ON THE COMPLETE REGULARITY OF SOME CATEGORY SPACES

BY W. EAMES*

1. Introduction. A category space is a measure space which is also a topological space, the measure and the topology being related by 'a set is measurable iff it has the Baire property' and 'a set is null iff it is nowhere dense' [4]. We considered some category spaces in [3]; now we show that if a null set is deleted from the space, then the topology can be taken to be completely regular. The essential part of the construction consists of obtaining a suitable refinement of the original sequential covering class and using the consequent strong upper density function to define the required topology. Then the complete regularity follows much as in [1].

The notation and definitions are as in [2], [3]: (X, ρ) is a metric space, τ a gauge on C, a sequential covering class of closed sets, and ϕ is the metric outer measure defined by C and τ .

We assume that $\phi(X)$ is finite, that the regularity conditions given in [2], [3] hold, and that C does not contain any singleton sets.

As we saw in [3], the strong upper density function D defined by C, τ can be used to construct a topology on X: the closure of $A \subseteq X$ is

$$A \cup \{x \mid D(A, x) > 0\}.$$

We will refer to this topology as the D topology to distinguish it from the metric topology. Sets which have the Baire property with respect to the D topology are ϕ -measurable and conversely, and the D-nowhere-dense sets are ϕ -null. Furthermore, if D(X, x) > 0 for all $x \in X$, then the ϕ -null sets are D-nowhere-dense. Since $\{x \mid D(X, x) = 0\}$ is ϕ -null [2, theorem 6], its deletion from X would not affect the measure-theoretic properties of X; thus we can suppose that X, with ϕ and the D topology, is a category space.

2. The D' topology. For each positive integer n, let $\{I(i, n)\}$ be a sequence of sets from C such that:

$$X = \bigcup_{i} I(i, n);$$

$$d(I(i, n)) < 1/n \text{ for all } i;$$

$$\sum_{i} \tau(I(i, n)) \le \phi(X) + 1/n;$$

Received by the editors September 22, 1972.

^{*} Research supported in part by a fellowship from the City of London Polytechnic.

(d is the diameter given by the metric ρ). Choose m(n) so that

$$\sum_{i=m(n)+1}^{\infty} \tau(I(i, n)) < (\frac{1}{2})^{n}.$$

Let

$$A(p) = \bigcap_{n=p}^{\infty} \bigcup_{i=1}^{m(n)} I(i, n)$$

and

$$Z = \bigcup_{p=1}^{\infty} A(p).$$

Also, let W be the class

$$W = \{I(i, n), i = 1, 2, 3, \ldots, m(n); n = 1, 2, 3, \ldots\}.$$

The set Z is sequentially covered by W (although the sets in W need not be subsets of Z), and thus W and τ define a metric outer measure α on Z in the usual way.

THEOREM 1. $\phi(X-Z)=0$ and, for all $A\subseteq Z$, $\phi(A)=\alpha(A)$.

Proof. Since

$$X-Z\subseteq \bigcup_{n=p}^{\infty}\bigcup_{i=m(n)+1}^{\infty}I(i,n),$$

 $\phi(X-Z)=0$. We prove the second part of the theorem in several steps.

- (i) Since $W \subseteq C$, $\phi(A) \le \alpha(A)$ for all $A \subseteq Z$.
- (ii) For $n \ge p$ we have

$$A(p) \subseteq \bigcup_{i=1}^{m(n)} I(i, n)$$

and thus the infimum of all sums of the type $\sum_i \tau(J_i)$ where $J_i \in W$ and $d(J_i) < 1/n$ for all i, and $A(p) \subseteq \bigcup_i J_i$, cannot exceed $\phi(X) + 1/n$. Therefore $\alpha(A(p)) \le \phi(X)$ and so $\alpha(Z) \le \phi(X)$. This, with (i), proves that $\alpha(Z) = \phi(X)$.

(iii) Let A be α -measurable. Then

$$\alpha(A) + \alpha(Z - A) = \alpha(Z)$$

$$= \phi(X) = \phi(Z)$$

$$\leq \phi(A) + \phi(Z - A)$$

and so, by (i), we have $\alpha(A) = \phi(A)$.

