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An Extension of Nikishin’s Factorization
Theorem

Geoff Diestel

Abstract. A Nikishin-Maurey characterization is given for bounded subsets of weak-type Lebesgue
spaces. New factorizations for linear and multilinear operators are shown to follow.

1 Introduction

Let (Q, ¢) be a non-atomic probability space. The space of scalar-valued y-measur-
able functions Ly = Lo(du) is equipped with the topology of convergence in measure
and f = gin Ly if f(w) = g(w) for y-almost every w € Q.

For 0 < p < oo, the Lebesgue space L, is defined by

fetyoifl=( [iran)” <o

Of course, ||, is a quasi-norm making L, into a quasi-Banach space and L, is a
Banach space if 1 < p < oo where L, is the space of essentially bounded functions
equipped with the essential supremum norm.

For 0 < p < oo, the weak Lebesgue space L, is defined by

f € Lpeo = |flpe 3= sup tu({If] > t})"? < oo

The quantity | - [ 5,0 is a (complete) quasi-norm [3, Chapter 1.1].

The intent of this article is to extend the existing Nikishin-Maurey theory. Al-
though this theory is often presented in the context of factoring operators, the foun-
dational results of this theory are concerned with bounded subsets of non-negative
measurable functions. If J is such a set of measurable functions and 0 < p < oo,
Nikishin [8] characterized the existence of a positive measurable function g such that
sup . | f/8lp.c0 < oo. The existence of such a function is equivalent to the existence
of a decreasing function C: (0, 00) — (0, c0) such that lim;, . C(¢#) = 0and

u({suplc;fjl > t}) < C(¢)
J

for all t > 0, finitely supported sequences (f;) from J and scalars (c;) satisfying
> jl¢jl? < 1. In other words, g exists if and only if

{suplc;fil:neN, fi,..., fu € Foferl? + oo+ [en|P <1}
j
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is bounded in L. The key step in proving g’s existence from the boundedness of this
set is purely constructive. A nice presentation of the proof of Nikishin’s [8] character-
ization may be found in [10, Proposition IIL.H.2 ]. To summarize, for 0 < € < 1, the
boundedness of the above set within Ly implies the existence of a subset E. of Q and
a constant C, < oo such that y(E;) >1-¢€and

sup [[1g, f p,e0 < Ce-

feF

Of course, the constant C, is tied to the function C from the above maximal estimate,
and thus it may be that lim,_,¢ C, = co. If this limit were finite, there would be nothing
to prove, as the set 3 would be bounded in L o,. Given any decreasing null sequence
(en) such that 0 < €, < 1, g is constructed by selecting an unbounded increasing
sequence of positive scalars (a,,) such that g = ailg, + X ,51 anlk,, <., > Where the
scalars (a,) are chosen to counteract the growth of constants (C,, ) in order to ob-
tain the factorization F = g(g™'F), where g7'F is bounded in L, o. Of course, any
selection of scalars (a, ) defines g as a positive element of L. However, it is of interest
to identify a more specific space for g based on the particular function C(#) from the
above maximal estimate. Theorem 1.1 is a formulation of Nikishin’s theorem for the
specific case that J is a subset of Ly o, for some 0 < g < p. In this case, it is natu-
ral to consider C(t) = t79. Much of the proof follows from technical adaptations of
the arguments used to prove Nikishin’s [8] theorem as presented in [10]. However, the
aforementioned construction of the function g is insufficient to obtain g from the nat-
ural weak-Lebesgue space, and an extra compactness argument will be used to prove
(N3) < (N1).

Theorem 1.1 Let0< q< p < oo,1/r=1/q—1/p, and let F be a subset of non-negative
elements of Ly .. Then the following conditions are equivalent.

(N1) There exist a constant C < oo and a positive g € L, o so that | g| ..o =1 and

sup [ f/g p,0 < C.
feF

(N2) There exists a constant C < oo so that | sup; |c; fjl[ .00 < c( 2 [313) 1/p for all

finitely supported sequences (f;) from F and scalars (c;).
(N3) There exists a constant C < oo such that for any 0 < € < 1 there exists a measurable

set Ee such that p(Ee) > 1- € and sup . |15, f | .o < CeVr,

Theorem 1.1 will be proved in Section 3. Section 2 contains applications related to
the factorization of linear and multilinear operators. For more on Nikishin-Maurey
theory and its applications to Banach space theory, the reader is referred to [1,4,5,10].

