
FEDERER-CECH COUPLES 

MICHEAL DYER 

1, Introduction. In (5), I considered two-term conditions in 7r-exact 
couples, of which the exact couple S(X, F, v) of Fédérer (7) is an example. 
Let M(X, Y) be the space of all maps from X to F with the compact-open 
topology. Our aim in this paper is to construct a 7r-exact couple S2(X, F), 
where X is a finite-dimensional (in the sense of Lebesgue) metric space and 
F G SB, a certain (rather large) class of spaces. Specifically, SB is the class of 
all topological spaces X which possess the following property (P). 

(P) Let F be a (possibly infinite) simplicial complex. There exists x0 G X 
and 3/0 G F such that [X, x0] ̂  [F, y0]. 

In § 5 it will be seen that 2B contains all CW complexes and all metric absolute 
neighbourhood retracts (ANR)s. 

In §4, it is shown that, in the exact couple 62(X, F), Ep,q
2(X, Y) ~ 

Hq(X; TP+Q(Y)), where Ha(X; Tp+q(Y)) represents the qth Cech cohomology 
with coefficients in irp+q(Y), and that Em(X, F) is associated with the homo-
topy groups of M(X, F). The method used is similar to one used by Barratt 
(1), and, in fact, relies heavily on Theorem 12.21 of that same paper. 

The existence of a 7r-exact couple with the above properties allows the exten­
sion of the results of (5) to mapping spaces M(X, F), where F G 2B is arc-
connected and simple, and X is an arc-connected ^-dimensional metric space 
(k < 00). For instance, we will prove the following two theorems. 

THEOREM A. Letk = 2, F = U, the infinite unitary group, and let v: X —> Ube 
constant. Then if fj = TTJ(M(X, U), v), 

T2i - Ê^X), *2t-i - H*(X) ® Z, * = 1, 2 

THEOREM B. Let k = 4, F = 0+, a component of the infinite orthogonal 
group, and let v: X —> F be constant. Then, if TJ = Wj(M(X, 0+), v), we have: 

7f1+8, - H*(X) + Z2, i = 0, 1, 2, 3, 4, . . . , 

7t2+Si~Hi(X), i = 0 ,1 ,2 , . . . , 

T W - H\X) +Z, i = 0, 1, 2, . . . . 
The sequence 

H*(X) - ^ H*(X; Z2) ^ 7f4 + 8^ H*(X) -> 0, * = 0, 1, 2, . . . , 

is exact. 

These theorems are part of two larger theorems, the statements of w^hich are 
precisely given in (5, Propositions 10.1 and 10.2), except that X is a metric 
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space of dimension k instead of a CW complex and the cohomology is Cech 
instead of singular. 

The organization of the paper is as follows. In § 2 I give a short exposition of 
directed systems of exact couples and show that the direct limit of the derived 
couple is naturally isomorphic to the derived couple of the direct limit. The 
definition of the Fédérer exact couple is reviewed in § 3. In § 4 the construction 
of d2(X, Y) is given and in § 5 a trivial extension of the theorem of Spanier-
Barratt (12.21) mentioned above is given. In § 6, certain pertinent results of 
(5, § 6) are carried over into E2(X, Y). In § 7 some results on the homotopy 
groups of joins, which are useful in the examples of § 8, are given. Finally, in 
§ 9 I give the computation of the homotopy groups of M(CPk, U), M(Vn+it2, U) 
and some of the stable homotopy groups of M(L(p, q), S71), p odd, where 
L(p, q) is a 3-dimensional Lens space. This last computation is an interesting 
example of a pair of spaces which do not satisfy Gap Theorem I or II (see 5, 
§§ 8 and 9) and still have a two-term condition in (S2(L(£, g), Sn). 

I wish to acknowledge my indebtedness to M. Barratt [in (1)] for several 
crucial ideas and to Professor Sze-Tsen Hu for warm encouragement and many 
stimulating conversations. 

2. Directed systems of exact couples. Let M be a set with a partial 
ordering " < " (partial ordering is a relation which is reflexive and transitive). 
Such a pair (M, < ) is said to be directed if and only if given any a, 0 Ç M 
there is a y £ M such that y > a and y > /3. A subset M' of M (M' partially 
ordered by < also) is said to be cofinal if and only if for any a £ M there is a 
PCM' such that 0 > a. 

Let S = {D, E, i,j, k) be an exact couple in the sense of Fédérer; i.e., D is a 
(not necessarily abelian) group, E is an abelian group, and i, j , and k are 
homomorphisms such that the following triangle is exact (see 7) : 

E 

Definition 2.1. Given exact couples £« and (£#. A mapping £«#: S« —> fè/s is a 
pair of homomorphisms (<t>apt \pap) such that 

fa: D(a) -+D(0), ^ : E(a)-> Etf) 

and 

<i>afi O ia = iff O 0a/?, ^ a /3 O j a = jfi O 0 a / 3 , 0 a 0 O ka = kp O ^ a j 8 . 

Definition 2.2. A directed system of exact couples 6* over a directed set M 
is a set {S«| 6« is an exact couple, a G M) such that for each relation a < 0 
there is a mapping of couples £«#: S« —-> Ëp such that 
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(a) a = j3 => £aa = identity on Sa, and 
(b) a < 13 < y =» ^ 7 o £a/3 = £«7(007 o 0a/3 = </>a7 and ^ 7 o ^ = \f/ay). 

In this case, define the direct limit couple S = dir lima6M S a by 

g = {D,Ë,ï,],l}, 
where 

Z) = dir lim D(a), # = dir lim £ (a ) , 
a£ilf a£Af 

ï = dir lim ia, j = dir limja, fc = dir lim ka; 
a£M aÇM a£M 

thus, %{x) = 4(xa), where a: G ikT, xa £ -D(a), and xa Ç x Ç 5 , i.e., #a is a 
representative of the class x Ç 5 , and 4(#a) means the class in D of which 
ia(xa) is a member. 

Since, in general, D(a) is non-abelian, the alternative definition given in (6, 
p. 222) is applicable and extends to non-abelian groups. Since the direct limit 
of an exact sequence is exact (see 6, p. 225), the following is true. 

THEOREM 2.3. The direct limit (Ëof a directed system Ë* of exact couples is an 
exact couple. 

Let {E«, £«#1 a, j8 £ M) be a directed system of exact couples. Let a < (3 and 
consider the map £«#: S« —> (§£. Let Ea ' and (£/ be the derived couples of 
(Sa and S/3, respectively. Then the mapping £a/3 induces a mapping 
£*': Sa' -> 6 / (see 8, p. 242) defined by 

àrf'OO = «M?) for y G £>'(*) = *«(£(«)) 
and 
\l/afi (homology class of x) = (homology class of \f/ap (x) ) for x 6 ker da C E(a). 

