FEDERER-CECH COUPLES

MICHEAL DYER

1. Introduction. In (5), I considered two-term conditions in w-exact
couples, of which the exact couple €(X, Y, v) of Federer (7) is an example.
Let M(X, V) be the space of all maps from X to ¥ with the compact-open
topology. Our aim in this paper is to construct a m-exact couple Sx, V),
where X is a finite-dimensional (in the sense of Lebesgue) metric space and
Y € B, a certain (rather large) class of spaces. Specifically,  is the class of
all topological spaces X which possess the following property (P).

(P) Let Y be a (possibly infinite) simplicial complex. There exists xo € X

and vy € Y such that [X, x¢] >~ [V, v,l.
In § 5 it will be seen that T contains all CW complexes and all metric absolute
neighbourhood retracts (ANR)s.

In §4, it is shown that, in the exact couple (X, V), E, (X, V) =
H(X; 1,y (V)), where H(X; mpy4,(Y)) represents the gth Cech cohomology
with coefficients in m,4,(¥), and that E_ (X, V) is associated with the homo-
topy groups of M (X, V). The method used is similar to one used by Barratt
(1), and, in fact, relies heavily on Theorem 12.21 of that same paper.

The existence of a m-exact couple with the above properties allows the exten-
sion of the results of (5) to mapping spaces M (X, V), where ¥ € B is arc-
connected and simple, and X is an arc-connected k-dimensional metric space
(B < o). For instance, we will prove the following two theorems.

THEOREM A. Letk =2, Y = U, theinfinite unitary group, andlet v: X — U be
constant. Then if 7; = m;,(M (X, U), v),

Fos = HU(X), dom=IX)®Z i=12,....

THEOREM B. Let B =4, Y = Oy, a component of the infinite orthogonal
group, and let v: X — Y be constant. Then, if #; = n;(M (X, 0,), v), we have:

Fuse = HHX) + 25, 1=0,1,2,3,4,...,
7?2+8i=1§1(X)1 'L=07 1:2y-'~7
Farss = HY(X) + Z, i=0,1,2,....
The sequence
y & ¢ Vo
Hz(X)_—)H4<X;Z2)_)7?4+81—>H3(X)_)01 1’=01 1,2,...,
is exact.
These theorems are part of two larger theorems, the statements of which are

precisely given in (5, Propositions 10.1 and 10.2), except that X is a metric
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space of dimension % instead of a CW complex and the cohomology is Cech
instead of singular.

The organization of the paper is as follows. In § 2 I give a short exposition of
directed systems of exact couples and show that the direct limit of the derived
couple is naturally isomorphic to the derived couple of the direct limit. The
definition of the Federer exact couple is reviewed in § 3. In § 4 the construction
of €2(X, V) is given and in § 5 a trivial extension of the theorem of Spanier-
Barratt (12.21) mentioned above is given. In § 6, certain pertinent results of
(5, § 6) are carried over into €2(X, ¥). In § 7 some results on the homotopy
groups of joins, which are useful in the examples of § 8, are given. Finally, in
§ 9 1 give the computation of the homotopy groups of M (CP*, U), M (Vyi1,2, U)
and some of the stable homotopy groups of M (L(p, q), S*), p odd, where
L(p, q) is a 3-dimensional Lens space. This last computation is an interesting
exampie of a pair of spaces which do not satisfy Gap Theorem I or II (see 5,
§§ 8 and 9) and still have a two-term condition in G2(L(p, q), S").

I wish to acknowledge my indebtedness to M. Barratt [in (1)] for several
crucial ideas and to Professor Sze-Tsen Hu for warm encouragement and many
stimulating conversations.

2. Directed systems of exact couples. Let M be a set with a partial
ordering ‘<"’ (partial ordering is a relation which is reflexive and transitive).
Such a pair (M, <) is said to be directed if and only if given any «, 8 € M
there is a v € M such thaty > e and v > 8. A subset M’ of M (M’ partially
ordered by < also) is said to be cofinal if and only if for any a« € M there is a
B € M’ such that 8 > a.

Let € = {D, E, 1, j, k} be an exact couple in the sense of Federer;i.e., D is a
(not necessarily abelian) group, E is an abelian group, and %, j, and k£ are
homomorphisms such that the following triangle is exact (see 7):

D—tsD
N i
E

Definition 2.1. Given exact couples €, and Cg. A mapping .50 Co — Cgisa
pair of homomorphisms (@.s, ¥as) such that

Gap: D(@) > D(B),  Vaus: E(a) — E(B)
and
¢aﬁ e} 'ia = 'l:ﬂ o ¢aﬁy ‘l’aﬁ Oju = jﬁ o ¢a;3y ¢aﬁ 9] ka = kﬁ o Ih!ﬁ'

Definition 2.2. A directed system of exact couples €* over a directed set M
is a set {&,] €, is an exact couple, & € M} such that for each relation o < 8
there is a mapping of couples £,5: €, — €5 such that
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(a) @ = B = £ = identity on @€,, and
(b) & < B < ¥ =>Ey0kp = Eay(dpy O Pas = Sy and ¥ipy O Yug = Yay).
In this case, define the direct limit couple € = dir limy¢y €, by

, k

by

D = dirlim D(a), E = dirlim E(a),
aEM

aEM

C={DE

\> Nl

where

7 = dir lim 7, 7 =dir lim jq, k = dir lim &g;
aEM aEM aEM
thus, 7(x) = iy(x,), where @ € M, x, € D(a), and x, € x € D, ie., x, is a
representative of the class x € D, and 4,(x,) means the class in D of which
1, (x,) is @ member.
Since, in general, D () is non-abelian, the alternative definition given in (6,
p. 222) is applicable and extends to non-abelian groups. Since the direct limit
of an exact sequence is exact (see 6, p. 225), the following is true.