2 Factoring Operators

The topology of any locally bounded topological vector space X is induced by a func-
tion || - |: X — [0, oo) satisfying the following conditions.

* ||x|| > 0forall x #0.

e |lex]| = |¢|||x]|| for all scalars ¢ and all x € X.
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o There exists 1 < C < oo so that |x + y| < C(|x|| + |y]) forall x, y € X.

The function | - | is called a quasi-norm and X is a quasi-Banach space if X is complete
with respect to | - ||. Furthermore, if C = 1, then X is a Banach space.

For 0 < p < 2,a quasi-Banach space X has Rademacher type p if there exists a con-
stant T, (X) < co such that E|| ¥°; e;x; [P < T, (X)? ¥ ||x;|? for all finitely supported
sequences (x;) from X. Here (¢;) is a sequence of independent Bernoulli random
variables satisfying P(ej =1) =1/2 = P(ej = -1).

For k > 1 and quasi-Banach space(s) Xi,..., X, T: X x --- x Xj — Lg is k-sub-
linear if each coordinate map is sublinear. If each coordinate map is linear, then T
is a k-linear operator. In [2] it was shown that for a bounded k-sublinear operator
T:X; x .-+ x X — Ly there exists a decreasing function C: (0, 00) — (0, 00) such
that lim.co C(t) = 0 and p({sup; |T (x>, xk,;)| > t}) < C(t) for all finitely
supported sequences (x;;); from X;, 1 < i < k, such that 3;([lxy,j[ -+ [xx,;])? < 1,
where 1/p =1/p1+-+-+1/prand 0 < py, ..., px < 2 are the respective Rademacher
types of the quasi-Banach spaces Xj, ..., Xy. Thus, by Nikishin’s [8] characterization
there exists a positive measurable g so that | g™ T (x1, -+, xk )| oo < [x1] -+ %k for
allx; € X;,1< i < k. Of course, the case k = 1is due to Nikishin [8]. Analogous results
are also shown in [2] for operators mapping into L, for some 0 < g < p. These results
utilize Pisier’s [9] characterization for the factorization of subsets of L, through L, o,
if0<qg<p.

Maurey [7] characterized when a subset of L, can be factored through L, for 0 <
g < p < oo. Due to the stable laws and the Kahane-Khintchine inequalities, this
result only applies to linear operators defined on a space of type 2, i.e., every linear
operator T: X — L, factors through L, if 0 < g < 2. There are no direct applications
of Maurey’s results for factoring multilinear operators through L, using Rademacher
type. However, partial analogs of Maurey’s result are shown to hold in [2,6]. Suppose
Xj and X; have type 2 and T: X; x X, — Lg is a bounded bilinear operator. Then not
only does T factor through L, o, but the range of T is locally convex in L. This is
shown in [2] as an application of the characterization of the Rademacher decoupling
property for quasi-Banach spaces given in [6]. Thus, the T-induced linear map is
continuous from the projective tensor-product X;®X, into Lo. This means that T
factors through a Banach space, i.e., there exists a Banach space Z, a bilinear operator
B: X; x X; — Z, and a linear operator L: Z — L, such that T = LB.

As with previously existing Nikishin-Maurey theorems, Theorem 1.1 applies to
linear and multilinear operators due to their homogeneity [2]. Suppose k > 1 and
0 < p1,..., pr < 2 are the respective Rademacher types of the quasi-Banach spaces
Xis.oo s Xi If1/p =1/pr+---+1/prand T: Xy x -+ x Xj > Lg o is a bounded k-linear
operator and 0 < g < p, then the Kahane-Khintchine inequalities imply that there
exists a constant C = C(q, p1,. .., pk, T') < oo such that

IA

” ( Z |T(x1’jl’ Tt xk)jk)|2) 1/2H q,00 |Pi) l/pi

Jlreees Jk

k
C H( Z Hxi,j,-
i=1

Ji

for all finitely supported sequences (x;,;); from X;,1< i < k. Of course, this estimate
implies that
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k N\ 1/pi
[sup I TCerjo - k)l g0 < CTTCD i s17)
j =1 j
for all finitely supported sequences (x;,j); from X;, 1 < i < k. As illustrated in [2,6],
the homogeneity of T and of the identity 1/p = 1/p; + - -- + 1/ py implies

1/p
[ sup I T(xr oo i) lgioo < COX Ul Ik, 1))
j J

for all finitely supported sequences (x;,;); from X;, 1 < i < k. An immediate conse-
quence of this estimate and Theorem 1.1 is the following theorem.