The following lemmas can be easily proved. 

LEMMA 2.4. (a) £aa' is the identity on Ëa', and 
(b) W o £„/ = U for a < /3 < y. 

LEMMA 2.5. (a) 0 a / o ij = i$ o <f>apy 

(b) ^ o j a ' = jp o </>«/, a«d 
(C) fa? O fca' = kfi O ^a/9'. 

Thus, the set {(£«', £a//| a, j8 6 Af} is again a directed system of exact couples. 
Let S^ = Ëa2, £«/ = £a/32. Iterate the process for « ^ 1. 

THEOREM 2.6. The set S*n = {fëa
w, W*} w a directed system of exact couples. 

For each » ^ 1 , define the limit exact couple of &n as: 

Sw = dir lim g." [note that I 1 = 6] . 

Definition 2.7. A mapping £«#: S« —> 6^ is an isomorphism if and only if 
4>a!3 and \f/a& are isomorphisms. 
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The following theorem answers the natural question. 

THEOREM 2.8. (Sn ~ (£) n ; i.e., dir lima€M(@«w) ~ (dir limaeMÇ£a)
n, where 

(S)w is the (n — l)st derived couple of Ê. 

Theorem 2.8 follows directly from the following two lemmas. 

LEMMA 2.9. Let <i>: \Ga, rjap\ —» {Ha, da$} be a mapping of the directed system 
{Ga} over M into the directed system {Ha} over M. {Thus, $ = {<£a| a £ M), 
where <£a: Fa—>Ha is a homomorphism such that if a < 13, then ^ o )|^ = 
ôap o <ï>a.) Let Fa be a subgroup of Ga for each a Ç M such that if a < (3, then 
Vap(Fa) C Ffi. Then 

dir lim($a|F«) ~ (dir Km $a ) ( dir lim Fa ) = $œ\Fœ. 

LEMMA 2.10. A>/ {Ga, \f/ap} be a directed system of groups over M. Let 

$: {Ga, \pap) —> \Gaj \pap\ 

be a map of systems. Then 

dir lim(ker $a) ~ ker <£œ C Gœ and dir lim(im 3>a) = im $œ C G^ 

in the natural way. 
In addition, suppose that Ga is abelianfor alla £ M and that $2 = $ o $ = 0. 

,. r , ker $ a \ ker $„. 
dir liml — 

am 3>( 

/w /Ae natural way. 
7 im $a 

3. The Fédérer exact couple Ê(X, F, */). In this section a brief description 
of fè(X, F, v) is given. Let X be a CW complex and let F be any path-
connected space. Let Xn be the ^-dimensional skeleton of X and Uj the 
arc-component of M(Xj, F) containing Vj = Z/JX-7. Define the map r: [A/—* t/^-i 
by r(f) = f\Xj~l (f e M(Xj, F)). Since X is a CW complex, r is a fibering in 
the sense of Serre; see (8). Let 

F, = r - i ( ^ - i ) = {/ 6 tf,| / I**" 1 = t>^}. 
^ is a fibre of r. 

Define 

where DP>Q = TP(UQ, vq) if p, a ^ 0, D ^ = 0 otherwise, and 

P,Q 

where EPtQ = irp(FQ, va) iî p, q ^ 0 and £Pl(Z = 0 otherwise. Then the homotopy 
sequence of the fibering above becomes 

k i j 
. . . > Ei}j

 > Ditj
 > Dij—i > Ei-\tj —>. . . , 
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where k is inclusion induced, i = r*, and j = d. This makes {D, E, i, j , k\ an 
exact couple, denoted by (S(X, F, v). 

The following theorem is stated for future reference. The proof may be 
found in (7, p. 351). 

THEOREM 3.1. If X is a CW complex of dimension k < co and if Y is arc-
connected and simple (= n-simple for all n > 0), then 

(a) EPtQ ~ CQ(X, wp+q(Y)), the group of q-dimensional cochains on X with 
coefficients in 7Tp+a(Y), for p ^ 1. If p = 0, thenE0tq ~ subgroup of Cq(X, irQ(Y)); 

(b) Ep,q
2 ~ HQ(X, wp+q(Y)) forp^l and if p = 0, E0f2

2 ~ subgroup of 
H<(X,TQ(Y)). 

Filter TTP(M(X, Y), V) as follows: 

(3.1) TP(M(X, F), ») D ^ , 0 DTP,ID...D *P,JC-I D 0, 

where 
wp,q = ker{i^~Q): Dp,k->DPtQ}, 

q < k = dim X and iU) = io io io . . .oi (j times). Then the usual propo­
sition is true; see (7). 

PROPOSITION 3.2. irp>q-.i/Tp>q ~ Ep,q
œ. 

4. The Federer-Cech ?r-exact couple Ê2(X, F). This section contains the 
construction of the 7r-couple (S2(X, F) and the proof that È2(X, Y) ~ 
È<(X;irp+tt(Y)). 

Let X be a paracompact topological space; i.e., X is Hausdorff and the set 5 
of all locally finite open coverings of X is cofinal in the set M of all open cover­
ings. Here the set M is directed by refinement; that is to say, /3 > a if and 
only if ]S is a refinement of a (a, /3 G M). 

If « G S, then the nerve of a, Na, is a simplicial complex. For each a G S, 
consider the exact couple Ê(iVa, F, z;a) defined in the last section, where F is 
any arc-connected, simple space. 

Let «, j(5 É 5 be such that a < /3. Thus, 0 is a refinement of a. Vertex 
inclusion defines simplicial maps fpa: Np —> Na. Any two maps so defined are 
nomotopic; see (6, p. 235). 

PROPOSITION 4.1. Let p > a, a, /3 G S, and assume that vy: N7—> Y is the 
constant map to some point 3/0 G F /pr 7 = a, /3. Let fp>a, fpa

f: Np —• iVa 6e a?ry 
^ 0 simplicial maps defined by vertex inclusion. Then the maps 

**, 0«/: Dp,
2(Na, F, va)^Dp,q

2(Np, F, ^ ) , 

induced by fpa, fpd, respectively, are identical; i.e., vertex inclusion induces a 
unique homomorphism <f>ap: DPtQ

2(a) -+Dp>q
2((3) provided va and Vp are constant. 

