of 2nd Ann. Meeting of Youth of Chin. Sci. and Tech. Assoc. Press of Xinan Jiaotong Univ. (1995), 221-224.
[3] G.Y. Chen, 'A new characterization of sporadic simple groups', Algebra Colloq. 3 (1996), 49-58.
[4] G.Y. Chen, 'On Thompson's conjecture', J. Algebra 15 (1996), 184-193.
[5] G.Y. Chen, 'Further reflections on Thompson's conjecture', J. Algebra 218 (1999), 276-285.
[6] G.Y. Chen, 'A new characterization of Suzuki-Ree groups', Sci. China Ser. A 27 (1997), 430-433.
[7] G.Y. Chen, 'A new characterization of $E_{8}(q)$ ', (Chinese paper), J. Southwest China Normal Univ. 21 (1996), 215-217.
[8] G.Y. Chen, 'A new characterization of $P S L_{2}(q)$ ', Southeast Asian Bull. Math. 22 (1998), 257-263.
[9] K.W. Gruenberg and K.W. Roggenkamp, 'Decomposition of the augmentation ideal and of the relation modules of a finite group', Proc. London Math. Soc. 31 (1975), 146-166.
[10] A. Iranmanesh, S.H. Alavi and B. Khosravi, 'A Characterization of $\operatorname{PSL}(3, q)$ where q is an odd prime power', J. Pure Appl Algebra (to appear).
[11] A. Iranmanesh and S.H. Alavi, 'A new characterization of A_{p} where p and $p-2$ are primes', Korean J.Comput. Appl. Math. 8 (2001), 665-673.
[12] A. Iranmanesh and B. Khosravi, 'A characterization of $F_{4}(q)$ where q is even', Far East J. Math. Sci. (FJMS) 2 (2000), 853-859.
[13] A.S. Kondtratev, 'Prime graph components of finite groups', Math. USSR-Sb. 67 (1990), 235-247.
[14] W. Shi, 'A new characterization of the sporadic simple groups', in Group Theory (Singapore, 1987) (de Gruyter, Berlin, 1989).
[15] W. Shi and B. Jianxing, 'A new characterization of some simple groups of Lie type', Contemp. Math. 82 (1989), 171-180.
[16] W. Shi and B. Jianxing, 'A characteristic property for each finite projective special linear group', in Groups (Canberra 1989), Lecture notes in Math. 1456, 1990, pp. 171-180.
[17] W. Shi and B. Jianxing, 'A new characterization of the alternating groups', Southeast Asian Bull. Math. 16 (1992), 81-90.
[18] J.S. Williams, 'Prime graph components of finite groups', J. Algebra 69 (1981), 487-513.

Department of Mathematics
Tarbiat Modarres University
P.O.Box 14115-137

Tehran
Iran
and
Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: iranmana@modares.ac.ir

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

[^1]: ${ }^{1} p$ is an odd prime number.