Theorem 2.1 Letk>1,0<py,....,px <2, 1/p=1/p1+---+1/pp <1/q < o0, 1/r =
1/q—1/p, and suppose T: Xy x - - x X — Ly o is a continuous k-linear operator where
P1> - - -» Pk are the respective Rademacher types of the quasi-Banach spaces X;, . . ., X.
Then there exists a positive g € Ly oo such that | g7 T (x1, ..., xk)| poo < %1 -+ | x|
forallx; e X;, 1< i<k

Theorem 2.1 identifies new factorizations not established by the characterizations
of Nikishin [8], Maurey [7], or Pisier [9], due the the fact that the operator takes values
in Ly o and that the factorization T = g(g™'T) is defined by an element g of L, oo,
where 1/r =1/q —1/p.

3 Proof of Theorem 1.1

All Nikishin-Maurey characterizations like Theorem 1.1 may be reduced to any par-
ticular value of p by considering F* = {f*: f € F} forany ¢ > 0. Since 1/r =1/q-1/p,
it follows that 1/(r/t) =1/(q/t) +1/(p/t), and all the conditions (N1)-(N3) translate
into equivalent conditions about F*. Picking ¢ so that p/t has a particular value and
proving the equivalence of these new conditions for ¥/, implies the general equiva-
lence of (N1)-(N3).

The following proof of (N1) = (N2) = (N3) follows from a technical reworking of
the arguments used to prove the analogous implications of Nikishin’s [8] theorem as
presented in [10]. However, the aforementioned constructive arguments used to prove
the final implication of Nikshin’s theorem are insufficient to construct the function g
from (N1) because of the added requirement that g € L, o, wherel/r =1/g—1/p. How-
ever, assuming (N3) and using the aforementioned reduction with the assumption
that r > 2, one can construct a sequence (g, ) such that sup,, sup s [ f/gn p,e0 < 0
and sup,, | gn|r,,c0 < o0, where2 < r, < rand (r,) is increasing to r. Thus, (g,) is
bounded in L,, and the Banach-Saks theorem guarantees that (g, ) has a subsequence
with convergent Cesaro means. The above two conditions will be used to show that
the limit g of these Cesaro means will satisfy (N1), and this will complete the proof by
establishing (N3) = (NI).

Proof Assuming (N1), let (fj) be a finitely supported sequence from J, (c;) be
scalars, and define F = sup;[c;fj|. Then 1/r = 1/q — 1/p implies that |F|g,e <
IF/gllp,00 | &llr,00- Since (f;) is a finitely supported sequence from JF, there is a par-
tition (E;) of Q2 so that F = |ci fi| almost everywhere on Ej. The disjointness of the
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partition implies

u({F/g>1t}) < Zk:#({ICkkag > t}).
Hence, (N1) implies
u({suplc;fil/g > t}) < Zk:ﬂ({|ckfk| >t})<Ct? Zk:|ck|p>
j

and (N2) follows with the same constant as in (N1) because || g|,,co = L.

Now assume (N2) holds. Without loss of generality, assume C = 1 by normalizing
JF. Fix 0 < € < 1 and consider a measurable set B to be e-bad if there exists f € I so
that u(B)|f(w)|? > ¢ #/4 for all w € B.

If there are no e-bad sets for some 0 < € < 1, then for every f € F and every t > 0,
there exists w € {|f| > ¢} so that

s({If1> D < u({If > DIf (@) < e/,

In this case J is bounded in L, o, and (N3) follows in a trivial manner.
Suppose there are e-bad sets for every 0 < e < 1. Fix € and suppose (B;) is a
maximal family of disjoint e-bad sets. Thus, for each j there exists f; € F so that

u(BIfi (@) >

forallw € B;. For each jletc; = u(B;)?. Notice that sup; [c;fil? > € P/ everywhere
on B = U; B;. Thus, for any n € N, (N2) implies that

§ - C a/p
[fl(leBj) < u({suplc;fjl > e Yayy <e( S ei?) " < eu(B)?.
= j<n i
Letting n tend to infinity implies that y(B)l“i/P < €. Therefore, u(B) < e?l(P=1) §oif
Eop/to-00 = QN B, then p(E p/-0)) > 1—€P/P=D and E_,/(-q) is not e-bad. Therefore,

HlEep/(p—wf”?oo <e?l.