Proof. Let fp,a and fpj be any two maps defined above. There exists a 
homotopy 

<t>t:fp,a ~ / , . a ' (t G J ) . 
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By (7, p. 354), the following triangle commutes, 

Dp,q\Na, F, va) 

Dp,q\Np, F, ve)2>Dp«(Ffi> Y> vfi) 

where <j>ap is induced by/^«, 4>c# by//*/, and rj is the isomorphism induced by the 
curve V: I-+M(Nfi, F), [V(t)](x) = (»«o0,)(*O (t £ I, x G ^ ) . However, 
va(Na) = {yo} => [ F ( O K ^ ) = va(4>t(Nfi)) = bo}. Thus, 7(7) = {»,} and T? is 
the identity. Therefore, <j>ap = <t>ap'- DPtQ

2(a) -^DPtQ
2(P). Hence, no matter 

what vertex map is chosen, the induced map on D2(Na, F, va) is uniquely 
defined. This proves Proposition 4.1. 

If a, /3 G S, a < ft, we have the following diagram (p è 0, q ^ 0): 

EvA\a) J^LEJW) 

(*) 7 

where 7 is the injection of Theorem 3.1(b) (surjective if £ ^ 1) (for a definition 
of 7, see (7, p. 345)), ^ a / is the homomorphism induced by the homomorphism 
^OJS: Trp(Fq

a, vq
a) -> irp(Ff, vf) which is in turn induced by /^ r i\^ —> Na, and 

//ga* is the homomorphism induced by /$«. This diagram commutes since both 
maps are induced by fpa. Then fpa* is uniquely defined implies that \f/a^ is also 
uniquely defined. Thus, the groups {D2, <f>ap} and {E2, \pa^} form two directed 
systems of groups over (S, < ) . This proves the following theorem; see 
(7, p. 353). 

THEOREM 4.2. Let X be paracompact and Y arc-connected and simple. Then 
Ë* = {(S2(iVa, F, va), (<t>ap, fap)\ OL G Sy va constant) forms a directed system of 
exact couples over 5, the set of locally finite open coverings of X. 

Definition. The exact couple 

Ê2(X, F) = dirlim(Ê2(iVa, Y,va)) 

is called the Federer-Cech couple for the pair (X, F). 

Note that (S2(X, Y) is an exact couple in the sense of Fédérer such that 
degree? = ( - l , 2 ) , d e g i 2 = (0, - l ) , deg fc 2 = (0, 0), where S2(X, F) is the 
exact couple below: 

t>\X,Y)±+D*(X,Y) 

A /' 
Ë\X, Y) 

e following proposition is crucial. 
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PROPOSITION 4.3. In (S2(X, F), and for p > 0,Êq/(X, F) - È'(X,TP+Q(Y)), 
where HQ(X, irp+q(Y)) denotes the q-dimensional Cech cohomology group of X 
with coefficients in irp+q ( F ) , based on all open coverings of X. 

Proof. Since X is paracompact , the set 5 is cofinal in M, the set of all open 
coverings of X. Thus , by Theorem 3.1(b) , 

y:EP,q*(a) = H'(Na, irp+tt(Y)) 

for p ^ 1, q ^ 0, and each a Ç S. Since (*) is commuta t ive for each a < ft we 

have: 

H\X, TP+Q(Y)) = dir\imHQ(Naj wp+q(Y)) = dir lim HQ(Na, irp+q(Y)) 

~ dir lim Ep>q (a) ~ Ëp>q
2 (by Theorem 2.8). 

aes 

I t is also clear t h a t if p = 0, then Ë0,q
2(X, F) « subgroup of H9(X, T T , ( F ) ) . 

Th is proves Proposition 4.3. 

Definition 4.4. d i m ^ X ^ &, where N C. M, the set of all open coverings of 
X, if and only if any covering a £ N has a refinement fi £ N such t h a t the 
dimension of the nerve of fi is a t most k. W e say t h a t d i m ^ X = k if and only if 
& is the least integer such t h a t d i m ^ X ^ k. Dowker has shown (2) tha t , if X 
is normal, then d im^X = d im S F X = dim^X, where F, SF, and 5 are the 
classes of finite, star-finite, and locally finite covers of X, respectively. 

Definition 4.5. If X is normal, then: X has Lebesgue dimension k means 
d im^X = k. 

T H E O R E M 4.6. Suppose that X is a paracompact space of Lebesgue dimension k. 
Then 6 2 (X , F) satisfies (5, Definition 2.1, properties (1), (2), and (3)) . 

Proof. (5, Definition 2.1 (1) and (2)) are t rue since they are t rue for each 
a £ S. k = d im^X implies t h a t the set T of all open covers a: of X such t h a t 
Na has dimension k and a Ç S is cofinal in S (and hence in M). Therefore, 

Êp,q
2 = dir lim Ep,q(a) = dir lim EPtq(a) = 0 for q > k. 

T h u s (5, Definition 2.1 (3)) holds. 

(52(X, F) could almost be called a 7r-exact couple, except t h a t deg j 2 = 
( — 1, 2) . However, the definition of a 7r-exact couple may be broadened to read 
as follows. 

Definition 4.7. Ë is a 7r-exact couple if and only if g is an exact couple in 
the sense of Fédérer , deg i = (0, —1), deg j = ( — 1, n), n ^ 1, and deg k = 
(0, 0) such t h a t S satisfies (5, Definition 2.1 (1), (2), (3) ) . 

In this case, no t only is S 2 (X , F) a 7r-exact couple, bu t also all the derived 
couples E 2 (X, F, v) of § 3. This seems much more na tura l . Thus , S 2 (X , F) 
is a 7r-exact couple. 
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5. A theorem of Spanier and Barratt. SB is the class of all spaces X for 
which the pair (X, x0) ~ (F, y0) for some x0 £ X, y0 G F, where F is a 
simplicial complex. Thus, if X £ 333, the following is true. 

PROPOSITION 5.1. Let Z be any space. 

(X, xo) ^ (F, y0) => (M(Z, X), Vzo) ~ (M(Z, F), *„„), 

where vXQ(Z) = {x0} and vV(j{Z) == {3/0}. 

Proof. L e t / : (X, x0) —> (F, 3/0) and g: (F, 3/0) —» (X, x0) be homotopy 
inverses and let #*: (X, x0) —> (X, x0) be a homotopy of g 0 / and l(x,*o)> and 
G*: (F, y0) —• ( F, 3/0) a homotopy of fog and l(r,y0)- Then, composition 
induces homotopy inverses 

U (M(Z, X), vX0) - (M(Z, F), ^ 0 ) , g,: (M(Z, F), »,0) - (M(Z, X) , vj, 

and i7^: g# o/* ~ 1(MU, x).rx0)» ^ ^ : /* ° £* — 1(M(Z,F),%0). 

COROLLARY 5.2. (X, x0) ~ (F, y0) => ir,(M(Z, X) , O ~ TQ(M(Z, F), Z/„0) 

/or a// g. 