THEOREM 2.3. The direct limit § of a directed system &* of exact couples is an
exact couple.

Let {Q., £ @, B € M} be a directed system of exact couples. Let « < 8 and
consider the map £g4: €, — G4 Let €,/ and G4 be the derived couples of

Sa and &4, respectively. Then the mapping &5 induces a mapping
L8t G — G4 (see 8, p. 242) defined by

¢aﬂ,(y) = ¢al3(y) fory € D/(a) = za(D(a))
and

Yos' (homology class of x) = (homology class of Y.s(x)) forx € kerd, C E(a).
The following lemmas can be easily proved.

LEMMA 2.4. (a) & is the identity on G/, and
(b) &, o0&y’ = fm,’ fora < B < ¥.

LeEmMmA 2.5. (a) d’aﬂ/ 01ty = ’i,g, e} d)u,g,,
(b) Yus' 0J’ = J&' © bag’, and
(C) ¢aﬁ' O kal = kﬁ, o ‘paﬂl'

Thus, the set {€,/, &s'| @, B € M} isagain a directed system of exact couples.
Let G = G2 £.,6 = £.6% Iterate the process for n = 1.

THEOREM 2.6. T'he set C*" = {G,", £.6"} is a directed system of exact couples.

For each n = 1, define the limit exact couple of €*" as:

§" = dirlim €, [note that &' = G].

aEM

Definitton 2.7. A mapping £4: €. — g is an isomorphism if and only if
das and Y,s are isomorphisms.
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The following theorem answers the natural question.

THEOREM 2.8. € = (C)7 i.e., dir limaey(C.") = (dir limaey C4)", where
(§)* is the (n — 1)st derived couple of .

Theorem 2.8 follows directly from the following two lemmas.

LEMMA 2.9. Let ®: {Ga, nag} — {Ha, Ous} be a mapping of the directed system
(G} over M into the directed system {H,} over M. (Thus, ® = {®]a € M},
where ®,: F,— H, is a homomorphism such that if o < 8, then P50 9.5 =
a3 © ®,.) Let F, be a subgroup of G, for each a € M such that if « < B, then
Nag(Fa) C Fg. Then

<dir lim F,,) = &_|F..

aeM

dir lim (®,|F,) = (dir lim ¢a>
aedM aEM
LevMMA 2.10. Let {Ga, Yag} be a directed system of groups over M. Let

&: {Gay Yas} — {Ga, Vap)

be a map of systems. Then
dir lim (ker ®,) = ker &, C G,, and dir lim(im &,) = im &, C G,
aeM aeM
in the natural way.
In addition, suppose that Gy is abelian for allo € M and that ®* = do d = 0.

Then
dir lim(ker <I>a> __ker @,
aEM im ¢a - im Qbm

in the natural way.

3. The Federer exact couple €(X, Y, v). In this section a brief description
of €(X, Y, v) is given. Let X be a CW complex and let ¥V be any path-
connected space. Let X" be the n-dimensional skeleton of X and U, the
arc-component of M (X7, ) containing v; = v|X’. Define the mapr: U, — U,_,
by r(f) = fIX*1 (f € M(X’, Y)). Since X is a CW complex, 7 is a fibering in
the sense of Serre; see (8). Let

Fy=r() = {f € Uy fIXI7 = 0,4}
F;is a fibre of 7.

Define
D= Z Dy
P,
where D, , = 7,(U,, v,) if p, ¢ =2 0, D,,, = 0 otherwise, and
E = Z Ep
p.q

where E, , = m,(F,, v,) if p,¢ = 0and E, , = 0 otherwise. Then the homotopy
sequence of the fibering above becomes
k 7

.—E; ;72D ;7D 17 Eia—. .,
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where k is inclusion induced, ¢ = 7,, and j = 9. This makes {D, E, ¢, j, k} an
exact couple, denoted by €(X, Y, v).

The following theorem is stated for future reference. The proof may be
found in (7, p. 351).

TueorREM 3.1. If X is a CW complex of dimension k < o0 and if YV is arc-
connected and simple (= n-simple for all n > 0), then

(@) E,,, = CUX, 1y4.,(Y)), the group of q-dimensional cochains on X with
coefficients in mp1o(Y), for p = 1. If p = 0, then Ey,, = subgroup of CU(X, m,(Y)),

(b) E,,;2 = HUX, mpso(Y)) for p =2 1 and if p = 0, E, 2 = subgroup of
H'(X, ,(Y)).

Filter m,(M (X, Y), v) as follows:
(31) TP(M(Xy Y); 7)) D Tp,0 D Tp,1 D oo D Tp,k—1 D 01

where
— r(k—q) .
Tp,q = ker{t*=0: D, — D, },

g<k=dimX and 9 =7072070...0¢ (j times). Then the usual propo-
sition is true; see (7).

PROPOSITION 3.2. my,01/mp,, = E,,,~.

4. The Federer-Cech r-exact couple §*(X, Y). This section contains the
construction of the m-couple G2(X, ¥) and the proof that E2(X, V) =
Iv{q(X? Tpre(¥)).

Let X be a paracompact topological space;i.e., X is Hausdorff and the set.S
of all locally finite open coverings of X is cofinal in the set M of all open cover-
ings. Here the set M is directed by refinement; that is to say, 8 > « if and
only if 8 is a refinement of « (o, 8 € M).