(iv) Let $A \subseteq Z$ and let B be a Borel subset of Z which is a ϕ -measurable cover for A. There is such a set B because A has a ϕ -measurable Borel cover and because Z is Borel. Then B is α -measurable and so $\alpha(B) = \phi(B)$. Thus

$$\phi(A) = \phi(B) = \alpha(B) \ge \alpha(A)$$

and therefore $\phi(A) = \alpha(A)$.

This concludes the proof of theorem 1.

Now, for $x \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, let

$$D'(A, x) = \lim_{\varepsilon \to 0^+} \sup \frac{\phi(A \cap I)}{\tau(I)}$$

where the supremum is taken for all $I \in W$ such that $x \in I$ and $d(I) < \varepsilon$. Since the sets in W need not be subsets of Z, D' is not, strictly speaking, a strong upper density function as defined in [2], but the proof of [2, Theorem 6] still applies, and so

 ϕ -almost-everywhere in A. Also, $D'(A, x) \leq D(A, x)$ since $W \subseteq C$, and thus

$$D'(A, x) = 0$$

 ϕ -almost-everywhere in Z-A iff A is ϕ -measurable [2, theorems 3, 7, 8]. Therefore D' does define a topology on Z as in [3]. We will call it the D' topology. It has the properties noted in the introduction—if $\{x \mid D'(Z, x)=0\}$ is deleted from Z, the result is a category space.

Next we prove a type of Lusin-Menchoff theorem.

THEOREM 2. Let A be a closed subset of Z and B a ϕ -measurable subset of Z such that $A \subseteq i(B)$. Then, there is a closed subset F of Z such that

$$A \subseteq i(F) \subseteq F \subseteq B$$
.

(The set i(C) is the interior of C with respect to the D' topology. It is $C \cap \{x \mid D'(\widetilde{C}, x) = 0\}$.)

Proof. For each positive integer n, let

$$R_n = \{x \mid 1/n < \rho(x, A) \le 1/n + 1\} \cap B,$$

and assume that

$$B=A\cup\bigcup_{n}R_{n}.$$

Clearly, this assumption can be made without loss of generality. For each $\varepsilon > 0$ there are only a finite number of sets in W with diameter greater than ε , and so $\gamma(\varepsilon) > 0$, where we define $\gamma(\varepsilon)$ to be the infimum of all the numbers $\tau(I)$, where $d(I) > \varepsilon$ and $I \in W$.

Choose F_n to be a closed set such that $F_n \subseteq R_n$ and

$$\phi(R_n - F_n) < \gamma(1/n)/2^n.$$

The set F_n exists because $\phi(X)$ is finite and every subset of X has a Borel cover. Let

$$F = A \cup \bigcup_{n} F_{n}$$

and let $x \in A$. Clearly, F is closed, and it only remains to show that $D'(\tilde{F}, x)=0$.

Let $x \in I \in W$, and suppose that I has a non-empty intersection with one of the sets R_1, R_2, R_3, \ldots Suppose that R_n is the first such set that I intersects. Then

$$\phi(\tilde{F} \cap I) = \phi(\tilde{B} \cap I) + \phi((B - F) \cap I)$$

$$= \phi(\tilde{B} \cap I) + \sum_{m=n}^{\infty} \phi((R_m - F_m) \cap I)$$

$$\leq \phi(\tilde{B} \cap I) + \gamma(1/n) \cdot 2^{1-n}.$$

Thus, in this case,

$$\frac{\phi(\tilde{F}\cap I)}{\tau(I)} \le \frac{\phi(\tilde{B}\cap I)}{\tau(I)} + 2^{1-n},$$

since d(I) > 1/n. In the other case,

$$\frac{\phi(\tilde{F} \cap I)}{\tau(I)} = \frac{\phi(\tilde{B} \cap I)}{\tau(I)}$$

Therefore, $D'(\tilde{F}, x) = 0$ as required.