In (1, Chapter 6), Barratt proved the following extension of a theorem of 
Spanier (14). 

THEOREM 5.3 (Spanier-Barratt). Let P be normal, paracompact, and locally 
compact or first countable. If X is any simplicial complex, then there is an 
isomorphism 

<ï>*:dirlim irq{M{Na, X), va) « irQ(M(P,X),v) (q > 0), 

where L is the class of locally finite open coverings of P, Na is the nerve of 
a,va(Na) = {xo} = v(P). 

COROLLARY 5.4. / / P is as above, and X £ 3B, then 

dirlim Tq(M(Na,X),va) « TQ(M(P,X),V). 

The proof of Theorem 5.3 is essentially given in (1, Chapter 6), although 
there it is given for track groups instead of homotopy groups. A rather elegant 
proof of this fact in a more general setting appears in (11). 

In order to identify some of the spaces in SB, we need to discuss the homotopy 
extension property (HEP). 

Definition 5.6. Let A be a closed subspace of a space X, and let F be any 
space. The triple (X, A; F) is said to have HEP if and only if given any map 
f:X—>Y and any homotopy ht: A —> Y {t £ / ) of f\A, there exists a homotopy 
gt: X-+Y (te I) of / such that gt\A = * , ( * £ I)-

The following triples (X, A; Y), A closed in X, have HEP: 
HEP 1. F metric ANR, X metric space (see 10) ; 
HEP 2. F compact ANR, X is normal and paracompact (see 2) ; 
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HEP 3. F is separable and topologically complete ANR, X is normal and 
countably paracompact (see 3) ; 

HEP 4. F metric ANR, X countably paracompact, collection wise normal 
and A is a G s set (see 4). 

For the remaining, consider the triples (X, A; Y), A closed in X, and Y an 
arbitrary space. 

HEP 5. X, A are compact metric ANR (see 18) ; 
HEP 6. (Z, A) is a CW pair (see 19) ; 
HEP 7. X, A are metric ANR or perfectly normal ANR; 
HEP 8. X, A are paracompact ANR, X is normal, A is Gd] 
HEP 9. X, A are normal ANR or collection wise normal ANR, X is count­

ably paracompact, A is G s (for HEP 7, 8, 9, see 4). 

Let A = Xo and consider triples (X, {x0} ; Y) which have HEP, where F i s a 
simplicial complex. Note that if X is Hausdorff and first countable, then 
{xo} is a G h set, and the Gs condition is satisfied in HEP 8 and HEP 9. 

THEOREM 5.7. Let (X, {x0\ ; Y) have HEP. In addition, letXc^. Y, where Y is 
a simplicial complex. Then there is a y0 G Y such that (X, x0) o^. (F, yo). 

For the proof, see (1, p . 311). 

Thus, by HEP 1-HEP 9, SB contains the following classes: 
SScw = class of all CW complexes; 
S3ANR = class of all metric ANRs; 
$BM = class of all metric spaces which have the homotopy type of a 

locally finite simplicial complex; 
2BNP = class of all normal, paracompact spaces which have the homotopy 

type of a finite simplicial complex; 
ÎBNCP = class of all normal, countably paracompact spaces which have 

the homotopy type of a separable, topologically complete, 
locally finite simplicial complex; 

SBCPCN = class of all countably paracompact, collectionwise normal, 
Hausdorff, first countable spaces which have the homotopy type 
of a locally finite simplicial complex; 

SBPNANR = class of all perfectly normal ANRs which have the homotopy 
type of a simplicial complex. 

SBcw is a subclass of 2S since any CW complex has the homotopy type of a 
simplicial complex; see (12). 2BANR is a subclass of W since X being a metric 
ANR implies that X is dominated by a simplicial complex (10, p. 138) which in 
turn implies by (12) that X has the homotopy type of a simplicial complex 
with the weak topology. Thus 2B is a rather large class. 

6. Two-term conditions in Ê2(X, F). 

THEOREM 6.1. Let X be paracompact, of Lebesgue dimension k, and either first 
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countable or locally compact. Let Y be simple and arc-connected such that Y G 2B. 
Then there is a filtration 

TTn(M(X1 Y),V) D TTtt.O D 7Tn|i D 7fn,2 D • . • D 7Tn,k-l D 0, 

0/ Trn(M(X, F ) , v) such that 

zJM^^û^È^ and Wi^^ (i^^), 

Proof. X is of Lebesgue dimension &. Filter 7r„(M(X, F ) , y) as follows 
(y cons tan t ) . Consider the set 2" of open covers a such t h a t 

a G r => dim iVa g jfe. 

r is cofinal in M. If a G T, then (3.1) defines a filter of subgroups: 

irn(M(Na, F ) , va) D 7Tni0(a) D îTn,i(«) D . . . D 7rn,,fc_i(a) D 0. 

Since a < 0, a, 0 6 T =ï <f>ap(wn>i(a)) C *n,«(0), then the set ( î r B l i ( a ) , ^ ) 
forms a directed system of groups. 

Define 

7fn,i = dirlim(7Tnf i(a)) = dir l]m(irnti(a)) (0 ^ i ^ i - 1). 

This filters 7rn(M(X, F ) , ») (Theorem 5.3). 
For each a G T,Trnii-\{a)/irnti{a) ~ Enti

QO(a). By Theorem 4.2, the set 
{Enti

co(a)J }//ap} forms a directed system of groups over 5 and by Theorem 2.8, 

Ën,r « d i r l i m E ^ r t e ) 

« dir lim ^ = ^ (SHT cofinal in 5 ) 
açsriT7 L 7rn>i{a) J 

see (6, p . 228), where Ënti
œ is a term derived from (S2(X, F ) . This completes 

the proof of Theorem 6.1. 

COROLLARY 6.2. Let X be a k-dimenisonal metric space. Then Theorem 6.1 is 
true. 

Theorem 6.1 and the fact t h a t Ê 2 (X, F) is a 7r-exact couple in the sense of 
Definition 4.7 implies the following theorem. 

T H E O R E M 6.3. Let Y be simple, arc-connected, and an element of SB. Let X be 
paracompacty of Lebesgue dimension k, and either first countable or locally 
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compact. Then, if a two-term condition {A, /x; 2} holds on E2 of 6 2 ( X , F ) , the 

following sequence is exact: 

HHX, ir^Y)) - ^ T,(M(X, Y),v)-^ Ha»(X, ir»+au{Y))-^ . . . 

- ^ Ha*(X,irx+ax(Y)); 
see (5, Definition 3.1 and Theorem 3.2). 

In the next two theorems, let X be a ^-dimensional, paracompact , arc-
connected, and first countable or locally compact space. Le t F Ç SB be such 
t h a t F is simple and arc-connected. 