If « € .S, then the nerve of a, N,, is a simplicial complex. For each a € S,
consider the exact couple €(NV,, Y, v,) defined in the last section, where Y is
any arc-connected, simple space.

Let a, 8 € .S be such that o < 8. Thus, 8 is a refinement of a. Vertex
inclusion defines simplicial maps fg,: Vg — N,. Any two maps so defined are
homotopic; see (6, p. 235).

ProrposiTiON 4.1. Let 8 > a, a, B € S, and assume that v,: Ny, — YV s the
constant map to some point yo € Y for v = a, B. Let fg,a, fou': Ng— N, be any
two simplicial maps defined by vertex inclusion. Then the maps

Gapy ap’s Dy, o* (N Y, 2) — Dp,qz(Nﬂ; Y, 1),

induced by fg, foa', respectively, are identical; i.e., vertex inclusion induces a
unique homomorphism ¢og: Dy 2 (@) — D,,2(B) provided v, and vg are constant.

Proof. Let fso and f5,./ be any two maps defined above. There exists a
homotopy

¢t: fﬁ,a 2j‘ﬂ,m, (t E I)'
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By (7, p. 354), the following triangle commutes,
-Dp,q2 Nm Y’ va)

¢aﬁ \l’aﬁ’
D,..2(Ns, Y, 95) = Dy,g" (N, ¥, %)

where ¢, is induced by fse, ¢es’ by fs', and 7 is the isomorphism induced by the
curve V: I — M(Ng, V), [V®)](x) = (ve0 ) (x) (¢ € I, x € Ng). However,
%a(No) = {30} = [V()I(Vs) = va(6:(N5)) = {yo}. Thus, V(I) = {5} and 7 is
the identity. Therefore, ¢ug = ¢up’: D, ,2(a) — D, 2(8). Hence, no matter
what vertex map is chosen, the induced map on D?*(N,, Y, v,) is uniquely
defined. This proves Proposition 4.1.

If @, B € S, @ < B, we have the following diagram (p = 0, ¢ = 0):

(%) zl’)" ) =1'y

Hg(Na, 7rp+q(Y)) ‘_*’Hq(th 7r11+q(Y))
Ba

where 7 is the injection of Theorem 3.1 (b) (surjectiveif p = 1) (for a definition
of v, see (7, p. 345)), Yus’ is the homomorphism induced by the homomorphism
Yas: T (F 2, v2) — mp(FpB, vf) which is in turn induced by fg.: Ng — N,, and
fsa" is the homomorphism induced by fg.. This diagram commutes since both
maps are induced by fg.. Then fa,* is uniquely defined implies that .6’ is also
uniquely defined. Thus, the groups {D?, ¢.s} and {E?, yus'} form two directed
systems of groups over (S, <). This proves the following theorem; see
(7, p. 353).

THEOREM 4.2. Let X be paracompact and Y arc-connected and simple. Then
C" = {C2(Ny, Y, ), (dapy Yap')| @ € S, va constant} forms a directed system of
exact couples over S, the set of locally finite open coverings of X.

Definition. The exact couple

S*X, V) = dir lim(C*(V,, Y, %))
a€S
is called the Federer-Cech couple for the pair (X, Y).

Note that @2(X , Y) is an exact couple in the sense of Federer such that
degree j2 = (—1,2),deg® = (0, —1),deg k2 = (0, 0), where €2(X, ¥) is the
exact couple below:

=2
DX, V)" DX, Y)
E2 ]1-2

BX,7)
The following proposition is crucial.
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Proposition 4.3. In €*(X, Y), and for p > 0, E” (X,7) = H(X, 1p00(Y)),
where HY (X, 1r,,+,,(Y)) denotes the g-dimensional Cech cohomology group of X
with coefficients in mp1,(Y), based on all open coverings of X.

Proof. Since X is paracompact, the set S is cofinal in M, the set of all open
coverings of X. Thus, by Theorem 3.1(b),

v: By (@) = HY(Na, mp4,(Y))

forp 2 1,¢ = 0, and each a € S. Since (x) is commutative for each a < 8 we
have:

HYX, mpig(V)) = dir lim H*(Ny, mp3,(Y)) = dir lim H(Na, mpig(Y))
aEM
= dxr lxm E, (@) = E,, (by Theorem 2.8).

It is also clear that if p = 0, then Eo,f(X, V) = subgroup of H(X, 7,(Y)).
This proves Proposition 4.3.

Definition 4.4. dimyX = k, where N C M, the set of all open coverings of
X, if and only if any covering « € N has a refinement 8 € N such that the
dimension of the nerve of 8 is at most k. We say that dimyX = & if and only if
k is the least integer such that dimyX = k. Dowker has shown (2) that, if X
is normal, then dimzX = dimgrX = dimgX, where F, SF, and S are the
classes of finite, star-finite, and locally finite covers of X, respectively.

Definition 4.5. If X is normal, then: X has Lebesgue dimension &2 means
dimgX = k.

THEOREM 4.6. Suppose that X is a paracompact space of Lebesgue dimension k.
Then & (X, Y) satisfies (5, Definition 2.1, properties (1), (2), and (3)).

Proof. (5, Definition 2.1 (1) and (2)) are true since they are true for each
a € S. k = dimgX implies that the set 7" of all open covers @ of X such that
N, has dimension k and @ € S is cofinal in S (and hence in M). Therefore,

E, = dir lim E, . (@) = dirlim E, (a) = 0 forg > k.
a€T

Thus (5, Definition 2.1 (3)) holds.