The complete regularity of the D' topology now follows, using a suitable modification of a lemma due to Zahorski [5]. Alternatively, a proof similar to that of Urysohn's lemma can be given: let $C \subseteq Z$ be D'-closed and let $x \in Z - C$. Let $A = \{x\}$, $B = \widetilde{C}$ in theorem 2, and let $O_{1/2} = i(F)$, and $F = F_{1/2}$. Then

$$x \in O_{1/2} \subseteq \bar{O}_{1/2} \subseteq F_{1/2} \subseteq \tilde{C}$$
.

by $\bar{O}_{1/2}$ we mean the closure of $O_{1/2}$ with respect to (Z, ρ) . We proceed inductively, associating a D'-open set O_u and a metrically closed set F_u with each positive dyadic rational u, so that

$$x \in O_u = i(F_u) \subseteq \overline{O}_u \subseteq F_u \subseteq \overline{C}$$
,

for all such u, and so that if u < v, then $F_u \subseteq O_v$. The crucial step in the argument is, to show that having defined F_u and F_v for u < v, then there is a closed set F such that

$$F_u \subseteq O = i(F) \subseteq \overline{O} \subseteq O_v = i(F_v).$$

This is done by applying theorem 2, with $A=F_u$, $B=F_v$. It is only important to note that $Cl[i(F)]\subseteq F$, since $\overline{F}\subseteq F$. Thus we obtain a function f which is 0 at x, 1 on C, and which is continuous relative to the D' topology on Z and the usual topology on the real numbers. But, in fact, we obtain more: by using the closed sets $\{F_v\}$, we see that the inverse image, under f, of an open set is a \mathscr{F}_{σ} subset of Z, relative to (Z, ρ) . That is, f is of Baire class one, or less. Also, we note that the only property of x we used was that it is a closed subset of Z disjoint from C. Thus we have proved:

THEOREM 3. Let A be a closed subset of Z and let C be a D'-closed subset of Z which is disjoint from A. Then there is a real-valued function f from Z which has the

following properties:

- (i) f(a)=0 for all $a \in A$;
- (ii) f(a)=1 for all $a \in C$;
- (iii) f is continuous with respect to the D' topology on Z and the usual topology on the reals;
- (iv) f is of Baire class one, or less, with respect to the metric topology on Z and the usual topology on the reals.

It follows from the complete regularity of the D'-topology that this topology is the coarsest topology on Z for which the D'-continuous functions are continuous. Of course, this class of functions depends on Z, and so it is of interest to know if Z can be chosen to be the original space X.

Theorem 4. If X is compact with respect to the metric topology, and if the number β given in the regularity conditions can be chosen arbitrarily, $\beta>1$, then Z can be chosen to be X.

Proof. For each positive integer n, choose $\beta > 1$ so that $\beta \phi(X) \le \phi(X) + 1/n$, and choose $\sigma > 0$ by assigning $\varepsilon = 1/n$ in the regularity conditions. Let $\{I_i\}$ be a sequence of sets from C with union X, each of diameter less than σ , and such that

where

Then

$$\sum_{i} \tau(I_{i}) < \phi(x) + \gamma$$

$$\gamma = \phi(X)(1/\beta - 1) + 1/\beta n.$$

$$X = \bigcup_{i} I_{i}$$

$$= \bigcup_{i} \{x \mid \rho(x, I_{i}) < ad(I_{i})\}$$

$$= \bigcup_{i=1}^{m} \{x \mid \rho(x, I_{i}) < ad(I_{i})\}$$

$$= \bigcup_{i=1}^{m} I'_{i}$$

for some integer m. Since $d(I_i') < 1/n$ for all i, and

$$\sum_{i=1}^{m} \tau(I_i') \le \beta \sum_{i=1}^{m} \tau(I_i)$$

$$\le \phi(X) + 1/n,$$

the sets I'_1, I'_2, \ldots, I'_m can be taken as the sets $I(1, n), I(2, n), \ldots, I(m(n), n)$ in the construction of Z. Since their union is X, Z is X.

REFERENCES

- 1. M. Chaika, The Lusin-Menchoff theorem in metric space, Indiana U. Math. J. 21 (1971), 351-354.
 - 2. W. Eames, A local property of measurable sets, Canad. J. Math. 12 (1960), 632-640.

3

W. EAMES

- 3. W. Eames, On a topology generated by measurable covers, Canad. Math. Bull. 14 (1971), 499-504.
 - 4. J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
 - 5. Z. Zahorski, Sur la premiere derivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

CITY OF LONDON POLYTECHNIC,
LONDON
and
LAWRENCE LAWRENCE

LAKEHEAD UNIVERSITY,
THUNDER BAY, ONTARIO, CANADA