T H E O R E M 6.4. In È 2 (X, F ) , the differential operator du. En^
1 —> 2£„_ifi* is 

zero for any n and i ^ 2. 

Proof. Le t T be the set of all locally finite open covers of X such t h a t 
dim Na ^ k. T is cofinal in Af. For each a G T1, du. En^

l(a) —•» £„_i , ,-l'(a) is 
zero by (5, Theorem 6.1). By Theorem 2.8, 

5* = dir lim d* = 0 for all n and i ^ 2. 

T h e following theorem will show t h a t certain exact sequences split. 

T H E O R E M 6.5. Suppose that, for some fixed p and each locally finite cover 
a of X such that dim Na ^ k, irPti{a) = 0 for i > 0 and EPi0

co(a) = EPi0
2(a). 

Then the following sequence 

0 -> TT̂ O -> TP(M(X, Y), v) -A> ^ ( F ) -> 0, 

is 5 ^ 7 exact, where k is induced by the evaluation map. 

Proof. For each a £ T, TPti(a) = 0 for i > 0 a n d EP)Q
œ(a) = EpA?(a) 

( « #°( iV a ; ^ ( F ) ) - ^ ( 7 ) ) implies 

#, , , = 0 and ^ , o 2 = ^ ,o°° ( « # ° ( X ; T T P ( F ) ) - T T P ( F ) ) . 

Thus , 

0 -+ ^ > 0 ( a ) -> Tp(M(Na, Y), va) — ^ ^ ( F ) -> 0, 

where &(a) is induced by the evaluation map, is exact for each a, and, in the 

limit, 

0 -> ^ , 0 ( c 0 ~> 7T,(M(X, F ) , *tt) "> 7Tp( F) -> 0. 

Define j : Y C M(X, F) to be the injection of F into cons tan t maps and 
j a C M(Na, F) similarly for each a £ T. By (5, Theorem 6.4), &(a) oja* = 
lTp(r) for all a £ T. I t follows from Corollary 5.4 t h a t 

j * = dir l im7> and k = dir lim k(a). 

This implies t h a t 

k oj* = dir lim k(a) o dir l i m j > = dir lim(k(a) o j » = l ^cn -
aÇT aÇT aÇT 

This proves Theorem 6.5. 
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It is clear that any pair of spaces (X, Y) which satisfy Gap Theorem I 
(i.e., dim X = k is small and there are certain gaps in the homotopy groups of F) 
will give rise to a two-term condition in fë2(X, F). I t then becomes clear 
that (5, Propositions 10.1 and 10.2) hold for X metric, where Cech cohomology 
replaces singular cohomology everywhere. In particular, Theorems A and B 
are true. 

7. Some results on the homotopy groups of joins. Prior to several 
examples of the homotopy groups of mapping spaces, we compute in this 
section some of the homotopy groups of the join X * Y of spaces X and F. 
The general reference for this section is (17). In (17), Whitehead defined the 
exact couple (S(X * F) for X * F, where F is a CW complex, X is (m — 1)-
connected, and F is (n — l)-connected (w, n ^ 2) ; thus, X * F is (m + n)-
connected. This couple is a regular d-couple, and thus many of the results of 
(8, Chapter VIII) apply. The E2 term of fè(X * F) has been partially identified 
as 

Ep,q\X * F) - Hn+P(Y; Tm+q(X)) (q ^ m - 2) 

and 7rm+n+1+p(X * F) can be identified with Dp+i,-i in (£(X * F). Using 
two-term conditions in Ê(X * F) we obtain the following results. 

THEOREM 7.1. Let L(iry n) be a Moore space for an abelian group ir, n ^ 2. 
Let X be an {m — 1) -connected space (m ^ 2). Then the following sequence 

0 —» 7T ® 7TW+(7(X) —> 7T m + w + i + î (X * L ) —» T o r (7T, 7Tm+0_i(X)) —> 0, 

where <£ is induced by the join operation (see 17, p. 59), w exact for q ^ m — 2 
and split exact for q = 1. 

This generalizes (17, Theorem 3.1). 

Proof. Hq(L) = 0 for q ^ w and Hn(L) ~ w ~ irn{L). Thus, if g ^ m — 2, 

|TT ® 7Tm+(?(X) if p = 0, 

£*>,/ ~ } T o r ( 7 r , 7TW+5(X)) if /> = 1, 

(0 if p > 1. 

(8, Chapter VIII, Theorem 8.2) implies that the sequence is exact. To see 
the splitting, consider the ladder: 

0 -> T ® iïw + i(X) ^Hm+n+2(X * L) £ Tor(x, Hm(X)) -+ 0 

&» ® ^m+ m+n+2 Tor(A„, AOT)~ 

0 - > 7T ® 7Tw + l(X) - > 7TW+W+2(X * L ) - > T0r(7T, 7TW(X)) - > 0 

where the top sequence splits and the vertical homomorphisms are the Hurewicz 
homomorphisms. Since X is (m — 1)-connected, hm is an isomorphism, and 
Tor(hn, hm) is an isomorphism. Since the top sequence splits, there is a homo-
morphism s: Tor(7r, Hm{X)) —> Hm+n+2(X * L) such that r o s is the identity 

https://doi.org/10.4153/CJM-1969-093-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-093-3


854 MICHEAL DYER 

on Tor(ir, Hm{X)). Let Si: Tor(7r, irm(X)) —* Trm+n+2(X * L) be defined by 
Si = hm+n+2 0 so (Tor(hni hm))~l. Clearly, t osi is the identity on Tor (x, Tm(X)). 

Thus, if F = F / = en+1UfS
n, the pseudo-projective space obtained by 

adjoining an (n + 1) cell to 5^ b y / : Sn —» S"1 of degree p, then (see 8, p. 321) 

otherwise. 

Therefore, F / is a Moore space of type (Zp, n). Consider Yp
n * Sm for w ^ 2, 

and m > 20 (giving the computation of 7rm+w+i+J-( F / * 5^) for 0 ^ j ^ 19 for 
m in the stable range). An easy computation using the stable homotopy of 
5W, m > 20 (see 16, pp. 186-188), together with Theorem 7.1, implies the 
following theorems. 

THEOREM 7.2. 

tv** w ~ / Z * # i = 0 , 3 , 4 , 7 , 8 , 10, 12, 13, 14, 15, 16, 
i r ^ i + i U s ** ) ~ \ 0 ifj = l f 2 5> 6> 9> 1 7 | 1 8 > 1 9 > 

a?zd 0 —» Z3 —» 7rw+w+i2( F3
W * 5^) —» Z3 —> 0 w exad. 