€2(X, Y) could almost be called a m-exact couple, except that deg ;% =
(—1, 2). However, the definition of a w-exact couple may be broadened to read
as follows.

Definition 4.7. € is a m-exact couple if and only if € is an exact couple in
the sense of Federer, deg i = (0, —1),degj = (—1,%),n = 1, and deg & =

(0, 0) such that € satisfies (5, Definition 2.1 (1), (2), (3)).

In this case, not only is €2(X, V) a m-exact couple, but also all the derived
couples €2(X, Y, v) of § 3. This seems much more natural. Thus, C2(X, V)
is a m-exact couple.
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5. A theorem of Spanier and Barratt. L is the class of all spaces X for
which the pair (X, x¢) >~ (Y, y0) for some xo € X, yo € ¥V, where V is a
simplicial complex. Thus, if X € 8, the following is true.

ProrositioN 5.1. Let Z be any space.
(Xy xO) ~ (Yy y()) = (A[(Zy X); vzo) =~ (M(Zv Y)y vyg)v
where v, (Z) = {xo} and v, (Z) = {yo}.

Proof. Let f: (X, x¢) = (Y, y0) and g: (Y, 50) — (X, x0) be homotopy
inverses and let H,: (X, xo) — (X, x¢) be a homotopy of g o f and 1(x,,), and
Gy (Y, yo) = (Y, 50) a homotopy of fog and l(y,,. Then, composition
induces homotopy inverses

for M(Z,X),0,) = (M(Z,Y),v,,), g:MZ YY) v, — MZX)uv,),

and H,,: g, 0 fe = Lz, x)020)0 G fx0 g5 >~ Lz, v, 0
COROLLARY 5.2. (X, x¢) >~ (Y, y0) = 7, (M(Z, X), v;) >~ 7 (M(Z, V), v,,)
for all gq.

In (1, Chapter 6), Barratt proved the following extension of a theorem of
Spanier (14).

THEOREM 5.3 (Spanier-Barrait). Let P be normal, paracompact, and locally
compact or first countable. If X is any simplicial complex, then there is an
isomorphism

& dir lim 7, (M (Na, X), ) = 7,(M(P,X),v) (¢ >0),
192

where L 1is the class of locally finite open coverings of P, N, is the nerve of
a, U (N,) = {xo} = v(P).

COROLLARY 5.4. If P is as above, and X € B, then
dir lim 7, (M(Na, X), v) = m,(M(P, X), v).
acL

The proof of Theorem 5.3 is essentially given in (1, Chapter 6), although
there it is given for track groups instead of homotopy groups. A rather elegant
proof of this fact in a more general setting appears in (11).

In order to identify some of the spaces in I, we need to discuss the homotopy
extension property (HEP).

Definition 5.6. Let A be a closed subspace of a space X, and let ¥ be any
space. The triple (X, 4; V) is said to have HEP if and only if given any map
f: X — Y and any homotopy h,: 4 — ¥ (¢ € I) of f|A4, there exists a homotopy
g2 X —>Y (t €1I)of fsuch that g4 =k, (¢t € I).

The following triples (X, 4; Y), 4 closed in X, have HEP:

HEP 1. Y metric ANR, X metric space (see 10);

HEP 2. Y compact ANR, X is normal and paracompact (see 2);
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HEP 3. Y is separable and topologically complete ANR, X is normal and
countably paracompact (see 3);
HEP 4. Y metric ANR, X countably paracompact, collectionwise normal
and A is a G; set (see 4).
For the remaining, consider the triples (X, 4; Y), 4 closed in X, and Y an
arbitrary space.
HEP 5. X, A are compact metric ANR (see 18);
HEP 6. (X, 4) is a CW pair (see 19);
HEP 7. X, A are metric ANR or perfectly normal ANR;
HEP 8. X, A are paracompact ANR, X is normal, 4 is Gs;
HEP 9. X, A are normal ANR or collectionwise normal ANR, X is count-
ably paracompact, 4 is G5 (for HEP 7, 8, 9, see 4).

Let A = x, and consider triples (X, {x}; V) which have HEP, where YVisa
simplicial complex. Note that if X is Hausdorff and first countable, then
{xo} is a G; set, and the G condition is satisfied in HEP 8 and HEP 9.

TuEOREM 5.7. Let (X, {xo}; Y) have HEP. In addition, let X >~ Y, where ¥ s
a simplicial complex. Then there is a yo € Y such that (X, x¢) =~ (Y, yo).

For the proof, see (1, p. 311).
Thus, by HEP 1-HEP 9, 8 contains the following classes:

Weow = class of all CW complexes;

Wanr = class of all metric ANRs;

DIV = class of all metric spaces which have the homotopy type of a
locally finite simplicial complex;

Byp = class of all normal, paracompact spaces which have the homotopy
type of a finite simplicial complex;

Wxep = class of all normal, countably paracompact spaces which have

the homotopy type of a separable, topologically complete,
locally finite simplicial complex;

Wepen = class of all countably paracompact, collectionwise normal,
Hausdorft, first countable spaces which have the homotopy type
of a locally finite simplicial complex;

Wenang = class of all perfectly normal ANRs which have the homotopy
type of a simplicial complex.

LB cw is a subclass of W since any CW complex has the homotopy type of a
simplicial complex; see (12). W,xr is a subclass of W since X being a metric
ANR implies that X is dominated by a simplicial complex (10, p. 138) which in
turn implies by (12) that X has the homotopy type of a simplicial complex
with the weak topology. Thus L is a rather large class.