This holds for all 0 < € < 1. By making the substitution 8 = e?/(?~9), then for every
0 < § <1, the condition 1/r = 1/q — 1/ p implies that there exists E4 such that u(Es) >
1- 8 and |15, f[§ o < 6~(p=0)/a = §7P/* By undoing the assumed normalization of
(N2), it follows that (N3) holds with the same constant as in (N2).

Assume (N3) with C = 1. Moreover, the fact that J is a set of positive measurable
functions, the homogeneity of the desired estimates on the indices ¢, p, and r due to
the identity 1/r = 1/g — 1/p allows for the assumption that r > 2.

Fix n and let (€, ) m be the sequence defined by €,,,,, = (1/(2m")) . For each
m, let E, ,, be the set E  from condition (N3) for € = €, ,,. The decreasing nature
of the sequence (€, ;) » implies that we can assume (with no loss of generality) that
Eum C Eyme for all n and m. Moreover, since g is non-atomic, we can assume
U(Ep,m) =1-1/(2m") by choosing E, ,, as a subset of E, ,, if necessary. Thus, for
every n and each m > 1,

€n,m

_ 1 1 _ (m+1)"-m" n
#(Enme1 N Enm) = 2mn  2(m+1)" ~ 2m"(m+1)" S Zre

Let D,y =E,yand Dy, = Ey i1 \ Ep o forallm > 1.
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Suppose the above construction has been made for all n. For each n, define a mea-
surable function g, by g, = ¥, 1p, ,,m"*¥)/", where k is chosen so that pk/r > 1.
Clearly, g, > 1on Q for all n.

Let r, = ;7. Then (r,) increases to r. Furthermore, it is easy to see that there is
a constant C < oo which is independent of 7 so that

‘u({gn > t}) = Z Au(Dn,m) < Z Zmnnﬂ < Ctirn/(er).

m>tr/(n+k) m>tr/(n+k)

Thus, sup,, ||gn | r,,c0 < 0. Moreover, if f € F, then

u({If1/gn > 1)) = 3 gD 0 {If] > tm /7Y,

Since Dy, € Ee, ,,» (N3) and our choice of k imply that there is a constant

C=C(p,qr)<o0
that is independent of n so that
#({|f|/gn > t}) <t P ZZP/anP/Ym—P(n+k)/r — t—PZP/r Z m—Pk/r - CtP.
m m

Since r > 2 and (r,) is increasing to r, we can restrict our attention to all # such
that 2 < r, < r. Without loss of generality, we may assume that ; > 2. Since y is
a probability measure, sup,, | gx[2 < C(r1) sup,, | gn|r.,c0 < 0. By the Banach-Saks
theorem for L,, there exist a subsequence (g, )« and g € L, so that g = limy Gy, (in
L), where Gy = N™'©¥, g4, Forany m > 1, define Gy, = N 30" g, . By a
simple application of the triangle inequality, it is easy to see that g is the L, limit of
(GN,m )N for any m. By Fatou’s lemma, u({g > ¢}) < liminfy u({Gn,n > t}) for
any m. However, since (r,,) is increasing and y is a probability measure, notice that
Gn,m is an average of functions whose L,, . norms are uniformly bounded in m by
a constant independent of N. So there exists a constant C(p, g) < oo so that

sup [ gl .00 < C(p>q).
m

Since p is a probability measure and (r,,) increases to 7, it follows that g € L, o, with

Fix f € J. Again, by applying Fatou’s lemma,

u({lf1/g>1}) < liminf u({|f|/Gn > t}).

1/N

By the arithmetic-geometric mean inequality, Gy > (Hj-\il gn;)"". Therefore, by

Holder’s inequality for weak-type spaces,

w({IA/Gx > 1)) < )1/ Gl
N N
<P TN YN IRy oo = 2 TT I e 15,
i=1 i=1

By normalizing g in L;,c, the condition sup,, sup . | f/gx |l p,c0 < oo implies there is
a constant C < oo such that sup . | f/g p,. < C, and (NI) follows. [ |
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