THEOREM 7.3. 

rvn * w ~ < ^ 5 ^"i = ^' ^' 8 ' 15> 1 6 , 
J w + B + j + l i r 5 ^ j ~ \ o # 1 ^ i g 19, i * 7, 8, 15, 16. 

THEOREM 7.4. Suppose that 

!

0 if i — 1, 2, . . . , m — 1, m + 2, m + 3, . . . , m + r — 1, 
7T W (X) = 7Tl, 

TTm+lPO = 7T2-

Le/ Y be an (n — 1)-connected CW complex (n ^ 2). Then the following sequence 
is exact: 

0 -> i W i ( F , TT2) -* wm+n+1+j(X * F) -> ff^CF, TTX) -> 0 

for 0 ^ 7 ^ min(m — 1, r — 1). 

COROLLARY 7.5. Let X be such that 

!

7Ti if i = m ^ 2, 
7T2 if i = m + \, 
0 otherwise; 

then the above sequences hold for 0 ^ j rg m — 1. 

COROLLARY 7.6. Let X be as in Theorem 7.4 or 7.5. Let Y = CPfc, the 
k-dimensional complex projective space. Then 

!

7T2 (j odd,j ^ min{2 • k — 1, m — 1, r — 1}), 
7Ti (j eyew, j S min{2 • & — 2, m — 1, r — 1}), 
0 0' ^ 2 è , j ^ min (m - 1, r - 1)). 
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Proof. 

TT ,nT>k N )TT if q is even, 0 ^ q ^ 2k, 
i ï . (CP , ir) « ^ o t h e r w i s e > 

and 
(X * CP*) -+ #;+ 2(CP*, xi) -> 0 

for 0 ^ j ^ min(m — 1, r — 1), yields the result. 
In order to obtain two-term conditions using the "nice" gaps in the homotopy 

of U, we must pass to the (m — 1)-connective fibering E(U, m) of U; see 
(8, pp. 156-158). This is an (m — 1)-connected space such that 

x,(E(C7,m)) - Tt(U) (i^ m). 

Let m be an odd integer, m > 2, and consider Y * E(U, m). 

77 2/Tr p / n NN fr / T / / r A N J ̂ n+P ( Y) if g is even, 
EViQ (Y*E(U,m)) ~ Hn+P(Y) irm+q(U)) « | Q

 +pv if g is odd, 

for g ^ m — 2. 

THEOREM 7.7. Ze/ F = CP*, X = E(U,m) for m odd, m > 2, awd 
2k ^ m — 2. Then, for 0 ^ j ^ m — 2, 

!

0 if j is odd, 
Z* ifj = 2i-2,j^2k-2, 
Zk if j is even, 2k — 2 g j < m — 2. 

Pm?/. This follows since £œ(CPfc * E(U, m)) = £2(CP* * E(U, m)) and 
A/Z ~ Z =$ A ~ Z © Z, provided A is an abelian group. 

THEOREM 7.8. Let Y = Yv
n, n ^ 2. 7 7 ^ 7 r w + n + m ( F / * £(£/ , m)) « 

Z* ® 7rm+J-(C7) /or 0 ^ j ^ m - 2. 

Finally, consider Fs.2, the space of all unit tangent vectors on 54. I t is well 
known that (see 8, p. 323) 

( Z if i = 7, 
5 , ( 7 ) = <Z2 if* = 3, 

' 0 otherwise. 

THEOREM 7.8. Let Y = F5,2, X = E{U, m) for m odd, m > 2. 77ze?z, if 
0 ^ j g m - 2 , 

JZ2 if j = 0, 2, 
irm+4+j(V5,2 * E(U, rn)) ~ \Z ® Z2 if j is even, j > 2, 

' 0 if j is odd. 

8. Examples of two-term conditions in (H(X, Y,v) and S2(X, Y). 
Throughout this section, let X be either a connected, ^-dimensional, CW 
complex or a path-connected, ^-dimensional, metric space. Correspondingly, 
let Hi{X) G) denote cellular cohomology if X is a CW complex or Cech 
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cohomology if X is a metric space. Finally, let E(X, F) denote either 
S(X, Y,v) (^constant) or &(X, F), depending on X. Denote Tt(M(X, F), v) 
by ft. 

Let FA denote the exceptional Lie group of dimension 52. The first 23 
homotopy groups of F± have been computed in (13). There it is shown that 

^.(F,) = 0 (i = 1, 2, 4, 5, 6, 7, 10, 12, 13, 19). 

This fact, plus two-term conditions in (S(X, F), implies the following result. 

THEOREM 8.1. Let d i m X ^ 4 and Wi = w^Ft). Then various homotopy 
groups of M(X\ FA) are given by: 

Tfi « i ? 2 ( X ; 7T3), #2 - i ? K X ; ira), 7f3 - i ? ° (X; TT3), 

7f4 = i ? 4 ( ^ ; ITS), #9 « i ? 2 ( ^ ; TTll) 0 F ° ( X ; 7T9), 

i7K^;^ )^^ 3 (X;7r 9 )^7f 6 ^5 2 (X;7r 8 )^ f fH^;^9)^^5-> i? 3 (X;7r 8 ) ->0 , 

o -* # 4 ( x ; Trio -> Trio -> # K ^ ; TH) -> o 
are exad. 

Proof. The proof follows easily from the fact that 

ÉPtV* - H«(X;TTP+Q(F,)) 

implies TTC {0,6; 2}, {9,10; 2} (see Figure 8.1) on g(X, F), from Theorem 6.3 ; 
and from extended TTC's of (5). 

In (13), it is also shown that T^(Spin(7)) = 0 if i = 1, 2, 4, 5, 6, 12, 
7r3(Spin(7)) - Z. 

THEOREM 8.2. Let dim X ^ 4, and irt = 7ri(Spin(7)). TTzen (see Figure 8.2) 

Tri - H2(X;irz), 7 f 2 « # i ( * ; T 3 ) , TT3 - Z 0 i? 4 (X;7r 7 ) , 

and i ï 2 (X; TT7) -+H*(X; TT8) - * TT4 -+ i î 3 (X ; TT7) -+ 0 w exac*. 

Next, let F = F5
W * 5m forn ^ 2, m > 20. The computations of Theorem 7.3 

imply the following result. 

THEOREM 8.3. Let dim X S 7. Then M(X, Yb
n * Sm) is (m + n - 7)-

connected and (see Figure 8.3), //* H^X; Z5) = i?% Jfeew 

Tm+n-e+j ~ H«~» (0 ^ i < 7), 

7fw+w+8 - H° e i?1. 