6. Two-term conditions in §*(X, Y).

THEOREM 6.1. Let X be paracompact, of Lebesgue dimension k, and either first
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countable or locally compact. Let Y be simple and arc-connected such that ¥ € L.
Then there is a filtration

7Tn<M(X, Y)v 'U) D 7?n,0 D 7?'n,l D 7'1:7L,2 D o e D 77-n,k—l D 07
of m,(M(X, Y), v) such that

lr_"_(_ﬂi(y.)’_ﬂ —~ ?n'om and M = En,qm (1<qg=k).
Tn,0 Tn,q

Proof. X is of Lebesgue dimension k. Filter m,(M (X, Y), v) as follows
(v constant). Consider the set 7" of open covers a such that

a € '=dim N, £ k.
T is cofinal in M. If « € T, then (3.1) defines a filter of subgroups:
Tn(M(Nm Y)y Ua) D) 7rn,0(05) D) 7l'n,l(a) DD rn,k_l(a) 0.

Since a < B, @, B € T = ¢op(my,:(@)) C 7,,4(8), then the set {m,i(a), das}
forms a directed system of groups.
Define

Foi = dir lim (m, 5()) = dir lim(m,s(@)) (O <i<k—1).
Q€T aEM

This filters =, (M (X, Y), v) (Theorem 5.3).
For each a € T, m,,i1(a)/m,:(@) = E,,;*(a). By Theorem 4.2, the set
{En.,:" (@), Yog} forms a directed system of groups over S and by Theorem 2.8,

E, ? = dir lim E,, & (a)

acs
~ dirli [__4_>]
cs L i)
= dir lim[hi—_i(ah):l (SN T cofinal in .S)
«€SNT T, 1(@)
— Tn,i-1
77'7;,1) ’

see (6, p. 228), where E, ;* is a term derived from &2 (X, Y). This completes
the proof of Theorem 6.1.

COROLLARY 6.2. Let X be a k-dimenisonal metric space. Then Theorem 6.1 s
true.

Theorem 6.1 and the fact that €2(X, ¥) is a m-exact couple in the sense of
Definition 4.7 implies the following theorem.

THEOREM 6.3. Let Y be simple, arc-connected, and an element of L. Let X be
paracompact, of Lebesgue dimension k, and either first countable or locally
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compact. Then, if a two-term condition {\, u; 2} holds on E? of éz(X , Y, the
following sequence s exact:

. bu Yu Ou
Hb“(X) 7TM+PI“(Y)) - WM(A[(Xr Y)v 'U) — Hu“(Xy 7rﬂ+a“(y))-__) LR

7N
— H™(X, mua (V));
see (5, Definition 3.1 and Theorem 3.2).
In the next two theorems, let X be a k-dimensional, paracompact, «rc-

connected, and first countable or locally compact space. Let ¥ € & be such
that ¥ is simple and arc-connected.

THEOREM 6.4. In §2(X, V), the differential operator d': Bt — E,_y.;' is
zero for any n and © = 2.

Proof. Let T be the set of all locally finite open covers of X such that
dim N, £ k. T is cofinal in M. For each « € T, d%: E, ¢(a) = E,_1,;'(a) is
zero by (5, Theorem 6.1). By Theorem 2.8,

d'=dirlimd* =0 forallzandi = 2.
a€T

The following theorem will show that certain exact sequences split.

THEOREM 6.5. Suppose that, for some fixed p and each locally finite cover
a of X such that dim N, < k, 7, () = 0 for ¢ > 0 and E, " (a) = E, ¢*(a).
Then the following sequence

0— #p0— m,(MX, V), v) —k—> m(Y) — 0,
is split exact, where k is induced by the evaluation map.
Proof. For each a € T, m, (@) =0 for 4> 0 and E,"(a) = E,.,*(a)
(= H°(Nqg; mp(Y)) = m,(Y)) implies
7pe =0 and H,¢* = E,0° (= HY(X;m,(V)) = m(¥)).
Thus,

k(@)
0= mp0(a) = 1) (M (Nay V), 2) — m,(¥) — 0,

where k(a) is induced by the evaluation map, is exact for each «, and, in the
limit,
k
0— 7pola) > m(MX,Y), 9,) 2 m(Y)—0.
Define j: ¥ C M (X, Y) to be the injection of ¥V into constant maps and
Ja C M(Na, Y) similarly for each o € 7. By (5, Theorem 6.4), k(a) 0 ju« =
1.,r for all @ € T It follows from Corollary 5.4 that
j« = dirlimj# and % = dir lim k(a).

aeT a€T

This implies that
k o js = dir lim k(&) o dir lim j* = dir lim (k(e) © ja*) = |
a€eT a€eT a€T

This proves Theorem 6.5.
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It is clear that any pair of spaces (X, ¥) which satisfy Gap Theorem I
(i.e., dim X = kissmall and there are certain gapsin the homotopy groups of ¥)
will give rise to a two-term condition in @2(X , V). It then becomes clear
that (5, Propositions 10.1 and 10.2) hold for X metric, where Cech cohomology
replaces singular cohomology everywhere. In particular, Theorems A and B
are true.

