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Machine learning (ML) techniques, including deep learning-based object detection models, are rapidly 

becoming common in data intensive microscopy workflows. The rise of ML over human-based, or even 

“classic” machine vision techniques (e.g., image thresholding, Hough transforms, etc.) is the result of 

ML techniques being significantly faster, less computationally intensive (on inference), and highly 

repeatable between various microscopists and research groups [1]. Furthermore, ML techniques are far 

easier to scale towards large (>16M pixels) image datasets, including time-series data collected via 

video-based formats. Scalable ML is achieved with ML-based methods becoming more light weight and 

computationally inexpensive, while commodity computing hardware, such as graphical processing units 

(GPUs) and tensor cores, are witnessing exponential growth rates in performance. However, adoption of 

ML-based methods in various microscopy workflows has been restricted to only a few “super-user” 

groups due to the limited toolsets for performing distributed ML computing and difficulties with sharing 

software stacks that can be easily downloaded and run by any microscopist. 

 

The lack of adoption has been apparent in our own ML methods development [1–5], which have focused 

on enabling automated detection and quantification of irradiated microstructures using 

Scanning/Transmission Electron Microscopy (S/TEM). Recent work has developed well qualified 

models for the determination of dislocation loops [3,4] and cavities, but these methods have yet to be 

widely used in real microscopy workflows. Inspection of current citations of these studies reveal their 

impact heavily revolves around ML technique development and not scientific discovery in irradiated 

materials. This is occurring even with web-based runnable software stacks based on the Google 

Collaboration Python environment (Google CoLab) that are being shared at the time of publication. 

Within our own work, and those of others with similar interests [6–8], the additional realization of 

performing real-time ML-based quantification for experiments, such as in-situ S/TEM mechanical 

straining, in-situ S/TEM irradiation, and in-situ S/TEM corrosion, has not been met. 

 

Here, we demonstrate the development of a framework for enabling real-time, on-microscope automated 

ML-based quantification [9] that enables rapid scientific discovery in static (e.g., single image) or time 

resolved microscopy workflows. The generalized framework is shown in Fig. 1a, where a GPU-enabled 

edge-computing device hosts and operates the ML-based quantification algorithm(s). The software stack 

is fully web-enabled, meaning no software installation and no code editing is needed to begin use of ML 

in microscopy workflows. The edge device enables the web-application to run fully remote, or 

effectively in “air-gapped” network environments that are common to most S/TEM instruments. The 

deployed framework has been demonstrated to be microscope agnostic, with successful deployments on 
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a Thermo Scientific Tecnai G2 F30, Thermo Scientific Titan ChemiSTEM, and a Zeiss Celldiscoverer 7, 

among others and software compatibility with Thermo Scientific TIA, Thermo Scientific Velox, Gatan 

GMS, and Protochips AXON microscope control and imaging suites. We will show the power of such 

on-microscope deployments for ML through case studies using the You Only Look Once (YOLO) real 

time object detection algorithm, where the YOLO detector has undergone supervised learning for 

dislocation loops and/or cavities using experimental and/or simulated datasets [5] resulting in various 

YOLO-based ML configurations. A discussion on the current state of training YOLO models including 

implementation of synthetic data and recent advances and pitfalls using ML-based quantification will be 

discussed in parallel. 

 

For the framework in Fig. 1a, we will demonstrate the platform operating in real-time via in-situ TEM 

ion irradiation and in-situ post irradiation annealing TEM experiments. Fig 1b-c shows such 

demonstration, where a dislocation loop splits under continued ion irradiation and the framework 

captures and quantifies the split in real-time. The samples were imaged under two-beam condition along 

⟨200⟩  using a DENS solution Wildfire heating holder operating at 375°C. Primary data was collected 

using the Protochips AXON in-situ TEM software and the framework in Fig. 1a extracted the data in 

real-time, streamed video frames to a 384-core NVIDIA Volta
TM

 GPU-enabled edge device, performed 

real-time object detection using a modified YOLO model from [2], and then back-streamed and overlaid 

the detections on the AXON software as seen in the reduced areas of interest frame grabs in Fig 1b-c. 

The Fe-13wt%Cr-7%Al sample was irradiated with 1 MeV Kr
3+

 with a dose rate of 7×10
-4

 dpa/s and 

was prepared using standard focused ion-beam lift-out procedures for DENS solution Wildfire heating 

chips. The experiment was performed at the Michigan Ion Beam Laboratory. Additional real-time 

dynamic events such as nucleation, growth, defect loss, and coalescence will be demonstrated as part of 

the presentation [10]. 

 

 
Figure 1. Simplified schematic of the edge-computing architecture that communicates over a closed 

local area network interface [9] (a) and example showing real time object detection (blue squares) of 

black dot damage formed under irradiation in an FeCrAl alloy (b) and dynamic defect splitting event and 

detection (c). Data from (b-c) is from screenshots of the web-based interface that was running in real-

time and streaming both captured image frames from Protochips Axon in-situ TEM software and 

corresponding detection data running a modified YOLO model from [2]. Scale bar identical in Figure. 
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