Furthermore, the following sequences are exact: 

0 - • H2 - > 7Tm+„+7 - > i ? 1 - > i ? 3 - • 7? w + n + 6 " > i ? 2 - • i î 4 - > 7fm+w45 -+H*-+H* 

-^ irm+n+i —» i ï 4 —> i ? 6 —» 7?m + w + 3 —> H5 —> H7 -^> 7rw + n + 2 —•> i î 6 —» 0 , 

H2 —> HA -+ 7Tw + n + i3 —» i ? 3 —» H5 —> 7TW+W+12 —> i 7 4 —» i ? 6 —> 7Tw+w+ii 
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This follows essentially by (5, Gap Theorem I) . 
In (15), it is shown that 

H*(Gk+2,k) ~ A(tf2;t+i, *2*+3), 

where Gk+2,k is the complex Stiefel manifold of left cosets U(k + 2)/U(k) and 
A(pC2k+i, %2k+z) is the exterior algebra on generators x2k+i, #2*4-3 of dimension 
2& + 1 and 2& + 3, respectively. Let k = 1, then Gz,i = G has homology 

n , . J[Z if q = 3 ,5 ,8 , 
Hi{Cj) ~ l o otherwise. 

Let Y = G * K(T, m) for -K abelian and m ^ 11. Then, it is shown in (17) that 

7rm+4+,(G * K) - Hz+j(G; T) M j g w - 2 ) , 

J'TT ifj = 0 ,2 ,5 , 
lO otherwise. 

THEOREM 8.4. Let d i m X ^ 4. Then M(X, G * K) is {m — l)-connected 
and, if H'iX; T) = H\ then 

fm+i - H ^ (i = 0, 1), 

irm+i+i~H^ (* = 0 ,1 ,2) , 

7fw+n = 0 (10 ^ « ^ W - 2). 

Furthermore, the following sequences are exact: 

0-+H*-+ fm+z -* tf1 -> i?4 -* fm+2 -+ H* -> 0, 

0 -> i?4 -> 7fro+5 -> i /1 -> 0 (see Figure 8.4). 

Finally, let F = CPS * E(U, m) for m odd, m > 2, 2s ^ m — 2. Define a 
function / : Z —> Z by 

J{t) \s ifi^s. 

THEOREM 8.5. Let k ^ 3. The first 2m + 1 homotopy groups TT{ of 

M(X,CPs*E(U,m)) 

can be computed from: 

M(X, CPS *E(U, m)) is (m + 2 - k)-connected, 

im = &(X), im+, = H*(X), 

*m+2 ,+1 - # • ( * ; Z'«>) © 5 2 ( X ; Z'<"-«) (j = 1, 2, . . . , J ( « - 1)), 

and 

0 -> B'(X; Z ' W ) ) -+ *m+2J -» # > ( * ; Z'<») - 0 (/' = 1, 2 | ( m - f )) 

(see Figure 8.5), where Zf(i) is the direct sum of f(j) copies of Z. 
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FIGURE 8.1. E2(X, ft) 
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FIGURE 8.2. £ 2 ( ^ . Spin(7)) 
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FIGURE 8.3. E\X, Yb
n * Sm), j n + 1 + j 
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FIGURE 8.4. E?(X, G,,i * K(*, m)), ] = m+j 
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+ + •+P 
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FIGURE 8.5. Ë\X} CFk *E(U, m)),] = m +j - 1 

9. Computation of homotopy of M(CPk, U)9 M(Vn+1>2, U)9 and 
M(L(p9q),S*). 

THEOREM 9.1. 

7n(M(CF \U),v)~{ Zk+1 if i is odd, 
0 if i is even, i > 0, 

where v: CP* —» U is any map. 

This follows as an easy corollary to the following more general theorem 
(Theorem 9.2). 

Definition. An arc-connected space X is said to be free in even {odd) 
dimensions if and only if Hi(X) is free abelian for all i and Hi{X) = 0 for odd i 
(Hl{X) = 0 for even i > 0). 

Assume, as usual, that X is a CW complex or X is a metric space. Let 

B*(X) = £ H\X) and H*(X) = S\X) 0 £ H\X), 
i>0 
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where H°(X) is the reduced cellular (Cech) group if X is a CW complex 
(metric space). 

THEOREM 9.2. (a) Let X have finite dimension 2k and let X be free in even 
dimensions. Then, if v: X —-> U is constant, 

,j{M{X,U),v)^if{X) %i}?oM< 
' 10 if its even, 

Tt(M(X,U),v)= >m. 

if j is even, j > 0. 

(b) Let X have finite dimension 2k + 1 and let X be free in odd dimensions. 
Then, if v. X —> U is constant, 

Z if j is odd, 
[H*(X) if j is even, j > 0. 

Proof. Case (a) gives rise to the following É2 (see Figure 9.1): 

Êp,q
2 = 0 (unless p is odd and a = 0, 2, 4, . . . , 2k). 

Thus, du. Êp,q
l —> Ép-i^+i1 is zero for all i, p, q=>Ëp,g

2 = Ëp>Q
œ for all p, q. 

Consider TTP(M(X, U), V) D TP,Q D TT^I D . . . , TP,2JC-I D TrPt2k = 0 such that 

l2^=k - ÉPt* « Hq(X). 
TTp,q 

Note t h a t if q is odd, 

TP,Q—1 = TP,qy T^p,2k-2 ~ irPt2k—l ~ H \X) , 

and 
7rl?,2fc-3 _ 7Tp,2A:-3 _ ÛU~2 (Y^ 

TTp,2k-l %,2A—2 

Since X is free, then ^ ^ M = ^v,n-2 = H2k~2(X) © H2k(X). Continuation 
yields 

Tp « i?*(X) (îorp odd). 

Note that this theorem is valid for any basepoint v: X —> U provided X is a 
CW complex. This is not so with part (b), where the fact that di\ EPto

i—^ .Ep_i,w* 
is zero is needed. The easy (and similar) proof of (b) is left to the reader. 

THEOREM 9.3. If n is even, 

Z if i is even, i > 0, 
Tt(M(Vn+i,2, U),v) ~ . . . . . . , . 

f,Z2 © Z i/ ^ w eaa, Î ^ I , 

where v: Vn+ii2 —» Z7 w constant. The reason this little result is included is that it 
is an example of a case where a two-term condition does not hold on &2(X, Y, v) 
but does hold on Ë4(X, Y, v) and results can still be obtained. 

Proof. The proof for n = 4 will be given. The extension to any even n is 
obvious. X — Vst2 has the following cohomology: 

( Z if i = 7, 
H\X) « \Z2 Hi = 4, 

\ 0 otherwise. 
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Then E(F, U, v) satisfies a TTC{0, GO ; 4} (see Figure 9.2) since 

ÊPtg
2 = 0 (for p odd, q j* 0, 4 or p even, q ^ 7). 