7. Some results on the homotopy groups of joins. Prior to several
examples of the homotopy groups of mapping spaces, we compute in this
section some of the homotopy groups of the join X * ¥ of spaces X and Y.
The general reference for this section is (17). In (17), Whitehead defined the
exact couple €(X % Y) for X * ¥, where ¥ is a CW complex, X is (m — 1)-
connected, and Y is (# — 1)-connected (m, n = 2); thus, X * YV is (m + n)-
connected. This couple is a regular d-couple, and thus many of the results of
(8, Chapter VIII) apply. The E? term of €(X * V) has been partially identified
as

Ep 2 (X #Y) = Hyy (Y mniy (X)) (g=m—2)

and Ty 14X * V) can be identified with Dyyy—1 in €(X * V). Using
two-term conditions in €(X * Y) we obtain the following results.
THEOREM 7.1. Let L(w, n) be a Moore space for an abelian group m, n = 2.
Let X be an (m — 1)-connected space (m = 2). Then the following sequence
P
0= 7 ® Tpio(X) ™ Tmgns14o(X * L) — Tor(m, mpi-1(X)) — 0,

where ® 1s induced by the join operation (see 17, p. 59), is exact for ¢ = m — 2
and split exact for ¢ = 1.

This generalizes (17, Theorem 3.1).
Proof. H,(L) = 0 for ¢ # n and H,(L) = 7 = m,(L). Thus, if ¢ £ m — 2,
T ® Tmpg(X) if p =0,

E,, = }Tor(vr, Tnie (X)) i p =1,
0 ifp> 1.

(8, Chapter VIII, Theorem 8.2) implies that the sequence is exact. To see
the splitting, consider the ladder:

0> 7@ Hpp1(X) = Hyppnpo(X * L) % Tor (m, B, (X)) — 0
kn ® hm+l hm+n+2 Tor (h"' hm):
0— 7 ® my1(X) = Tmanga(X % L) 5 Tor(m, mn(X)) — 0

where the top sequence splits and the vertical homomorphismsare the Hurewicz
homomorphisms. Since X is (m — 1)-connected, %, is an isomorphism, and
Tor (ky, k,) is an isomorphism. Since the top sequence splits, there is a homo-
morphism s: Tor (r, H, (X)) — H,n+2(X * L) such that r o s is the identity

https://doi.org/10.4153/CJM-1969-093-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-093-3

854 MICHEAL DYER

on Tor(r, H,(X)). Let s;: Tor(m, 7 (X)) = Tpins2(X * L) be defined by
$1 = hpinsa O SO (Tor (hy, hy))~L Clearly, to s, is the identity on Tor (7, 7, (X)).

Thus, if ¥V = V*» = "+1\U,S" the pseudo-projective space obtained by
adjoining an (z + 1) cell to S* by f: S* — S” of degree p, then (see 8, p. 321)

- n 32y ifi=m,
H(¥") = {0 otherwise.

Therefore, V,” is a Moore space of type (Z,, n). Consider Y,* *.S™ for n = 2,
and m > 20 (giving the computation of mpipr1s; (V" *.S™) for 0 = 7 < 19 for
m in the stable range). An easy computation using the stable homotopy of

Sm, m > 20 (see 16, pp. 186-188), together with Theorem 7.1, implies the
following theorems.

THEOREM 7.2.

e 25 ifj=0,34,7,8, 10,12, 13, 14, 15, 16,
Ty (V5" 8" =07 0% 17975 609,17, 18,19,

and 0 — Zs — Tpini12(Y" x S™) — Z3 — 0 is exact.

THEOREM 7.3.

, 8,15, 16,

n.oemy _J3Zs ifj=0,7
Tt s11(Vs" % S") = {0 f1<j<19,j% 7,8, 15, 16.
THREOREM 7.4. Suppose that

0 ¢«f:=12,....m—1,m+2m+3,...,m+r—1,
Wi(X)=

Tn(X) = 71,
Tmp1(X) = mo.
Let Y bean (n — 1)-connected CW complex (n = 2). Then the following sequence

1S exact:
0 — Hyp 51 (Y, 1) = ngni14s(X * V) — Hyyy (Y, m1) — 0
for 0 £j < min(m — 1,7 — 1).
COROLLARY 7.5. Let X be such that
T o ifi=m= 2,
7l'1(X)= ) 'ifi=m—|—1,
0 otherwise,
then the above sequences hold for 0 < j < m — 1.

COROLLARY 7.6. Let X be as in Theorem 7.4 or 7.5. Let Y = CP*, the
k-dimensional complex projective space. Then

e (jodd,j Smin{2-k—1,m —1,r — 1}),

Tmyssi(X * CP¥) = {71'1 (even,j Smin{2-k —2,m — 1,7 — 1}),
0 (G=2kj <mintm — 1,7 — 1)).
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Proof.

. ~f7r if gis even, 0 < g < 2k,
H,(CP', m) = 0 otherwise,

and

0— Hj+1(CPk, 7l'2) —> 7l'm+3+j(X * CPk) —> Hj+2(CPk, 71'1) —0

for 0 £ 7 < min(m — 1,7 — 1), yields the result.

In order to obtain two-term conditions using the “‘nice’” gaps in the homotopy
of U, we must pass to the (m — 1)-connective fibering E(U, m) of U; see
(8, pp. 156-158). This is an (m — 1)-connected space such that

Ti(E(Uv m)) = m(U) (i = m).
Let m be an odd integer, m > 2, and consider ¥ * E(U, m).

H,.,(Y) if giseven,

By (Y% E(U,m)) = Hyyp(Y; Ty (U)) = {0 if ¢ is odd

forg = m — 2.

THEOREM 7.7. Let YV = CP* X = E(U,m) for m odd, m > 2, and
2k = m — 2. Then, for 0 = j = m — 2,

0 1f jis odd,
Tmasr;(CPF % E(U,m)) = {Z° ifj=2i—2,j <2k — 2,
Z" dfjiseven, 2k — 2 Sj<m— 2.
Proof. This follows since E®(CP* «x E(U, m)) = E*(CP* « E(U, m)) and
A)Z = Z =4 = Z @ Z, provided 4 is an abelian group.

THEOREM 7.8. Let YV =YV,*, n = 2. Then wpinij1 (V" x E(U, m)) =
Zy @ Tusi(U) for 0 £ j =m — 2.

Finally, consider V5o, the space of all unit tangent vectors on S* It is well
known that (see 8, p. 323)
{ Z ifi=1,
H,(V) =<2, ifi=3,
0 otherwise.
THEOREM 7.8. Let Y = Vs,0, X = E(U, m) for m odd, m > 2. Then, if

Zs ifj =0,2,
Tmpar;(Vse* E(U,m)) = {Z ® Z2 ifjis even,j > 2,
0 if j is odd.

8. Examples of two-term conditions in C(X, V,v) and &*X, Y).
Throughout this section, let X be either a connected, k-dimensional, CW
complex or a path-connected, k-dimensional, metric space. Correspondingly,
let A*(X; G) denote cellular cohomology if X is a CW complex or Cech
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cohomology if X is a metric space. Finally, let €(X,Y) denote either
€(X, ¥,v) (vconstant) or §2(X, Y), depending on X. Denote =;(M (X, Y), v)
by #;.

Let F, denote the exceptional Lie group of dimension 52. The first 23
homotopy groups of F4 have been computed in (13). There it is shown that

7i(Fy) =0 (i=1,245,6,7, 10,12, 13, 19).
This fact, plus two-term conditions in €(X, ¥), implies the following result.
TureOREM 8.1. Let dim X =< 4 and wm; = n,(F.). Then various homotopy
groups of M(X; Fy) are given by:
71 = H*(X; ms), 7y = HY(X; m3), 73 = HY(X; m3),
17'4=H4(X;7T3), 77'9=H2(X;7l'11) @HO(X;"W)r
HY(X;ms) > H3(X ;m9) — 76 — H2(X;73) — H*(X ; m9) = 75— H*(X;73) — 0,
0— H4X; m4) = 70— HY(X; m11) =0
are exact.
Proof. The proof follows easily from the fact that
E-zuq2 = HQ(X; 7"'p+q(F4))

implies TTC {0, 6; 2}, {9, 10; 2} (see Figure 8.1) on €(X, V), from Theorem 6.3;
and from extended TTC's of (5).

In (13), it is also shown that =;(Spin(7)) =0 if 2 =1, 2, 4, 5, 6, 12,
m3(Spin (7)) = Z.

THEOREM 8.2. Letdim X = 4, and 7; = w;(Spin(7)). Then (see Figure 8.2)
1= M (X;ms), #=H'(X;m), m =2 ® HY(X; m),
and H*(X; m7) — H*(X; ms) — 74 — H3(X; m1) — 0 s exact.
Next,let V = V* « S"forn = 2, m > 20. The computations of Theorem 7.3
imply the following result.
THEOREM 8.3. Let dim X = 7. Then M(X, Y:"*xS™) is (m+n — 7)-

connected and (see Figure 8.3), if H'(X; Z5) = H?, then

Tt = HOD 0=7<7),

Tmgntl = Fmanse = H° + H7,

Tmints = H' @ H.

Furthermore, the following sequences are exact:
0— M2 — #pyppr — H'— H? — 7y — H2 — H* — #pynys — H3 — HY
= Tmint+s — H*— H% — Tmtn+s — H*— H" — Tmtnte — H% — 0,

02— H*— fpyng1s — H3 — H5 — #pypy1s — HY — H — #pypinn

"“)Hs—)H-I_)ﬁ'm.H,,.*.m —>H6—‘)O.
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This follows essentially by (5, Gap Theorem I).
In (15), it is shown that

H*(Gk+2,k) = A(x2k+1, x2k+3)y

where Gyys,x is the complex Stiefel manifold of left cosets U(k + 2)/U(k) and
A(xop+1, Xoxrs) is the exterior algebra on generators Xz;i1, X2;+3 of dimension
2k 4+ 1 and 2k + 3, respectively. Let £ = 1, then G3,1 = G has homology
- W JZ ifqg=2358,

Hi(G) = L0  otherwise.
Let Y = G * K(w, m) for = abelian and m = 11. Then, it is shown in (17) that

Tmiars (G * K) = Hyp5(G; ) O=j=m-—2),

~{7r ifj=0,25,
10 otherwise.

THEOREM 8.4. Let dimX = 4. Then M(X, G «K) is (m — 1)-connected
and, if HY(X; v) = H?, then

Tmps = HOD (t=0,1),

Tmps = H° @ H3,

Fmyres = HED (¢=0,1,2),

Tmin =0 10 =n=m — 2).

Furthermore, the following sequences are exact:
0= A3 > fpps— H'— H* — 7o — H2— 0,
0— H*— 7,,5— H'—0 (see Figure 8.4).

Finally, let ¥ = CP® x E(U, m) for m odd, m > 2, 2s = m — 2. Define a
function f: Z — Z by

N Jiodfi

G) = \s if 1

Sy
S.

IV IIA

THEOREM 8.5. Let kB < 3. The first 2m + 1 homotopy groups 7; of
M(X,CPsx E(U, m))
can be computed from:
M(X, CPs« E(U, m)) is (m + 2 — k)-connected,
= H(X),  #np = HX),

Frasn = DX Z70) @ H2(X; Z/0%0)  (j=1,2, ..., $(m — 1)),

and
0— H4(X; ZT0) — Fprg; — HY(X; Z7D) -0 (G=1,2,...,5(m —2))

(see Figure 8.5), where Z'9 is the direct sum of f(j) copies of Z.
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9. Computation of homotopy of M(CP* U), M(V,u,. U), and

M(L(p, ¢), S*)-
THEOREM 9.1.