If £ is odd, then ^ , 0
2 « 3° « # ° ( F ) « Z, j ^ , 4

2 « Z2; if £ is even, then 
Êpj

2 ~ Z. Since z> is constant and X is connected, Theorem 6.4 implies that 

and Evf = EPtl\ 

Z must be zero. Thus, 

P.7 

dl Ep,oz — * Ep-\ i 
» i is zero. Thus , 

Ep,oA = Ep,t>2 ~ •Z, Ep, 4 2 = ^ , 4 3 , 

Consider û l*:Ëp 4 3 ~* ËpS then <23 z2 - > Z n 

42 = S i». 7 2^,4" 

and the theorem follows 
Let X = L(p, q), the 3-dimensional Lens space associated with the integers 

(P> Q)> P °dd. In the remainder of this section, computations of many of the 
first n + 17 homotopy groups of M(L(p, q), Sn) for n > 20 will be given. This 
is an interesting example in which a two-term condition arises in 

6*(L(/»,2),5»,») 
[v constant] without the Gap Theorems (see 5) holding in L(p, q) or Sn. Let 
(A)-(I) represent the following statements: 

(A): [p = 0 (3)]; 
[£ = 0(5) A £ ^ 0 ( 3 , 7, 11)]; 
N 0 ( 7 ) A £ ^ 0 ( 3 , 5, 11)]; 
[£ = 0(11) A £ fà 0 ( 3 , 5 , 7 ) ] ; 
[̂  = 0 ( 5 , 7 ) A £ fé 0 (3, 11)]; 
[£ = 0(5 ,11) APfé 0 ( 3 , 7 ) ] ; 
[£ = 0(7 ,11) A £ ^ 0 ( 3 , 5 ) ] ; 
[£ = 0 (5 ,7 ,11 ) A £ ^ 0 ( 3 ) ] ; 
[ £ ^ 0 ( 3 , 5 , 7 , 1 1 ) ] . 

The computation is given by Table 9.1 plus the fact that M(L(p, q), S") is 
(n — 4)-connected. Generators for the groups in Table 9.1 are given by 
generators in the corresponding groups for Sn. The following is a sample 
calculation. 

Let statement (C) hold, i.e., £ = 0 (7) and p ^ 0 (3, 5, 11). Computations 
from (9) show that 

\s(S
n) (t = 0), 

(B): 
(C): 
(D): 
(E): 
(F): 
(G): 
(H): 
(I): 

E.JiUfi.q),?) = r ^ i C S " ) ) (t = l), 
( T , + i ( S " ) ) , (* = 2) , 

Us+3(5") it = 3), 

where Gp = G/pG and TP(G) = {g Ç G|£ • g = 0}. The tables in (16) show 
that £ s , i

2 = r ,(x4 + i(5")) = 0 for 0 g 5 ^ w + 18, unless 5 = « + 10, and 
•Es,22 = (irs+2(5°))p = 0 for 0 g 5 g « + 17, unless s = », n + 9. Thus, E2 is 
described in Figure 9.3. 

This yields two-term conditions {0, n + 9; 2} and \n + 11, w + 17; 2} on S2, 
and the results for statement (C) (Table 9.1) follow easily. 
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- + 4-4-4-4-H-4-4-4-4-4-4-4-
• + + 4- + + + + + + + + + + 

- + 4-4-H- + + + 4- + 4- + 4-4-
- + + 4- + + + 4-4- + 4-4-H-4-

• j •- 1 • | • | • | m | • r 

1 2 3 4 5 6 7 8 9 10 11 12 13 

FIGURE 9.1. E2(X, U, v) 

L 

j 

8-

7 

- 4- 4- + + + 4- 4- 4- 4- 4- 4- 4-
7< •+ + + + 4-4-4-4- + + 4-4-
6 - -4-4- + + 4-4-4-4-H- + + + 
5- -4-4- + 4-4-4- + + 4- + H-4-
4 - -4-4- + + 4--f 4-4- + + 4- + 
3- - + 4-4- + 4-4-4-H-4- + 4- + 
2- L4-+4- + 4- + 4-4- + 4- + + 
1 •< ~ 4-+ 4-4-4-4-4-4-+-h 4-+ 

1 2 3 4 5 6 7 8 9 10 11 12 

FIGURE 9.2. £ 2 (F 6 | 2 , U, v) 

+ + + + + + + + + + + + + + + + + + + + + + + -f + 
+ + + + + + + + + + + + + + + + ++ + + + + + 4- + 

1 1 1 1 • • • • 1 1 • • • • • • 1 • • • • • • • • 
n - 4 n_3 n-2 n-1 n n+l n+2 n+3 n+4 n +5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13 n-tM n+15 n+16 n+17 n+18 n+19 n+20 

FIGURE 9.3. E2(L(p, q), Sn), n > 20, p = 0 (7) A p fâ 0 (3, 5, 11) 
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TABLE 9.1. Trn.i+i[SnL(p'q), v], 1 ^ iS 21 

i Tn-*+i[M(L(p, q) ,s*), z/], p odd, » > 20 

1 Z 
2 Z p © Z2 

3 z2 4 z © z24 
5 / z2 © z3 if A 5 

\z2 ii~A 
6 / z2 © z3 HA 6 

\z 2 \f~A 
7 Z 2 © Z24 

8 Z240 
9 Z2* it Cv Dv Gv I 

10 Z2* iî Cv DvGv I 
11 Z240 © Z 6 

12 Z5o4 © Z 2
2 if — A 

13 / Z 2
3 © (Z504)p 

\ Z 2 3 
i f C v E v G v F 13 / Z 2

3 © (Z504)p 
\ Z 2 3 i f ^ v D v ^ v J 

14 z 6 © z3 i f 5 v D v £ v / 
15 Z504 © Z 3 

16 / Z48o © Z2 

\ 0 -> Z48o © Z2 -> 
if ~ A 16 / Z48o © Z2 

\ 0 -> Z48o © Z2 -> TTn+12 -* z3- ->0 HA 
17 Z3 © Z2

2 iî Cv Dv Gv I 
18 (Z 2 < i 

\ 0 —» Z 2
4 —» 7Tn+14 • 

iî Cv Dv Gv I 18 (Z 2 < i 

\ 0 —» Z 2
4 —» 7Tn+14 • —> Z480 © Z 2 • ->0 HA 

19 Z48o © Z 8 © Z 2
2 

20 Z2
3 © Z264 iî ~ A 

21 Z 2
4 © 7r n + 2 0 (^ ) if Bv Cv Ev I 
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