ZMY if i s odd,

k —
m(M(CP, U),v) = {0 if i is even, i > 0,

where v: CP* — U is any map.

This follows as an easy corollary to the following more general theorem

(Theorem 9.2).

Definition. An arc-connected space X is said to be free in even (odd)
dimensions if and only if H*(X) is free abelian for all zand H*(X) = 0 for odd 7

(HY(X) = 0 for even 7 > 0).

Assume, as usual, that X is a CW complex or X is a metric space. Let

A*X) =Y H'X) and H*X)=HX)® _ZOHi(X),
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where H°(X) is the reduced cellular (Cech) group if X is a CW complex
(metric space).

THEOREM 9.2. (a) Let X have finite dimension 2k and let X be free in even
dimensions. Then, if vi: X — U is constant,
H*(X) ifjis odd,
0 if j is even, j > 0.

(b) Let X have finite dimension 2k + 1 and let X be free in odd dimensions.
Then, if v: X — U is constant,

m,(MX, U),v) = {

m,(MX, U),v) = {

Z if j is odd,

H*(X) ifjis even, j > 0.

Proof. Case (a) gives rise to the following E? (see Figure 9.1):
E, =0 (unlesspisodd and ¢ =0,2,4,...,2k).

Thus, d: E, ' — E, 1,4 is zero for all i, p, g= E, 2 = E, ,” for all p, q.
Consider m,(M (X, U), v) D w0 D Tp,1 D+« oy Tpoe—1 D Tp,or = 0 such that

Tl Ep,qz = H'(X).

. . ﬂ-p’q
Note that if ¢ is odd,
T 2k
Tp,g—1 = Tp,q Tp,2k—2 = Tpo—1 = H }(X)»

and

Totked _ Tpudied ey

Tp,2k—1 Tp,2k—2
Since X is free, then m, 05 = T2 = H?2(X) ® H?*(X). Continuation
yields

7, = H*(X) (for p odd).

Note that this theorem is valid for any basepoint v: X — U provided X is a
CW complex. This is not so with part (b), where the fact thatd® E, ' — E,_.,*
is zero is needed. The easy (and similar) proof of (b) is left to the reader.

THEOREM 9.3. If n s even, )
) )z if 1 1s even, 1 > 0,
T (M (Vns12, U), 2) = {Zz ®Z ifiisodd, i =1,

where v: Vyy1,0 — U is constant. The reason this little result is included is that it
is an example of a case where a two-term condition does not hold on C*(X, Y, v)
but does hold on C*(X, Y, v) and results can still be obtained.

Proof. The proof for n = 4 will be given. The extension to any even # is
obvious. X = Vj;,, has the following cohomology:

. Z ifi=1,
B(X) =2y ifi=4,

0 otherwise.
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Then €(V, U, v) satisfies a TTC{0, 0 ; 4} (see Figure 9.2) since

E,2=0 (forpodd,qg=0,4o0rpeven, qg#=T).
If pis odd, then E,* = H = A (V) = Z, E,s* = Z,; if p is even, then

E, 2 = Z. Since v is constant and X is connected, Theorem 6.4 implies that
d* B, — E,_;,," is zero. Thus,
.E-’ﬂ’04 = Ep,02 = Z, Ep,42 = —p,43, and E_'p,72 = E-’p,73.

Consider d3: E, ;* — E, 7% then d*: Z; — Z must be zero. Thus,
E,p,42 = Ep,74 and Ep,72 = E—vpy74,
and the theorem follows
Let X = L(p, q), the 3-dimensional Lens space associated with the integers
(p, @), p odd. In the remainder of this section, computations of many of the
first # + 17 homotopy groups of M (L(p, ¢), S") for n > 20 will be given. This
is an interesting example in which a two-term condition arises in

€ (L(p, @), S", v)

[v constant] without the Gap Theorems (see 5) holding in L(p, ¢) or S*. Let
(A)—(I) represent the following statements:

A): [p=0@)
Bp=00B)AP#0(3,711)];
C):lp=0{T) Ap#03, 5 11)];
D):p=0(11) Ap#0(3,5 7]
E):[p=0(@(5,7 Ap#0G 1]
Felp=0G11)Ap#0E N
(G):[p=0(7,11) Ap #0@G,5];
H):[p=0(5711) Ap#0@)];
I: [p#£0(,5711)].
The computation is given by Table 9.1 plus the fact that M (L(p, ¢), S*) is
(n — 4)-connected. Generators for the groups in Table 9.1 are given by
generators in the corresponding groups for S® The following is a sample
calculation.
Let statement (C) hold, i.e., p = 0 (7) and p #£ 0 (3, 5, 11). Computations
from (9) show that
(7.(5") (t = 0),
TIJ("rs+1(Sn)) ¢t = 1):
(7"H~2(Sn))11 t=2),
ra(S) (t=3),
where G, = G/pG and T,(G) = {g € G|p- g = 0}. The tables in (16) show
that E; 12 = Tp(ms31(S")) = 0 for 0 < s < n + 18, unless s = n 4 10, and
E 22 = (m542(5"), = 0for 0 = s = n+ 17, unless s = n, n + 9. Thus, E, is
described in Figure 9.3.
This yields two-term conditions {0, # 4+ 9;2} and {# + 11,z + 17; 2} on @2,
and the results for statement (C) (Table 9.1) follow easily.

E, (L g, S) =
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